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ABSTRACT

A typical method for classifying visual attributes in images is to use convolutional
neural networks (CNNs) with multi-task learning. However, this approach often
suffers from negative transfer, which means that classifiers trained together to clas-
sify multiple attributes at a time perform worse than classifiers trained separately.
Many multi-task learning techniques attempt to circumvent this issue, but we are
interested in negative transfer itself from a different point of view: can we take
advantage of negative transfer to improve our classifiers? In this paper, we pro-
pose adversarial attribute learning (AAL) where two classifiers compete with each
other so that the primary classifier can learn a representation that is invariant to an
attribute exhibiting negative transfer. Our experiments on human attribute classi-
fication datasets demonstrate that our method can take advantage of this negative
relationship.

1 INTRODUCTION

Identifying visual attributes of objects and images is a fundamental problem in computer vi-
sion (Farhadi et al.l [2009; [Scheirer et al., 2012; Johnson & Grauman, 2011} [Lampert et al.| [2013)),
with a wide range of real-world applications including image retrieval (Siddiquie et al., 2011} Ku-
mar et al.l 2011)), face recognition (Hu et al.l 2017} Jiang et al.,[2019), few-shot learning (Fu et al.,
2018)), etc. As has become common across many problems in computer vision, the de facto standard
technique for attribute classification is the Convolutional Neural Network (CNN).

Typical applications require classifying multiple attributes at a time, so this creates a choice: we
can either train a separate CNN for each attribute, or perform join training where multiple attribute
classifiers share at least some layers of the CNN. The latter is appealing because it is usually more
efficient in terms of both training time and model size, and sometimes also improves the classifica-
tion accuracy overall, presumably because the representation learned for one attribute is helpful for
recognizing another. For example, in the CelebA (Liu et al., 2015) dataset, we have found that the
“Straight Hair” attribute is better predicted when sharing representations with “Gray Hair.”

Unfortunately, this accuracy boost is not universal: sometimes classifiers trained independently on
two attributes perform better than when trained jointly He et al.| (2017); [Lu et al.| (2017); Hand &
Chellappal (2017);|Sener & Koltun| (2018). We observe this negative transfer problem among many
attributes in CelebA: both “Straight Hair” and “Gray Hair” are classified more accurately when
trained separately than when trained with another attribute, “Big Lips.” This suggests that sharing
representations for hair style and lip size is harmful presumably because they are different facial
parts. A straightforward solution would be not to share representation for those that have negative
transfer. However, not only using separate representations, we would like to take advantage of this
negative relationship for further improving the representation. We interpret this negative transfer as
that representations for hair style and lip size should be invariant to each other. Thus we would like
to design a method to explicitly encourage the CNN representation to learn this invariance.

Some work has attempted to avoid negative transfer. A classical view in multi-task learning assumes
that features across tasks should have a common subspace (Argyriou et al.,|2008)). In the deep learn-
ing era, this view lies in the effort to design elegant layer-sharing strategies (Yang & Hospedales,
2016; |Lu et al.| 2017; [Lee et al.} 2018}; [Yang & Hospedales, 2017} |[Long et al.l 2017; Meyerson &
Miikkulainen, 2018)).
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Figure 1: Framework of Adversarial Attribute Learning (AAL). Our adversarial training has two
competing classifiers with shared CNN layers. The primary classifier (C,,) uses the CNN represen-
tation to classify the main attribute (e.g., Straight Hair), and at the same time, the auxiliary classifier
(C) encourages a representation not sensitive to the secondary attribute (e.g., Big Lips). In the end,
the representation should be more suitable to classify the main attribute. It is intuitive, for exam-
ple, that a representation that is trained invariant of lip size is better to predict hair style, as they
are totally different facial parts. To make this training possible, we re-purpose a domain adaptation
technique called gradient reversal (see Sec[3.2).

In this paper, we take a fundamentally different and orthogonal approach, by viewing these negative
transfers as an opportunity to help improve learning instead of as a weakness to avoid. Our hypothe-
sis is that representations for an attribute can be improved if it is encouraged to be invariant to another
attribute with which it exhibits negative transfer. Using the same example above, a representation to
classify hair style should not be affected by the size of lips, so we encourage the representation of
hair style to be invariant of lip size. To achieve this, we propose an adversarial attribute classification
approach (see Figure[T). We use two neural networks, a primary CNN that learns the representation
to classify an attribute, and an auxiliary classifier that predicts another attribute exhibiting negative
transfer from the CNN representation. The CNN not only classifies the main attribute but also tries
to make the auxiliary classifier fail to predict the negative transfer attribute. These two networks are
jointly trained against each other as a min-max game. At the equilibrium, the CNN representation
should be invariant to the negative attribute.

To summarize, we have several contributions. (1) To the best of our knowledge, we for the first
time introduce the idea of Adversarial Attribute Learning (AAL) by directly exploiting and utiliz-
ing contradictory attributes to improve attribute prediction. (2) Such an idea is implemented in a
min-max optimization similar to Generative Adversarial Network (GANSs), which is also for the first
time employed to address attribute prediction. (3) A gradient reversal technique, which is oriented
in domain adaptation (Ganin & Lempitsky, 2015), is introduced to this problem to help optimize
the min-max attribute prediction game. (4) Our extensive experiments and ablation study on at-
tribute datasets (Liu et al.,2015;|Lin et al., 2019) reveal that AAL benefits from negative-transferred
attribute pairs (Sec ).

2 RELATED WORK

Visual attributes Attributes have many useful applications in computer vision (Siddiquie et al.,
20115 |Kumar et al., 2011; [Hu et al., 2017; Jiang et al., [2019; Johnson & Grauman, [201 1} Lampert;
et al., 2013), and estimating visual attributes in images has been extensively studied. Classical
work (Farhadi et al., [2009; Johnson & Grauman), |2011)) uses manually-designed features to classify
attributes, while recent work (He et al., [2017} [Lu et al.| 2017; |Liu et al., 2015; |Hand & Chellappa,
2017) uses deep models such as CNNs to learn attribute classification models in an end-to-end
manner. Instead of learning separate models for each visual attribute, these CNNs are often trained
in a multi-task learning framework so that different attributes share internal representations.
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Multi-task/multi-label learning Attribute estimation is a multi-label prediction problem (Gong
et al., 2014; [Tsoumakas & Katakis, [2007) and is thus often posed as multi-task learning (Caruanal
1997), which has a long history in machine learning. Here we summarize recent progress in the
context of deep learning. One direction of investigation is how exactly to share parameters across
the attribute models, including simply sharing some internal layers, softly sharing with regulariza-
tion (Yang & Hospedales| |2016), and more complex approaches (Long et al., 2017 [Meyerson &
Miikkulainen, |2018). Another direction is how to balance the loss among the tasks. [Kendall et al.
(2018) propose an approach to use the uncertainty of each task for loss weighting. In terms of at-
tribute recognition, |Lu et al.| (2017) use a fully-adaptive method to determine the sharing structure,
and [He et al.| (2017) propose a way to dynamically balance the loss among attributes. Our work is
related but orthogonal to these papers, because we do not focus on how to improve the multi-task
learning. In fact, although we use an auxiliary task to predict another attribute, our final model
consists of a single classifier per attribute, just like single task learning. We adapt a basic multi-
task learning framework to find attributes exhibiting negative transfer, but unlike work that tries to
alleviate the negative transfer, our purpose is to actually exploit it.

