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Abstract

Making deep convolutional neural networks more accurate typically comes
at the cost of increased computational and memory resources. In this paper,
we reduce this cost by exploiting the fact that the importance of features
computed by convolutional layers is highly input-dependent, and propose
feature boosting and suppression (FBS), a new method to predictively am-
plify salient convolutional channels and skip unimportant ones at run-time.
FBS introduces small auxiliary connections to existing convolutional lay-
ers. In contrast to channel pruning methods which permanently remove
channels, it preserves the full network structures and accelerates convo-
lution by dynamically skipping unimportant input and output channels.
FBS-augmented networks are trained with conventional stochastic gradient
descent, making it readily available for many state-of-the-art CNNs. We
compare FBS to a range of existing channel pruning and dynamic execution
schemes and demonstrate large improvements on ImageNet classification.
Experiments show that FBS can respectively provide 5× and 2× savings
in compute on VGG-16 and ResNet-18, both with less than 0.6% top-5
accuracy loss.

1 Introduction

State-of-the-art vision and image-based tasks such as image classification (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015; He et al., 2016), object detection (Ren et al., 2017;
Huang et al., 2017) and segmentation (Long et al., 2015) are all built upon deep convo-
lutional neural networks (CNNs). While CNN architectures have evolved to become more
efficient, the general trend has been to use larger models with greater memory utilization,
bandwidth and compute requirements to achieve higher accuracy. The formidable amount
of computational resources used by CNNs present a great challenge in the deployment of
CNNs in both cost-sensitive cloud services and low-powered edge computing applications.

One common approach to reduce the memory, bandwidth and compute costs is to prune
over-parameterized CNNs. If performed in a coarse-grain manner this approach is known as
channel pruning (Ye et al., 2018; He et al., 2017; Liu et al., 2017; Wen et al., 2016). Channel
pruning evaluates channel saliency measures and removes all input and output connections
from unimportant channels— generating a smaller dense model. A saliency-based pruning
method, however, has threefold disadvantages. Firstly, by removing channels, the capabil-
ities of CNNs are permanently lost, and the resulting CNN may never regain its accuracy
for difficult inputs for which the removed channels were responsible. Secondly, despite the
fact that channel pruning may drastically shrink model size, without careful design, com-
putational resources cannot be effectively reduced in a CNN without a detrimental impact
on its accuracy. Finally, the saliency of a neuron is not static, which can be illustrated by
the feature visualization in Figure 1. Here, a CNN is shown a set of input images, certain
channel neurons in a convolutional output may get highly excited, whereas another set of
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images elicit little response from the same channels. This is in line with our understanding
of CNNs that neurons in a convolutional layer specialize in recognizing distinct features,
and the relative importance of a neuron depends heavily on the inputs.

The above shortcomings prompt the question: why should we prune by static importance, if
the importance is highly input-dependent? Surely, a more promising alternative is to prune
dynamically depending on the current input. A dynamic channel pruning strategy allows
the network to learn to prioritize certain convolutional channels and ignore irrelevant ones.
Instead of simply reducing model size at the cost of accuracy with pruning, we can accelerate
convolution by selectively computing only a subset of channels predicted to be important at
run-time, while considering the sparse input from the preceding convolution layer. In effect,
the amount of cached activations and the number of read, write and arithmetic operations
used by a well-designed dynamic model can be almost identical to an equivalently sparse
statically pruned one. In addition to saving computational resources, a dynamic model
preserves all neurons of the full model, which minimizes the impact on task accuracy.

In this paper, we propose feature boosting and suppression (FBS) to dynamically amplify
and suppress output channels computed by the convolutional layer. Intuitively, we can
imagine that the flow of information of each output channel can be amplified or restricted
under the control of a “valve”. This allows salient information to flow freely while we stop
all information from unimportant channels and skip their computation. Unlike pruning
statically, the valves use features from the previous layer to predict the saliency of output
channels. With conventional stochastic gradient descent (SGD) methods, the predictor can
learn to adapt itself by observing the input and output features of the convolution operation.

