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ABSTRACT

Recent efforts to combine Representation Learning with Formal Methods, com-
monly known as Neuro-Symbolic Methods, have given rise to a new trend of
applying rich neural architectures to solve classical combinatorial optimization
problems. In this paper, we propose a neural framework that can learn to solve
the Circuit Satisfiability problem. Our framework is built upon two fundamental
contributions: a rich embedding architecture that encodes the problem structure,
and an end-to-end differentiable training procedure that mimics Reinforcement
Learning and trains the model directly toward solving the SAT problem. The
experimental results show the superior out-of-sample generalization performance
of our framework compared to the recently developed NeuroSAT method.

1 INTRODUCTION

Recent advances in neural network models for discrete structures have given rise to a new field in
Representation Learning known as the Neuro-Symbolic methods. Generally speaking, these methods
aim at marrying the classical symbolic techniques in Formal Methods and Computer Science to Deep
Learning in order to benefit both disciplines. One of the most exciting outcomes of this marriage is
the emergence of neural models for learning how to solve the classical combinatorial optimization
problems in Computer Science. The key observation behind many of these models is that in practice,
for a given class of combinatorial problems in a specific domain, the problem instances are typically
drawn from a certain (unknown) distribution. Therefore if a sufficient number of problem instances
are available, then in principle, Statistical Learning should be able to extract the common structures
among these instances and produce meta-algorithms (or models) that would, in theory, outperform
the carefully hand-crafted algorithms.

There have been two main approaches to realize this idea in practice. In the first group of methods, the
general template of the solver algorithm (which is typically the greedy strategy) is directly imported
from the classical heuristic search algorithm, and the Deep Learning component is only tasked to
learn the optimal heuristics within this template. In combination with Reinforcement Learning, such
strategy has been shown to be quite effective for various NP-complete problems – e.g. Khalil et al.
(2017). Nevertheless, the resulted model is bounded by the greedy strategy, which is sub-optimal
in general. The alternative is to go one step further and let Deep Learning figure out the entire
solution structure from scratch. This approach is quite attractive as it allows the model not only learn
the optimal (implicit) decision heuristics but also the optimal search strategies beyond the greedy
strategy. However, this comes at a price: training such models can be quite challenging! To do so,
a typical candidate is Reinforcement Learning (Policy Gradient, in specific), but such techniques
are usually sample inefficient – e.g. Bello et al. (2016). As an alternative method for training, more
recently Selsam et al. (2018) have proposed using the latent representations learned for the binary
classification of the Satisfiability (SAT) problem to actually produce a neural SAT solver model.
Even though using such proxy for learning a SAT solver is an interesting observation and provides us
with an end-to-end differentiable architecture, the model is not directly trained toward solving a SAT
problem (unlike Reinforcement Learning). As we will see later in this paper, that can indeed result in
poor generalization and sub-optimal models.
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In this paper, we propose a neural Circuit-SAT solver framework that effectively belongs to the second
class above; that is, it learns the entire solution structure from scratch. More importantly, to train such
model, we propose a training strategy that, unlike the typical Policy Gradient, is differentiable end-to-
end, yet it trains the model directly toward the end goal (similar to Policy Gradient). Furthermore,
our proposed training strategy enjoys an Explore-Exploit mechanism for better optimization even
though it is not exactly a Reinforcement Learning approach.

The other aspect of building neural models for solving combinatorial optimization problems is how
the problem instance should be represented by the model. Using classical architectures like RNNs
or LSTMs completely ignores the inherent structure present in the problem instances. For this
very reason, there has been recently a strong push to employ structure-aware architectures such as
different variations of neural graph embedding. Most neural graph embedding methodologies are
based on the idea of synchronously propagating local information on an underlying (undirected)
graph that represents the problem structure. The intuition behind using local information propagation
for embedding comes from the fact that many original combinatorial optimization algorithms can
actually be seen propagating information. In our case, since we are dealing with Boolean circuits and
circuit are Directed Acyclic Graphs (DAG), we would need an embedding architecture that take into
account the special architecture of DAGs (i.e. the topological order of the nodes). In particular, we
note that in many DAG-structured problems (such as circuits, computational graphs, query DAGs,
etc.), the information is propagated sequentially rather than synchronously, hence a justification to
have sequential propagation for the embedding as well. To this end, we propose a rich embedding
architecture that implements such propagation mechanism for DAGs. As we see in this paper, our
proposed architecture is capable of harnessing the structural information in the input circuits. To
summarize, our contributions in this work are three-fold:

(a) We propose a general, rich graph embedding architecture that implements sequential propa-
gation for DAG-structured data.

(b) We adapt our proposed architecture to design a neural Circuit-SAT solver which is capable
of harnessing structural signals in the input circuits to learn a SAT solver.

(c) We propose a training strategy for our architecture that is end-to-end differentiable, yet
similar to Reinforcement Learning techniques, it directly trains our model toward solving
the SAT problem with an Explore-Exploit mechanism.

The experimental results show the superior performance of our framework especially in terms of
generalizing to new problem domains compared to the baseline.

2 RELATED WORK

Deep learning on graph-structured data has recently become a hot topic in the Machine Learning
community under the general umbrella of Geometric Deep Learning Bronstein et al. (2017). Based
on the assumptions they make, these models typically divide into two main categories. In the first
category, the graph-structured datapoints are assumed to share the same underlying graph structure
(aka the domain) and only differ based on the feature values assigned to each node or edge. The
methods in this category operate in both the spatial and the frequency domains; for example, Spectral
CNN Bruna et al. (2013), Graph CNN Defferrard et al. (2016), Graph Neural Network Scarselli
et al. (2009) and Covariant Compositional Networks Kondor et al. (2018). In the second category on
the other hand, each example in the training data has its own domain (graph structure). Since the
domain is varying across datapoints, these other methods mostly operate in the spatial domain and
typically can be seen as the generalization of the classical CNNs (e.g.MoNet Monti et al. (2017)) or
the classical RNNs (e.g.TreeLSTM Tai et al. (2015), DAG-RNN Baldi & Pollastri (2003); Shuai
et al. (2016)) or both (e.g.GGS-NN Li et al. (2015)) to the graph domain. In this paper, we extend
the single layer DAG-RNN model for DAG-structured data Baldi & Pollastri (2003); Shuai et al.
(2016) to the more general deep version with Gated Recurrent Units, where each layer processes the
input DAG either in the forward or the backward direction.