Adversarial networks Our adversarial training approach is the same min-max optimization that is
widely used in Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). Typical GANs
consist of two neural networks: a generator that tries to produce realistic images and a discriminator
that tries to distinguish generated images from real. The two networks are trained against jointly, so
that over time the generator produces more and more realistic images (Brock et al., [2019). While
our work has nothing to do with image generation, our approach can nevertheless be viewed as
generating representations for attribute classification. Instead of the classical training techniques
of GANSs (Goodfellow et al.| 2014} |Arjovsky et al., |2017), we introduce a optimization method —
gradient reversal technique, which is oriented in domain adaptation (Ganin & Lempitsky, [2015),
into our attribute learning problem. We further empirically validate that gradient reversal is better
than GAN-oriented optimizations for attribute learning.

Domain adaptation Domain adaptation tries to develop classifiers that are robust to data outside
the domain of the training set. For example, domain adaptation aim for models that can classify
outdoor photos even if only trained on indoor ones. While there is much work in this area, re-
cent papers assume more realistic scenarios such as semi- or un-supervised domain adaptation with
little or no available annotations in the test domain (Hosseini-Asl et al., [2019; |Sohn et al.| 2019)),
open-set adaptation where the test domain is not known at training time (Baktashmotlagh et al.,
2019), adaptation for multiple domains (Schoenauer-Sebag et al.l [2019), or incorporating distribu-
tion shift of labels (in addition to data) (Azizzadenesheli et al.l [2019). Since the key challenge
among these problems is how to learn robust domain-invariant representations, the approaches are
often trained in a adversarial manner similar to GANs. While domain classifiers have a role similar
to our auxiliary negative-transfer attribute classifiers, so that we adapt the same adversarial learning
technique (Ganin & Lempitsky, [2015), our work is distinct from domain adaptation because we use
identical domains in both training and test.

3 ADVERSARIAL ATTRIBUTE LEARNING (AAL)

3.1 PRELIMINARY: DEFINE NEGATIVE TRANSFER

Suppose we are given a dataset D = {(x;, {yia, yib})}f\; where x; is i-th image, and y;,, y;; are
the binary labels for two attributes of interest, a and b. (For clarity, we restrict our setting here to two
attributes; the more general case of )M attributes is presented in Appendix [A.2]) A neural network
to predict attribute a is composed of a feature extraction layer F, and classification layer C,. The
feature extractor maps the input image x; into a feature map h;, = F,(x;;0F,) and a classifier
predicts the label probability §;, = 0 (Cy(hsa; 0¢,)) where o is a sigmoid function. Typically, F,
consists of deep convolutional layers and C,, consists of fully connected layers. Similar functions
Fy, and C,,. are used for attribute b.

We can train predictors with cross-entropy 10ss £ (Gias Yia) = Yia 108 Fia + (1 — Yia) log(1 — Gia)
for a and b independently (i.e., single task learning),
N

N
min L (Yia,Via) and min L (Giv, yip) - 1
(ereCu); (ias Yia) (O, 06,) 2= (Tivs Yiv) (h
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Alternatively, we can share the parameters of the feature extractors by setting 0 = 0r, = 0, , and
train two predictors together as a multi-attribute learning problem,

N

min Z (L (Fia» Yia) + L (Tiv, Yiv)) - @)

(6r.6c,.0c,) =

Sharing the representation often improves the classification performances for both a and b, but not
always: sometimes the independent model for a or b or both actually works better. We call this
phenomenon negative transfer, and define it as a directed relationship: a negative transfer from b to
a exists when the accuracy of a drops when training classifiers for a and b together, and vice versa.
Negative transfer is usually seen as a negative outcome to be avoided, but here we try to exploit it.
Given that negative transfer exists between two attributes, can we use it during training to improve
classification performance?

3.2 ADVERSARIAL ATTRIBUTE LEARNING (AAL) FROM A NEGATIVE TRANSFER PAIR

For clarity, suppose we observe negative transfer from attribute b to a; in other words, multi-task
training with ¢ and b yields a model with lower performance for a than the model trained with a
single task just for a. This suggests that the representation for attribute b is harmful for predicting
a, or, in other words, that a representation that is not tuned for b can better predict attribute a. Using
this observation, we propose to train the neural network to learn a representation that is not only
predictive of a but also invariant to b.

To do this, we propose an adversarial training formluation,
N
min max Y (L (Yia, Yia) + L (Jiv, Yiv)) » 3)
(6r,0c,) ecb i=1
which is exactly the same optimization used in GANs (Goodfellow et al., 2014). The generator
creates a representation for a primary classifier for a, and the discriminator is the auxiliary classifier
for b that helps the primary classifier learn a better representation for a. Therefore, we can directly
adapt GAN optimization, except that we use labels of attribute b instead of the fake/real labels. We
reformulate the learning into alternating optimization of two objectives,

N
min (L (Fias Yia) + AL (Fivs 1 — yiv)) , 4)
(QF,GCG) i=1
HllIl E ‘C yzbvyzb) (5)
bc, 13

where ) is a hyper-parameter.

However, GAN optimization is notoriously unstable (Salimans et al., 2016). Although several tech-
niques such as Wasserstein-GAN (Arjovsky et al.,2017) have been proposed, our min-max problem
has more technical similarities to a domain adaptation technique (Ganin & Lempitsky, [2015)) called
gradient reversal. We propose to re-introduce it here for adversarial attribute learning. In this case,
we replace equation [ with:

N

o GC Z yzaa yza - AL (giby yzb)) ) (6)
F0c.) i

while keeping equation [5]the same.

Remarks. (1) Note that the above equation involves only two attributes, but it can be easily gener-
alized to two groups of attributes, i.e, Group a and b, as discussed in Appendix[A.3] (2) We assume
that the existence of a pair of attributes exhibiting negative transfer is already known to us; in prac-
tice, we can discover it empirically from the training or validation set. (3) Our adversarial attribute
learning approach aims at improving attribute a, and Cj, is the auxiliary classifier for assisting the
primary classifier learn the representation for a. Therefore, Cj, is not suitable for classifying b in the
end. In order to obtain a classifier for b, it is advisable to use ALL with the a and b inverse, rather
than directly utilizing the auxiliary classifier of b. (4) Finally, practices of multi-task learning for
shared representations over multi-attributes can also be incorporated into our framework.
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3.3 TRAINING FOR MORE THAN TWO ATTRIBUTES

Of course, in practice we will often have more than two attributes in a dataset, and so we must
identify and choose among the pairs of attributes having negative transfer. To do this, we try all
possible pairs of M attributes, empirically finding the attribute with the worst negative transfer
attribute for each attribute. In other word, we try (1\24 ) = % multi-task trainings in addition
to M single task trainings, and use the validation accuracy to find the negative transfer pairs. Then,
for each attribute, we perform an adversarial training with the most negatively affected attribute.
After this, we perform M adversarial trainings and yield a classifier per attribute. In order to better
illustrate the overall training, we include a concrete example in Appendix [A.4]

An alternative approach would be to divide the attributes into groups having the worst mutual neg-
ative transfer, and then perform adversarial training. However, this would naively involve trying
all possible 2 ~1 partitions, is computationally intractable for all but small value of M. We leave
exploring this direction for future work.

4 EXPERIMENTS

We tested our techniques on two specific applications: facial attributes and pedestrian attributes.

4.1 EXPERIMENTS ON FACIAL ATTRIBUTE DATASET

We use CelebA (Liu et al.l 2015) as our primary dataset for experimentation. This set has 202,599
face images annotated with 40 attributes. We try pairwise multi-task learning to find negative trans-
fer attribute pairs, and then perform adversarial training for each attribute paired with the most
negatively affected attribute. Our evaluation metric is the mean accuracy over attributes.

