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Abstract

There has been a recent shift in sequence-to-sequence modeling from recurrent
network architectures to convolutional network architectures due to computational
advantages in training and operation while still achieving competitive performance.
For systems having limited long-term temporal dependencies, the approximation
capability of recurrent networks is essentially equivalent to that of temporal con-
volutional nets (TCNs). We prove that TCNs can approximate a large class of
input-output maps having approximately finite memory to arbitrary error tolerance.
Furthermore, we derive quantitative approximation rates for deep ReLU TCNs
in terms of the width and depth of the network and modulus of continuity of the
original input-output map, and apply these results to input-output maps of systems
that admit finite-dimensional state-space realizations (i.e., recurrent models).

1 Introduction

Until recently, recurrent networks have been considered the de facto standard for modeling input-
output maps that transform sequences to sequences. Convolutional network architectures are becom-
ing favorable alternatives for several applications due to reduced computational overhead incurred
during both training and regular operation, while often performing as well as or better than recurrent
architectures in practice. The computational advantage of convolutional networks follows from the
lack of feedback elements, which enables shifted copies of the input sequence to be processed in
parallel rather than sequentially [Gehring et al., 2017]. Convolutional architectures have demonstrated
exceptional accuracy in sequence modeling tasks that have typically been approached using recurrent
architectures, such as machine translation, audio generation, and language modeling [Dauphin et al.,
2017, Kalchbrenner et al., 2016, van den Oord et al., 2016, Wu et al., 2016, Gehring et al., 2017,
Johnson and Zhang, 2017].

One explanation for this shift is that both convolutional and recurrent architectures are inherently
suited to modeling systems with limited long-term dependencies. Recurrent models possess infinite
memory (the output at each time is a function of the initial conditions and the entire history of
inputs until that time), and thus are strictly more expressive than finite-memory autoregressive
models. However, in synthetic stress tests designed to measure the ability to model long-term
behavior, recurrent architectures often fail to learn long sequences [Bai et al., 2018]. Furthermore,
this unlimited memory property is usually unnecessary, which is supported in theory [Sharan et al.,
2018] and in practice [Chelba et al., 2017, Gehring et al., 2017]. In situations where it is only
important to learn finite-length sequences, feedforward architectures based on temporal convolutions
(temporal convolutional nets, or TCNs) can achieve similar results and even outperform recurrent
nets [Dauphin et al., 2017, Yin et al., 2017, Bai et al., 2018].

These results prompt a closer look at the conditions under which convolutional architectures provide
better approximation than recurrent architectures. Recent work by Miller and Hardt [2019] has shown
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that recurrent models that are exponentially stable (in the sense that the effect of the initial conditions
on the output decays exponentially with time) can be efficiently approximated by feedforward models.
A key consequence is that exponentially stable recurrent models can be approximated by systems
that only consider a finite number of recent values of the input sequence for determining the value of
the subsequent output.

However, this notion of stability is inherently tied to a particular state-space realization, and it is
not difficult to come up with examples of sequence-to-sequence maps that have both a stable and
an unstable state-space realization (e.g., simply by adding unstable states that do not affect the
output). This suggests that the question of approximating sequence-to-sequence maps by feedforward
convolutional maps should be studied by abstracting away the notion of stability and only requiring
that the system output depend appreciably on recent input values and negligibly on input values in the
distant past. The formalization of this property was introduced by Sandberg [1991] under the name of
approximately finite memory, building on earlier work by Boyd and Chua [1985]. Outputs of systems
characterized by this property can be approximated by the output of the same system when applied to
a truncated version of the input sequence. These systems are naturally suited to be modeled using
TCNs, which by construction only operate on values of the input sequence for times within a finite
horizon into the past.