On the other hand, the application of Machine Learning (deep learning in specific) to logic and
symbolic computation has recently emerged as a bridge between Machine Learning and the classical
Computer Science. While works such as Evans et al. (2018); Arabshahi et al. (2018) have shown
the effectiveness of (recursive) neural networks in modeling symbolic expressions, others have
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taken one step further and tried to learn approximate algorithms to solve symbolic NP-complete
problems Khalil et al. (2017); Bello et al. (2016); Vinyals et al. (2015). In particular, as opposed to
black box methods (e.g. Bello et al. (2016); Vinyals et al. (2015)), Khalil et al. Khalil et al. (2017)
have shown that by incorporating the underlying graph structure of a NP-hard problem, efficient
search heuristics can be learned for the greedy search algorithm. Although working in the context
of greedy search introduces an inductive bias that benefits the sample efficiency of the framework,
the resulted algorithm is still bounded by the sub-optimality of the greedy search. More recently,
Selsal et al. Selsam et al. (2018) have introduced the NeuroSAT framework - a deep learning model
aiming at learning to solve the Boolean Satisfiability problem (SAT) from scratch without biasing it
toward the greedy search. In particular, they have primarily approached the SAT problem as a binary
classification problem and proposed a clustering-based post-processing analysis to find a SAT solution
from the latent representations extracted from the learned classifier. Although, they have shown
the empirical merits of their proposed framework, it is not clear why the proposed post-processing
clusetring should find the SAT solution without being explicitly trained toward that goal. In this
paper, we propose a deep learning framework for the Circuit-SAT problem (a more general form of
the SAT problem), but in contrast to NeuroSAT, our model is directly trained toward finding SAT
solutions without requiring to see them in the training sample.

3 DAG EMBEDDING

In this section, we formally formulate the problem of learning on DAG-structured data and propose a
deep learning framework to approach the problem. It should be noted that even though this framework
has been developed for DAGs, the underlying dataset can be a general graph as long as an explicit
ordering for the nodes of each graph is available. This ordering is naturally induced by the topological
sort algorithm in DAGs or can be imposed on general undirected graphs to yield DAGs.

3.1 NOTATIONS AND DEFINITIONS

Let G = 〈VG, EG〉 denote a Directed Acyclic Graph (DAG). We assume the the set of nodes of G
are ordered according to the topological sort of the DAG. For any node v ∈ VG, πG(v) represents
the set of direct predecessors of v in G. Also for a given DAG G, we define the reversed DAG, Gr
with the same set of nodes but reversed edges. When topologically sorted, the nodes of Gr appear in
the reversed order of those of G. Furthermore, for a given G, let µG : VG 7→ Rd be a d-dimensional
vector function defined on the nodes of G. We refer to µG as a DAG function – i.e. a function
that is defined on a DAG. Note that the notation µG implicitly induces the DAG structure G along
with the vector function defined on the DAG. Figure 1(a) shows an example DAG function with
d = 3. Finally, let Gd denote the space of all possible d-dimensional functions µG (along with their
underlying graphs G). We define the parametric functional Fθ : Gd 7→ O that maps any function µG
(defined on some DAG G) in Gd to some output space O.

3.2 THE GENERAL MODEL

The next step is to define the mathematical form of the functional Fθ. In this work, we propose:

Fθ(µG) = Cα
(
P
(
Eβ(µG)

))
(1)

Intuitively, Eβ : Gd 7→ Gq is the embedding function that maps the input d-dimensional DAG
functions into a q-dimensional DAG function space. Note that the embedding function in general
may transform both the underlying DAG size/structure as well as the the DAG function defined on it.
In this paper, however, we assume it only transforms the DAG function and keeps the input DAG
structure intact. Once the DAG is embedded into the new space, we apply the fixed pooling function
P : Gq 7→ Gq on the embedded DAG function to produce a (possibly) aggregated version of it. For
example, if we are interested in DAG-level predictions, P can be average pooling across all nodes
of the input DAG to produce a singleton DAG; whereas, in the case of node-level predictions, P
is simply the Identity function. In this paper, we set P to retrieve only the sink nodes in the input
DAG. Finally, the classification function Cα : Gq 7→ O is applied on the aggregated DAG function to
produce the final prediction output in O. In this work, we set Cα to be a multi-layer neural network.
The tuple θ = 〈α,β〉 identifies all the free parameters of the model.
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3.3 THE DAG EMBEDDING LAYER

The (supervised) embedding of graph-based data into the traditional vector spaces has been a hot topic
recently in the Machine Learning community Li et al. (2015); Shuai et al. (2016); Tai et al. (2015).
Many of these frameworks are based on the key idea of representing each node in the input graph
by a latent vector called the node state and update these latent states via an iterative (synchronous)
propagation mechanism that takes the graph structure into account. Two of these methodologies that
are closely related to the proposed framework in this paper are the Gated Graph Sequence Neural
Networks (GGS-NN) Li et al. (2015) and DAG Recurrent Neural Networks (DAG-RNN) Shuai
et al. (2016). While GGS-NNs apply multi-level Gated Recurrent Unit (GRU) like updates in an
iterative propagation scheme on general (undirected) graphs, DAG-RNNs apply simple RNN logic in
a one-pass, sequential propagation mechanism from the input DAG’s source nodes to its sink nodes.