Implementation details We use ResNet18 (He et al|2016) pretrained on ImageNet as the back-
bone CNN. When training for multiple attributes, we simply share all convolutional layers and have
one fully-connected layer per attributes. In other words, F,, and F} are ResNetl8 without fully-
connected layers, and C, and Cj, are linear binary classifiers. We use the stochastic gradient descent
algorithm of Adam (Kingma & Bal [2015]) with learning rate 0.0001 and weight decay 0.0005. We
train for 6 epochs, dividing the learning rate by a factor of 10 at epoch 4. We manually tune the
hyper-parameter X in equation [ by trying 0.01, 0.1, 0.3, 0.5, and 1.0. During training, we check
the accuracy on the validation set, and then use the best model to compute the final accuracy on the
test set. We follow the dataset-provided split of 162,770 training, 19,867 validation, and 19,962 test
images.

4.2 RESULTS

Negative transfer Figure [2| (with details in Appendix Table [3) summarizes validation accuracy
with single task training and multi-task training with the negative transfer attributes. As an example,
Attribute 13 (Bushy Eyebrows) exhibits negative transfer from Attribute 22 (Mouth Slightly Open),
as it has a single task accuracy of 92.96%, but multi-task accuracy of 92.80% when trained with
Attribute 22. The negative attribute is selected by trying all possible attribute pairs (See Appendix
[A.5]and Table [ for more details). Notably, Attribute 7 (Big Lips) is negatively paired with 30 out of
39 other attributes. This suggests that good representations to classify most of the facial attributes
should be invariant to the size of lip (e.g., hair color has nothing to do with lips).

Adversarial training Figure[2]also shows the validation accuracy of our adversarial training with
the negative transfer attribute. We observe that accuracy is improved from the single task training
for 34 out of 40 attributes. For the other six attributes (2, 5, 16, 23, 24, 35, and 38), we do not
observe improvement from single task training, but the accuracy is still higher than multi-task train-
ing. Overall, our adversarial training achieves 92.46% mean accuracy, which is a 0.13% absolute
improvement compared to the 92.33% of single task training.
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Figure 2: Accuracy (%) on CelebA validation set. Single task is the accuracy trained with only a

single attribute. Multi-task with the most negative transfer is the accuracy trained with the attribute

that empirically has the highest accuracy drop from single task training. Adversarial with the most

negative transfer is trained with the same other attribute but with adversarial learning. Appendix

Table 3| shows the original data including attribute names and the most negative attribute.

Table 1: Ablation study with the mean validation accuracy on CelebA.

Single task training per attribute 92.33
Multi task with all attributes 92.34
Pairwise adversarial training 92.46
Pairwise adversarial training with GAN loss 92.40
Pairwise adversarial training with Wasserstein-GAN loss 92.41
Pairwise adversarial training with shared CNN representation  92.36
Multiple adversarial training 91.31

4.2.1 ABLATION STUDY

We conduct ablative experiments on the adversarial loss function, CNN representation sharing, and
adversarial attributes. We summarize the results in Table [I]and discuss each point below.

GAN based adversarial loss As discussed in Sec. [3.2] we introduced the gradient reversal tech-
nique for optimizing min-max equation [3| borrowed from domain adaptation due to its technical
similarities of the equation. The results presented above use gradient reversal technique but we also
experiment two GAN oriented losses: 1) a original GAN loss and Wasserstein-GAN (WGAN) loss.
When we train with the GAN (or WGAN) based loss, the mean validation accuracy falls slightly to
92.40% (or 92.41%), which is 0.06% (or 0.05%) lower than the gradient reversal training.

Sharing representations Our framework creates one classifier per attribute without sharing in-
ternal representations at all, and is not the most efficient way to use computational resources. We
also experiment with the CNN sharing all convolutional layers, which are pretrained from multi-task
learning with all attributes. We then add two more hidden layers that produces the representation for
both primary and auxiliary attribute classifiers. The adversarial training only fine-tunes the hidden
layers and the classification layers. This training yielded validation accuracy of 92.36%, which is
0.10% worse than the model without sharing representation, but 0.03% better than single task train-
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Table 2: Mean attribute classification accuracy (%) on CelebA test set.

Single Task  91.73  |Sener & Koltun/(2018) 91.75 |Hand & Chellappal(2017) 91.26
Multi Task  91.79  |He et al.|(2017) 91.80 |Heetal.|(2018) 91.81
Ours 91.94 |Luetal|(2017) 90.74 |Kalayeh et al.[(2017) 91.80

ing. This indicates that future work might incorporate more elegant layer sharing strategies from
multi-task learning in order to share internal representations.

Multiple adversarial attributes Since we search for negative transfers only in pairwise multi-
tasks, our default adversarial training is also pairwise. However, it is possible to select all attributes
where negative transfer is observed. For example, Attribute 8 (Big Nose) has the highest accuracy
drop when trained with Attribute 7 (Big Lips), but it also has accuracy drops when trained with
Attribute 13 (Bushy Eyebrows), 29 (Receding Hairline), or 33 (Straight Hair). In this case, we can
train the classifier for Attribute 8 adversarially with 7, 13, and 29. We show these negative attributes
in Appendix Table[5] The mean accuracy is 92.31%, which is worse than the pairwise adversarial
training. This suggests that it is not easy to use pairwise negative transfer information for discovering
a group of attributes that are beneficial for adversarial classification.

4.2.2 COMPARE WITH OTHER ATTRIBUTE PREDICTION METHODS

Finally, we compute the mean accuracy of our method on the test set and compare with other meth-
ods. Our method is adversarial training per attribute paired with the most negative transfer attribute
based on the validation accuracy. Table 2] compares this with our baselines of single-task training
per attribute, and multi-task learning with all attributes. We also show accuracy reported from other
methods: multi-objective optimization that approximate a Pareto optima(Sener & Koltun, [2018),
multi-task training with adaptive loss weighting (He et al., 2017)), adaptive CNN layer sharing (Lu
et al.l 2017), relationship modeling between attributes (Hand & Chellappa, |2017), and two other
methods (He et al.| [2018; [Kalayeh et al.| [2017) utilizing semantic segmentation of facial regions.
We note that the comparison is not totally equalized due to some stronger backbones (ResNet50
for He et al.| (2017 |2018)), and customized architecture for Kalayeh et al.| (2017); |Hand & Chel-
lappal (2017); [Lu et al.|(2017) while ResNet18 for ours, our baselines, and [Sener & Koltun| (2018))
in addition to external facial segmentation data used by [He et al.| (2018)); [Kalayeh et al.| (2017).
Nevertheless, our method achieves the highest accuracy of 91.94%.

Discussion and Future Work The purpose
of our experiments is to show that our AAL
framework can make use of negative transfer,
so we use a brute-force approach to find the
negative pairs from all possible pairs. However,
this does not scale to learning millions of at-
tributes. Towards the goal of lowering this com-
putation cost, we compute the Pearson correla-
tion coefficient and compare with the relative
accuracy change as in (Jayaraman et al.,[2014).
For example, if the label of an attribute a has
correlation of 0.1 with another attribute b, and
single-task training of a has accuracy of 80%
but multi-task training of a with b gives an ac-
curacy of 79%, the relative accuracy change is
980 = —1.25%, and we plot a point (0.1, -
1.25). We check the correlation and the relative
accuracy change for all 40 x 39 = 1, 560 pairs
and show them in Figure [3] The Pearson cor-
relation coefficient on the scatter plot itself is
0.004, which indicates no correlation. Unfortunately, the connection between label correlation and
the negative transfer is still unclear, and thus discovering negative transfer without explicit training
is future work.