In this work, we aim to develop quantitative results for the approximation capability of TCNs for
modeling input-output maps that have the properties of causality, time invariance, and approximately
finite memory. In Section 2, we introduce the necessary definitions and review the approximately
finite memory property due to Sandberg [1991]. Section 3 gives the main result for approximating
input-output maps by ReLU TCNs, together with a quantitative result on the equivalence between
approximately finite memory and a related notion of fading memory [Boyd and Chua, 1985, Park and
Sandberg, 1992]. These results are applied in Section 4 to recurrent models that are incrementally
stable [Tran et al., 2017], i.e., the influence of the initial condition is asymptotically negligible. We
show that incrementally stable recurrent models have approximately finite memory, and then use
this formalism to derive a generalization of the result of Miller and Hardt [2019]. We provide a
comparison in Section 5 to other architectures used for approximating input-output maps. All omitted
proofs are provided in the Supplementary Material.

2 Input-output maps and approximately finite memory

Let S denote the set of all real-valued sequences u = (ut)t∈Z+
, where Z+ := {0, 1, 2, . . .}. An

input-output map (or i/o map, for short) is a nonlinear operator F : S → S that maps an input
sequence u ∈ S to an output sequence y = Fu ∈ S. (We are considering real-valued input and
output sequences for simplicity; all our results carry over to vector-valued sequences at the expense of
additional notation.) We will denote the application and the composition of i/o maps by concatenation.
In this paper, we are concerned with i/o maps F that are:

• causal — for any t ∈ Z+, u0:t = v0:t implies (Fu)t = (Fv)t, where u0:t := (u0, . . . , ut);
• time-invariant — for any k ∈ Z+,

(FRku)t =

{
(Fu)t−k, for t ≥ k
0, for 0 ≤ t < k

,

where R : S→ S is the right shift operator (Ru)t := ut−11{t≥1}.

The key notion we will work with is that of approximately finite memory [Sandberg, 1991]:
Definition 2.1. An i/o map F has approximately finite memory on a set of inputs M ⊆ S if for any
ε > 0 there exists m ∈ Z+, such that

sup
u∈M

sup
t∈Z+

∣∣(Fu)t − (FWt,mu)t
∣∣ ≤ ε, (1)

where Wt,m : S → S is the windowing operator (Wt,mu)τ := uτ1{max{t−m,0}≤τ≤t}. We will
denote by m∗F(ε) the smallest m ∈ Z+, for which (1) holds.

If m∗F(0) <∞, then we say that F has finite memory on M. If F is causal and time-invariant, this is
equivalent to the existence of an integer m ∈ Z+ and a nonlinear functional f : Rm+1 → R, such
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that f(0, . . . , 0) = 0 and, for any u ∈M and any t ∈ Z+,

(Fu)t = f(ut−m, ut−m+1, . . . , ut), (2)

with the convention that us = 0 if s < 0. In this work, we will focus on the important case when f is
a feedforward neural net with rectified linear unit (ReLU) activations ReLU(x) := max{x, 0}. That
is, there exist k affine maps Ai : Rdi → Rdi+1 with d1 = m+ 1 and dk+1 = 1, such that f is given
by the composition

f = Ak ◦ ReLU ◦Ak−1 ◦ ReLU ◦ . . . ◦ ReLU ◦A1,

where, for any r ≥ 1, ReLU(x1, . . . , xr) := (ReLU(x1), . . . ,ReLU(xr)). Here, k is the depth
(number of layers) and max{d2, . . . , dk} is the width (largest number of units in any hidden layer).

Definition 2.2. An i/o map F is a ReLU temporal convolutional net (or ReLU TCN, for short) with
context length m if (2) holds for some feedforward ReLU neural net f : Rm+1 → R.

Remark 2.3. While such an F is evidently causal, it is generally not time-invariant unless
f(0, . . . , 0) = 0.

3 The universal approximation theorem

In this section, we state and prove our main result: any causal and time-invariant i/o map that has
approximately finite memory and satisfies an additional continuity condition can be approximated
arbitrarily well by a ReLU temporal convolutional net. In what follows, we will consider i/o maps
with uniformly bounded inputs, i.e., inputs in the set

M(R) := {u ∈ S : ‖u‖∞ := sup
t∈Z+

|ut| ≤ R} for some R > 0.