Our proposed framework is built upon the DAG-RNN framework Shuai et al. (2016) but it enriches
this framework further by incorporating key ideas from GGS-NNs Li et al. (2015), Deep RNNs
Pascanu et al. (2013) and sequence-to-sequence learning Sutskever et al. (2014). Before we explain
our framework, it is worth noting that assiging input feature/state vectors to each node is equivalent to
defining a DAG function in our framework. For the sake of notational simplicity, for the input DAG
function µG, we define the d-dimensional node feature vector xv = µG(v) and the q-dimensional
node state vector hv = δG(v) for some unknown DAG function δG : VG 7→ Rq. Given the node
feature vectors xv for an input DAG, the update rule for the state vector at each node is defined as:

hv = GRU(xv,h
′
v), where h′v = A

(
{hu | u ∈ π(v)}

)
(2)

where GRU(.) is the standard GRU Chung et al. (2014) function applied on the input vector at node
v and the aggregated state of its direct predecessors which in turn is computed by the aggregator
function A : 2VG 7→ Rq. The aggregator function is defined as a tunable deep set function Zaheer
et al. (2017) with free parameters that is invariant to the permutation of its inputs. The main difference
between these proposed updates rules and the ones in DAG-RNN is in DAG-RNN, we have the
simple RNN logic instead of GRU, and the aggregation logic is simply (fixed) summation.

By applying the update logic in equation 2 sequentially on the nodes of the input DAG processed in
the topological sort order, we compute the state vector hv for all nodes of G in one pass. This would
complete the one layer (forward) embedding of the input DAG function, or Eβ(µG) = δG. Note that
the same way that DAG-RNNs are the generalization of RNNs on sequences to DAGs, our proposed
one-layer embedding can be seen as the generalization of GRU-NNs on sequences to DAGs.

Furthermore, we introduce the reversed layers (denoted by Er) that are similar to the regular forward
layers except that the input DAG is processed in the reversed order. Alternatively, reversed layers can
be seen as regular layers that process the reversed version of the input DAG Gr; that is, Er(µG) ≡
E(µGr ). The main reason we have introduced reversed layers in our framework is because in the
regular forward layers, the state vector for each node is only affected by the information flowing from
its ancestor nodes; whereas, the information from the descendant nodes can also be highly useful
for the learning task in hand. The reversed layers provide such information for the learning task.
Furthermore, the introduction of reversed layers is partly motivated by the successful application of
processing sequences backwards in sequence-to-sequence learning Sutskever et al. (2014). Sequences
can be seen as special-case linear DAGs; as a result, reversed layers can be interpreted as the
generalized version of reversing sequences.

3.4 DEEP-GATED DAG RECURSIVE NEURAL NETWORKS

The natural extension of the one-layer embedding is the stacked L-layer version where the ith layer
has its own parameters βi and output DAG function dimensionality qi. Furthermore, the stacked L
layers can be sequentially applied T times in the recurrent fashion to generate the final embedding:

Eβ(µG) ≡ ETβ (µG), where Etβ(µG) = Estack
(
ProjH(Et−1β (µG))

)
, ∀t ∈ 2..T (3)

E1β(µG) = Estack(µG) (4)

s.t. Estack = EβL
◦ EβL−1

◦ ... ◦ Eβ1 (5)

where β = 〈β1, ...,βL,H〉 is the list of the parameters and ProjH : GqL 7→ Gd is a linear projection
with the projection matrixHd×qL that simply adjusts the output dimensionality of Estack so it can
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Figure 1: (a) A toy example input DAG function µG, (b) a DG-DAGRNN model that processes the
input in (a) using two sequential DAG embedding layers: a forward layer followed by a reverse layer.
The solid red and green arrows show the flow of information within each layer while the black arrows
show the feed-forward flow of information in between the layers. Also, the dotted blue arrows show
the recurrent flow of information from the last embedding layer back to the first one.

be fed back to Estack as the input. In our experiments, we have found that by letting T > 1, we can
significantly improve the accuracy of our models without introducing more trainable parameters.
In practice, we fix the value of T during training and increase it during testing to achieve better
accuracy. Also note that the L stacked layers in Estack can be any permutation of regular and reversed
layers. We refer to this proposed framework as Deep-Gated DAG Recursive Neural Networks or
DG-DAGRNN for short. Figure 1(b) shows an example 2-layer DG-DAGRNN model with one
forward layer followed by a reversed layer.

4 APPLICATION TO THE CIRCUIT-SAT PROBLEM

The Circuit Satisfiability problem (aka Circuit-SAT) is a fundamental NP-complete problem in
Computer Science. The problem is defined as follows: given a Boolean expression consists of
Boolean variables, parentheses, and logical gates (specifically And ∧, Or ∨ and Not ¬), find an
assignment to the variables such that it would satisfy the original expression, aka a solution. If the
expression is not satisfiable, it will be labeled as UNSAT. Moreover, when represented in the circuit
format, Boolean expressions can aggregate the repetitions of the same Boolean sub-expression in the
expression into one node in the circuit. This is also crucial from the learning perspective as we do not
want to learn two different representations for the same Boolean sub-expression.

In this section, we apply the framework from the previous section to learn a Circuit-SAT solver merely
from data. More formally, a Boolean circuit can be modeled as a DAG function µG with each node
representing either a Boolean variable or a logical gate. In particular, we have µG : VG 7→ R4 defined
as µG(v) = One-Hot(type(v)), where type(v) ∈ {And,Or,Not,Variable}. All the source nodes
in a circuit µG have type Variable. Moreover, each circuit DAG has only one sink node (the root
node of the Boolean expression).