Relative accuracy change (%)

-10 -05 00 05 1.0
Pearson correlation coefficient

Figure 3: The correlation and the relative accuracy
change for all 40 attribute pairs on CelebA valida-
tion set . The correlation is computed from la-
bels of an attribute pair, and the relative accuracy
change is the relative difference of accuracy when
trained with multi-task versus single task learning.
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Figure 4: Accuracy (%) on the DukeMTMC-attribute dataset. Single task is the accuracy trained
only with an attribute. Except for Attribute 14, which does not have any negative transfer pair, multi-
task is trained with another attribute whose negative transfer was the worst, and the adversarial one
is trained with the same negative attribute but with adversarial learning. Appendix Table [6] shows
the original data including attribute names and the most negative attribute.

4.3 EXPERIMENTS ON PERSON ATTRIBUTE DATASET

To further validate our technique, we also perform experiments on the person attribute dataset of
DukeMTMC-attribute [2019). The dataset defines 23 attributes and contains 16,522 train-
ing and 17,661 test pedestrian images. We follow the same protocol as for CelebA dataset, perform
pairwise multi-task training, find negative transfers, and adversarially train each attribute classifier
with the most negatively-transferred attribute.

Negative transfer Figure ] (with details in Appendix Table [6) shows the results for training with
the most negative transfer attribute. Except Attribute 14 (Green lower-body clothes), we observe
negative transfer for every other attribute. Attribute 8 (Long-sleeve upper-body clothes) has four
most negative transfer pairs out of 22 other attributes: 10 (White lower-body clothes), 11 (Red
lower-body clothes), 15 (Brown lower-body clothes), and 8 (White upper-body clothes). Intuitively,
we can interpret that the length of sleeve should not affect the colors of other clothing.

Adversarial training Figure [ also shows the accuracy of adversarial training with the negative
transfer attribute. Of 22 attributes that have negative transfers, 15 attributes see accuracy improve-
ment. For seven attributes (2, 3, 5, 7, 8, 19, and 21), we do not observe improvement compared to
single task training, but the accuracies are higher than the corresponding multi-task training. Over-
all, our adversarial training achieves 92.32% mean accuracy, which is higher than the 92.19% of
single task training. Lastly, we also train a multi-task CNN with all attributes, and obtain 91.21%
mean accuracy, which is lower than our adversarial training.

5 CONCLUSION

In this paper, we introduced the idea of utilizing negative relationships for the visual attribute predic-
tion problem. Given a negative transfer between attributes, our AAL framework trains an attribute
classification CNN with an auxiliary classifier that predicts the harmful attribute. We adversarially
train the two classifiers to allow the CNN to learn a representation agnostic to the harmful attribute.
In our experiments, we applied this framework on negative transfer attribute pairs and confirmed an
improvement. Effective discovery of the negative pairs without performing every possible training
combination remains is future work.
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A APPENDIX

A.1 STATISTICAL SIGNIFICANCE

We test the statistical significance of our results. We use the hypothesis test for a Bernoulli variable
because our case is exactly the instance of the following example in a noteﬂ stating that:

Typical Problem: Learning algorithm A has an accuracy of 80% on some problem.
You have developed a new algorithm B. If you test 1000 samples, how many of
them must your new algorithm classify correctly before you can 95% confident
that your new algorithm is superior to the default algorithm?

The null hypothesis is P = Py where P is the accuracy of the baseline method. If we can reject this
hypothesis with the results from our method, our results are statistically significant. We denote the

accuracy of our method as Py, and the total number of samples as /N. Following the noteB Z-score
is _Y=NP__ _ _NP—NP

V/NPy(1-Py)  /NPy(1-Fy)"

Our accuracy is the average of 19,867 x 40 = 794,680 binary predictions on CelebA validation set,
19,962 x 40 = 798,480 binary predictions on CelebA test set, and 19,867 x 23 = 456,941 binary
predictions on DukeMTMC-attribute test set. We therefore set N = 794680, 798480 and 456941
respectively. Due to the large N, our results are statistically significant with the 95% confidence.

For example, in Table 1, the baseline accuracy is 92.34 % of multi-task training with all attributes;
our best method has the accuracy of 92.46 %. With N = 794680, the corresponding Z-score is
4.69, and its p-value is 0.000003, which is less than 0.05. Similarly, the Z-score for Table 2 (91.94
v.s. 91.81 with N = 798480) is 4.24 with its p-value of 0.000023, which is less than 0.05. For
DukeMTMC-attribute set (91.32 v.s. 91.21 with N = 456941), the Z-score is 2.63 with its p-value
of 0.009, which is less than 0.05.

A.2 PROBLEM SETUP WITH MORE THAN TWO ATTRIBUTES

N

A dataset with M attributes and N images is denoted as D = {(:cl, {vij };Vil) } where x; is
=/ Ji=1

i-th image, and y;; € {0, 1} is a label for attribute j of the image.

A neural network to predict attribute j has a feature extraction layer F); and classification layer C.

The feature extractor maps the input image @; into a feature map h;; = Fj(x;; 0F,) and a classifier

for attribute j gives the label probability y;; = o (C’j (hij;0c; )) where o is a sigmoid function.

We can train a predictor for each attribute j with cross-entropy loss £ (i, ¥ij) = yi; log §s5 + (1 —
Yij)log(1 — gij)-
N

min L (Gij» Yij @)
o D201

lhttp ://www.cs.cmu.edu/~bhiksha/courses/10-601/hypothesistesting/
hyptesting_onesample_Bernoulli.html
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We also train the model sharing the feature extractors as 0 = 0p, = ... = 6, and constuct a
multi-task learning problem as follows.

N M

min ZZ,C (g}ij,yl-j) (8)

(0r40c,}1)L,) 21 521

The multi-task training tends to improve the overall classification performance but the performance
for some attributes often drops, which is called negative transfer. Our focus in this paper is, how to
make use of the negative task relationship for improving the classification performance.

A.3 ADVERSARIAL TRAINING FOR TWO SETS OF ATTRIBUTES WITH NEGATIVE TRANSFER

The adversarial training described in Sec. [3.2] can be easily extended into two groups of attributes
with negative transfer. Let us assume that we have M attributes and divided into a group a =
{ap}i, and b = {by}2_, where M = A+ B. We also assume a negative transfer from b to a, which
means that the multi-task training with all attributes in a and b gives lower average performance for
attributes in a than another multi-task training only with attributes in a. The adversarial training can
be denoted as follows.

N

. 1 N 1 -
min max Z 1 Z L (yijv yij) + B Z L (yij, yij) 9)

(BFHOC@I ----- HCaA) (chl ,---ﬁch) i=1 j€a jeb

The reformulated optimization with the gradient reversal (Ganin & Lempitskyl, [2015) technique is
the following.

N
1 1
min Z —Zﬁ(ﬂmyij) *)\*Zﬁ(gijayiﬂ (10)
(65,04, n00a,) o \ A 5 B<S
N
. 1 .
min Y 2> L (5 vi) (11)

(t‘Jcb1 ,4.-7001,5) i=1"" jeb

where A is a hyper parameter to balance out the loss between the two groups of attributes.

A.4 AN EXAMPLE OF OVERALL TRAINING PROCEDURE GIVEN A DATASET

Let us assume we have a dataset of three attributes A1, A2, and A3. We will perform three single
task trainings and also all six possible multi-task trainings. Then, we get the following results (the
accuracies are created only for illustration purpose).

e The accuracy for Al is 90% with single task training, 80% when trained with A2, and 90%
when trained with A3

e The accuracy for A2 is 70% with single task training, 80% when trained with A1, and 60%
when trained with A3

e The accuracy for A3 is 80% with single task training, 70% when trained with A1, and 75%
when trained with A2

Then, we perform the following three adversarial trainings and obtain a classifier per attribute.

e Al is the most negatively paired with A2 so train A1 classifier adversarially with A2.
e A2 is the most negatively paired with A3 so train A2 classifier adversarially with A3.
e A3 is the most negatively paired with Al so train A3 classifier adversarially with Al.
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Table 3: Accuracy (%) on CelebA validation set. Neg Att is the attribute (Att) that has the highest ac-
curacy drop when trained with multi-task learning. Sin is the accuracy from single task training. The
Mul is the accuracy from multi-task training with the Neg Att Adv is the accuracy from adversarial
training with the Neg Att.

