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ABSTRACT

Spiking neural networks (SNNs) offer a promising alternative to current artifi-
cial neural networks to enable low-power event-driven neuromorphic hardware.
However, training SNNs remains a challenge primarily because of the complex
non-differentiable neuronal behavior arising from their spike-based computation.
In this paper, we propose an algorithm to train spiking autoencoders on regen-
erative learning tasks. A sigmoid approximation is used in place of the Leaky
Integrate-and-Fire neuron’s threshold based activation during backpropagation to
enable differentiability. The loss is computed on the membrane potential of the
output layer, which is then backpropagated through the network at each time step.
These spiking autoencoders learn meaningful spatio-temporal representations of
the data, across two modalities - audio and visual. We demonstrate audio to image
synthesis in a spike-based environment by sharing these spatio-temporal represen-
tations between the two modalities. These models achieve very low reconstruction
loss, comparable to ANNs, on MNIST and Fashion-MNIST datasets, and while
converting TI-46 digits audio samples to MNIST images.

1 INTRODUCTION

In recent years, Artificial Neural Networks (ANNs have become powerful computation tools for
complex tasks such as pattern recognition, classification and function estimation problems (LeCun
et al., 2015). They have an “activation” function as their neuron (compute unit). These functions
are mostly sigmoid, tanh, or ReLU (Nair & Hinton, 2010) and are very different from a biological
neuron. Spiking neural networks (SNNs), on the other hand, are recognized as the “third generation
of neural networks” (Maass, 1997), with their “spiking” neuron model (or compute unit) much
closely mimicking a biological neuron. They have a biologically plausible architecture that can
potentially achieve high computational power and efficient neural implementation (Ghosh-Dastidar
& Adeli, 2009; Maass, 2015). However, training methods for these spiking neural networks (Jin
et al., 2018; Sengupta et al., 2018) are still in an early development stage, where each method comes
with its own advantages and challenges.

For any neural network, the first step of learning is the ability to encode the input into meaningful
representations. We investigate how input spike trains can be processed and encoded into meaning-
ful hidden representations in a spatio-temporal format of output spike trains which can be used to
recognize and regenerate the original input. Autoencoders are very effective tools to learn under-
lying representations of data, especially visual data (Vincent et al., 2008). Their simple two-layer
structure makes them easy to train as well. In the domain of SNNs, autoencoders provide an exciting
opportunity for implementing unsupervised feature learning.

One way to train spiking autoencoders is by using Spike Timing Dependent Plasticity
(STDP)(Sjöström & Gerstner, 2010), an unsupervised local learning rule in which the weight update
of a synapse is dependent on when the pre-neuron and post-neuron of the synapse spike with respect
to each other. Burbank (2015) and Tavanaei et al. (2018) use STDP based learning rules to train
autoencoders on MNIST and natural images. However, STDP, being unsupervised and localized,
still fails to train SNNs to perform at par with ANNs. Another approach is derived from ANN back-
propagation; the average firing rate of the output neurons is used to compute the global loss (Bohte
et al., 2002; Lee et al., 2016). Rate-coded loss fails to include spatio-temporal information of the
network, as the network response is accumulated over time to compute the loss. Wu et al. (2018)
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applied backpropagation through time (BPTT) (Werbos, 1990), while Jin et al. (2018) proposed a
hybrid backpropagation technique to incorporate the temporal effects. However, it continues to be a
challenge to accurately map the time-dependent neuronal behavior with a time-averaged rate coded
loss function.

Apart from firing rate, spiking neurons can be characterized by their internal state, referred to as the
membrane potential (Vmem). The Vmem changes over time depending on the input to the neuron,
and whenever it exceeds a threshold, the neuron generates a spike. Thus the firing rate of the spiking
neuron is regulated by its membrane potential. Panda & Roy (2016) first presented a backpropaga-
tion algorithm for spiking autoencoders that uses Vmem of the output neurons to compute the loss of
the network. They proposed an approximate gradient descent based algorithm to learn hierarchical
representations in stacked convolutional autoencoders. In this work, we compute the loss of the
network using Vmem of the output neurons, and we incorporate BPTT (Werbos, 1990) to compute
the gradients, as membrane potential integrates over time, and use a sigmoid function approximation
for the discontinuous step function relation between neuron output and it’s internal state (Vmem).