Similar to Selsam et al. (2018), we could also approach the Circuit-SAT problem from two different
angles: (1) predicting the circuit satisfiability problem as a binary classification problem, and (2)
solving the Circuit-SAT problem directly by generating a solution if the input circuit is indeed SAT.
In Selsam et al. (2018), solving the former is the prerequisite for solving the latter. However, that is
not the case in our proposed model and since we are interested to actually solve the SAT problems,
we do not focus on the binary classification problem. Nevertheless, our model can be easily adapted
for SAT classification, as illustrated in Appendix A.

4.1 NEURAL CIRCUIT-SAT SOLVER

Learning to solve SAT problems (i.e.finding a satisfying assignment) is indeed a much harder problem
than SAT/UNSAT classification. In the NeuroSAT framework, Selsam et al. (2018), the authors
have proposed a post-processing unsupervised procedure to decode a solution from the latent state
representations of the Boolean literals. Although this approach works empirically for many SAT
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problems, it is not clear that it would also work for the Circuit-SAT problems. But more importantly,
it is not clear why this approach should decode the SAT problems in the first place because the
objective function used in Selsam et al. (2018) does not explicitly contain any component for solving
SAT problems; in fact, the decoding procedure is added as a secondary analysis after training. In
other words, the model is not optimized toward actually finding SAT assignments.

In contrast, in this paper, we pursue a completely different strategy for training a neural Circuit-SAT
solver. In particular, using the DG-DAGRNN framework, we learn a neural functional Fθ on the
space of circuits µG such that given an input circuit, it would directly generate a satisfying assignment
for the circuit if it is indeed SAT. Moreover, we explicitly train Fθ to generate SAT solutions without
requiring to see any actual SAT assignment during training. Our proposed strategy for training Fθ is
reminiscent of Policy Gradient methods in Deep Reinforcement Learning Arulkumaran et al. (2017).

The Solver Network. We start with characterizing the components of Fθ. First, the embedding
function Eβ is set to be a multi-layer recursive embedding as in equation 3 with interleaving regular
forward and reversed layers making sure that the last layer is a reversed layer so that we can read off
the final outputs of the embedding from the Variable nodes (i.e. the sink nodes of the reversed DAG).
The classification function Cα is set to be a MLP with ReLU activation function for the hidden layers
and the Sigmoid activation for the output layer. The output space here encodes the soft assignment
(i.e. in range [0, 1]) to the corresponding variable node in the input circuit. We also refer to Fθ as the
solver or the policy network.

The Evaluator Network. Furthermore, for any given circuit µG, we define the soft evaluation
function RG as a DAG computational graph that shares the same topology G with the circuit µG
except that the And nodes are replaced by the smooth min function, the Or nodes by the smooth max
function and the Not nodes by N (z) = 1 − z function, where z is the input to the Not node. The
smooth min and max functions are defined as:

Smax(a1, a2, ..., an) =

∑n
i=1 aie

ai/τ∑n
i=1 e

ai/τ
, Smin(a1, a2, ..., an) =

∑n
i=1 aie

−ai/τ∑n
i=1 e

−ai/τ
(6)

where τ ≥ 0 is the temperature. For τ = +∞, both Smax() and Smin() are the arithmetic mean
functions. As τ → 0, we have Smax() → max() and Smin() → min(). One can also show that
∀a = (a1, ..., an) : min(a) < Smin(a) < Smax(a) < max(a). More importantly, as opposed to
the min() and max() functions, their smooth versions are fully differentiable w.r.t. all of their inputs.

As its name suggests, the soft evaluation function evaluates a soft assignment (i.e. in [0, 1]) to the
variables of the circuit. In particular, at a low enough temperature, if for a given input assignment,
RG yields a value strictly greater than 0.5, then that assignment (or its hard counterpart) can be seen
as a satisfying solution for the circuit. We also refer toRG as the evaluator or the reward network.
Note that the evaluator network does not have any trainable parameter.

Encoding logical expressions into neural networks is not new per se as there has been recently a push
to enrich deep learning with symbolic computing Hu et al. (2016); Xu et al. (2017). What are new in
our framework, however, are two folds: (a) each graph example in our dataset induces a different
evaluation network as opposed to having one fixed network for the entire dataset, and (b) by encoding
the logical operators as smooth min and max functions, we provide a more efficient framework for
back-propagating the gradients and speeding up the learning as the result, as we will see shortly.

The Optimization. Putting the two pieces together, we define the satisfiability function Sθ : G 7→
[0, 1] as: Sθ(µG) = RG

(
Fθ(µG)

)
. Intuitively, the satisfiability function uses the solver network to

produce an assignment for the input circuit and then feeds the resulted assignment to the evaluator
network to see if it satisfies the circuit. We refer to the final output of Sθ as the satisfiability value for
the input circuit, which is a real number in [0, 1]. Having computed the satisfiability value, we define
the loss function as the smooth Step function:

L(s) = (1− s)κ

(1− s)κ + sκ
(7)

where s = Sθ(µG) and κ ≥ 1 is a constant. By minimizing the loss function in equation 7, we
push the solver network to produce an assignment that yields a higher satisfiability value Sθ(µG).
For satisfiable circuits this would eventually result in finding a satisfiable assignment for the circuit.
However, if the input circuit is UNSAT, the maximum achievable value for Sθ is 0.5 as we have
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shown in Appendix B. In practice though, the inclusion of UNSAT circuits in the training data slows
down the training process mainly because the UNSAT circuits keep confusing the solver network as
it tries hard to find a SAT solution for them. For this very reason, in this scheme, we only train on
SAT examples and exclude the UNSAT circuits from training. Nevertheless, if the model has enough
capacity, one can still include the UNSAT examples and pursue the training as a pure unsupervised
learning task since the true SAT/UNSAT labels are not used anywhere in equation 7.