FBS introduces tiny auxiliary connections to existing convolutional layers. The minimal
overhead added to the existing model is thus negligible when compared to the potential
speed up provided by the dynamic sparsity. Existing dynamic computation strategies in
CNNs (Lin et al., 2017; Odena et al., 2017; Bolukbasi et al., 2017) produce on/off pruning
decisions or execution path selections. Training them thus often resorts to reinforcement
learning, which in practice is often computationally expensive. Even though FBS similarly
use non-differentiable functions, contrary to these methods, the unified losses are still well-
minimized with conventional SGD.

We apply FBS to a custom CIFAR-10 (Krizhevsky et al., 2014) classifier and popular CNN
models such as VGG-16 (Simonyan & Zisserman, 2015) and ResNet-18 (He et al., 2016)
trained on the ImageNet dataset (Deng et al., 2009). Empirical results show that under the
same speed-ups, FBS can produce models with validation accuracies surpassing all other
channel pruning and dynamic conditional execution methods examined in the paper.

high
response

low
response

5.426 3.297 3.076 2.938

0.051 0.052 0.066 0.069

(a) Channel 114

3.409 3.309 3.298 3.171

-0.229 -0.218 -0.168 -0.161

(b) Channel 181
(c) The distribution of maxi-
mum activations

Figure 1: When images from the ImageNet validation dataset are shown to a pre-trained
ResNet-18 (He et al., 2016), the outputs from certain channel neurons may vary drastically.
The top rows in (a) and (b) are found respectively to greatly excite neurons in channels 114
and 181 of layer block 3b/conv2, whereas the bottom images elicit little activation from
the same channel neurons. The number below each image indicate the maximum values
observed in the channel before adding the shortcut and activation. Finally, (c) shows the
distribution of maximum activations observed in the first 20 channels.
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2 Related Work

2.1 Structured Sparsity

Since LeCun et al. (1990) introduced optimal brain damage, the idea of creating more
compact and efficient CNNs by removing connections or neurons has received significant
attention. Early literature on pruning deep CNNs zero out individual weight parameters
(Hassibi et al., 1994; Guo et al., 2016). This results in highly irregular sparse connections,
which were notoriously difficult for GPUs to exploit. This has prompted custom accelerator
solutions that exploit sparse weights (Parashar et al., 2017; Han et al., 2016). Although sup-
porting both sparse and dense convolutions efficiently normally involves some compromises
in terms of efficiency or performance.

Alternatively, recent work has thus increasingly focused on introducing structured sparsity
(Wen et al., 2016; Ye et al., 2018; Alvarez & Salzmann, 2016; Zhou et al., 2016), which
can be exploited by GPUs and allows custom accelerators to focus solely on efficient dense
operations. Wen et al. (2016) added group Lasso on channel weights to the model’s training
loss function. This has the effect of reducing the magnitude of channel weights to dimin-
ish during training, and remove connections from zeroed-out channels. To facilitate this
process, Alvarez & Salzmann (2016) additionally used proximal gradient descent, while Li
et al. (2017) and He et al. (2018a) proposed to prune channels by thresholds, i.e. they set
unimportant channels to zero, and fine-tune the resulting CNN. The objective to induce
sparsity in groups of weights may present difficulties for gradient-based methods, given the
large number of weights that need to be optimized. A common approach to overcome this is
to solve (He et al., 2017) or learn (Liu et al., 2017; Ye et al., 2018) channel saliencies to drive
the sparsification of CNNs. He et al. (2017) solved an optimization problem which limits the
number of active convolutional channels while minimizing the reconstruction error on the
convolutional output. Liu et al. (2017) used Lasso regularization on channel saliencies to
induce sparsity and prune channels with a global threshold. Ye et al. (2018) learned to spar-
sify CNNs with an iterative shrinkage/thresholding algorithm applied to the scaling factors
in batch normalization. There are methods (Luo et al., 2017; Zhuang et al., 2018) that use
greedy algorithms for channel selection. Huang et al. (2018) and He et al. (2018b) adopted
reinforcement learning to train agents to produce channel pruning decisions. PerforatedC-
NNs, proposed by Figurnov et al. (2016), use predefined masks that are model-agnostic to
skip the output pixels in convolutional layers.

2.2 Dynamic Execution

In a pruned model produced by structured sparsity methods, the capabilities of the pruned
neurons and connections are permanently lost. Therefore, many propose to use dynamic
networks as an alternative to structured sparsity. During inference, a dynamic network can
use the input data to choose parts of the network to evaluate.