Att  Att Name Neg Att Sin Mul Adv  Mul-Sin Adv-Sin Adv-Mul

1 5_o_Clock_Shadow 7 9447 9397 9471 -0.50 0.24 0.74
2 Arched_Eyebrows 7 87.15 8587 87.02 -1.28 -0.13 1.15
3 Attractive 7 8199 81.68 8242 -0.31 0.43 0.74
4  Bags_Under_Eyes 2 85.02 84.66 85.24 -0.36 0.22 0.58
5 Bald 24 99.05 98.84 99.05 -0.21 0.00 0.21
6 Bangs 7 96.00 9531 96.17 -0.69 0.17 0.86
7 Big_Lips 26 8520 8348 85.70 -1.72 0.50 222
8 Big_Nose 7 84.10 83.72 84.32 -0.38 0.22 0.60
9 Black_Hair 7 9202 91.63 92.19 -0.39 0.17 0.56
10  Blond_Hair 7 9583 9529 95091 -0.54 0.08 0.62
11 Blurry 7 96.65 9648 96.86 -0.17 0.21 0.38
12 Brown_Hair 7 86.24 84.65 86.50 -1.59 0.26 1.85
13 Bushy_Eyebrows 22 9296 92.80 93.15 -0.16 0.19 0.35
14 Chubby 7 9599 9572 96.01 -0.27 0.02 0.29
15  Double_Chin 7 9675 96.67 96.93 -0.08 0.18 0.26
16  Eyeglasses 7 99.69 99.55 99.66 -0.14 -0.03 0.11
17 Goatee 7 97.03 9696 97.08 -0.07 0.05 0.12
18  Gray_Hair 7 98.07 97.60 98.13 -0.47 0.06 0.53
19  Heavy_Makeup 7 9274 9231 93.05 -0.43 0.31 0.74
20  High_Cheekbones 7 8897 88.48 89.00 -0.49 0.03 0.52
21  Male 34 99.09 98.74 99.13 -0.35 0.04 0.39
22 Mouth_Slightly_Open 7 9443 9428 9456 -0.15 0.13 0.28
23 Mustache 7 9656 96.14 96.56 -0.42 0.00 0.42
24 Narrow_Eyes 4 9419 93.89 94.18 -0.30 -0.01 0.29
25 No_Beard 7 96.57 96.04 96.64 -0.53 0.07 0.60
26 Oval_Face 9 76.66 7645 77.02 -0.21 0.36 0.57
27  Pale_Skin 34 9698 96.52 97.00 -0.46 0.02 0.48
28  Pointy_Nose 38 78.02 77.80 78.16 -0.22 0.14 0.36
29  Receding_Hairline 26 9491 94.63 95.00 -0.28 0.09 0.37
30 Rosy_Cheeks 7 9537 9485 9541 -0.52 0.04 0.56
31  Sideburns 7 9756 9725 97.69 -0.31 0.13 0.44
32 Smiling 7 9385 9352 9396 -0.33 0.11 0.44
33 Straight_Hair 7 8547 8431 8576 -1.16 0.29 1.45
34 Wavy_Hair 7 87.17 8630 87.84 -0.87 0.67 1.54
35  Wearing_Earrings 7 92,66 9159 9247 -1.07 -0.19 0.88
36  Wearing_Hat 7 99.12 9890 99.16 -0.22 0.04 0.26
37  Wearing_Lipstick 7 9319 9251 9328 -0.68 0.09 0.77
38  Wearing_Necklace 7 90.03 89.20 89.91 -0.83 -0.12 0.71
39  Wearing_Necktie 7 97.02 96.73 97.04 -0.29 0.02 0.31
40  Young 7 8846 8754 88.66 -0.92 0.20 1.12
Mean 9233 91.82 9246 -0.51 0.13 0.64

A.5 PAIRWISE MULTI-TASK ACCURACY

We give the pairwise multi-task accuracy on CelebA in Table. 4} As mentioned in Sec. we train
with all possible attribute pairs to find the most negative transfer for each attribute. The row direction
is the main attribute of the accuracy that we care, and the column is another attribute trained with
the main one. The diagonal elements are filled with the accuracy from the single task training. For
example, the value in the (row,column) = (10,10) is 95.83%, which is the accuracy of the single task
training only with attribute 10 (Blond Hair). In the same row but in the 9-th column ((row,column)
= (10,9)), the value is 95.86, which means the accuracy of attribute 10 is 95.86% (0.03% increase)
when trained with attribute 9. On the other hand, the same row with 11-th column ((row,column)
= (10,11)) has the value of 95.79%, which means the accuracy of attribute 10 drops 0.04% when
trained with attribute 11. Table [3] discussed in Sec. [l is constructed from Table @l Table 3] shows

13



Under review as a conference paper at ICLR 2020

d with zoom and rotation.

1EWE

t. Bestv

10N S€

-task accuracy on CelebA validat

Iti

Pairwise mu

Table 4

9’88

s

99'88

9t'88

8188

9€'88

1788

£€°88

1188

8188

]

1588

St'88

€88

LE8S

8€'88

8188

SE'88

LE'88

Lt'88

P88

SP'88

1788

0T'88

6188

9188

9t'88

LT88

St'88

§5°88

L1'88

£€°88

6788

S'L8

6£'88

LE8Y

LE88

S+'88

65°88

588

o

€0°L6:

T0°L6!

86'96

S0°L6

96'96

00°L6

L896.

w0'L6

66'96

°0°L6

0'L6

9696

00°L6

0'L6

9696

10°L6

SOL6:

S0'L6

¥6'96

SO°L6:

€0°L6!

80°L6

P0'L6

£0°L6

11I°L6

9696

6'96

SO0'L6

LO'L6

00°L6

00'L6

96'96

10°L6

€L'96.

SO0°L6:

w0'L6

$8'96

LO'L6

6696

86'96f

6€

0006

96°68

€006

60706

£6'68

06°68

$6'68

98°68

68768

$0°06

1106

L6768

6L°68

06'68

L'68

L6683

868

1006

66'68

2006

$0°06:

9668

668

$8°68

08°68

6668

16°68

86'68

TL68

6°68

€6'68

868

00°06

0T°68

€668

6668

96'68

L8768

8868

0668

8¢

11°¢6

0€°€6

91°€6

61°€6

81°€6

S0°€6,

Tlee:

1T°e6

P1°€6

P1°€6

91°¢6

E1°E6

0T'€6

0€°€6

SI°€6;

8T€6:

SI'E6

6T°€6

90°€6

1€°€6

61°€6

10°¢6

91'€6

81°€6

SI°€6!

0T'€6

11°e6

91'€6

11r°e6

EEE6!

L67T6,

Te6

01'¢6

15726

61°€6

61°€6

9T'€6

01°¢€6

80°€6;

TTeo|

LE

11766

€166,

7166

01°66

T1'66

Zre6

80766

11'66

1166

01°66

LO66

1166

$0'66

90°66

60°66

166

66

7166

€166

€166

166

£0°66

60°66

91°66

1166

0166

1°66

L0°66

r1°66

£0°66!

7166,

1°66

166

06'86

91766

01°66

T1'66

L0°66

80766

11°66|

9¢€

1§26

$°T6

¥LT6

96

96

99°T6

6976

657T6

0v'Te

S'T6

696

€9°T6

8Y'T6

0926

S'T6

6976

$ST6

$S°T6

£9°T6

9°T6

§S°T6,

0926

€976

£9°T6

9°T6

L9T6!