Moreover, the loss function in equation 7 has a nice property of having higher gradients for satisfiabil-
ity values close to 0.5 when κ > 1 (we set κ = 10 in our experiments). This means that the gradient
vector in backpropagation is always dominated by the examples closer to the decision boundary. In
practice, that would mean that the training algorithm immediately in the beginning pushes the easier
examples in the training set (with satisfiability values close to 0.5) to the SAT region (> 0.5) with a
safety margin from 0.5. As the training progresses, harder examples (with satisfiability values close
to 0) start moving toward the SAT region.

As mentioned before, the proposed learning scheme in this section can be seen as a variant of Policy
Gradient methods, where the solver network represents the policy function and the evaluator network
acts as the reward function. The main difference here is that in our problem the mathematical form of
the reward function is fully known and is differentiable so the entire pipeline can be trained using
backpropagation in an end-to-end fashion to maximize the total reward over the training sample.

Exploration vs. Exploitation. The reason we use the smooth min and max functions in the evaluator
network instead of the actual min() and max() is that in a min-max circuit, the gradient vector of
the output of the circuit w.r.t. its inputs has at most one non-zero entry 1. That is, the circuit output
is sensitive to only one of its inputs in the case of infinitesimal changes. For fixed input values, we
refer to this input as the active input and to the path from the active input to the output as the active
path. In the case of a min-max evaluator, the gradients flow back only through the active path of
the evaluator network forcing the solver network to change such that it can satisfy the input circuit
through its active path only. This strategy however is quite myopic and, as we observed empirically,
leads to slow training and sub-optimal solutions. To avoid this effect, we use the smooth min and
max functions in the evaluator network to allow the gradients to flow through all paths in the input
circuit. Furthermore, in the beginning of the training we start with a high temperature value to let the
model explore all paths in the input circuits for finding a SAT solution. As the training progresses,
we slowly anneal the temperature toward 0 so that the model exploits more active path(s) for finding
a solution. One annealing strategy is to let τ = t−ε, where t is timestep and ε is the annealing rate.
In our experiments we set ε = 0.4. It should be noted that at the test time, the smooth min and max
functions are replaced by their non-smooth versions.

Prediction. Given a test circuit µG, we evaluate s = Sθ(µG) = RG
(
Fθ(µG)

)
. If s > 0.5 then the

circuit is classified as SAT and the SAT solution is provided by Fθ(µG). Otherwise, the circuit is
classified as UNSAT. This way, unlike SAT classification, we predict SAT for a given circuit only if
we have already found a SAT solution for it. In other words, our model never produces false positives.
We have formally proved this in Appendix B. Moreover, at the prediction time, we do not need to set
the number of recurrences T in equation 3 to the same value we used for training. In fact, we have
observed by letting T to be variable on the per example basis, we can improve the model accuracy
quite significantly at the test time.

5 EXPERIMENTAL EVALUATION

The baseline method we have compared our framework to is the NeuroSAT model by Selsam et al.
(2018). Like most classical SAT solvers, NeuroSAT assumes the input problem is given in the
Conjunctive Normal Form (CNF). Even though that is a fair assumption in general, in some cases, the
input does not naturally come as CNF. For instance, in hardware verification, the input problems are
often in the form of circuits. One can indeed convert the circuit format into CNF in polynomial time
using Tseitin transformation. However, such transformation will introduce extra variables (i.e. the
derived variables) which may further complicate the problem for the SAT solver. More importantly,
as a number of works in the SAT community have shown, such transformations typically lose the
structural information embedded in the circuit format, which otherwise can be a rich source of

1Assuming there are no ties among the circuit inputs.
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information for the SAT solver, Thiffault et al. (2004); Andrews (2002); Biere (2008); Fu & Malik
(2007); Velev (2007). As a result, there has been quite an effort in the classical SAT community to
develop SAT solvers that directly work with the circuit format Thiffault et al. (2004); Jain & Clarke
(2009). In the similar vein, our neural framework for learning a SAT solver enables us to harness such
structural signals in learning by directly consuming the circuit format. That contrasts the NeuroSAT
approach which cannot in principle benefit from such structural information.

Despite this clear advantage of our framework to NeuroSAT, in this paper, we assume the (raw) input
problems come in CNF, just so we can make a fair comparison to NeuroSAT. Instead for our method,
we propose to use pre-processing methods to convert the input CNF into circuit that has the potential
of injecting structural information into the circuit structure. In particular, if available, one can in
principle encode problem-specific heuristics into the structure while building the circuit. For example,
if there is a variable ordering heuristic available for a specific class of SAT problems, it can be used to
build that target circuit in a certain way, as discussed in Appendix C. Note that we could just consume
the original CNF; after all, CNF is a (flat) circuit, too. But as we empirically observed, that would
negatively affect the results, which again highlights the fact that our proposed framework has been
optimized to utilize circuit structure as much as possible.

Both our method and NeuroSAT require a large training sample size for moderate size problems. The
good news is both methods can effectively be trained on an infinite stream of randomly generated
problems in real-world applications. However, since we ran our experiments only on one GPU with
limited memory, we had to limit the training sample size for the purpose of experimentation. This in
turn restricts the maximum problem sizes we could train both models on. Nevertheless, our method
can generalize pretty well to out-of-sample SAT problems with much larger sizes, as shown below.

5.1 RANDOM k-SAT

We have used the generation process proposed in the NeuroSAT paper Selsam et al. (2018) to
generate random k-SAT CNF pairs (with k stochastically set according to the default settings in
Selsam et al. (2018)). These pairs are then directly fed to NeuroSAT for training. For our method, on
the other hand, we first need to convert these CNFs into circuits2. In Appendix C, we have described
the details of this conversion process.