Convolutional layers are usually spatially sparse, i.e. their activation outputs may contain
only small patches of salient regions. A number of recent publications exploit this for ac-
celeration. Dong et al. (2017) introduced low-cost collaborative layers which induce spatial
sparsity in cheap convolutions, so that the main expensive ones can use the same sparsity in-
formation. Figurnov et al. (2017) proposed spatially adaptive computation time for residual
networks (He et al., 2016), which learns the number of residual blocks required to compute a
certain spatial location. Almahairi et al. (2016) presented dynamic capacity networks, which
use the gradient of a coarse output’s entropy to select salient locations in the input image
for refinement. Ren et al. (2018) assumed the availability of a priori spatial sparsity in the
input image, and accelerated the convolutional layer by computing non-sparse regions.

There are dynamic networks that make binary decisions or multiple choices for the infer-
ence paths taken. BlockDrop, proposed by Wu et al. (2018), trains a policy network to
skip blocks in residual networks. Liu & Deng (2018) proposed conditional branches in deep
neural networks (DNNs), and used Q-learning to train the branching policies. Odena et al.
(2017) designed a DNN with layers containing multiple modules, and decided which mod-
ule to use with a recurrent neural network (RNN). Lin et al. (2017) learned an RNN to
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adaptively prune channels in convolutional layers. The on/off decisions commonly used in
these networks cannot be represented by differentiable functions, hence the gradients are
not well-defined. Consequently, the dynamic networks above train their policy functions by
reinforcement learning. There exist, however, methods that workaround such limitations.
Shazeer et al. (2017) introduced sparsely-gated mixture-of-experts and used a noisy rank-
ing on the backpropagate-able gating networks to select the expensive experts to evaluate.
Bolukbasi et al. (2017) trained differentiable policy functions to implement early exits in
a DNN. Hua et al. (2018) learned binary policies that decide whether partial or all input
channels are used for convolution, but approximate the gradients of the non-differentiable
policy functions with continuous ones.

3 Feature Boosting and Suppression

We start with a high-level illustration (Figure 2) of how FBS accelerates a convolutional
layer with batch normalization (BN). The auxiliary components (in red) predict the impor-
tance of each output channel based on the input features, and amplify the output features
accordingly. Moreover, certain output channels are predicted to be entirely suppressed (or
zero-valued as represented by ), such output sparsity information can advise the convolu-
tion operation to skip the computation of these channels, as indicated by the dashed arrow.
It is notable that the expensive convolution can be doubly accelerated by skipping the in-
active channels from both the input features and the predicted output channel saliencies.
The rest of this section provides detailed explanation of the components in Figure 2.
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channel saliency
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Figure 2: A high level view of a convolutional layer with FBS. By way of illustration, we
use the lth layer with 8-channel input and output features, where channels are colored to
indicate different saliencies, and the white blocks ( ) represent all-zero channels.

3.1 Preliminaries

For simplicity, we consider a deep sequential batch-normalized (Ioffe & Szegedy, 2015) CNN
with L convolutional layers, i.e. xL = F (x0) = fL (· · · f2 (f1 (x0)) · · · ), where the lth layer
fl : RCl−1×Hl−1×Wl−1 → RCl×Hl×Wl computes the features xl ∈ RCl×Hl×Wl , which comprise
of Cl channels of features with height Hl and width Wl. The lth layer is thus defined as:

fl (xl−1) = (γl · norm (convl (xl−1,θl)) + βl)+ . (1)

Here, additions (+) and multiplications (·) are element-wise, (z)+ = max (z, 0) denotes the
ReLU activation, γl,βl ∈ RCl are trainable parameters, norm (z) normalizes each channel
of features z across the population of z, with µz,σ

2
z ∈ RCl respectively containing the

population mean and variance of each channel, and a small ε prevents division by zero:

norm (z) =
z− µz√
σ2
z + ε

. (2)

Additionally, convl (xl−1,θl) computes the convolution of input features xl−1 using the

weight tensor θl ∈ RCl×Cl−1×k2

, where k is the kernel size. Specifically, FBS concerns the
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optimization of convl (xl−1,θl) functions, as a CNN spends the majority of its inference time
in them, using k2Cl−1ClHlWl multiply-accumulate operations (MACs) for the lth layer.