56

£5°T6

LS'T6

65726

79'T6

65°T6

65°T6

6S°16

976

£9°T6

LST6

$5°T6!

LS'T6!

19°26|

53

96'98

81°L8

8898

1698

L'98

67°98

L1'L8

6T'L8

0rI'L8

0L°98

€898

86798

$8°98

PI'L8

10°28

€698

S9°L8

wiLs

61°L8

8€L8

178

0698

1998

96'98

0r'L8

90°L8

698

STL8

TrLs

LL98

118

88'98

$6'98

0£°98

6L798

9t'L8

898

L6'98

96'98

S0°L8

79's8

95°S8

9°68

+9°68

°9's8

LS'S8

90°S8

Lt'S8

+9'68

0L’S!

79's8

05°S8

'S8

19's8

§5°S8

LY'S8

7968

9L'S8

£9°68

'S8

8158

0968

S§°68

65°S8

0S°s8

6958’

95°S8

£5°68

81'S8

8158

'S8

'S8

0S's8

1€%8

LS8

Twss

L9'S8

LL'S8

LS8

09

€876

9L'E6

6L°€6

98°€6

76'¢6

88°€6

89°€6.

1L¢6

$8°€6

0L'¢6

SL'E6!

06°€6.

LL'E6

9IL'E6

T8€6

6L€6!

6L'E6

8L'€6

06'¢6

08°€6

18°¢6

SL'E6

9IL'E6

08°¢6

€6'€6;

8L'€6:

8L'€6

18°¢€6

T8'€6

8'€6

68°€6;

LE6

8L'€6

T5°€6!

€87€6;

18°€6

6L°¢6

$8€6

887€6:

89°€6f

15°L6

€9°L6:

15°L6

6S°L6

9S°L6

6'L6

0S°L6

6Y°L6

SS°L6

9S°L6

65°L6

L6

6Y°L6

6Y°L6

6€°L6

SS'L6:

6€°L6

8S°L6

I'L6

TS'L6!

817L6:

L6

SS°L6

LS'L6

¥9°L6

8S°L6:

8S°L6

£9°L6

SS'L6:

85°L6:

19°'L6

£9°L6

1$°L6

STL6:

09°L6

€SL6.

19°L6

65°L6

99°L6

T9°L6|

£TS6!

8TS6,

1€°56

LTS6

£€°56

81°S6

56!

0T'S6

£€°56

£TS6

LESO!

PES6

1756

8T'S6

£TS6

1€°56:

LES6

6T°S6

E'S6

676

€56,

1€°56

8€°S6

67°S6

0€°S6

T's6.

£€°56

SES6

8T°S6

E'S6

9€°S6,

LTS6

°ES6

1343

9€°56:

TES6

6T°S6

STS6

STS6!

TES6|

68'%6:

1846

£8'76

876

S6'76

0676

876

P86

08'%6

P8'76

w86

1676

0676

€876

£9'76

L8'76:

S816

EL'Y6

0876

9876

LLY6.

1676

1676

0876

£8'76

LLY6

we

876

LI6:

1876

S8Y6.

EL'Y6

€876

LLY6

1816:

£6'76

L8'Y6

£6'76

S8'76

18°76)

6T

61'8L

L1'8L

08°LL

86°LL

9T'8L

88LL

L1'8L

06°LL

€6'LL

T08L

86'LL

118L

0°8L

9T'8L

S0'8L

S6'LL

1T8L

YT8L

90°8L

o'LL

$0'8L

98'LL

61'8L

80°8L

YT8L

80°8L:

wsL

80°8L

PI'8L

81'8L

P0'8L

P1I'8L

€I8L

To'LL

P1'8L

LT8L

88°LL

Yo'LL

0'8L

T0°8Lf

8T

9896

10°L6

88°96

06'96

0°L6

$6'96°

7596

66'96

L6'96

£6'96

696

L8796

¥6'96

86'96

£6'96°

16'96

0896

1696

9L°96

00°L6

6896

¥8'96

68'96

L8796

16'96

L6'96

68'96

68'96

T6'96

9896

88796

10°L6

°6'96

8596

$6'96.

00°L6:

LL96

6896

16'96

8696

LT

€L9L

88°9L

€0°LL

SSOL

98°9L

woL

S99L:

S99L

vL9L

SL9L

96'9L

9L'9L

S8°9L

89°9L

99°9L

L99L

9L'9L

9L'9L

9S°9L

08'9L

€8°9L

9L'9L

69°9L

vL9L

S99L

18°9L

9L'9L

£6'9L

0L'9L

w99L

88°9L

SYL

65°9L

19°9L

68°9L:

L9L

£9°9L

69°9L

8'9L

L89L|

9T

LE96:

7996

9'96

596

78796

0¥'96

$96

596

97'96

LY'96

8596

€596

€796

81'96

LS796

LS96:

L¥'96

9596

61'96

95796

§5°96:

85796

7996

0996

0596

¥1'96.

8%'96

$796

$¥96

€596

9196

9'96

w96

096

85796

15796

£5°96

LS796

0596

85796

ST

11%6:

LI'Y6

0076

0Tr6

8176

S06

€TH6!

1076

0076

(4349

e,

66'€6

91'v6

SEV6

£6'€6

01'v6

6176

LI'v6

L6'€6

80°%6:

6TY6

9TY6

SI'v6

wre

90'+6

$6°€6;

PI'v6

PI'v6

w016

9T¥6

0Tr6

68°€6

11'v6

016!

STH6!

9Er6

68°¢6

0076

16°€6:

8116f

96

€196

65796

L¥'96

96

9Y'96

1£96

S'96

w96

LY'96

1796

€596,

596

6£796

1996

0796

§5°96

95°96

£7'96

0v'96

9v"96

£1'96

£5°96

$+'96

6796

8496,

95°96

9t'96

6796

€596

75796

L¥'96

8€'96

196

96

€5796.

S¥'96

6796

£9°96:

€596

(x4

EV'16;

YSr6

€6

9516

0576

LEY6

1€76:

£€F6

€576

€576

SS¥6:

8Y'16

LY'v6

€576

0576

0F'¥6

16

1716

A

SP'Y6!

0976

w'v6

SEV6

i

LY'v6:

16!

9’6

Bad

e

8’16

SPP6:

16

176

8TY6:

i3

SP'v6

LS'16

(U

LY'v6:

¥ 76|

(44

2066

6066

€066

96'86

L0766

01°66

L'86

01°66

2066

90°66

€066

6686

00°66

£0°66

66'86

0066

7686

80766

£0°66

60°66

$0°66:

€066

60°66

66'86

80766

96'86

£0°66

86'86

€066

0066

L0766

£0°66

10°66

LL'86

$0°66;

60766

10°66

86'86

10°66

00766

1T

1088

06'88

€888

+8'88

06'88

06'88

8888

SL'88

0688

L6'88

7688

16'88

9888

06'88

6L'88

96'88

0,88

LL'88

$6'88

98'88

L6788

£6'88

66'88

68'88

L8'88

¥6'88

0168

£0°68

16'88

6688

9888

98'88

98'88

8188

8688

16'88

8688

L6'88

98'88

$6'88

0T

69°26;

8L'T6

9L'T6

1826

8L'T6

08°26:

L8'T6

LL'T6

98'26

TLTo

78'26:

SL'T6

6L°T6

Twee

T8'26:

9L°T6;

EL'T6

8L'T6

6826

£6'T6

0626

PL'T6

99'T6

£8'76

08°26;

876

TwTe

SL'T6

LL'T6

8L'T6

0976

$8'26

$9'T6

1£'T6

18°26:

69'T6

8L'T6

99°26;

166

08°26f

61

€1786!