For any t ∈ Z+ and any u ∈M(R), the finite subsequence u0:t = (u0, . . . , ut) is an element of the
cube [−R,R]t+1 ⊂ Rt+1; conversely, any vector x ∈ [−R,R]t+1 can be embedded into M(R) by
setting us = xs1{0≤s≤t}. To any causal and time-invariant i/o map F we can associate the nonlinear
functional F̃t : Rt+1 → R defined in the obvious way: for any x = (x0, x1, . . . , xt) ∈ Rt+1,

F̃t(x) := (Fu)t,

where u ∈ S is any input such that us = xs for s ∈ {0, 1, . . . , t} (the values of us for s > t can be
arbitrary by causality). We impose the following assumptions on F:

Assumption 3.1. The i/o map F has approximately finite memory on M(R).

Assumption 3.2. For any t ∈ Z+, the functional F̃t : Rt+1 → R is uniformly continuous on
[−R,R]t+1 with modulus of continuity

ωt,F(δ) := sup
{
|F̃t(x)− F̃t(x

′)| : x,x′ ∈ [−R,R]t+1, ‖x− x′‖∞ ≤ δ
}
,

and inverse modulus of continuity

ω−1
t,F (ε) := sup

{
δ > 0 : ωt,F(δ) ≤ ε

}
.

where ‖x‖∞ := max0≤i≤t |xi| is the `∞ norm on Rt+1.

The following qualitative universal approximation result was obtained by Sandberg [1991]: if a causal
and time-invariant i/o map F satisfies the above two assumptions, then, for any ε > 0, there exists an
affine map A : Rm+1 → Rd and a lattice map ` : Rd → R, such that

sup
u∈M(R)

sup
t∈Z+

∣∣(Fu)t − ` ◦A(ut−m:t)
∣∣ < ε, (3)

where we say that a map ` : Rd → R is a lattice map if `(x0, . . . , xd−1) is generated from
x = (x0, . . . , xd−1) by a finite number of min and max operations that do not depend on x. Any
lattice map can be implemented using ReLU units, so (3) is a ReLU TCN approximation guarantee.
Our main result is a quantitative version of Sandberg’s theorem:
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Theorem 3.3. Let F be a causal and time-invariant i/o map satisfying Assumptions 3.1 and 3.2. Then,
for any ε > 0 and any γ ∈ (0, 1), there exists a ReLU TCN F̂ with context length m = m∗F(γε),
width m+ 2, and depth

( O(R)

ω−1
m,F((1−γ)ε)

)m+2
, such that

sup
u∈M(R)

‖Fu− F̂u‖∞ < ε. (4)

Remark 3.4. The role of the additional parameter γ ∈ (0, 1) is to trade off the context length and
the depth of the ReLU TCN.

Remark 3.5. While the approximating ReLU TCN F̂ is clearly causal, it may not be time-invariant
unless f̂(0, . . . , 0) = 0, where f̂ is the ReLU net constructed in the proof below.

Proof. Let m = m∗F(γε). Since F̃m : Rm+1 → R is continuous with modulus of continuity ωm,F(·),
there exists a ReLU net f̂ : Rm+1 → R of width m+ 2 and depth

( O(R)

ω−1
m,F((1−γ)ε)

)m+2
, such that

sup
x∈[−R,R]m+1

|F̃m(x)− f̂(x)| < (1− γ)ε

[Hanin and Sellke, 2018]. Consider the TCN F̂ defined by (Fu)t := f̂(ut−m, . . . , ut). Fix an input
u ∈M(R) and consider two cases:

1) If t ≥ m, then ut−m:t = (Lt−mWt,mu)0:m, where L : S→ S is the left shift operator (Lu)t :=
ut+1. Therefore,

(FWt,mu)t
(a)
= (FRt−mLt−mWt,mu)t

(b)
= (FLt−mWt,mu)m

(c)
= F̃m(ut−m:t),

where (a) uses the fact that t ≥ m, (b) is by time invariance of F, and (c) is by the definition of F̃m.

2) If t < m, then ut−m:t = (Rm−tWt,mu)0:m (recall the convention that, for any v, we set vs = 0
whenever s < 0). Therefore

(FWt,mu)t
(a)
= (Rm−tFWt,mu)m

(b)
= (FRm−tWt,mu)m

(c)
= F̃m(ut−m:t),

where (a) uses the fact that m > t, (b) is by time invariance, and (c) is by the definition of F̃m.