3.2 Designing a Dynamic Layer

Consider the following generalization of a layer with dynamic execution:

f̂ (x, · · · ) = f (x,θ, · · · ) · π (x,φ, · · · ) , (3)

where f and π respectively use weight parameters θ and φ and may have additional inputs,
and compute tensors of the same output shape, denoted by F and G. Intuitively, the
expensive F[i] can always be skipped for any index i whenever the cost-effective G[i] evaluates
to 0. Here, the superscript [i] is used to index the ith slice of the tensor. For example, if
we have features F ∈ RC×H×W containing C channels of H-by-W features, F[c] ∈ RH×W

retrieves the cth feature image. We can further sparsify and accelerate the layer by adding,
for instance, a Lasso on π to the total loss, where Ex [z] is the expectation of z over x:

R (x) = Ex [‖π (x,φ, · · · )‖1] , (4)

Despite the simplicity of this formulation, it is however very tricky to design f̂ properly.
Under the right conditions, we can arbitrarily minimize the Lasso while maintaining the
same output from the layer by scaling parameters. For example, in low-cost collaborative
layers (Dong et al., 2017), f and π are simply convolutions (with or without ReLU activation)
that respectively have weights θ and φ. Since f and π are homogeneous functions, one can
always halve φ and double θ to decrease (4) while the network output remains the same.
In other words, the optimal network must have ‖φ‖∞ → 0, which is infeasible in finite-
precision arithmetic. For the above reasons, Dong et al. (2017) observed that the additional
loss in (4) always degrades the CNN’s task performance. Ye et al. (2018) pointed out that
gradient-based training algorithms are highly inefficient in exploring such reparameterization
patterns, and channel pruning methods may experience similar difficulties. Shazeer et al.
(2017) avoided this limitation by finishing π with a softmax normalization, but (4) can no
longer be used as the softmax renders the `1-norm, which now evaluates to 1, useless. In
addition, similar to sigmoid, softmax (without the cross entropy) is easily saturated, and
thus may equally suffer from vanishing gradients. Many instead design π to produce on/off
decisions and train them with reinforcement learning as discussed in Section 2.

3.3 Feature Boosting and Suppression with Channel Saliencies

Instead of imposing sparsity on features or convolutional weight parameters (e.g. Wen et al.
(2016); Alvarez & Salzmann (2016); Li et al. (2017); He et al. (2018a)), recent channel prun-
ing methods (Liu et al., 2017; Ye et al., 2018) induce sparsity on the BN scaling factors γl.
Inspired by them, FBS similarly generates a channel-wise importance measure. Yet contrary
to them, instead of using the constant BN scaling factors γl, we predict channel importance
and dynamically amplify or suppress channels with a parametric function π(xl−1) dependent
on the output from the previous layer xl−1. Here, we propose to replace the layer definition

fl (xl−1) for each of l ∈ [1, L] with f̂l (xl−1) which employs dynamic channel pruning:

f̂l (xl−1) = (πl (xl−1) · (norm (convl (xl−1,θl)) + βl))+ , (5)

where a low-overhead policy πl (xl−1) evaluates the pruning decisions for the computation-
ally demanding conv (xl−1,θl):

πl (xl−1) = wtaddCle (gl (xl−1)) . (6)

Here, wtak(z) is a k-winners-take-all function, i.e. it returns a tensor identical to z, except
that we zero out entries in z that are smaller than the k largest entries in absolute magnitude.
In other words, wtaddCle(gl(xl−1)) provides a pruning strategy that computes only ddCle
most salient channels predicted by gl(xl−1), and suppresses the remaining channels with
zeros. In Section 3.4, we provide a detailed explanation of how we design a cheap gl(xl−1)
that learns to predict channel saliencies.
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It is notable that our strategy prunes Cl − ddCle least salient output channels from lth

layer, where the density d ∈ ]0, 1] can be varied to sweep the trade-off relationship between
performance and accuracy. Moreover, pruned channels contain all-zero values. This allows
the subsequent (l + 1)

th
layer to trivially make use of input-side sparsity, since all-zero

features can be safely skipped even for zero-padded layers. Because all convolutions can
exploit both input- and output-side sparsity, the speed-up gained from pruning is quadratic
with respect to the pruning ratio. For instance, dynamically pruning half of the channels in
all layers gives rise to a dynamic CNN that uses approximately 1

4 of the original MACs.