Experimental Setup: We have trained a DG-DAGRNN model (i.e. our framework) and a NeuroSAT
model on a dataset of 300K SAT and UNSAT pairs generated according to the scheme proposed in
Selsam et al. (2018). The number of Boolean variables in the problems in this dataset ranges from
3 to 10. We have designed both models to have roughly ∼ 180K tunable parameters. In particular
our model has two DAG embedding layers: a forward layer followed by a reversed layer, each with
the embedding dimension q = 100. The classifier is a 2-layer MLP with hidden dimensionality 30.
The aggregator function A(·) consists of two 2-layer MLPs, each with hidden dimensionality 50. For
training, we have used the Adam optimization algorithm with learning rate of 10−5, weight decay
of 10−10 and gradient clipping norm of 0.65. We have also applied a dropout mechanism for the
aggregator function during training with the rate of 20%. For the NeuroSAT model, we have used the
default hyper-parameter settings proposed in Selsam et al. (2018). Finally, since our model does not
produce false positives, we have only included satisfiable examples in the test data for all experiments.

In-Sample Results: Once we trained the two models, the main performance metric we measure
is the percentage of SAT problems in the test set that each model can actually find a SAT solution
for.3 Figure 2 (Left) shows this metric on a test set from the same distribution for both our model
and NeuroSAT as the number of recurrences (or propagation iterations for NeuroSAT) T increases.
Not surprisingly, both methods are able to decode more SAT problems as we increase T . However,
our method converges much faster than NeuroSAT (to a slightly smaller value). In other words,
compared to NeuroSAT, our method requires smaller of number of iterations at the test time to
decode SAT problems. We conjecture this is due to the fact the sequential propagation mechanism in
DG-DAGRNN is more effective in decoding the structural information in the circuit format for the
SAT problem than the synchronous propagation mechanism in NeuroSAT for the flat CNF.

2Indeed only the SAT examples because our method does not need the UNSAT examples for training, as
explained in Section 4.

3Note that in this paper, we do not focus on the SAT binary classification performance.
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Figure 2: (Left) In-Sample test results comparing between DG-DAGRNN and NeuroSAT, as the
number of recurrence iterations T increases. (Right) Out-of-Sample test results comparing the two
methods when tested on much larger problems.

Out-of-Sample Results: Furthermore, we evaluated both trained models on test datasets drawn
from different distributions than the training data with much larger number of variables (20, 40, 60
and 80 variables, in particular). We let both models iteratively run on each test dataset until the
test metric converges. Figure 2 (Right) shows the test metric for both methods on these datasets
after convergence. As the results demonstrate, compared to that of our method, the performance of
NeuroSAT declines faster as we increase the number variables during test time, with a significant
margin. In other words, our method generalizes better to out-of-sample, larger problems during the
test time. We attribute this to the fact that NeuroSAT is trained toward the SAT classification problem
as a proxy to learn a solver. This may result in the classifier picking up certain features that are
informative for classification of in-sample examples which are, otherwise, harmful (or useless at best)
for learning a solver for out-of-sample examples. Our framework, on the other hand, simply does not
suffer from such problem because it is directly trained toward solving the SAT problem.

Time Complexity: We trained both our model and NeuroSAT for a day on a single GPU. To give
an idea of the test time complexity, it took both our model and NeuroSAT roughly about 3s to run
for 40 iterations on a single example of 20 variables. We also measured the time that it takes for a
modern SAT Solver (MiniSAT here) to solve a similar example to be roughly about 0.7s in average.
Despite this difference, our neural approach is way more prallelizable compared to modern solvers
such that many examples can be solved concurrently in a single batch on GPU. For example, while it
took MiniSAT 114min to solve a set of 10, 000 examples, it took our method only 8min to solve for
the same set in a batch-processing fashion on GPU. This indeed shows another important advantage
of our neural approach toward SAT solving in large-scale applications: the extreme parallelization.

5.2 RANDOM GRAPH k-COLORING

To further evaluate the generalization performance of the trained models from the previous section,
we have tested them on SAT problems coming from an entire different domain than k-SAT problems.
In particular, we have chosen the graph k-coloring decision problem which belongs to the class
of NP-complete problems. In short, given an undirected graph G with k color values, in graph
k-coloring decision problem, we seek to find a mapping from the graph nodes to the color set such
that no adjacent nodes in the graph have the same color. This classical problem is reducible to SAT.
Moreover, the graph topology in general contains valuable information that can be further injected
into the circuit structure when preparing circuit representation for our model. Appendix D illustrates
how we incorporate this information to convert instances of the graph k-coloring problem into circuits.
For this experiment, we have generated two different test datasets:

Dataset-1: We have generated a diverse set of random graphs with number of nodes ranging between
6 and 10 and the edge percentage of 37%. The random graphs are evenly generated according to six
distinct distributions: Erdos-Renyi, Barabasi-Albert, Power Law, Random Regular, Watts-Strogatz
and Newman-Watts-Strogatz. Each generated graph is then paired with a random color number in
2 ≤ k ≤ 4 to generate a graph k-coloring instance. We only keep the SAT instances in the dataset.

Dataset-2: We first generate random trees with the same number of nodes as Dataset-1. Then each
tree is paired with a random color number in 2 ≤ k ≤ 4. Since the chromatic number of trees is 2,

9



Published as a conference paper at ICLR 2019

every single pair so far is SAT. Lastly, for each pair we keep adding random edges to the graph until
it becomes UNSAT, then we remove the last added edge to make the instance SAT again and stop.

