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Mind Your Language: Learning Visually Grounded Dialog
in a Multi-Agent Setting

Anonymous EMNLP submission

Abstract
The task of visually grounded dialog involves
learning goal-oriented cooperative dialog be-
tween autonomous agents who exchange infor-
mation about a scene through several rounds of
questions and answers. We posit that requiring
agents to adhere to rules of human language
while also maximizing information exchange
is an ill-posed problem, and observe that hu-
mans do not stray from a common language,
because they are social creatures and have to
communicate with many people everyday, and
it is far easier to stick to a common language
even at the cost of some efficiency loss. Us-
ing this as inspiration, we propose and evalu-
ate a multi-agent dialog framework where each
agent interacts with, and learns from, multi-
ple agents, and show that this results in more
relevant and coherent dialog (as judged by hu-
man evaluators) without sacrificing task perfor-
mance (as judged by quantitative metrics).

1 Introduction

Intelligent assistants like Siri and Alexa are increas-
ingly becoming an important part of our daily lives,
be it in the household, the workplace or in public
places. As these systems become more advanced,
we will have them interacting with each other to
achieve a particular goal (Leviathan, 2018). We
want these conversations to be interpretable to hu-
mans for the sake of transparency and ease of de-
bugging. Having the agents communicate in natu-
ral language is one of the most universal ways of
ensuring interpretability. This motivates our work
on goal-driven agents which interact in coherent
language understandable to humans.

To that end, this paper builds on work by (Das
et al., 2017) on goal-driven visual dialog agents.
The task is formulated as a conversation between
two agents, a Question (Q-) and an Answer (A-)
bot. The A-Bot is given an image, while the Q-
Bot is given only a caption to the image. Both

agents share a common objective, which is for the
Q-Bot to form an accurate mental representation
of the unseen image using which it can retrieve,
rank or generate that image. This is facilitated by
the exchange of 10 pairs of questions and answers
between the two agents, using a shared vocabulary.
(Das et al., 2017) trained the agents first in isola-
tion via supervision from the VisDial dataset (Das
et al., 2016), followed by making them interact
and adapt to each other via reinforcement learning
by optimizing for better task performance. While
trying to maximize performance, the agents learn
to communicate in non-grammatical and semanti-
cally meaningless sentences in order to maximize
the exchange of information. This reduces trans-
parency of the AI system to human observers and
is undesirable. We address this problem by propos-
ing a multi-agent dialog framework where each
agent interacts with multiple agents. This is mo-
tivated by our observation that humans adhere to
syntactically and semantically coherent language,
which we hypothesize is because they have to inter-
act with an entire community, and having a private
language for each person would be extremely in-
efficient. We show that our multi-agent (with mul-
tiple Q-Bots and multiple A-Bots) dialog system
results in more coherent and human-interpretable
dialog between agents, without compromising on
task performance, which also validates our hypoth-
esis. This makes them seem more helpful, trans-
parent and trustworthy. We will make our code
available as open-source.1

2 Objective

The game involves two collaborative agents a ques-
tion bot (Q-bot) and an answer bot (A-bot). The
A-Bot is provided an image, I (represented as a fea-
ture embedding ygt extracted by, say, a pretrained

1https://github.com/anonuser/repo.git

 https://github.com/anonuser/repo.git
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A-Bot
Caption

ImageQ-Bot

Caption Question 1

Question 2

Question 10

Answer 10

Answer 1

Guessed Image
A-Bot

A-Bot

Figure 1: Multi-Agent (with 1 Q-Bot, 3 A-Bots)
Dialog Framework

CNN model (Simonyan and Zisserman, 2014)),
while the Q-Bot is provided with only a caption
of the image. The Q-Bot is tasked with estimat-
ing a vector representation ŷ of I , which is used
to retrieve that image from a dataset. Both agents
receive a common penalty from the environment
which is equal to the error in ŷ with respect to ygt.
Thus, an unlimited number of games may be sim-
ulated without human supervision, motivating the
use of reinforcement learning in this framework.

Our primary focus for this work is to ensure that
the agents’ dialog remains coherent and understand-
able while also being informative and improving
task performance. For concreteness, an example of
dialog that is informative yet incoherent: question:
“do you recognize the guy and age is the adult?”,
answered with: “you couldn’t be late teens, his”.
The example shows that the bots try to extract and
convey as much information as possible in a sin-
gle question/answer (sometimes by incorporating
multiple questions or answers into a single state-
ment). But in doing so they lose basic semantic
and syntactic structure.