Theoretically, FBS does not introduce the reparameterization discussed in Section 3.2. By
batch normalizing the convolution output, the convolution kernel θl is invariant to scal-
ing. Computationally, it is more efficient to train. Many alternative methods use non-
differentiable π functions that produce on/off decisions. In general, DNNs with these policy
functions are incompatible with SGD, and resort to reinforcement learning for training. In
contrast, (6) allows end-to-end training, as wta is a piecewise differentiable and continuous
function like ReLU. Srivastava et al. (2015) suggested that in general, a network is easier
and faster to train for complex tasks and less prone to catastrophic forgetting, if it uses
functions such as wta that promote local competition between many subnetworks.

3.4 Learning to Predict Channel Saliencies

This section explains the design of the channel saliency predictor gl(xl−1). To avoid sig-
nificant computational cost in gl, we subsample xl−1 by reducing the spatial dimensions of
each channel to a scalar using the following function ss : RC×H×W → RC :

ss (xl−1) =
1

HW

[
s
(
x
[1]
l−1

)
s
(
x
[2]
l−1

)
· · · s

(
x
[C]
l−1

)]
, (7)

where s
(
x
[c]
l−1

)
reduces the cth channel of z to a scalar using, for instance, the `1-norm

‖x[c]
l−1‖1, `2-norm, `∞-norm, or the variance of x

[c]
l−1. The results in Section 4 use the `1-

norm by default, which is equivalent to global average pooling for the ReLU activated xl−1.
We then design gl(xl−1) to predict channel saliencies with a fully connected layer following

the subsampled activations ss (xl−1), where φl ∈ RCl×Cl−1

is the weight tensor of the layer:

gl (xl−1) = (ss (xl−1)φl + ρl)+ . (8)

We generally initialize ρl with 1 and apply He et al. (2015)’s initialization to φl. Similar
to how Liu et al. (2017) and Ye et al. (2018) induced sparsity in the BN scaling factors, we

regularize all layers with the Lasso on gl(xl−1): λ
∑L

l=1 Ex [‖gl(xl−1)‖1] in the total loss,
where λ = 10−8 in our experiments.

4 Experiments

We ran extensive experiments on CIFAR-10 (Krizhevsky et al., 2014) and the ImageNet
ILSVRC2012 (Deng et al., 2009), two popular image classification datasets. We use M-
CifarNet (Zhao et al., 2018), a custom 8-layer CNN for CIFAR-10 (see Appendix A for its
structure), using only 1.3 M parameters with 91.37% and 99.67% top-1 and top-5 accuracies
respectively. M-CifarNet is much smaller than a VGG-16 on CIFAR-10 (Liu et al., 2017),
which uses 20 M parameters and only 2.29% more accurate. Because of its compactness,
our CNN is more challenging to accelerate. By faithfully reimplementing Network Slimming
(NS) (Liu et al., 2017), we closely compare FBS with NS under various speedup constraints.
For ILSVRC2012, we augment two popular CNN variants, ResNet-18 (He et al., 2016) and
VGG-16 (Simonyan & Zisserman, 2015), and provide detailed accuracy/MACs trade-off
comparison against recent structured pruning and dynamic execution methods.

Our method begins by first replacing all convolutional layer computations with (5), and
initializing the new convolutional kernels with previous parameters. Initially, we do not
suppress any channel computations by using density d = 1 in (6) and fine-tune the resulting
network. For fair comparison against NS, we then follow Liu et al. (2017) by iteratively
decrementing the overall density d of the network by 10% in each step, and thus gradually
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using fewer channels to sweep the accuracy/performance trade-off. The difference is that
NS prunes channels by ranking globally, while FBS prunes around 1− d of each layer.

4.1 CIFAR-10
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(a) M-CifarNet accuracy/MACs trade-off
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Figure 3: Experimental results on M-CifarNet. We compare in (a) the accuracy/MACs
trade-off between FBS, NS and FBS+NS. The baseline is emphasized by the circle ©. The
heat map in (b) reveals the individual probability of skipping a channel for each channel
(x-axis), when an image of a category (y-axis) is shown to the network with d = 1.