Even though Dataset-1 has much higher coverage in terms of different graph distributions, Dataset-
2 contains harder SAT examples in general, simply because in average, it contains maximally
constrained instances that are still SAT. We evaluated both our method and NeuroSAT (which were
both trained on k-SAT-3-10) on these test datasets. Our method could solve 48% and 27% of the SAT
problems in Dataset-1 and Dataset-2, respectively. However, to our surprise, the same NeuroSAT
model that generated the out-of-sample results on k-SAT datasets in Figure 2, could not solve
any of the SAT graph k-coloring problems in Dataset-1 and Dataset-2, even after 128 propagation
iterations. This does not match the results reported in Selsam et al. (2018) on graph coloring. We
suspect different CNF formulations for the graph k-coloring problem might be the cause behind
this discrepancy, which would mean that NeuroSAT is quite sensitive to the change of problem
distribution. Nevertheless, the final judgment remains open up to further investigations.

In a separate effort, we tried to actually train a fresh NeuroSAT model on a larger versions of Dataset-1
and Dataset-2 which also included UNSAT examples. However, despite a significant decrease on
the classification training loss, NeuroSAT failed to decode any of the SAT problems in the test sets.
We attribute this behavior to the fact that NeuroSAT is dependent on learning a good SAT classifier
that can capture the conceptual essence of SAT vs. UNSAT. As a result, in order to avoid learning
superficial classification features, NeuroSAT restricts its training to a strict regime of SAT-UNSAT
pairs, where the two examples in a pair only differ in negation of one literal. However, such strict
regime can be only enforced in the random k-SAT problems. For graph coloring, the closest strategy
we could come up with was the one in Dataset-2, where the SAT-UNSAT examples in a pair only
differ in an edge (which still translates to a couple of clauses in the CNF). This again signifies the
importance of learning the solver directly rather than relying on a classification proxy.

6 DISCUSSION

In this paper, we proposed a neural framework for efficiently learning a Circuit-SAT solver. Our
methodology relies on two fundamental contributions: (1) a rich DAG-embedding architecture that
implements the sequential propagation mechanism on DAG-structured data and is capable of learning
useful representations for the input circuits, and (2) an efficient training procedure that trains the DAG-
embedding architecture directly toward solving the SAT problem without requiring SAT/UNSAT
labels in general. Our proposed training strategy is fully differentiable end-to-end and at the same
time enjoys many features of Reinforcement Learning such as an Explore-Exploit mechanism and
direct training toward the end goal.

As our experiments showed, the proposed embedding architecture is able to harness structural
information in the input DAG distribution and as a result solve the test SAT cases in a fewer
number of iterations compared to the baseline. This would also allow us to inject domain-specific
heuristics into the circuit structure of the input data to obtain better models for that specific domain.
Moreover, our direct training procedure as opposed to the indirect, classification-based method in
NeuroSAT enables our model to generalize better to out-of-sample test cases, as demonstrated by
the experiments. This superior generalization got even more expressed as we transferred the trained
models to a complete new domain (i.e. graph coloring). Furthermore, we argued that not only does
direct training give us superior out-of-sample generalization, but it is also essential for the problem
domains where we cannot enforce the strict training regime where SAT and UNSAT cases come in
pairs with almost identical structures, as proposed by Selsam et al. (2018).

Future efforts in this direction would include closely examining the SAT solver algorithm learned by
our framework to see if any high-level knowledge and insight can be extracted to further aide the
classical SAT solvers. Needless to say, this type of neural models have a long way to go in order to
compete with industrial SAT solvers; nevertheless, these preliminary results are promising enough to
motivate the community to pursue this direction.
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APPENDIX A: ADAPTING DG-DAGRNN FOR CIRCUIT-SAT CLASSIFICATION

In the classification problem, we are interested to merely classify each input circuit as SAT or UNSAT.
To do so, we customize DG-DAGRNN framework as follows. The classification function Cα is set to
be a MLP with ReLU activation function for the hidden layers and the Sigmoid activation for the
output layer. As the result the output spaceO will become [0, 1]. The embedding function Eβ is set to
be a multi-layer recursive embedding as in equation 3 with interleaving regular forward and reversed
layers. For the classification problem, we make sure the last layer of the embedding is a forward layer
so that we can read off from only one sink node (i.e. the expression root node) and feed the result to
the classification function for the final prediction. Finally given a labeled training set, we minimize
the standard cross-entropy loss via the end-to-end backpropagation through the entire network.

APPENDIX B: PROOF OF NO FALSE POSITIVES

In this section, we prove that for any UNSAT input circuit µG, the satisfiability function Sθ(µG)
at the prediction time will never go beyond 0.5, and as a result, our model would never produce
false positives. To prove that, first we show that thresholding the output of the evaluator network
RG for a soft assignment a is equivalent to applying the original circuit µG to the hard assignment
corresponding to a:

Lemma 1. Let µG be any DAG function representing a Boolean circuit with underlying topology
G. Also let RG be the evaluator network corresponding to µG where all the And, Or and Not
gates are replaced by the min(·), max(·) and N (·) functions, respectively. Moreover, for any
soft assignment a = (a1, a2, ..., an) ∈ [0, 1]n, let its corresponding hard assignment H(a) =(
H(a1),H(a2), ...,H(an)

)
be obtained by thresholding at 0.5; that is, ∀i ∈ 1..n : H(ai) = I(ai >

0.5). Then we haveH
(
RG(a)

)
= µG

(
H(a)

)
for all soft assignments a ∈ [0, 1]n.