Generally, an autoencoder can learn the hidden representations of data belonging to one modality
only. However, the information surrounding us presents itself in multiple modalities - visual, audio,
sensory perception. We learn to associate sound, visuals and other sensory stimuli to one object. For
example, “apple” when shown as an image, or as text or heard as an audio holds the same meaning
for us. A learning system should be capable of learning shared representation of multimodal data
(Srivastava & Salakhutdinov, 2012). Wysoski et al. (2010) proposed a bimodal SNN model that
performs person authentication using speech and visual (face) signals. In this work, we explore the
possibility of two sensory inputs - audio and visual, of the same object, learning a shared representa-
tion using multiple autoencoders, and then use this shared representation to synthesize images from
audio samples.

The main contributions of this work are

1. We propose an algorithm to train spiking neural networks that computes loss based on
membrane potential of the output neurons. This loss is then backpropagated through the
layers, with sigmoid approximation for the derivative of the neuron activation with respect
to its membrane potential. The algorithm is verified by training autoencoders on MNIST
and Fashion-MNIST and benchmarked against ANNs trained with mini-batch stochastic
gradient descent (SGD).

2. We demonstrate that in a spike-based environment, inputs can be transformed into com-
pressed spatio-temporal spike maps, which can be then be utilized to reconstruct the input
later, or can be transferred across network models, and data modalities. A spiking autoen-
coder is used to generate compressed spatio-temporal spike maps of images (MNIST). For
audio-to-image synthesis, a spiking audiocoder learns to map audio samples to compressed
spike map representations, which are then converted back to images with high fidelity us-
ing the spiking autoencoder. This is the first work to perform audio to image synthesis in a
spike-based environment.

3. We observe that in presence of sparse/quantized data, a spiking autoencoder can potentially
outperform an ANN in reconstruction task, as seen by training spiking audiocoders on
single/two bit spatio-temporal compressed spike maps of MNIST images. This could be
a result of the ability of SNNs to learn with sparse data because of the temporal nature of
their computation that is carried out over several time steps.

The paper is organized in the following manner: In Section 2, the neuron model, the network struc-
ture and notations are introduced. The backpropagation algorithm is explained in detail. This fol-
lowed by the Section 3 where the performance of these spiking autoencoders is evaluated against
several benchmarks. We illustrate our Audio to Image synthesis model and evaluate it for convert-
ing TI-46 digits audio samples to MNIST images. Finally, in Section 4, we conclude the paper with
discussion on this work and its future prospects.
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2 TRAINING SPIKING AUTOENCODERS

2.1 INPUT AND NEURON

A spiking neural network differs from a conventional ANN in two main aspects - inputs and acti-
vation functions. For an image classification task, for example, an ANN would typically take the
raw pixel values as input. However, in SNNs, inputs are binary spike events that happen over time.
There are several methods for input encoding in SNNs currently in use, such as rate encoding, rank
order coding and temporal coding (Wu et al., 2007). One of the most common methods is rate en-
coding, where each pixel is mapped to a neuron that produces a Poisson spike train, and its firing
rate is proportional to the pixel value. In this work, every pixel value of 0− 255 is scaled to a value
between [0, 1] and a corresponding Poisson spike train of fixed duration, with a pre-set maximum
firing rate, is generated (Fig.1).

Figure 1: The input image is converted into a spike map over time. At each time step neurons spike
with a probability proportional to the corresponding pixel value at their location. These spike maps,
when summed over several time steps, resemble the original input

The neuron model is that of a leaky integrate-and-fire (LIF) neuron. The membrane potential (Vmem)
is the internal state of the neuron that gets updated at each time step based on the input of the neuron,
Z [t] (eq. 1).The output activation (A[t]) of the neuron depends on whether Vmem reaches a threshold
(Vth) or not. At the time instant when Vmem ≥ Vth, the neuron spikes (eq. 2). At any time instant,
the output of the neuron is 0 if it has not spiked, or 1 if it has spiked. The leak factor is determined
by a constant α. After a neuron spikes, it’s membrane potential is reset to 0. Fig. 2b illustrates a
typical neuron’s behavior over time in an SNN.