By respectively applying NS and FBS to our CIFAR-10 classifier and incrementally increas-
ing sparsity, we produce the trade-off relationships between number of operations (measured
in MACs) and the classification accuracy as shown in Figure 3a. FBS clearly surpasses NS
in its ability to retain the task accuracy under an increasingly stringent computational bud-
get. Besides comparing FBS against NS, we are interested in combining both methods,
which demonstrates the effectiveness of FBS if the model is already less redundant, i.e. it
cannot be pruned further using NS without degrading the accuracy by more than 1%. The
composite method (NS+FBS) is shown to successfully regain most of the lost accuracy due
to NS, producing a trade-off curve closely matching FBS. It is notable that under the same
90.50% accuracy constraints, FBS, NS+FBS, and NS respectively achieve 3.93×, 3.22×,
and 1.19× speed-up ratios. Conversely for a 2× speed-up target, they respectively produce
models with accuracies not lower than 91.55%, 90.90% and 87.54%.

Figure 3b demonstrates that our FBS can effectively learn to amplify and suppress channels
when dealing with different input images. The 8 heat maps respectively represent the
channel skipping probabilities of the 8 convolutional layers. The brightness of the pixel at
location (x, y) denotes the probability of skipping the xth channel when looking at an image
of the yth category. The heat maps verify our belief that the auxiliary network learned to
predict which channels specialize to which features, as channels may have drastically distinct
probabilites of being used for images of different categories. The model here is a M-CifarNet
using FBS with d = 0.5, which has a top-1 accuracy of 90.59% (top-5 99.65%). Moreover,
channels in the heat maps are sorted so the channels that are on average least frequently
evaluated are placed on the left, and channels shaded in stripes are never evaluated. The
network in Figure 3b is not only approximately 4× faster than the original, by removing
the unused channels, we also reduce the number of weights by 2.37×. This reveals that
FBS naturally subsumes channel pruning strategies such as NS, as we can simply prune
away channels that are skipped regardless of the input. It is notable that even though we
specified a universal density d, FBS learned to adjust its dynamicity across all layers, and
prune different ratios of channels from the convolutional layers.

4.2 ImageNet ILSVRC2012 Classification

By applying FBS and NS respectively to ResNet-18, we saw that the ILSVRC2012 valida-
tion accuracy of FBS consistently outperforms NS under different speed-up constraints (see
Appendix B for the implementation details and trade-off curves). For instance, at d = 0.7,
it utilizes only 1.12 G MACs (1.62× fewer) to achieve a top-1 error rate of 31.54%, while
NS requires 1.51 G MACs (1.21× fewer) for a similar error rate of 31.70%. When compared
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across recent dynamic execution methods examined in Table 1, FBS demonstrates simul-
taneously the highest possible speed-up and the lowest error rates. It is notable that the
baseline accuracies for FBS refer to a network that has been augmented with the auxiliary
layers featuring FBS but suppress no channels, i.e. d = 1. We found that this method
brings immediate accuracy improvements, an increase of 1.73% in top-1 and 0.46% in top-5
accuracies, to the baseline network, which is in line with our observation on M-CifarNet.

In Table 2, we compare different structured pruning and dynamic execution methods to FBS
for VGG-16 (see Appendix B for the setup). At a speed-up of 3.01×, FBS shows a minimal
increase of 0.44% and 0.04% in top-1 and top-5 errors respectively. At 5.23× speed-up, it
only degrades the top-1 error by 1.08% and the top-5 by 0.59%.

Not only does FBS use much fewer MACs, it also demonstrates significant reductions in
bandwidth and memory requirements. In Table 3, we observe a large reduction in the
number of memory accesses in single image inference as we simply do not access suppressed
weights and activations. Because these memory operations are often costly DRAM accesses,
minimizing them leads to power-savings. Table 3 further reveals that in diverse application
scenarios such as low-end and cloud environments, the peak memory usages by the optimized
models are much smaller than the originals, which in general improves cache utilization.

Method Dynamic
Baseline Accelerated MAC

Top-1 Top-5 Top-1 Top-5 saving

Soft Filter Pruning (He et al., 2018a) 29.72 10.37 32.90 12.22 1.72×
Network Slimming (Liu et al. (2017), our implementation) 31.02 11.32 32.79 12.61 1.39×
Discrimination-aware Channel Pruning (Zhuang et al., 2018) 30.36 11.02 32.65 12.40 1.89×
Low-cost Collaborative Layers (Dong et al., 2017) X 30.02 10.76 33.67 13.06 1.53×
Channel Gating Neural Networks (Hua et al., 2018) X 30.98 11.16 32.60 12.19 1.61×
Feature Boosting and Suppression (FBS) X 29.29 10.32 31.83 11.78 1.98×

Table 1: Comparisons of error rates of the baseline and accelerated ResNet-18 models.