In either case, the triangle inequality gives

|(Fu)t − (F̂u)t| ≤ |(Fu)t − (FWt,mu)t|+ |(FWt,mu)t − (F̂u)t|

= |(Fu)t − (FWt,mu)t|+ |F̃m(ut−m:t)− f̂(ut−m:t)|
< γε+ (1− γ)ε = ε.

Since this holds for all t and all u with ‖u‖∞ ≤ R, the result follows.

3.1 The fading memory property

In order to apply Theorem 3.3, we need control on the context length m∗F(·) and on the modulus of
continuity ωt,F(·). In general, these quantities are difficult to estimate. However, it was shown by
Park and Sandberg [1992] that the property of approximately finite memory is closely related to the
notion of fading memory, first introduced by Boyd and Chua [1985]. Intuitively, an i/o map F has
fading memory if the outputs at any time t due to any two inputs u and v that were close to one
another in recent past will also be close.

Let W denote the subset of S consisting of all sequences w, such that wt ∈ (0, 1] for all t and wt ↓ 0
as t→∞. We will refer to the elements of W as weighting sequences. Then we have the following
definition, due to Park and Sandberg [1992]:
Definition 3.6. We say that an i/o map F has fading memory on M ⊆ S with respect to w ∈W if for
any ε > 0 there exists δ > 0 such that, for all u,v ∈M and all t ∈ Z+,

max
s∈{0,...,t}

wt−s|us − vs| < δ =⇒ |(Fu)t − (Fv)t| < ε. (5)
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The weighting sequence w governs the rate at which the past values of the input are discounted in
determining the current output. To capture the best trade-offs in (5), we will also use a w-dependent
modulus of continuity:

αw,F(δ) := sup
{
|(Fu)t − (Fv)t| : t ∈ Z+,u,v ∈M, max

s∈{0,...,t}
wt−s|us − vs| ≤ δ

}
.

It was shown by Park and Sandberg [1992] that an i/o map satisfies Assumptions 3.1 and (3.2) if and
only if it has fading memory with respect to some (and hence any) w ∈ W. The following result
provides a quantitative version of this equivalence:

Proposition 3.7. Let F be an i/o map.

1. If F satisfies Assumptions 3.1 and 3.2, then it has fading memory on M with respect to any
weighting sequence w ∈W, and

α−1
w,F(ε) ≥ wm∗F (ε/3)ω

−1
m∗F (ε/3),F(ε/3). (6)

2. If F has fading memory on M(R) with respect to some w ∈ W, then it has satisfies
Assumptions 3.1 and 3.2, and

m∗F(ε;R) ≤ inf
{
m ∈ Z+ : wm ≤

α−1
w,F(ε)

R

}
and ωt,F(δ) ≤ αw,F(δ). (7)

4 Recurrent systems

So far, we have considered arbitrary i/o maps F : S→ S. However, many such maps admit state-space
realizations [Sontag, 1998] — there exist a state transition map f : Rn × R→ Rn, an output map
g : Rn → R, and an initial condition ξ ∈ Rn, such that the output sequence y = Fu is detemined
recursively by

xt+1 = f(xt, ut) (8a)
yt = g(xt) (8b)

with x0 = ξ. The i/o map F realized in this way is evidently causal, and it is time-invariant if
f(ξ, 0) = ξ and g(ξ) = 0. In this section, we will identify the conditions under which recurrent
models satisfy Assumptions 3.1 and 3.2. Along the way, we will derive the approximation results of
Miller and Hardt [2019] as a special case.

4.1 Approximately finite memory and incremental stability

Consider the system in (8). Given any input u ∈ S, any ξ ∈ Rn, and any s, t ∈ Z+ with t ≥ s, we
denote by ϕu

s,t(ξ) the state at time t when xs = ξ. Let M be a subset of S. We say that X ⊆ Rn
is a positively invariant set of (8) for inputs in M if, for all ξ ∈ X, all u ∈ M, and all 0 ≤ s ≤ t,
ϕu
s,t(ξ) ∈ X. We will be interested in systems with the following property [Tran et al., 2017]:

Definition 4.1. The system (8) is uniformly asymptotically incrementally stable for inputs in M on a
positively invariant set X if there exists a function β : R+ × R+ → R+ of class KL1, such that the
inequality

‖ϕu
s,t(ξ)− ϕu

s,t(ξ
′)‖ ≤ β(‖ξ − ξ′‖, t− s) (9)

holds for all inputs u ∈M, all initial conditions ξ, ξ′ ∈ X, and all 0 ≤ s ≤ t, where ‖ · ‖ is the `2
norm on Rn.