V [t]
mem = (1− α)V [t−1]

mem + Z [t] (1)

A[t] =

{
0, V

[t]
mem < Vth

1, V
[t]
mem ≥ Vth

(2)

The activation function ( eq. 2) is non-differentiable with respect to Vmem, and hence we cannot take
its derivative during backpropagation. For backpropagation, the derivative of A[t] is approximated
as the derivative of a sigmoid, (A[t]

apx), which is centered around Vth (eq. 3, 4).

A[t]
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=
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(4)

2.2 NETWORK MODEL

The autoencoder used here is a two layer fully connected feed forward network. To evaluate our
proposed training algorithm, we have used two datasets - MNIST (LeCun et al., 1998) and Fashion
MNIST (Xiao et al., 2017). For both the datasets the input and the output layers have 784 neurons
each, which is the input size of the datasets. The number of layer(1) neurons varies with dataset.
The input neurons (layer(0)) are mapped to the image pixels in a one-to-one manner and generate
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(a) A two layer feed-forward spiking neural net-
work at any given arbitrary time instant

(b) A leaky integrate and fire (LIF) neuron model with
3 synapses/weights at its input

Figure 2: The operation of a Spiking Neural Network:(a) The input vector is mapped one-to-one to
the input neurons(layer(0)). The input value governs the firing rate of the neuron, i.e. number of
times the neuron output is 1 in a given duration. (b) The membrane potential of the neuron integrates
over time (with leak). As soon as it crosses Vth, the neuron output changes to 1, and Vmem is reset
to 0. For taking derivative during backpropagation, a sigmoid approximation is used for the neuron
activation

the Poisson spike trains. These autoencoders later form the building blocks of the audio-to-image
synthesis network. The description of the network and the notation used throughout the paper is
given in Fig. 2a.

2.3 BACKPROPAGATION USING MEMBRANE POTENTIAL

In this work, loss is computed using the membrane potential of output neurons (Panda & Roy, 2016)
at every time step and then it’s gradient with respect to weights is backpropagated for weight update.
The input image is provided to the network as 784×1 binary vector over T time steps, represented
as X(t)

spike. At each time step the desired membrane potential of the output layer is calculated (eq.
5). The loss is the difference between the desired membrane potential and the actual membrane
potential of the output neurons. Additionally a masking function can be used that helps us focus on
specific neurons at a time. The mask used here is bitwise XOR between expected spikes (X [t]

spike) and
output spikes (A(2)[t]) at a given time instant. The mask only preserves the error of those neurons
that either were supposed to spike but did not spike, or were not supposed to spike, but spiked. It
sets the loss to be zero for all other neurons. We observed that masking is essential for training in
spiking autoencoder as shown in Fig. 3b.

O[t] = Vth.X
[t]
spike (5)

mask = bitXOR(X
[t]
spike, A

(2)[t]) (6)

Error = E = mask.(O[t] − V (2)[t]
mem ) (7)

Loss = L =
1

2
|E|2 (8)

The weight gradients, ∂W
∂L , are computed by back-propagating loss in the two layer network as

depicted in Fig. 2a. We derive the weight gradients below.

∂L

∂V
(2)[t]
mem

= −E (9)
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From eq. 1,
∂V
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mem
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mem

∂W (2)
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From eq. 9 - 10 and applying the chain rule.
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From eq. 1,
∂V

(2)[t]
mem

∂Z(2)[t]
= I (12)

From 9 and 12, we obtain the local error of layer(2) with respect to the overall loss which is back-
propagated to layer(1).