8086,

6086

81'86

1086

0°86

P1°86;

10°86

$0'86

8086

01'86

0186

8086

+0°86

L0'86

90°86

$0°86,

1186

$0'86

60'86

$0°86.

1186

L0'86

L0'86

90°86

90786,

90°86

91'86

8086

S1°86:

9186,

91'86

€086

09°L6

1186,

$0°86

90°86

Trse

€1°86:

80786

81

SO°L6!

10°L6

LOL6

S0°L6

£0°L6

6696

SOL6:

SO0'L6

0'L6

SO0°L6

SO°L6!

TrLe

86'96

£I'L6

€0°L6!

T0°L6;

€0°L6

S0°L6

w0L6

00°L6

60°L6

LOL6

96'96

£0°L6

10°L6

66796

L6'96

60°L6

£0°L6!

T0°L6!

LOL6:

80°L6

£0°L6

96'96

€0°L6:

€0°L6

80°L6

LO'L6

80°L6!

20°L6|

L1

§9°66

6966

L9766

89°66

L9766

L9°66

19°66

L9766

$9°66

$9°66

99°66

£9°66.

L9766

89°66

89°66

8966,

L9766

99°66

$9°66

99°66

+9°66

6966

$9°66

L9°66

69°66

§9°66,

L9766

69°66

79'66

L9766

£9°66.

L9766

$9°66

§5°66

§9°66,

89°66

$9°'66

L9°66

+9°66

$9°66f

91

7896

6L96

1L96

6'96

£8'96

9L'96

0L96

£8'96

896

08'96

$8°96

L8796

06'96

$8'96

£6'96

€896

7896

9L'96

88'96

L8'96

7696,

896

L8'96

£L°96

$8°96!

SL96

8'96

98'96

7896

8L96

8896

¥L'96

£8'96

L9796

0696

¥L'96

L8'96

6L'96

SL'96:

0896

ST

856

6856

0096

06'S6

96'S6

16°S6

$6°S6.

166

£6'S6

16°$6

$6°S6:

1676

L8°S6

$6°S6

0096

8°56

L87S6

96'S6

8L°S6

1096

86°S6:

£6'S6

16°6

£8°S6

€656

L87S6/

66'S6

+0°96

856

98°56

L6°S6:

SL'S6

68°S6

TLS6!

0656

£8°56

66'S6

96'S6

96°S6

98756

14

or'ee

E1°€6.

€0°€6

60°€6

S0°€6

+0°€6

16'T6

Y0°€6

68°C6

L0'E6

°0°€6

$6'T6

$6'T6

01'¢6

10°€6

£0°€6:

86'C6.

+6'C6

08°C6

86C6:

+0°€6

66'T6.

£1°¢6

98°C6

66°T6

00°€6

06'C6

96'C6

£0°€6!

Treo,

+0°€6

g6

80°€6

066

00°€6

20°€6

96'C6

T6'T6

90°€6

11°€6|

€1

80798

6198

098

7198

LT98

1098

L0798

1€°98

S098

91°98

8198

0798

Y798

£€98

86'S8

098

198

1198

0098

8198

198

L1798

8198

2098

€098

9198

TT98

€098

¥T'9

0T'9

798

6198

§T98

S9¥8

L1798

198

90°9t

09!

S198

198

Tl

L96

6996

w96

L9'96

1L°96

6L796

8996

L996

9L'96

99'96

L9796

€L796

€L796

85796

9996

L996:

8996

w96

08'96

0L96

1L96

1L°96

0L796

$9'96

1L°96

996

6996

6996

9996

$9°96:

T>L96

$9'96

+9°96

8596

7996

1996

L9'96

8996

6996

0L"96)

1t

8LS6!

6LS6!

PL'S6

L9°S6

L8°S6

€856

1L°s6

18°66

08°S6

18°6

1L°56

18766

0L°S6

+8°56

68°S6

L87S6!

€8°S6

6L°S6

89°S6

08°S6

8LS6!

856

£L°S6

6L°S6

L'S6

LL'S6

$8°S6

9L’S6

18°56

6L7S6:

€856

98°S6

16'S6

676

18°66.

8L°S6

06'S6

$8°S6

88756

L87S6f

[us

80°C6:

91°T6

206

1126

0T'T6

91°T6

91°T6

206

Trze

1726

66°16

S1°T6

1126

£1°T6

0026

60°T6

81°T6

81°T6

1126

606

TIze:

S1°T6

0€°T6

01°T6

€1°T6:

91°76

$0°T6

€176

01°T6

S1°26!

7176

06

Tree

£9°16;

0076

1726

80°C6

S0°T6:

1T°T6:

7T T6)

LTY8

1TY8

9TY8

61'v8

6178

€Iys

8T8

SO'v8

[Uazs

1€%8

LTY8

90'v8

6£P8

SEY8

0Tr8

w8

LEYS

£r8

£EY8

STY8

€TS8

LTY8

SI'P8

A

LTY8

PEPS

9T

L0P8

6778

Y8

SI'v8

£€TY8

0r'ys

Toes

Y8

s

SI'P8

LTY8

€EP8

YO8

€678

2098

8Y'¥8

SLY8

11°s8

LS°S8

w918

€678

6178

§5°68

0878

1068

s

6T°S8

8Y°€8

9°S8

0868

6L°S8

SI°s8

TTS8

1€48

LSS

06'S8

6

9°68

807!

SL'S8

08'%8

S8'48

$9's8

8T'S:

S8

LT98

0T'S8

Twss

1098

(U%

€968

0678

08°G8|

$6°S6!

S6°S6.

$6'S6

1656

0096

66'S6

96'S6.

$0°96

$0'96

68'S6

96'S6

$6'S6

L8'S6

S6'S6

1096

06'S6

86'S6

L6°S6

16'S6

866!

66'S6.

$6'S6

16'S6

16'S6

866!

86'S6.

£6'S6

16'S6

1096

$0°96

16°S6

£0'96

£6'S6

1€°56,

0096

1096

16'S6

66'S6

L6S6!

856

L6'86

$0'66

$0°66

L0'66

S0°66

S0'66

16'86.

¥6'86

0066

66'86

80'66

90°66.

1066

L6786

86'86;

10°66:

78'86

L0'66

90°66

10766

L0'66

S0°'66

90°66

£0°66

10°66:

$0'66

$0'66

90°66

86'86:

$0'66

10°66

¥0°66

0066

98'86

86'86

S0°'66

10°66

96°86:

20'66

10°66|

8LY8

LOS8

88

08'v8

P88

6878

96’78

0°s8

0678

8818

L6Y8

6678

0678

00°$8

0°S8

6678

€1'e8

0°s8

S6'8

€6'v8

10768

w8

S6'8

€S8

LOS8

90°$8

$0°S8

91's8

888

S1°68

$0°$8

€68

L0°S8

S8'Y8

Trss

P88

0°s8

P8P8

99'%8

w0618

o1'e8

61°T8

S8I8

80°T8

ST

8818

e

€0°T8

01'es

61°T8

SIes

L6'I8

w8

81°T8

ST

SIes

108

SIes

01'e8

£0°C8

8178

S1es

0T'T8

67°C8

vI'T8

€18

16'18

e

00°T8

00T8

6618

SI'es

91'c8

8918

vTT8

e

e

66'18

60°C8

16°18]