In other words, a system is incrementally stable if the influence of any initial condition in X on the
state trajectory is asymptotically negligible. A key consequence is the following estimate:

1A function β : R+×R+ → R+ is of class KL if it is continuous and strictly increasing in its first argument,
continuous and strictly decreasing in its second argument, β(0, t) = 0 for any t, and limt→∞ β(r, t) = 0 for
any r [Sontag, 1998].
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Proposition 4.2. Let u, ũ be two input sequences in M. Then, for any ξ ∈ X and any t ∈ Z+,

‖ϕu
0,t(ξ)− ϕũ

0,t(ξ)‖ ≤
t−1∑
s=0

β
(
‖f(x̃s, us)− f(x̃s, ũs)‖, t− s− 1

)
, (10)

where xs and x̃s denote the states at time s due to inputs u and ũ, respectively, with x0 = x̃0 = ξ.

Consider a state-space model (8) with a positively invariant set X, with the following assumptions:
Assumption 4.3. The state transition map f(x, u) is Lf -Lipschitz in u for all x ∈ X and the output
map g(x) is Lg-Lipschitz in x ∈ X.
Assumption 4.4. For any initial condition ξ ∈ X there exists a compact set Sξ ⊆ X such that
ϕu

0,t(ξ) ∈ Sξ for all u ∈M(R) and all t ∈ Z+.
Assumption 4.5. The system (8) is uniformly asymptotically incrementally stable on X for inputs in
M(R), and the function β in (9) satisfies the summability condition∑

t∈Z+

β(C, t) <∞ (11)

for any C ≥ 0. (For example, if β(C, k) = Ck−α for some α > 1, then this condition is satisfied.)

We are now in position to prove the main result of this section:
Theorem 4.6. Suppose that Assumptions 4.3–4.5 are satisfied. Then the i/o map F of the system (8)
satisfies Assumptions 3.1 and 3.2 with

m∗F(ε) ≤ min
{
m ∈ Z+ :

∑
k≥m

β(diam(Sξ), k) < ε/Lg

}
(12)

and

ωt,F(δ) ≤ Lg
t−1∑
s=0

β(Lfδ, s), ∀t ∈ Z+. (13)

Proof. Fix some t,m ∈ Z+. For an arbitrary input u ∈ M(R), let ũ = Wt,mu, where we may
assume without loss of generality that t ≥ m. Then ũs = us1{t−m≤s≤t}, and therefore

t−1∑
s=0

β
(
‖f(x̃s, us)− f(x̃s, ũs)‖, t− s− 1

)
=

t−m−1∑
s=0

β
(
‖f(x̃s, us)− f(x̃s, 0)‖, t− s− 1

)
≤
t−m−1∑
s=0

β(diam(Sξ), t− s− 1)

≤
∞∑
s=m

β(diam(Sξ), s). (14)

By the summability condition (11), the summation in (14) converges to 0 as m ↑ ∞. Thus, if we
choose m so that the right-hand side of (14) is smaller than ε/Lg , it follows from Proposition 4.2 that

|(Fu)t − (FWt,mu)t| = |g(ϕu
0,t(ξ))− g(ϕũ

0,t(ξ))| ≤ Lg‖ϕu
0,t(ξ)− ϕũ

0,t(ξ)| < ε.