δ2 =
∂L

∂Z(2)[t]
= I(−E) = −E (13)

Next, the gradients for layer(1) are calculated.
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From eq. 3 - 4
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From 13 - 16,
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Thus, equations 11 and 17 show how gradients of the loss function with respect to weights are
calculated. For weight update, we use mini-batch gradient descent and a weight decay value of 1e-
5. We implement Adam optimization (Kingma & Ba, 2014), but the first and second moments of the
weight gradients are averaged over time steps per batch (and not averaged over batches). We store
∂V (l)[t]

mem

∂W (l) of the current time step for use in next time step. The initial condition is, ∂V (l)[0]
mem

∂W (l) = 0. If a

neuron spikes, it’s membrane potential is reset and therefore we reset ∂V (l,m)[t]
mem

∂W (l) to 0 as well, where
l is the layer number and m is the neuron number.

3 EXPERIMENTS

3.1 REGENERATIVE LEARNING WITH SPIKING AUTOENCODERS

For MNIST, a 784-196-784 fully connected network is used. The spiking autoencoder (AE-SNN)
is trained for 1 epoch with a batch size of 100, learning rate 5e-4, and a weight decay of 1e-4. The
threshold, Vth, is set to 1. We use define two metrics for network performance. Spike-MSE is
the mean square error between the input spike map and the output spike map, both summed over
the entire duration. MSE is the mean square error between the input image and output spike map
summed over the entire duration. Both are normalized, zero mean and unit variance, and then the
mean square error is computed. The duration of inference is kept same as the training duration of the
network. It is observed in Fig. 3a that a leaky neuron (LIF) performs better than a neuron without
any leak (α = 0), i.e an Integrate-and-Fire (IF) neuron. We use Spike-MSE as the comparison
metric, to observe how well the autoencoder can recreate the input spike train. Going forth, we set
the leak coefficient at 0.1 for all subsequent simulations. Fig. 3b shows that using a mask function
is essential for training this type of network. Without a masking function, all of the 784 neurons are
being forced to have membrane potential of 0 or Vth, which makes training difficult. With a masking
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(a) Effect of leak coefficient (b) Effect of Mask function (c) Effect of spike train duration

Figure 3: The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples, batch size
= 100) and we study the impact of (a) leak, (b) mask, and (c) input spike train duration.

(a) Spiking autoencoder (AE-SNN) versus
AE-ANNs (trained with/ without Adam)

(b) Regenerated images from test set for AE-SNN (input
spike duration = 15, leak = 0.1)

Figure 4: AE-SNN trained on MNIST (training examples = 60,000, batch size = 100)

function, the neurons that are not supposed to fire, are just being trained to not have a membrane
potential that exceeds the threshold, which is a more relaxed rule to enforce. Increasing the duration
of the input spike train improves the performance as shown in Fig.3c. However, it comes at the
cost of increased training time as backpropagation is done at each time step, as well as increased
inference time. We settle for an input time duration of 15 as a trade-off between MSE and time taken
to train and infer for the next set of simulations.

For comparison with ANNs, a network (AE-ANN) of same size (784×196×784) is trained with
SGD, both with and without Adam optimizer (Kingma & Ba, 2014) on MNIST for 1 epoch with a
learning rate of 0.1, batch size of 100, and weight decay of 1e-4. When training the AE-SNN, the
first and second moments of the gradients are computed over sequential time steps within a batch
(and not across batches). Thus it is not analogous to the AE-ANN trained with Adam, where the
moments are computed over batches. Hence, we compare our network with both variants of the
AE-ANNs. The AE-SNN achieves better performance than the AE-ANN trained without Adam;
however it lacks behind AE-ANN optimized Adam as shown in Fig. 4a. Some of the reconstructed
MNIST images are depicted in Fig. 4b. One important thing to note is that the AE-SNN is trained
at every time step, hence there are 15× more backpropagation steps as compared to an AE-ANN.
However at every backpropagation step, the AE-SNN only backpropagates the error vector of a
single spike map, which is very sparse, and carries less information than the error vector of the
AE-ANN.