3 Relevant Work

Most of the major works which combine vision
and language have traditionally been focusing on
the problem of image captioning (((Kiros et al.,
2014), (Xu et al., 2015), (Vinyals et al., 2014),
(Johnson et al., 2015), (Lu et al., 2016), (Yao et al.,
2016)) and visual question answering ((Agrawal
et al., 2017), (Zhang et al., 2016), (Goyal et al.,
2017), (Yang et al., 2016)). The problem of visual
dialog is relatively new and was first introduced
by (Das et al., 2016) who also created the Vis-
Dial dataset to advance the research on visually
grounded dialog. The dataset was collected by pair-
ing two annotators on Amazon Mechanical Turk to
chat about an image. They formulated the task as a
‘multi-round’ VQA task and evaluated individual

responses at each round in an image guessing setup.
In a subsequent work by (Das et al., 2017) they
proposed a Reinforcement Learning based setup
where they allowed the Question bot and the An-
swer bot to have a dialog with each other with the
goal of correctly predicting the image unseen to
the Question bot. However, in their work they no-
ticed that the reinforcement learning based training
quickly lead the bots to diverge from natural lan-
guage. In fact (Kottur et al., 2017) recently showed
that language emerging from two agents interacting
with each other might not even be interpretable or
compositional. Our multi-agent framework aims
to alleviate this problem and prevent the bots from
developing a specialized language between them.
Interleaving supervised training with reinforcement
learning also helps prevent the bots from becoming
incoherent and generating non-sensical dialog. Re-
cent work has also proposed using such goal driven
dialog agents for other related tasks including nego-
tiation (Lewis et al., 2017) and collaborative draw-
ing (Kim et al., 2017). We believe that our work
can easily extend to those settings as well. (Lu
et al., 2017) proposed a generative-discriminative
framework for visual dialog where they train only
an answer bot to generate informative answers for
ground truth questions. These answers were then
fed to a discriminator, which was trained to rank the
generated answer among a set of candidate answers.
This is a major restriction of their model as it can
only be trained when this additional information
of candidate answers is available, which restricts
it to a supervised setting. Furthermore, since they
train only the answer bot and have no question bot,
they cannot simulate an entire dialog which also
prevents them from learning by self-play via re-
inforcement. (Wu et al., 2017) further improved
upon this generative-discriminative framework by
formulating the discriminator as a more traditional
GAN (Goodfellow et al., 2014), where the adversar-
ial discriminator is tasked to distinguish between
human generated and machine generated dialogs.
Furthermore, unlike (Lu et al., 2017) they modeled
the discriminator using an attention network which
also utilized the dialog history in predicting the
next answer allowing it to maintain coherence and
consistency across dialog turns.

4 Agent Architectures

We briefly describe the agent architectures and
leave the details for the appendix.
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4.1 Question Bot Architecture

The question bot architecture we use is inspired
by the answer bot architecture in (Das et al., 2017)
and (Lu et al., 2017) but the individual units have
been modified to provide more useful represen-
tations. Similar to the original architecture, our
Q-Bot, shown in Fig. 2a, also consists of 5 parts,
(a) fact encoder, (b) state-history encoder, (c) cap-
tion encoder, (d) image regression network and (e)
question decoder. The fact encoder is modeled
using a Long-Short Term Memory (LSTM) net-
work, which encodes the previous question-answer
pair into an embedding FQt . We modify the state-
history encoder to incorporate a two-level hierar-
chical encoding of the dialog. It uses the fact em-
bedding FQt at each time step to compute attention
over the history of dialog, (FQ1 , F

Q
2 , F

Q
3 ...F

Q
t−1)

and produce a history encoding SQt . The key mod-
ification (compared to (Lu et al., 2017)) in our
architecture is the addition of a separate LSTM to
compute a caption embedding C. This is key to
ensuring that the hierarchical encoding does not ex-
clusively attend on the caption while generating the
history embedding, and prevents the occurrence of
repetitive questions in a dialog since the encoding
now has an adequate representation of the previous
facts. The caption embedding is then concatenated
with FQt and SQt , and passed through multiple fully
connected layers to compute the state-history en-
coder embedding et and the predicted image fea-
ture embedding ŷt = f(SQt ). The encoder embed-
ding, eQt is fed to the question decoder, another
LSTM, which generates the question, qt. For all
LSTMs and fully connected layers in the model we
use a hidden layer size of 512. The image feature
vector is 4096 dimensional. The word embeddings
and the encoder embeddings are 300 dimensional.

4.2 Answer Bot Architecture

The architecture for A-Bot, also inspired from (Lu
et al., 2017), shown in Fig. 2b, is similar to that
of the Q-Bot. It has 3 components: (a) question
encoder, (b) state-history encoder and (c) answer
decoder. The question encoder computes an embed-
ding, Qt for the question to be answered, qt. The
history encoding (FA1 , F

A
2 , F

A
3 ...F

A
t )→ SAt uses

a similar two-level hierarchical encoder, where the
attention is computed using the question embed-
ding Qt. The caption is passed on to the A-Bot
as the first element of the history, which is why
we do not use a separate caption encoder. Instead,

LSTMC

FC Ipred

St

History Attention

LSTMFt

LSTMH1

LSTMHt-1

Concat

et

Encoder

(a) Encoder architecture for Q-Bot

I

St

History Attention

LSTMFt

LSTMH0(C)

LSTMHt-1

Concat

et

Encoder

CNN

(b) Encoder architecture for A-Bot

Figure 2

we use the fc7 feature embedding of a pretrained
VGG-16 (Simonyan and Zisserman, 2014) model
to compute the image embedding I . The three em-
beddings SAt , Qt, I are concatenated and passed
through another fully connected layer to extract
the encoder embedding eAt . The answer decoder,
which is another LSTM, uses this embedding eAt to
generate the answer at. Similar to the Q-Bot, we
use a hidden layer size of 512 for all LSTMs and
fully connected layers. The image feature vector
coming from the CNN is 4096 dimensional (FC7
features from VGG16). The word embeddings and
the encoder embeddings are 300 dimensional.