This proves (12). Now fix any two u, ũ ∈ M(R) with ‖u0:t − ũ0:t‖∞ < δ. Then
max0≤s≤t ‖f(x, us)− f(x, ũs)‖ ≤ Lfδ for all x ∈ X, so Proposition 4.2 gives

|F̃t(u0:t)− F̃t(ũ0:t)| = |g(ϕu
0,t(ξ))− g(ϕũ

0,t(ξ))|
≤ Lg‖ϕu

0,t(ξ)− ϕũ
0,t(ξ)‖

≤ Lg
t−1∑
s=0

β(Lfδ, s),

which proves (13).
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4.2 Exponential incremental stability and the Demidovich criterion

Miller and Hardt [2019] consider the case of contracting systems: there exists some λ ∈ (0, 1) and a
set U ⊆ Rm, such that

‖f(x, u)− f(x′, u)‖ ≤ λ‖x− x′‖ (15)

for all x, x′ ∈ Rn and all u ∈ U. Such a system is uniformly exponentially incrementally stable on
any positively invariant set X, with β(C, t) = Cλt. In this section, we obtain their result as a special
case of a more general stability criterion, known in the literature on nonlinear system stability as the
Demidovich criterion [Pavlov et al., 2006]. The following result is a simplified version of a more
general result of Tran et al. [2017]:
Proposition 4.7 (the discrete-time Demidovich criterion). Consider the recurrent system (8) with a
convex positively invariant set X, where the state transition map f(x, u) is differentiable in x for any
u ∈ U. Suppose that there exists a symmetric positive definite matrix P and a constant µ ∈ (0, 1),
such that

∂

∂x
f(x, u)>P

∂

∂x
f(x, u)− µP � 0 (16)

for all x ∈ X and all u ∈ U, where ∂
∂xf(x, u) is the Jacobian of f(·, u) with respect to x. Then

the system (8) is uniformly exponentially incrementally stable with β(C, t) =
√
κ(P )Cµt/2, where

κ(P ) is the condition number of P .

Proof. Fix any u ∈ U and ξ, ξ′ ∈ X, and define the function Φ : [0, 1]→ R by

Φ(s) := (f(ξ, u)− f(ξ′, u))>Pf(sξ + (1− s)ξ′, u).

Then

Φ(1)− Φ(0) = (f(ξ, u)− f(ξ′, u))>P (f(ξ, u)− f(ξ′, u)). (17)

By the mean-value theorem, there exists some s̄ ∈ [0, 1], such that

Φ(1)− Φ(0) =
d

ds
Φ(s)

∣∣∣
s=s̄

= (f(ξ, u)− f(ξ′, u))>P
∂

∂x
f(ξ̄, u)(ξ − ξ′), (18)

where ξ̄ = s̄ξ + (1− s̄)ξ′ ∈ X, since X is convex. From (16), (17), and (18) it follows that

(f(ξ, u)− f(ξ′, u))>P (f(ξ, u)− f(ξ′, u))

≤ (ξ − ξ′)> ∂

∂x
f(ξ̄, u)>P

∂

∂x
f(ξ̄, u)(ξ − ξ′)

≤ µ(ξ − ξ′)>P (ξ − ξ′).

Define the function V : X× X→ R+ by V (ξ, ξ′) := (ξ − ξ′)>P (ξ − ξ′). From the above estimate,
it follows that V is a Lyapunov function for the dynamics, i.e., for any u ∈ U and ξ, ξ′ ∈ X,

V (f(ξ, u), f(ξ′, u)) ≤ µV (ξ, ξ′). (19)

Consequently, for any input u with ut ∈ U for all t and any ξ, ξ′ ∈ X,

V (ϕu
0,t+1(ξ), ϕu

0,t+1(ξ′)) = V (f(ϕu
0,t(ξ), ut), f(ϕu

0,t(ξ
′), ut))

≤ µV (ϕu
0,t(ξ), ϕ

u
0,t(ξ

′)).

Iterating, we obtain the inequality V (ϕu
0,t(ξ), ϕ

u
0,t(ξ

′)) ≤ µtV (ξ, ξ′). Finally, since P � 0,

‖ϕu
0,t(ξ)− ϕu

0,t(ξ)‖2 ≤
λmax(P )

λmin(P )
µt‖ξ − ξ′‖2 = κ(P )‖ξ − ξ′‖2µt,

and the proof is complete.