Next, the spiking autoencoder is next evaluated on Fashion-MNIST dataset (Xiao et al., 2017). It is
similar to MNIST, and is composed of 28×28 gray-scale images (60,000 training, 10,000 testing)
of clothing items belonging to 10 distinct classes. We test our algorithm on two network sizes: 784-
512-784 (AE-SNN-512) and 784-1024-784 (AE-SNN-1024). The AE-SNNs are compared against
AE-ANNs of the same sizes (AE-ANN-512, AE-ANN-1024) in Fig. 5a. For the AE-SNNs, the
duration of input spike train is 60, leak coefficient is 0.1, and learning rate is set at 5e-4. The
networks are trained for 1 epoch, with a batch size of 100. The longer the spike duration, the better
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(a) AE-SNN (784×(512/1024)×784) versus
AE-ANNs (trained with/without Adam)

(b) Regenerated images from test set for SNN-1024

Figure 5: AE-SNN trained on Fashion-MNIST (training examples = 60,000, batch size = 100)

would be the spike image resolution. For a duration of 60 time steps, a neuron can spike anywhere
between zero to 60 times, thus allowing 61 gray-scale levels. Some of the generated images by AE-
SNN-1024 are displayed in Fig. 5b. The AE-ANNs are trained for 1 epoch, batch size 100, learning
rate 5e-3 and weight decay 1e-4. For Fashion-MNIST, the AE-SNNs exhibited better performance
than AE-ANNs as shown in Fig. 5a. This is an interesting observation, where the better performance
comes at the increased effort of per-batch training. Also it exhibits such behavior on only this dataset,
and not on MNIST (4a). The spatio-temporal nature of training over each time step could possibly
train the network to learn the details in an image better. We also observed that, for both datasets,
MNIST and Fashion-MNIST, the AE-SNN converges faster than AE-ANNs trained without Adam,
and converges at almost the same time as an AE-ANN trained with Adam. The proposed spike-
based backpropagation algorithm is able to bring the AE-SNN performance at par, or even better,
than AE-ANNs.

3.2 AUDIO TO IMAGE SYNTHESIS USING SPIKING AUTO-ENCODERS

3.2.1 DATASET

For audio samples, the 0-9 digits subset of TI-46 speech corpus (Liberman et al., 1993) is used. The
dataset is composed of read utterances of 16 speakers. It has total 4136 audio samples. The dataset
is divided into 3500 train samples and 636 test samples, maintaining an 85%/15% train/test ratio.
The audio clips were preprocessed using Auditory Toolbox (Slaney, 1998). They were converted to
spectrograms having 39 frequency channels over 1500 time steps. The spectrogram is then converted
into a 58500×1 vector of length 58500. This vector is then mapped to the input neurons (layer(0))
of the audiocoder, which then generate Poisson spike trains over the given training interval. Images
are taken from the MNIST, (LeCun et al., 1998), a dataset of handwritten digits. Two multimodal
datasets are prepared as described below. The testing set is kept same for both datasets, composed
of 636 audio samples.

1. Dataset A: 10 unique images of the 10 digits is manually selected (1 image per class) and
audio samples are paired with the image belonging to their respective classes (one-image-
per-audio-class)

2. Dataset B: Each audio sample of the training set is paired with a randomly selected image
(of the same label) from the MNIST dataset (one-image-per-audio-sample).

3.2.2 NETWORK MODEL

The principle of stacked autoencoders is used to perform audio-to-image synthesis. An autoencoder
is built of two sets of weights; the layer(1) weights (W (1)) encodes the information into a “hidden
state” of a different dimension, and the second layer (W (2)) decodes it back to it’s original repre-
sentation. We first train a spiking autoencoder on MNIST dataset. We use the AE-SNN as trained in
Fig. 4a. Using layer(1) weights (W [1]) of this AE-SNN, we generate “hidden-state” representations
of the images in the training set of the multimodal dataset. These hidden-state representations are
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Figure 6: Audio to Image synthesis model using an Autoencoder trained on MNIST images, and
an Audiocoder trained to convert TI-46 digits audio samples into corresponding hidden state of the
MNIST images.

spike trains of a fixed duration. Then we construct an audiocoder: a two layer spiking network that
converts spectrograms to this hidden state representation. The audiocoder is trained with membrane
potential based backpropagation as described in Section 2.3. The generated representation, when
fed to the “decoder” part of the autoencoder, gives us the corresponding image. The network model
is illustrated in Fig. 6