5 Training

We follow the training process proposed in (Das
et al., 2017). Two agents, a Q-Bot and an A-Bot are
first trained in isolation, by supervision from the
VisDial dataset. After this supervised pretraining
for 15 epochs over the data, we smoothly tran-
sition the agents to learn by reinforcement via a
curriculum. Specifically, for the first K rounds of
dialog for each image, the agents are trained us-
ing supervision from the VisDial dataset. For the
remaining 10-K rounds, however, they are trained
via reinforcement learning. K starts at 9 and is lin-
early annealed to 0 over 10 epochs. The individual
phases of training will be described below, with
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some details in the appendix.

5.1 Supervised pre-training
In the supervised part of training, both the Q-Bot
and A-Bot are trained separately. Both the Q-Bot
and A-Bot are trained with a Maximum Likelihood
Estimation (MLE) loss computed using the ground
truth questions and answers, respectively, for ev-
ery round of dialog. The Q-Bot simultaneously
optimizes another objective: minimizing the Mean
Squared Error (MSE) loss between the true and
predicted image embeddings. The ground truth
dialogs and image embeddings come from the Vis-
Dial dataset.

Given the true dialog history, image features and
ground truth question, the A-Bot generates an an-
swer to that question. Given the true dialog history
and the previous question-answer pair, the Q-Bot
is made to generate the next question to ask the
A-Bot. However, there are multiple problems with
this training scheme. First, MLE is known to result
in models that generate repetitive dialogs and of-
ten produce generic responses. Second, the agents
are never allowed to interact during training. Thus,
when they interact during testing, they end up fac-
ing out of distribution questions and answers, and
produce unexpected responses. Third, the sequen-
tiality of dialog is lost when the agents are trained
in an isolated, supervised manner.

5.2 Reinforcement Learning Setup
To alleviate the issues pointed out with supervised
training, we let the two bots interact with each other
via self-play (no ground-truth except images and
captions). This interaction is also in the form of
questions asked by the Q-Bot, and answered in turn
by the A-Bot, using a shared vocabulary. The state
space is partially observed and asymmetric, with
the Q-Bot observing {c, q1, a1 . . . q10, a10} and the
A-Bot observing the same, plus the image I . Here,
c is the caption, and qi, ai is the ith dialog pair ex-
changed where i = 1 . . . 10. The action space for
both bots consists of all possible output sequences
of a specified maximum length (Q-Bot: 16, A-
Bot: 9 as specified by the dataset) under a fixed
vocabulary (size 8645). Note that these parame-
ter values are chosen to comply with the VisDial
dataset. Each action involves predicting words se-
quentially until a stop token is predicted, or the
generated statement reaches the maximum length.
Additionally, Q-Bot also produces a guess of the
visual representation of the input image (VGG fc-7

embedding of size 4096). Both Q-Bot and A-Bot
share the same objective and get the same reward
to encourage cooperation. Information gain in each
round of dialog is incentivized by setting the re-
ward as the change in distance of the predicted
image embedding to the ground-truth image rep-
resentation. This means that a QA pair is of high
quality only if it helps the Q-Bot make a better pre-
diction of the image representation. Both policies
are modeled by neural networks, as discussed in
Section 4.

However, as noted above, this RL optimization
problem is ill-posed, since rewarding the agents for
information exchange does not motivate them to
stick to the rules and conventions of the English lan-
guage. Thus, we follow the elaborate curriculum
scheme described above, despite which the bots
are still observed to diverge from natural language
and produce non-grammatical and incoherent dia-
log. Thus, we propose a multi bot architecture to
help the agents interact in diverse and coherent, yet
informative, dialog.

Learning Algorithm: A dialog round at time t
consists of the following steps: 1) The Q-Bot, con-
ditioned on the state encoding, generates a question
qt, 2) A-Bot updates its state encoding with qt and
then generates an answer at, 3) Both Q-Bot and
A-Bot encode the completed exchange as a fact
embedding, 4) Q-Bot updates its state encoding
to incorporate this fact and finally 5) Q-Bot pre-
dicts the image representation for the unseen image
conditioned on its updated state encoding.