Theorem 4.8. Suppose the system (8) satisfies Assumption 4.3 and the Demidovich criterion with
U = [−R,R], its positively invariant set X contains 0, and f(0, 0) = 0. Then its i/o map F with zero
initial condition x0 = 0 satisfies Assumptions 3.1 and 3.2 with

m∗F(ε) ≤
2 log(

2κ(P )LfLgR
(1−√µ)2ε )

log 1
µ

and ωt,F(δ) ≤
√
κ(P )LfLgδ

1−√µ
. (20)
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Proof. Since P is symmetric and positive definite, ‖x‖P :=
√
x>Px is a norm on Rn with

λmin(P )‖ · ‖2 ≤ ‖ · ‖2P ≤ λmax(P )‖ · ‖2. Then, for all ξ ∈ X, u ∈M(R), and t,

‖ϕu
0,t+1(ξ)‖P = ‖f(ϕu

0,t(ξ), ut)‖P
≤ ‖f(ϕu

0,t(ξ), ut)− f(0, ut)‖P + ‖f(0, ut)− f(0, 0)‖P
≤ √µ‖ϕu

0,t(ξ)‖P +
√
λmax(P )LfR,

where we have used the Lyapunov bound (19). Unrolling the recursion gives the estimate

sup
t∈Z+

sup
u∈M(R)

‖ϕu
0,t(ξ)‖P ≤

√
µ‖ξ‖P +

√
λmax(P )LfR

1−√µ
.

Thus, Assumption 4.4 is satisfied, where Sξ is the ball of `2-radius
√
κ(P )

(
‖ξ‖+

LfR
1−√µ

)
centered

at 0. Assumption 4.5 is also satisfied by Proposition 4.7. The estimates in (20) follow from
Theorem 4.6.

The following result now follows as a direct consequence of Theorems 3.3 and 4.8:

Corollary 4.9. If the system (8) satisfies the conditions of Theorem 4.8, then its i/o map F with zero
initial condition can be ε-approximated in the sense of Theorem 3.3 by a ReLU TCN F̂ with width
polylog( 1

ε ) and depth quasipoly(1
ε ).2

4.3 Contractivity vs. the Demidovich criterion

If the contractivity condition (15) holds and f(x, u) is differentiable in x, then the Demidovich
criterion is satisfied with P = In and µ = λ2. In that case, we immediately obtain the exponential
estimate β(C, t) ≤ Cλt. However, the Demidovich criterion covers a wider class of nonlinear
systems. As an example, consider a discrete-time nonlinear system of Lur’e type (cf. Sandberg and
Xu [1993], Kim and Braatz [2014], Sarkans and Logemann [2016] and references therein):

xt+1 = Axt +Bψ(ut − yt) (21a)
yt = Cxt (21b)

Here, the state xt is n-dimensional while the input ut and the output yt are scalar, so A ∈ Rn×n,
B ∈ Rn×1, and C ∈ R1×n. The map ψ : R→ R is a fixed differentiable nonlinearity. The system in
(21) has the form (8) with f(x, u) = Ax+Bψ(u− Cx) and g(x) = Cx, and can be realized as the
negative feedback interconnection of the discrete-time linear system

xt+1 = Axt +Bvt (22a)
yt = Cxt (22b)

and the nonlinear element ψ using the feedback law vt = ψ(ut − yt). We make the following
assumptions (see, e.g., Sontag [1998] for the requisite control-theoretic background):

Assumption 4.10. The nonlinearity ψ : R → R satisfies ψ(0) = 0, and there exist real numbers
−∞ < a ≤ b <∞ such that a ≤ ψ′(·) ≤ b.
Assumption 4.11. A is a Schur matrix, i.e., its spectral radius ρ(A) is strictly smaller than 1; the
pair (A,B) is controllable, i.e., the n× n matrix [B |AB | . . . |An−1B] has rank n; and the pair
(A,C) is observable, i.e., the n× n matrix [C> |A>C> | . . . | (A>)n−1C>] has rank n.