Method Dynamic
∆ top-5 errors (%)
3× 4× 5×

Filter Pruning (Li et al. (2017), reproduced by He et al. (2017)) — 8.6 14.6
Perforated CNNs (Figurnov et al., 2016) 3.7 5.5 —
Network Slimming (Liu et al. (2017), our implementation) 1.37 3.26 5.18
Runtime Neural Pruning (Lin et al., 2017) X 2.32 3.23 3.58
Channel Pruning (He et al., 2017) 0.0 1.0 1.7
AutoML for Model Compression (He et al., 2018b) — — 1.4
ThiNet-Conv (Luo et al., 2017) 0.37 — —
Feature Boosting and Suppression (FBS) X 0.04 0.52 0.59

Table 2: Comparisons of top-5 error rate increases for VGG-16 on ILSVRC2012 validation
set under 3×, 4× and 5× speed-up constraints. The baseline has a 10.1% top-5 error rate.
Results from He et al. (2017) only show numbers with one digit after the decimal point.

Model
Total Memory Accesses Peak Memory Usage

Weights Activations Edge (1 image) Cloud (128 images)

VGG-16 56.2 MB 86.5 MB 24.6 MB 3.09 GB
VGG-16 3× 23.9 MB (2.35×) 40.8 MB (2.12×) 9.97 MB (2.47×) 1.24 GB (2.47×)

ResNet-18 44.6 MB 17.8 MB 9.19 MB 0.47 GB
ResNet-18 2× 20.5 MB (2.18×) 12.3 MB (1.45×) 4.68 MB (1.96×) 0.31 GB (1.49×)

Table 3: Comparisons of the memory accesses and peak memory usage of the ILSVRC2012
classifiers with FBS respectively under 3× and 2× inference speed-ups. The Weights and
Activations columns respectively show the total amount of weight and activation accesses
required by all convolutions for a single image inference. The Peak Memory Usage
columns show the peak memory usages with different batch sizes.

5 Conclusion

In summary, we proposed feature boosting and suppression that helps CNNs to achieve
significant reductions in the compute required while maintaining high accuracies. FBS fully
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preserves the capabilities of CNNs and predictively boosts important channels to help the
accelerated models retain high accuracies. We demonstrated that FBS achieves around 2×
and 5× savings in computation respectively on ResNet-18 and VGG-16 within 0.6% loss
of top-5 accuracy. Under the same performance constraints, the accuracy gained by FBS
surpasses all recent structured pruning and dynamic execution methods examined in this
paper. In addition, it can serve as an off-the-shelf technique for accelerating many popular
CNN networks and the fine-tuning process is unified in the traditional SGD which requires
no algorithmic changes in training. Finally, the implementation of FBS and the optimized
networks are fully open source and released to the public1.
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A Details of M-CifarNet on CIFAR-10

For the CIFAR-10 classification task, we use M-CifarNet, a custom designed CNN, with less
than 1.30 M parameters and takes 174 M MACs to perform inference for a 32-by-32 RGB
image. The architecture is illustrated in Table 4, where all convolutional layers use 3 × 3
kernels, the Shape column shows the shapes of each layer’s features, and pool7 is a global
average pooling layer.

We trained M-CifarNet (see Appendix A) with a 0.01 learning rate and a 256 batch size.
We reduced the learning rate by a factor of 10× for every 100 epochs. To compare FBS
against NS fairly, every model with a new target MACs budget were consecutively initialized
with the previous model, and trained for a maximum of 300 epochs, which is enough for all
models to converge to the best obtainable accuracies. For NS, we follow Liu et al. (2017)
and start training with an `1-norm sparsity regularization weighted by 10−5 on the BN
scaling factors. We then prune at 150 epochs and fine-tune the resulting network without
the sparsity regularization.

We additionally employed image augmentation procedures from Krizhevsky et al. (2012) to
preprocess each training example. Each CIFAR-10 example was randomly horizontal flipped
and slightly perturbed in the brightness, saturation and hue.