Similar to (Das et al., 2016), we use the REIN-
FORCE (Williams, 1992) algorithm that updates
network parameters in response to experienced re-
wards. The per-round rewards maximized are:

rt(s
Q
t , (qt, at, yt)) = l(ŷt−1, y

gt)− l(ŷt, ygt) (1)

This reward is positive if the distance between im-
age representation generated at time t is closer to
the ground truth than the representation at time
t− 1, hence incentivizing information gain at each
round of dialog. The REINFORCE update rule
ensures that a (qt, at) exchange that is informative
has its probabilities pushed up. Do note that the im-
age feature regression network f is trained directly
via supervised gradient updates on the L-2 loss.

5.3 Multi-Agent Dialog Framework (MADF)

In this section we describe our proposed Multi-
Agent Dialog architecture in detail. The motivation
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Algorithm 1 Multi-Agent Dialog Framework (MADF)
1: procedure MULTIBOTTRAIN

2: while train iter < max train iter do . Main Training loop over batches
3: Qbot← random select (Q1, Q2, Q3....Qq)
4: Abot← random select (A1, A2, A3....Aa) . Either q or a is equal to 1
5: history ← (0, 0, ...0) . History initialized with zeros
6: fact← (0, 0, ...0) . Fact encoding initialized with zeros
7: ∆image pred← 0 . Tracks change in Image Embedding
8: Qz1 ← Ques enc(Qbot, fact, history, caption)
9: for t in 1:10 do . Have 10 rounds of dialog

10: quest ← Ques gen(Qbot,Qzt)
11: Azt ← Ans enc(Abot, fact, history, image, quest, caption)
12: anst ← Ans gen(Abot,Azt)
13: fact← [quest, anst] . Fact encoder stores the last dialog pair
14: history ← concat(history, fact) . History stores all previous dialog pairs
15: Qzt ← Ques enc(Qbot, fact, history, caption)
16: image pred← image regress(Qbot, fact, history, caption)
17: Rt ← (target image− image pred)2 −∆image pred
18: ∆image pred← (target image− image pred)2

19: end for
20: ∆(wQbot)← 1

10

∑10
t=1∇θQbot

[Gt log p(quest, θQbot)−∆image pred]

21: ∆(wAbot)← 1
10

∑10
t=1Gt∇θAbot

log p(anst, θAbot)
22: wQbot ← wQbot + ∆(wQbot) . REINFORCE and Image Loss update for Qbot
23: wAbot ← wAbot + ∆(wAbot) . REINFORCE update for Abot
24: end while
25: end procedure

behind this is the observation that allowing a pair
of agents to interact with each other and learn via
reinforcement for too long leads to them develop-
ing an idiosyncratic private language which does
not adhere to the rules of human language, and
is hence not understandable by human observers.
We claim that if instead of allowing a single pair of
agents to interact, we were to make the agents more
social, and make them interact and learn from mul-
tiple other agents, they would be disincentivized
to develop a private language, and would have to
conform to the common language.

In particular, we create either multiple Q-bots
to interact with a single A-bot, or multiple A-bots
to interact with a single Q-bot. All these agents
are initialized with the learned parameters from the
supervised pretraining as described in Section 5.1.
Then, for each batch of images from the VisDial
dataset, we randomly choose a Q-bot to interact
with the A-bot, or randomly choose an A-bot to
interact with the Q-bot, as the case may be. The
two chosen agents then have a complete dialog con-
sisting of 10 question-answer pairs about each of

those images, and update their respective weights
based on the rewards received (as per Equation 1)
during the conversation, using the REINFORCE
algorithm. This process is repeated for each batch
of images, over the entire VisDial dataset. It is im-
portant to note that histories are not shared across
batches. MADF can be understood in detail using
the pseudocode in Algorithm 1.

6 Experiments and Results

6.1 Dataset description

We use the VisDial 0.9 dataset for our task intro-
duced by (Das et al., 2016). The data is collected
using Amazon Mechanical Turk by pairing 2 anno-
tators and asking them to chat about the image as
a multi round VQA setup. One of the annotators
acts as the questioner and has access to only the
caption of the image and has to ask questions from
the other annotator who acts as the answerer and
must answer the questions based on the visual infor-
mation from the actual image. This dialog repeats
for 10 rounds at the end of which the questioner
has to guess what the image was. We perform our
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Model MRR Mean Rank R@1 R@5 R@10
Answer Prior (Das et al., 2016) 0.3735 26.50 23.55 48.52 53.23
MN-QIH-G (Das et al., 2016) 0.5259 17.06 42.29 62.85 68.88

HCIAE-G-DIS (Lu et al., 2017) 0.547 14.23 44.35 65.28 71.55
Frozen-Q-Multi (Das et al., 2017) 0.437 21.13 N/A 53.67 60.48

CoAtt-GAN (Wu et al., 2017) 0.5578 14.4 46.10 65.69 71.74
SL(Ours) 0.610 5.323 34.74 57.67 72.68

RL - 1Q,1A(Ours) 0.459 7.097 16.04 54.69 72.34
RL - 1Q,3A(Ours) 0.601 5.495 34.83 57.47 72.48
RL - 3Q,1A(Ours) 0.590 5.56 33.59 57.73 72.61

Table 1: Comparison of Metrics with Literature
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Figure 3: The percentile scores of the ground truth
image compared to the entire test set of 40k im-
ages. The X-axis denotes the dialog round number
(from 1 to 10), while the Y-axis denotes the image
retrieval percentile score.

experiments on VisDial v0.9 (the latest available
release) containing 83k dialogs on COCO-train and
40k on COCO-val images, for a total of 1.2M di-
alog question-answer pairs. We split the 83k into
82k for train, 1k for validation, and use the 40k as
test, in a manner consistent with (Das et al., 2016).
The caption is considered to be the first round in
the dialog history.