9698

F0'L8

8698

8698

10°L8

01°L8

L698

11I°L8

£898

Y0'L8

00°L8

9698

9698

LI'L8

10L8

7698

1698

0°L8

00°L8

10L8

8698

£0°L8

£0°L8

10°L8

01°L8

L8

96'98

90°L8

£6'98

L8

60°L8

10°L8

80°L8

L8'S8

61°L8

tIL8

£0°L8

60°L8

SI'L8

1698

cimicinicicmio

YSr6

€516,

LY'6

€76

576

€516

9516

67 16

0576

1S'%6

uad

1§76

EV'P6

Ev'P6

19'%6

9 v6

€56

P9v6

€516

Sr6

6576

Y16

81’76

PSh6

576

916,

ua

ua

876

0976

0516

uas

976

L6'€6

8516

€976

6176

SS'v6

LY'v6

L6

oy

6€

8¢

LE

9€

S€

143

€€

®

1€

0

67

8T

Lz

9

ST

T

€T

w

1T

0z

61

81

LY

91

st

4

€1

u

1

[us

6

8

L

9

12

4

€

T

1

14



Under review as a conference paper at ICLR 2020

that the most negative attribute for attribute 10 is attribute 7 with the multi-task accuracy of 95.29%.
This is the lowest accuracy of the row 10 in Table corresponding to the (row,column) = (10,7).
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Table 5: Accuracy (%) on CelebA validation set with all adversarial attributes.

Att Acc. Adversarial trained attributes (Atts)

94.65 17,9,13,14,19, 27, 28, 30, 37
8690 1,3,4,5,7,8,9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40

3 82.19 1,7, 14,28, 29, 35, 38

4 85.19 1,2,3,5,7,9,12,18, 19, 20, 21, 22, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40

5 99.02 1,2,3,4,6,7,8,9,10, 12, 14, 15, 16, 17, 21, 24, 25, 26, 27, 28, 31, 32, 33, 34, 38, 40

6 9596 1,2,3,4,7,8,10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31,
34, 35, 37, 38, 39, 40

7 83.56 2,9,12, 13,15, 20, 22, 26, 29, 30, 32, 33, 34, 36, 37, 38, 40

8 84.14 17,13,29,33

9 91.87 6,7,26,30

10 9597 5,6,7,11, 12,13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 34, 37, 38,
39, 40

11 96.69 5,6,7,8,15,27

12 8590 1,2,3,4,5,6,7,9,11,13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 29, 30, 31,
32, 34, 35, 37, 38, 39, 40

13 93.09 3,7,14,17,22,23,28,29, 32,34

14 9599 1,2,3,5,6,7,8,9,10, 11, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31,
32,33, 34, 35, 36, 37, 39, 40

15 96.90 5,7,9,17,34, 38

16 99.62 1,2,3,4,5,6,7,8,9,10, 11, 12, 14, 15, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 40

17 97.08 1,7,11, 14,15, 16, 18, 21, 22, 25, 28, 35, 39

18 98.08 4,5,7,8, 14,15, 16, 20, 22, 24, 25, 27, 32, 33, 35, 36

19 93.05 3,5,7,8,10, 14, 18, 24,27, 31, 40

20 89.14 1,2,3,5,7,8,9,10, 12, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40

21 99.11 1,2,3,4,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 34, 36, 37, 38, 40

22 9443  3,7,12,18,19, 23, 25, 33, 34, 35

23 96.57 1,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 39, 40

24 9385 1,2,3,4,6,7,8,9,12, 13, 14, 15, 16, 18, 21, 22, 23, 25, 26, 28, 29, 32, 33, 35, 36, 38,
39, 40

25 96.59 2,4,5,7,8,9,10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 27, 28, 29, 31, 32, 33, 34,
35, 36, 37, 38, 40

26 76.89 4,7,8,9,11, 16,22, 33, 34, 37

27 9695 2,3,4,6,7,8,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28, 29, 30,
31, 32, 34, 35, 37, 38, 40

28 7795 3,4,7,19, 21,25, 30, 32, 33, 35, 37, 38

29 9475 1,2,4,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31,
32,33, 34, 35, 37, 38, 39, 40

30 9534 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40

31 97.66 5,7,8,12,18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 38, 40

32 93.83 1,4,5,6,7,8,9,11,12,13, 14,15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 33,
34, 38, 39, 40

33 85.78 17,9,10, 21,28, 34

34 8738 1,2,3,4,6,7,8,9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28, 29, 30, 31, 32, 35,
36, 37, 38, 40

35 9247 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28,
29, 31, 32, 33, 36, 37, 39, 40

36 99.13 1,2,3,5,7,11, 13,15, 16, 18, 19, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 40

37 93.23 2,3,7,8,10,12,13, 14, 16, 17, 18, 19, 20, 22, 24, 26, 29, 30, 31, 32, 34, 35, 36, 38, 40

38 8995 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27,
28,29, 32, 33, 34, 35, 36, 39, 40

39 96.89 1,2,4,5,7,8,9,10, 11, 14, 15, 22, 25, 26, 28, 29, 32, 34, 35, 36, 38

40 88.44 3,4,5,6,7,8,9,12,13,16,17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35,
39

Mean 92.31
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Table 6: Accuracy (%) on DukeMTMC-attribute dataset. Neg Att is the attribute (Att) that has the
highest accuracy drop when trained with multi-task learning. Sin. is the accuracy from single task
training. The Mul is the accuracy from multi-task training with the Neg Att. Adv is the accuracy
from adversarial training with the Neg Att. The attribute 14 does not have negative transfer with any
other attribute so we show the accuracy from the single task training.

Att  Att name Neg Att Sin Mul Adv  Mul-Sin  Adv-Sin  Adv-Mul
1 Carrying backpack 13 81.67 80.71 81.95 -0.96 0.28 1.24
2 Carrying bag 9 82.63 8128 8227 -1.36 -0.36 0.99
3 Carrying handbag 11 9412 93.63 93.96 -0.49 -0.15 0.33
4 Wearing boots 16 89.21 88.68 89.38 -0.54 0.17 0.7
5  Gender 9 8548 8428 8454 -1.21 -0.95 0.26
6  Wearing hat 13 89.03 88.27 89.1 -0.76 0.07 0.83
7  Light-color shoes 6 9181 9123 09152 -0.58 -0.29 0.29
8  Long-sleeve upper-body clothes 2 8998 88.69 89.8 -1.29 -0.19 1.11
9  Black lower-body clothes 1 7842 7797 79.7 -0.44 1.29 1.73

10 White lower-body clothes 8 94.17 93.7 94.2 -0.47 0.02 0.5
11 Red lower-body clothes 8 98.87 98.75 98.95 -0.12 0.08 0.2
12 Gray lower-body clothes 13 9133 90.81 9191 -0.52 0.58 1.1
13 Blue lower-body clothes 4 80.37 79.61 8092 -0.76 0.55 1.31
14 Green lower-body clothes - 99.64 - - - - -
15 Brown lower-body clothes 8 9775 9734 9776 -0.4 0.01 0.42
16  Black upper-body clothes 18 81.85 81.18 8241 -0.67 0.55 1.23
17 White upper-body clothes 8 9514 9492 9557 -0.22 0.43 0.65
18  Red upper-body clothes 7 97.03 96.56 97.19 -0.47 0.16 0.63
19  Purple upper-body clothes 21 99.64 99.45 99.6 -0.19 -0.03 0.15
20  Gray upper-body clothes 16 89.6 89.3  90.31 -0.29 0.71 1.01
21  Blue upper-body clothes 5 943 93.83 94.01 -0.47 -0.29 0.18
22 Green upper-body clothes 9 9736 97.13 97.61 -0.23 0.25 0.48
23 Brown upper-body clothes 10 9794 9776 98.08 -0.19 0.14 0.32

Mean 91.19 90.64 91.32 -0.55 0.13 0.68
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