Table 4 additionally provides further comparisons of layer-wise compute costs between FBS,
NS, and the composition of the two methods (NS+FBS). It is notable that the FBS column
has two different output channel counts, where the former is the number of computed
channels for each inference, and the latter is the number of channels remaining in the layer
after removing the unused channels.

Layer Shape Number of MACs (Output Channels)
Original NS FBS NS+FBS

conv0 30× 30 1.5 M (64) 1.3 M (52) 893 k (32/62) 860 k (32)
conv1 30× 30 33.2 M (64) 27.0 M (64) 8.4 M (32/42) 10.2 M (39)
conv2 15× 15 16.6 M (128) 15.9 M (123) 4.2 M (64/67) 5.9 M (74)
conv3 15× 15 33.2 M (128) 31.9 M (128) 8.3 M (64/79) 11.6 M (77)
conv4 15× 15 33.2 M (128) 33.1 M (128) 8.3 M (64/83) 12.1 M (77)
conv5 8× 8 14.1 M (192) 13.4 M (182) 3.6 M (96/128) 4.9 M (110)
conv6 8× 8 21.2 M (192) 11.6 M (111) 5.4 M (96/152) 4.3 M (67)
conv7 8× 8 21.2 M (192) 12.3 M (192) 5.4 M (96/96) 4.5 M (116)
pool7 1× 1
fc 1× 1 1.9 k (10) 1.9 k (10) 960 (10) 1.1 k (10)

Total 174.3 M 146.5 M 44.3 M 54.2 M
Saving - 1.19× 3.93× 3.21×

Table 4: The network structure of M-CifarNet for CIFAR-10 classification. In addition, we
provide a detailed per-layer MACs comparison between FBS, NS, and the composition of
them (NS+FBS). We minimize the models generated by the three methods while maintain-
ing a classification accuracy of at least 90.5%.

Figure 4 shows how the skipping probabilites heat maps of the convolutional layer conv4
evolve as we fine-tune FBS-augmented M-CifarNet. The network was trained for 12 epochs,
and we saved the model at every epoch. The heat maps are generated with the saved models
in sequence, where we apply the same reordering to all heat map channels with the sorted
result from the first epoch. It can be observed that as we train the network, the channel
skipping probabilites become more pronounced.
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training epochs

channels

5

10

Figure 4: The training history of a convolutional layer conv4 in M-CifarNet. The history
is visualized by the 12 skipping probabilites heat maps, where the heights denote the 10
categories in CIFAR-10, and channels in conv4 occupy the width.

B Details of the ILSVRC2012 classifiers

ILSVRC2012 classifiers, i.e. ResNet-18 and VGG-16, were trained with a procedure similar
to Appendix A. The difference was that they were trained for a maximum of 35 epochs, the
learning rate was decayed for every 20 epochs, and NS models were all pruned at 15 epochs.
For image preprocessing, we additionally cropped and stretched/squeezed images randomly
following Krizhevsky et al. (2012).

Since VGG-16 is computationally intensive with over 15 G MACs, We first applied NS on
VGG-16 to reduce the computational and memory requirements, and ease the training of
the FBS-augmented variant. We assigned a 1% budget in top-5 accuracy degradation and
compressed the network using NS, which gave us a smaller VGG-16 with 20% of all channels
pruned. The resulting network is a lot less redundant, which almost halves the compute
requirements, with only 7.90 G MACs remaining. We then apply FBS to the well-compressed
network.

Residual networks (He et al., 2016), such as ResNet-18, adopt sequential structure of resid-
ual blocks: xb = K (xb−1) + F (xb−1), where xb is the output of the bth block, K is either
an identity function or a downsampling convolution, and F consists of a sequence of con-
volutions. For residual networks, we directly apply FBS to all convolutional layers, with

a difference in the way we handle the feature summation. Because the (b+ 1)
th

block re-
ceives as input the sum of the two features with sparse channels K (xb−1) and F (xb−1), a
certain channel of this sum is treated as sparse when the same channels in both features are
simultaneously sparse.

Figure 5 compares the accuracy/performance trade-off curves between FBS and NS for
ResNet-18.
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Figure 5: The accuracy/performance trade-off comparison between NS and FBS for ResNet-
18 on the ImageNet ILSVRC2012 validation set.
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