6.2 Evaluation Metrics

We evaluate the performance of our model using 6
metrics, proposed by (Das et al., 2017): 1) Mean
Reciprocal Rank (MRR), 2) Mean Rank, 3) Re-
call@1, 4) Recall@5, 5) Recall@10 and 6) Im-
age Retrieval Percentile. Mean Rank and MRR
compute the average rank (and its reciprocal, re-
spectively) assigned to the answer generated by the
A-bot, over a set of 100 candidate answers for each
question (also averaged over all the 10 rounds). Re-
call@k computes the percentage of answers with

rank less than k. Image Retrieval percentile is a
measure of how close the image prediction gener-
ated by the Q-bot is to the ground truth. All the
images in the test set are ranked according to their
distance from the predicted image embedding, and
the rank of the ground truth embedding is used to
calculate the image retrieval percentile.

Table 1 compares the Mean Rank, MRR, Re-
call@1, Recall@5 and Recall@10 of our agent
architecture and dialog framework (below the hori-
zontal line) with previously proposed architectures
(above the line). SL refers to the agents after only
the isolated, supervised training of Section 5.1.
RL-1Q,1A refers to a single, idiosyncratic pair of
agents trained via reinforcement as in Section 5.2.
RL-1Q,3A and RL-3Q,1A refer to social agents
trained via our Multi-Agent Dialog framework in
Section 5.3, with 1Q,3A referring to 1 Q-Bot and
3 A-Bots, and 3Q,1A referring to 3 Q-Bots and 1
A-Bot. It can be seen that our agent architectures
clearly outperform all previously proposed genera-
tive architectures in MRR, Mean Rank and R@10,
but not in R@1 and R@5. This indicates that our
approach produces consistently good answers (as
measured by MRR, Mean Rank and R@10), even
though they might not be the best possible answers
(as measured by R@1 and R@5). SL has the best
MRR and Mean Rank, which drops drastically in
RL-1Q,1A. The agents trained by MADF recover
and are able to outperform all previously proposed
models. Fig. 3 shows image retrieval percentile
scores over dialog rounds. The percentile score
decreases monotonically for SL, but is stable for
all versions using RL.

6.3 Human Evaluation

There are no quantitative metrics to comprehen-
sively evaluate dialog quality, hence we do a hu-
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Metric N Supervised RL 1Q,1A RL 1Q,3A RL 3Q,1A
1 Q-Bot Relevance 8 2.5 2.75 2 2.75
2 Q-Bot Grammar 8 2.25 2.875 2.5 2.375
3 A-Bot Relevance 12 2.5 2.583 2.25 1.67
4 A-Bot Grammar 12 1.92 3.5 1.83 2.25
5 Overall Coherence 20 2.8 3.05 2.3 1.85

Table 2: Human Evaluation Results - Mean Rank (Lower is better). N refers to the number of human
evaluators involved in the ranking.

man evaluation of the generated dialog. There are
5 metrics we evaluate on: 1) Q-Bot Relevance,
2) Q-Bot Grammar, 3)A-Bot Relevance, 4) A-Bot
Grammar and 5) Overall Dialog Coherence. We
evaluate 4 Visual Dialog systems, trained via: 1)
Supervised Learning (SL), 2) Reinforce for 1 Q-
Bot, 1 A-Bot (RL-1Q,1A), 3) Reinforce for 1 Q-
Bot, 3 A-Bots (RL-1Q,3A) and 4) Reinforce for
3 Q-Bots, 1 A-Bot (RL-3Q,1A). A total of 20 eval-
uators (randomly chosen students) were shown the
caption and the 10 QA-pairs generated by each
system for one of 4 randomly chosen images, and
asked to give an ordinal ranking (from 1 to 4) for
each metric. If the evaluator was also given ac-
cess to the image, she was asked only to evaluate
metrics 3, 4 and 5, while if the evaluator was not
shown the image, she was asked only to evaluate
metrics 1, 2 and 5. Table 2 contains the average
ranks obtained on each metric (lower is better).