Proof. Proof by induction on the number of gates N in µG: for the base case (i.e. N = 1), the circuit
µG simply consists of one gate. Depending on the type of this gate, we can have three possibilities:

(And) H
(
min(a1, ..., an)

)
= min

(
H(a1), ...,H(an)

)
= And

(
H(a1), ...,H(an)

)
(Or) H

(
max(a1, ..., an)

)
= max

(
H(a1), ...,H(an)

)
= Or

(
H(a1), ...,H(an)

)
(Not) H

(
N (a)

)
= H(1− a) = 1−H(a) = Not

(
H(a)

)
Now let us assume the lemma holds for any circuit with strictly less than N gates. We want to prove it
also holds for any circuit µG with N gates. For the sake of simplicity, let us assume the sink node (i.e.
the final gate) of µG is an And gate (the same argument can be made for Or and Not gates). If the
final gate has k inputs and is removed from the circuit, we will end up with k (possibly overlapping)
sub-circuits µG1

,...,µGk
with corresponding evaluator networksRG1

,...,RGk
. We can then write:

H
(
RG(a)

)
= H

(
min

(
RG1

(a), ...,RGk
(a)
))

= And
(
H
(
RG1

(a)
)
, ...,H

(
RGk

(a)
))

= And
(
µG1

(
H(a)

)
, ..., µGk

(
H(a)

))
= µG

(
H(a)

)
where the second and the third equalities come from the base and the inductive steps of the induction,
respectively.

Theorem 2. µG is UNSAT if and only ifRG(a) ≤ 0.5 for all soft assignments a ∈ [0, 1]n.

Proof. (If) Proof by contradiction: let us assume µG is indeed SAT. Then there exists at least
one hard assignment â ∈ {0, 1}n such that µG(â) = 1. However, for hard assignment values,
the min(·), max(·) and N (·) functions behave exactly the same as the And, Or and Not gates,
respectively. This means that for hard assignments, we have µG ≡ RG, which further yields
RG(â) = µG(â) = 1 > 0.5. This would in turn lead to a contradiction.
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(Only-If) Proof by contradiction: let us assume that there exists a soft assignment a ∈ [0, 1]n such
thatRG(a) > 0.5, then using Lemma 1 and the definition ofH(·), we will have:

µG
(
H(a)

)
= H

(
RG(a)

)
= I
(
RG(a) > 0.5

)
= 1

In other words, we have found a hard assignment H(a) that satisfies the circuit µG; this is a
contradiction.

APPENDIX C: CONVERTING CNF TO CIRCUIT

There are many ways one can convert a CNF to a circuit; some are optimized toward extracting
structural information – e.g. Fu & Malik (2007). Here, we have taken a more intuitive and general
approach based on the Cube and Conquer paradigm (Heule et al. (2011)) for solving CNF-SAT
problems. In the Cube and Conquer paradigm, for a given input Boolean formula F , a variable x
in F is picked and set to TRUE once to obtain F+

x and to FALSE the other time to get F−x . Now if
we can find a SAT solution for either of F+

x or F−x , then we also have a SAT solution for F . Since
neither of F+

x or F−x contains x, we effectively reduce the complexity of the original SAT problem
by removing one variable. This process can be repeated recursively (up to a fixed level) for F+

x and
F−x by picking a new variable to reduce the complexity even further. Now inspired by this paradigm,
one can easily show that the following logical equivalence holds for any variable x in F :

F ⇔ (x ∧ F+
x ) ∨ (¬x ∧ F−x ) (8)

And this is exactly the principle we used to convert a CNF formula F into a circuit. In particular,
by applying the equivalence in equation 8 recursively, up to a fixed level4, we perform the CNF
to circuit conversion (Note that F+

x and F−x are also CNFs). The natural question then is in what
order we should pick variables to apply equation 8. That is where the heuristic part comes into play:
depending on the specific class of SAT problems we are targeting, we can incorporate a garden variety
of ordering heuristics (aka the branching heuristics) in the literature – e.g. Biere et al. (2009); Heule
et al. (2011); Marques-Silva (1999); Moskewicz et al. (2001). In our experiments for random k-SAT
problems, each time we simply pick the variable that appears in the largest number of clauses in the
current CNF.

APPENDIX D: REPRESENTING GRAPH k-COLORING AS CNF AND CIRCUIT

We know from Computer Science theory that the graph k-coloring problem can be reduced to the
SAT problem by representing the problem as a Boolean CNF. There are many ways in the literature
to do so; we have picked the Muldirect approach from Velev (2007). In particular, for a graph with
N nodes and maximum k allowed colors, we define the Boolean variables xij for 1 ≤ i ≤ N and
1 ≤ j ≤ k, where xij = 1 indicates that the ith node is colored by the jth color. Then, the CNF
encoding the decision graph k-coloring problem is defined as:[ N∧

i=1

( k∨
j=1

xij

)]
∧
[ ∧
(p,q)∈E

( k∧
j=1

(¬xpj ∨ ¬xqj)
)]

(9)

where E is the set of the graph edges. The left set of clauses in equation 9 ensure that each node of
the graph takes at least one color. The right set of clauses in equation 9 enforce the constraint that
the neighboring nodes cannot take the same color. As a result, any satisfiable solution to the CNF in
equation 9 corresponds to at least one coloring solution for the original problem if not more. Note
that in this formulation, we do not require each node to take only one color value; therefore, one SAT
solution can produce multiple valid graph coloring solutions.

To generate a circuit from the above CNF, we note that the graph structure in graph coloring problem
contains valuable structural information that can be potentially encoded as heuristics into the circuit
structure. One such good heuristics, in particular, is the node degrees. More specifically, the most
constrained variable first heuristic in Constraint Satisfaction Problems (CSPs) recommends assigning
values to the most constrained variable first. In graph coloring problem, the higher the node degree,
the more constrained the variables associated with that node are. Therefore, sorting the graph nodes
based on their degrees would give us a meaningful variable ordering, which can be further used to
build the circuit using the equivalence in equation 8, for example.

4Such that the whole process stays in the polynomial time range.
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