Assumption 4.12. Let T := {z ∈ C : |z| = 1} denote the unit circle in the complex plane. The
rational function G(z) := C(zIn −A)−1B satisfies

‖G‖H∞(T) := sup
z∈T
|G(z)| < γ−1 (23)

for some γ > 0 such that r2 ≤ γ2 for all a ≤ r ≤ b.
2We say that a given quantity N has quasipolynomial growth in 1/ε, and write N ≤ quasipoly(1/ε), if

N = O(exp(polylog( 1
ε
))).
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Remark 4.13. Assumption 4.10 imposes a slope condition on ψ and is standard in the analysis of
Lur’e systems [Tsypkin, 1964, Sandberg, 1991, Kim and Braatz, 2014]. The function G(z) is the
transfer function of the linear system (22). Assumption 4.11 states that the triple (A,B,C) is a
minimal realization of G. The quantity ‖G‖H∞(T) appearing in Eq. (23) in Assumption 4.12 is the
H∞-norm of G on the unit circle in the complex plane. Assumptions 4.11 and 4.12 are also common
and are in the spirit of the well-known circle criterion [Tsypkin, 1964, Sandberg and Xu, 1993].

With these preliminaries out of the way, we have the following:
Proposition 4.14. Suppose that the system (21) satisfies Assumptions 4.10–4.12. Then it satisfies the
discrete-time Demidovich criterion with X = Rn and U = R, and moreover µ > ρ(A)2.

The crucial ingredient in the proof is the Discrete-Time Bounded-Real Lemma [Vaidyanathan, 1985],
which guarantees the existence of the matrix P appearing in the Demidovich criterion. The main
takeaway here is that the function f(x, u) = Ax+Bψ(u− Cx) need not be contractive (i.e., it may
be the case that P 6= In), but it will be contractive in the ‖ · ‖P norm.

5 Comparison of architectures

So far, we have shown that any i/o map F with approximately finite memory can be approximated
by a ReLU temporal convolutional net. We have also considered recurrent models and shown
that any incrementally stable recurrent model has approximately finite memory and can therefore
be approximated by a ReLU TCN. As far as their approximation capabilities are concerned, both
recurrent models and autoregressive models like TCNs are equivalent, since any finite-memory i/o
map of the form (2) admits the state-space realization

x1
t+1 = x2

t , x
2
t+1 = x3

t , . . . , x
m−1
t+1 = xmt , x

m
t+1 = ut

yt = f(x1
t , x

2
t , . . . , x

m
t , ut)

of the tapped delay line type, with zero initial condition (x1
0, . . . , x

m
0 ) = (0, . . . , 0). (Compared

to (8), we are allowing a direct ‘feedthrough’ connection from the input ut to the output yt.) The
advantage of autoregressive models like TCNs shows up during training and regular operation, since
shifted copies of the input sequence can be efficiently processed in parallel rather than sequentially.

Another point worth mentioning is that, while the construction in the proof of Theorem 3.3 makes
use of ReLU nets as a universal function approximator, any other family of universal approximators
can be used instead, for example, multivariate polynomials or rational functions. In fact, if one uses
multivariate polynomials to approximate the functionals F̃t, the resulting family of i/o maps is known
as the (discrete-time) finite Volterra series [Boyd and Chua, 1985], and has been used widely in the
analysis of nonlinear systems. However, TCNs generally provide a more parsimonious representation.
To see this, consider the following (admittedly contrived) example of an i/o map:

(Fu)t = ReLU

( ∞∑
s=0

hsut−s

)
, (24)

where the filter coefficients ht have the exponential decay property |ht| ≤ Cλt for some C > 0
and λ ∈ (0, 1). It is not hard to show that F has exponentially fading memory, and a very simple
ε-approximation by a TCN is obtained by zeroing out all of the filter coefficients hs, s > m ∼ log( 1

ε ):

(F̂u)t = ReLU

(
m∑
s=0

hsut−s

)
.

However, any ε-approximation for F using Volterra series would need poly(1
ε ) terms, since the best

polynomial ε-approximation of the ReLU on any compact interval has degree Ω( 1
ε ) [DeVore and

Lorentz, 1993, Chap. 9, Thm. 3.3]. On the other hand, if we consider an i/o map of the form (24), but
with a degree-d univariate polynomial instead of ReLU, then we can ε-approximate it with a TCN of
depth O(d+ log d

ε ) and O(d log d
ε ) units [Liang and Srikant, 2017].
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