3.2.3 RESULTS

The AE-SNN used for audio-to-image synthesis task is trained using the following parameters: batch
size of 100, learning rate 5e-4, leak coefficient 0.1, weight decay 1e-4, input spike train duration 15,
and number of epochs 1. We use Dataset A and Dataset B (as described in section 3.2.1) to train and
evaluate our audio-to-image synthesis model. The images that were paired with the training audio
samples are converted to Poisson spike trains (duration 15 time steps) and fed to the AE-SNN, which
generates a 196×15 corresponding bitmap as the output of layer(1) (Fig. 2a). This spatio temporal
representation is stored. Instead of storing the entire duration of 15 time steps, one can choose
to store a subset, such as first 5 or 10 time steps. We use Th to denote the saved hidden state’s
duration. This stored spike map serves as the target spike map for training the audiocoder, which
is a 58500×2048×196 fully connected network. The spectrogram (39×1500) of the audio samples
was converted to 58500×1 vector which is mapped one-to-one to the input neurons(layer(0)). These
input neurons then generate Poisson spike trains for 60 time steps. The target map was of Th time
steps was shown repeatedly over this duration. The audiocoder is trained over 20 epochs, with a
learning rate of 5e-5 and leak coefficient of 0.1. Weight decay is set at 1e-4 and the batch size is 50.
Once trained, the audiocoder is then merged with W (2) of AE-SNN to create the audio-to-image
synthesis model (Fig. 6).

For Dataset A, we compare the images generated by audio samples of a class against the MNIST
image of that class to compute the MSE. In case of Dataset B, each audio sample of the train set is
paired with an unique image. For calculating training set MSE, we compare the paired image and the
generated image. For testing set, the generated image of an audio sample is compared with all the
training images in the dataset, and the lowest MSE is recorded. The output spike map is normalized
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and compared with the normalized MNIST images, as was done previously. Our model gives lower
MSE for Dataset A compared to Dataset B (Fig 8a), as it is easier to learn just one representative
image for a class. The network trained with Dataset A generates very good identical images for
audio samples belonging to a class. In comparison the network trained on Dataset B generates a
blurry image, thus indicating that it has learned to associate the underlying shape and structure of
the digits, but has not been able to learn finer details better. This is because the network is trained
over multiple different images of the same class, and it learns what is common among them all. Fig.
8b displays the generated output spike map for the two models trained over Dataset A and B for 50
different test audio samples (5 of each class).

(a) Reconstruction loss of the
audio-to-image synthesis model
for varying Th

(b) Audiocoder (AC-SNN)
(Th = 15) vs AC-ANN (16 bit
full precision)

(c) Effect of training with re-
duced hidden state representation
on AC-SNN and AC-ANN model

Figure 7: The audiocoder (AC-SNN/AC-ANN) is trained over Dataset A, while the autoencoder
(AE-SNN/AE-ANN) is fixed. MSE is reported on the overall audio-to-image synthesis model com-
posed of AC-SNN/ANN and AE-SNN/ANN

(a) AC-SNNs are trained on Dataset A and Dataset
B (Th = 10))

(b) Images synthesized from different test audio sam-
ples (5 per class) when the network is trained with
Datasets A and B

Figure 8: The performance of the Audio to Image synthesis model on the two datasets - A and B