The results convincingly prove our hypothesis
that having multiple A-Bots to interact and learn
from will improve the Q-Bot, and vice versa. This
is because having multiple A-Bots to interact with
gives the Q-Bot access to a variety of diverse di-
alog, leading to more stable updates with lower
bias. The results confirm this, with Q-Bot Rele-
vance rank being best in RL-1Q,3A, and A-Bot
Relevance rank being best in RL-3Q,1A. These
two dialog systems, which were trained via MADF,
also have the best overall dialog coherence by a sig-
nificant margin over RL-1Q,1A and SL. We show
two of the examples shown to the human evalua-
tors in Figure 4. The trends observed in the scores
given by human evaluators is also clearly visible in
these examples. MADF agents are able to model
the human responses much better than the other
agents. It can also be seen that although the RL-
1Q,1A system has greater diversity in its responses,
the quality of those responses is greatly degraded,
with the A-Bot’s answers especially being both
non-grammatical and irrelevant. In Section 5.1, we

discussed how the MSE loss used in SL results in
models which generate repetitive dialog, which can
be seen in Fig. 4. Consider the first image, where
in the SL QA-generations, the Q-Bot repeats the
same questions multiple times, and gets inconsis-
tent answers from the A-Bot for the same question.
By contrast, all 10 QA-generations for RL-3Q,1A
are grammatically correct. The Q-Bot’s questions
are very relevant to the image being considered,
and the A-Bot’s answers appropriate and correct.

7 Discussion and Conclusion

In this paper we propose a novel Multi-Agent Di-
alog Framework (MADF), inspired from human
communities, to improve the dialog quality of AI
agents. We show that training 2 agents with su-
pervised learning can lead to uninformative and
repetitive dialog. Furthermore, we observe that the
task performance (measured by the image retrieval
percentile scores) for the system trained via super-
vision only deteriorates as dialog round number
increases. We hypothesize that this is because the
agents were trained in isolation and never allowed
to interact during supervised learning, which leads
to failure during testing when they encounter out of
distribution samples (generated by the other agent,
instead of ground truth) for the first time. We show
how allowing a single pair of agents to interact
and learn from each other via reinforcement learn-
ing dramatically improve their percentile scores,
which additionally does not deteriorate over mul-
tiple rounds of dialog, since the agents have inter-
acted with one another and been exposed to the
other’s generated questions or answers. However,
the agents, in an attempt to improve task perfor-
mance end up developing their own private lan-
guage which does not adhere to the rules and con-
ventions of human languages, and generates non-
grammatical and non-sensical statements. As a
result, the dialog system loses interpretability and
sociability. To alleviate this issue, we propose a
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is the girl close to a race ?
'is she wearing a helmet ? 
is she wearing a hat ?
what color is it ?
'is she wearing goggles ?
'is she wearing goggles ?
what color is her skis ?
is she wearing a hat ?
what color does she have ?
and what is the  girl wearing ?

no , woman is riding
no 

She is wearing a headband
I would say it’s black

Can’t see her face
Not sure

Dark, hard to tell i would guess
No

White
A white striped long sleeve shirt 

and blue

is there more than 1 skier ?
oh how many UNK do you see ? 
is the person holding a pipe of 
so me sort of basket ?
is lady going fast ?
how many is there ?
is there snow ? 
how many animals do you see ? 
is there a lot of snow ?
are they all together ? 
is there a lift ?

Yes
A few

Yes, there is a bowtie

I can not tell
It’s not silver people are in grocery

Is covered by snow covered by snow
Of the 1, and a 2

Yes tons of snow everywhere covered
Yes 1 is a darker 1

Just a few skiing out yet

are there any other people around ?
is it snowing ?
is it a sunny day ?
is the woman wearing a dress ? 
what color is it ?
is she by herself of snow ?
what color is her jacket ?
does it look like a competition ? 
is it day or night ?
is it sunny ? 

No
Can’t tell

Yes
Yes

It has a white meat and girl on
Just lady, woman and dog

Orange
Yes

Daytime
yes

how old is the woman ? 
is she in a ski resort ?
can you see the sky ? 
is she alone ? 
what color are the gloves ? 
is there snow on the ground ?
is the photo very clear ?
is she wearing a helmet ?
is it snowing ?
is it sunny ? 

About 16
I don’t think so

No
Yes

Silver
No snow

Yes
No

it looks like it is stopped
No really

what color are the skis ?
Are there any other people?
Is this outdoors?
Do you see snow?
Is it currently snowing?
Is she on a slope or hill?
Do you see trees?
Do you see the sky?
Is she wearing gloves?
Is she wearing a hat?

A UNK color
Not that i can see

Yes
Yes

No I don’t think so
No i don’t think so

Yes
No

Yep
yes

are the boys playing volleyball ?
how old do they look ?
do you see any buildings ? 
are they male ?
can you see any cars ?
can you tell how many women 
are sitting there or playing ?
are they combing leather ?
what color are the men 's shoes?
what color are the women ?
are the boys well groomed ? 

yes , a professional boy
maybe in their late 20 's
no , i don't see buildings

yes , both men and women
no , can only see the bunch of 
there are more people than 3 

no , they 're wood 
women in

they are black 
'the snowboarder is white

yes

do you recognize 1 ball ? 
that you could you are seeing 
controllers ?
do you recognize the guy and 
age is the adult ?
do you recognize them ?
how many people are there ?
do you do they fence famous ?
do you see fire ?
is the fire dog UNK ? 
do they have long manes ?
can you see other people 
watching them ?

looks like a around
that i can see the fair

you couldn't be late teens , his

motorcycle but UNK tint and UNK
35 

It looks black and white
I’m not sure because it’s is

Yes
Black and white, it looks

Yes there is a people

How old do the men appear?
Is this at a beach?
Do they have on bathing suits?
How old are they?
What color frisbee?
Do they have a regular ball shirt on?
With how old are they?
Is there other people in the pic?
How many of them are playing?
What is the woman doing?

30s
No
No

Young adults
White

1 of them do
Mid 30s

Yes, there is a man behind the him
2

sitting

What color is umbrella?
What are they wearing?
What color is frisbee?
What are they doing?
Are they all holding rackets?
Are there any other people?
What color is the frisbee?
Are there any other people?
Are the people tall?
Are they in a field?

Black with a blue stripe
T shirts and jeans

White
Sitting on the beach, talking

Yes
Yes

Creamy green
Yes a lot

Looks very tall
no

How many men?
Are they playing frisbee?
What color frisbee?
Just white?
Do men look skilled?
Why not?
They don’t seem good?
Is frisbee in air?
Who has it?
Is he bigger than other?

2
Yes

White
Yes
No

Playing
Guess not, I said no

No
Person 1

no

2 men in a grassy park playing frisbee

The little girl is standing with skis on her feet Human-Human Dialogue SL

RL - 3Q, 1ARL - 1Q, 3ARL - 1Q, 1A

Human-Human Dialogue SL

RL - 3Q, 1ARL - 1Q, 3ARL - 1Q, 1A

Figure 4: Two randomly selected images from the VisDial dataset followed by the ground truth (human)
and generated dialog about that image for each of our 4 systems (SL, RL-1Q,1A, RL-1Q,3A, RL-3Q,1A).
These images were also used in the human evaluation results shown in Table 2

.

multi-agent dialog framework based on self-play
reinforcement learning, where a single A-Bot is
allowed to interact with multiple Q-Bots and vice
versa. Through a human evaluation study, we show
that this leads to significant improvements in dialog
quality measured by relevance, grammar and co-
herence. This is because interacting with multiple
agents prevents any particular pair from maximiz-
ing performance by developing a private language,
since it would harm performance with all the other
agents.

8 Future Work

We plan to explore several other multi bot architec-
tural settings and perform a more thorough human
evaluation for qualitative analysis of our dialog.
We also plan on incorporating an explicit perplex-
ity based reward term in our reinforcement learning
setup to further improve the dialog quality. We will

also experiment with using a discriminative answer
decoder which uses information of the possible an-
swer candidates to rank the generated answer with
respect to all the candidate answers and use the
ranking performance to train the answer decoder.
Another avenue for future exploration is to use a

richer image feature embedding to regress on. Cur-
rently, we use a regression network to compute the
estimated image embedding which represents the
Q-Bot’s understanding of the image. We plan to
implement an image generation GAN which can
use this embedding as a latent code to generate an
image which can be visualized. While the MADF
in its current form only works if we have multi-
ple Q-Bots or multiple A-Bots but not both, future
work could possibly look at incorporating that into
the framework, while ensuring that the updates do
not become too unstable.
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A Agent Architectures

A.1 Q-Bot

As discussed in Section 4.1, the Q-bot architecture
has 5 components, the first 4 of which belong to
the question encoder.

1. Fact Encoder: The fact encoder is a uni-
directional LSTM which is given the previ-
ous question-answer pair (qt−1, at−1) as in-
put. The LSTM generates a fact embedding
FQt ∈ R512.

2. State/History Encoder: The encoder first
computes the fact embeddings HQ

t =

(FQ1 , F
Q
2 , F

Q
3 ...F

Q
t−1), using an LSTM akin

to the fact encoder described above. We pass
these embeddings and FQt computed by the
Fact Encoder through a fully connected layer,
generating attention weights which are used to
attend over HQ

t , producing the history embed-
ding SQt ∈ R512. Notice that this results in a
two-level hierarchical encoding of the dialog
(qt, at) → FQt and (FQ1 , F

Q
2 , F

Q
3 ...F

Q
t ) →

SQt .

3. Caption Encoder: This is a unidirectional
LSTM which is given the image caption c as
input. The LSTM generates a caption embed-
ding CQ ∈ R512.

4. Feature Regression Network:
{FQt , S

Q
t , C

Q} are concatenated to pro-
duce an embedding EQt . This is passed
through 2 fully connected layers with dropout
to produce ŷt from the current encoded state
ŷt = f(SQt ).

5. Question Decoder: The hidden state of this
LSTM is initialized with the hidden state of
the fact encoder. EQt is passed through a fully
connected layer to generate eQt , which is used
to update the hidden state of the LSTM of the
question decoder. The question qt is then gen-
erated by sequentially sampling words (either
via teacher forcing during supervised pretrain-
ing or via autoregressive generation during RL
and evaluation).