The duration (Th) of stored “hidden state” spike train was varied from 15 to 10, 5, 2, and 1. A
spike map at a single time step is a 1-bit representation. The AE-SNN compresses an 784×8 bit
representation into 196×Th-bit representation. For Th = 15, 10, 5, 2, and 1, the compression is
2.1×, 3.2×, 6.4×, 16× and 32× respectively. Even when the AC-SNN is trained with a much
smaller “hidden state”, the AE-SNN is able to reconstruct the images without much loss. In Fig.
7a we observe the reconstruction loss (test set) over epochs for training using different lengths of
hidden state.
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For comparison, we initialize an ANN audiocoder (AC-ANN) of size 58500×2048×196. The AE-
ANN trained over MNIST in section 3.1 is used to convert the images of the multimodal dataset
(A/B) to 196×1 “hidden state” vectors. Each element of this vector is 16 bit full precision number.
In case of AE-SNN, the “hidden state” is represented 196×Th bit map. For comparison, we quan-
tize the equivalent hidden state vector into 2Th levels. The AC-ANN is trained using these quantized
hidden state representations with the following learning parameters: learning rate 1e-4, weight de-
cay 1e-4, batch size 100, epochs 20. Once trained, the ANN audio-to-image synthesis model is
built by combining AC-ANN and layer(2) weights (W (2)) of AE-ANN. The AC-ANN is trained
with/without Adam optimizer is paired with the AE-ANN trained with/without Adam optimizer re-
spectively. In Fig. 7b, we see that our spiking model achieves a performance in between the two
ANN models, a trend we have observed earlier while training autoencoders on MNIST. In this case,
the AC-SNN is trained with Th as 15, while AC-ANNs are trained without any output quantization;
both are trained on Dataset A. In Fig. 7c, we observe the impact of quantization for the ANN model
and the corresponding impact of lower Th for SNN. For higher hidden state bit precision, the ANN
model outperforms the SNN one. However for extreme low precision case, number of bits = 2, and
1, the SNN performs better. This could possibly be attributed to the temporal nature of SNN, where
the computation is event-driven and spread out over several time steps.

Table 1: Summary of results obtained for the 3 tasks - Autoencoder on MNIST, Autoencoder on
Fashion-MNIST, and Audio to Image conversion (T = input duration for SNN)

Dataset Network Size Epochs T Loss (MSE) (test)
SNN ANN ANN (with Adam)

MNIST 784-196-784 1 15 0.357 0.226 0.122

Fashion-MNIST 784-512-784 1 60 0.178 0.416 0.300
784-1024-784 1 60 0.140 0.418 0.387

Audio-to-Image A 58500-2048-196/196-784 20 30 0.254 0.408 0.144
Audio-to-Image B 58500-2048-196/196-784 20 30 0.543 0.611 0.556

4 DISCUSSION AND CONCLUSION

In this work, we proposed an algorithm to train spiking networks, and in Table 1, we have summa-
rized the results of this work12. The proposed algorithm brings SNN performance at par with ANNs
for the given tasks. We demonstrate that spiking autoencoders can be used to generate reduced-
duration spike maps (“hidden state”) of an input spike train, which are a highly compressed version
of the input, and they can be utilized across applications. This is also the first work to demonstrate
audio to image synthesis in spiking domain. While training these autoencoders, we made a few
important and interesting observations; the first one is the importance of bit masking of the output
layer. Trying to steer the membrane potentials of all the neurons is extremely hard to optimize, and
selectively correcting only incorrectly spiked neurons makes training easier. This could be applica-
ble to any spiking neural network with a large output layer. Second, while the AE-SNN is trained
with spike durations of 15 time steps, we can use hidden state representations of much lower dura-
tion to train our audiocoder with negligible loss in reconstruction of images for the audio-to-image
synthesis task. In this task, the ANN model trained with Adam outperformed the SNN one when
trained with full precision “hidden state”. However, at ultra-low precision, the hidden state loses it’s
meaning in ANN domain, but in SNN domain, the network can still learn from it. This observation
raises important questions on the ability of SNNs to possibly compute with less data. While sparsity
during inference has always been an important aspect of SNNs, in this work, we explored how SNNs
can be used to compress information into compact spatio-temporal representations and then recon-
struct that information back from it. Another interesting observation is that we can potentially train
autoencoders and stack them to create deeper spiking networks with greater functionalities. This
could be an alternative approach to training deep spiking networks. Thus, this work sheds light on
the interesting behavior of spiking neural networks, their ability to generate compact spatio-temporal
representations of data, and offers a new training paradigm for learning meaningful representations
of complex data.

1Table 1: Audio-to-Image A: SNN: Th = 15, ANN : no quantization for hidden state
2Table 1: Audio-to-Image B: SNN: Th = 10, ANN : no quantization for hidden state
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