Note that we use a dropout of 0.5 in all the LSTMs
during training. All LSTM hidden layers sizes are
512, and the image embedding size is 4096. The
input word embedding size is 300.

A.2 A-Bot

As discussed in Section 4.2, the A-bot architecture
has 3 components.

1. Question Encoder: The question encoder is
a unidirectional LSTM which is given the cur-
rent question qt generated by the Q-Bot as
input. The LSTM generates a question em-
bedding QAt ∈ R512.

2. State/History/Image Encoder: The encoder
first computes the fact embeddings HA

t =
(FA1 , F

A
2 , F

A
3 ...F

A
t−1), using an LSTM akin

to the fact encoder described above. By pass-
ing these embeddings and the QAt computed
by the Question Encoder through a fully con-
nected layer, attention weights are generated
which are used to attend over HA

t , produc-
ing the history embedding SAt ∈ R512. No-
tice that this results in a two-level hierarchical
encoding of the dialog (qt, at) → FAt and
(FA1 , F

A
2 , F

A
3 ...F

A
t ) → SAt . {FAt , SAt , ygt}

are then concatenated to produce an embed-
ding EAt .

3. Answer Decoder: The hidden state of this
LSTM is initialized with the hidden state of
the question encoder. EAt is passed through a
fully connected layer to generate eAt , which is
used to update the hidden state of the LSTM of
the answer decoder. The answer at is then gen-
erated by sequentially sampling words (either
via teacher forcing during supervised pretrain-
ing or via autoregressive generation during RL
and evaluation).

Note that we use a dropout of 0.5 in all the LSTMs
during training. All LSTM hidden layers sizes are
512, and the image embedding size is 4096. The
input word embedding size is 300.

B Training Details

B.1 Supervised Pre-Training

Both Q-Bot and A-Bot are trained in isolation for
15 epochs, via supervision from the VisDial dataset.

B.1.1 Q-Bot:
At time step t, the Q-Bot’s fact encoder is fed with
the ground-truth QA pair for t− 1, the state/history
encoder is fed with all the ground-truth QA pairs
up to t − 1 and the caption encoder is given the
true image caption cgt as input. These encoders
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then generate their respective embeddings which
are fed into the feature regression network and the
question decoder to produce ŷt and update the hid-
den state of the question decoder respectively. The
Q-Bot is then trained by maximizing the likelihood
p(qgt|EQt ) of the training data qgt, computed us-
ing the softmax probabilities given by the question
decoder. Simultaneously, the Mean Squared Error
(MSE) loss between the predicted image embed-
ding and ground truth is also minimized. Effec-
tively, the loss

LQ = −
∑

log p(qgt|EQt ) + (ŷt − ygt)2

is minimized.

B.1.2 A-Bot:
At time step t, the A-Bot’s question encoder
is fed with the ground-truth question for t, the
state/history/image encoder is fed with all the
ground-truth QA pairs up to t − 1 and the image
I . These encoders then generate their respective
embeddings which are fed into the answer decoder
to produce at. The A-Bot is trained by maximizing
the likelihood p(agt|EAt ) of the training data agt,
computed using the softmax probabilities given by
the answer decoder. Effectively, the loss

LA = −
∑

log p(agt|EAt )

is minimized.

B.2 Reinforcement Learning
The Q-Bot is given only the caption cgt and the
A-Bot is given only the image I and caption cgt as
inputs.

B.2.1 Q-Bot:
At time step t, the Q-Bot’s fact encoder is fed with
the generated QA pair for t − 1, the state/history
encoder is fed with all the generated QA pairs up
to t − 1 and the caption encoder is given the true
image caption cgt as input. These encoders then
generate their respective embeddings which are fed
into the feature regression network and the ques-
tion decoder to produce ŷt and qt respectively. The
change in distance between ŷt and ygt due to the
current QA-pair is given as a reward to Q-Bot (Eqn.
1), which it uses to train itself via REINFORCE.
Simultaneously, the Mean Squared Error (MSE)
loss between the predicted image embedding and
ground truth is also minimized via supervision. Ef-
fectively, the loss

LQ = −
∑

Gt log p(qt|EQt ) + (ŷt − ygt)2

is minimized, where Gt =
∑10−t

k=0 γ
krt+k+1 indi-

cates the Monte-Carlo return at step t, and γ is a
discount factor equal to 0.99.

B.2.2 A-Bot:
At time step t, the A-Bot’s question encoder
is fed with the generated question qt, the
state/history/image encoder is fed with all the gen-
erated QA pairs up to t− 1 and the image I . These
encoders then generate their respective embeddings
which are fed into the answer decoder to produce
at. The A-Bot also receives the same reward as the
Q-Bot, and trains itself via REINFORCE. Effec-
tively, the loss

LA = −
∑

Gt log p(at|EAt )

is minimized, where Gt =
∑10−t

k=0 γ
krt+k+1 indi-

cates the Monte-Carlo return at step t, and γ is a
discount factor equal to 0.99.


