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ABSTRACT

Reinforcement learning is concerned with learning to interact with environments
that are initially unknown. State-of-the-art reinforcement learning approaches,
such as DQN, are model-free and learn to act effectively across a wide range of
environments such as Atari games, but require huge amounts of data. Model-
based techniques are more data-efficient, but need to acquire explicit knowledge
about the environment dynamics or the reward structure.
In this paper we take a step towards using model-based techniques in environments
with high-dimensional visual state space when system dynamics and the reward
structure are both unknown and need to be learned, by demonstrating that it is
possible to learn both jointly. Empirical evaluation on five Atari games demon-
strate accurate cumulative reward prediction of up to 200 frames. We consider
these positive results as opening up important directions for model-based RL in
complex, initially unknown environments.

1 INTRODUCTION

When humans or animals receive reward for taking a particular action in a given situation, the prob-
ability is increased that they will act similarly in similar situations in the future. This is described
by principles such as the law of effect (Thorndike, 1898), operant conditioning (Skinner, 1938) and
trial-and-error learning (Thorpe, 1979) in behaviorist psychology, and has inspired a discipline of
artificial intelligence called reinforcement learning (RL, Sutton & Barto (1998)). RL is concerned
with finding optimal behavior policies in order to maximize agents’ cumulative future reward.

Approaches to RL can be divided into model-free and model-based approaches. In model-free ap-
proaches, agents learn by trial and error but do not aim to explicitly capture the dynamics of the envi-
ronment or the structure of the reward function underlying the environment. State-of-the-art model-
free approaches, such as DQN (Mnih et al., 2015), effectively approximate so-called Q-values, i.e.,
the value of taking specific actions in a given state, using deep neural networks. The impressive
effectiveness of these approaches comes from their ability to learn complex policies directly from
high-dimensional input (e.g., video frames). Despite their effectiveness, model-free approaches re-
quire large amounts of training data that have to be collected through direct interactions with the
environment, which makes them expensive to apply in settings where interactions are costly (such
as most real-world applications). Additionally, model-free RL requires access to reward observa-
tions during training, which is problematic in environments with sparse reward structure—unless
coupled with an explicit exploration mechanism.

RL approaches that explicitly learn statistics about the environment or the reward are generally
referred to as model-based—in a more narrow definition these statistics comprise environment dy-
namics and the reward function. In recent work, model-based techniques were successfully used
to learn statistics about cumulative future reward (Veness et al., 2015) and to improve exploration
by favoring actions that are likely to lead to novel states (Bellemare et al., 2016; Oh et al., 2015),
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resulting in substantially more data efficient learning compared to model-free approaches. When an
accurate model of the true environment dynamics and the true reward function is available, model-
based approaches, such as planning via Monte-Carlo tree search (Browne et al., 2012) outperform
model-free state-of-the-art approaches (Guo et al., 2014).

A key open question is whether effective model-based RL is possible in complex settings where the
environment dynamics and the reward function are initially unknown, and the agent has to acquire
such knowledge through experience. In this paper, we take a step towards addressing this question
by extending recent work on video frame prediction (Oh et al., 2015), which has been demonstrated
to effectively learn system dynamics, to enable joint prediction of future states and rewards using
a single latent representation. We propose a network architecture and training procedure for joint
state and reward prediction, and evaluate our approach in the Arcade Learning Environment (ALE,
Bellemare et al. (2013)).

Our empirical results on five Atari games demonstrate that our approach can successfully predict
cumulative reward up to roughly 200 frames. We complement our quantitative results with a de-
tailed error analysis by visualizing example predictions. Our results are the first to demonstrate the
feasibility of using a learned dynamics and reward model for accurate planning. We see this as a sig-
nificant step towards data efficient RL in high-dimensional environments without prior knowledge.

2 RELATED WORK AND MOTIVATION

Two lines of research are related to the work presented in this paper: model-based RL and optimal
control theory. Model-based RL utilizes a given or learned model of some aspect of a task to, e.g.,
reduce data or exploration requirements (Bellemare et al., 2016; Oh et al., 2015; Veness et al., 2015).
Optimal control theory describes mathematical principles for deriving control policies in continuous
action spaces that maximize cumulative future reward in scenarios with known system dynamics
and known reward structure (Bertsekas, 2007; 2005).

There has been recent interest in combining principles from optimal control theory and model-based
learning in settings where no information on system dynamics is available a priori and instead has
to be acquired from visual data (Finn et al., 2016; Wahlström et al., 2015; Watter et al., 2015). The
general idea behind these approaches is to learn a compressed latent representation of the visual
state space from raw images through autoencoder networks (Bengio, 2009) and to utilize the ac-
quired latent representation to infer system dynamics. System dynamics are then used to specify a
planning problem which can be solved by optimization techniques to derive optimal policies. Watter
et al. (2015) introduce an approach for learning system dynamics from raw visual data by jointly
training a variational autoencoder (Kingma & Welling, 2014; Rezende et al., 2014) and a state pre-
diction model that operates in the autoencoder’s compressed latent state representation. A similar
approach for jointly learning a compressed state representation and a predictive model is pursued by
Wahlström et al. (2015).Finn et al. (2016) devise a sequential approach that first learns a latent state
representation from visual data and that subsequently exploits this latent representation to augment
a robot’s initial state space describing joint angles and end-effector positions. The augmented state
space is then used to improve estimates of local system dynamics for planning.

The approaches presented above assume knowledge of the functional form of the true reward signal
and are hence not directly applicable in settings like ALE (and many real-world settings) where the
reward function is initially unknown. Planning in such settings therefore necessitates learning both
system dynamics and reward function in order to infer optimal behavioral policies. Recent work
by Oh et al. (2015) introduced an approach for learning environment dynamics from pixel images
and demonstrated that this enabled successful video frame prediction over up to 400 frames. In
our current paper, we extend this recent work to enable reward prediction as well by modifying the
network’s architecture and training objective accordingly. The modification of the training objective
bears a positive side effect: since our network must optimize a compound loss consisting of the
video frame reconstruction loss and the reward loss, reward-relevant aspects in the video frames to
which the reconstruction loss alone might be insensitive are explicitly captured by the optimization
objective. In the subsequent section, we elucidate the approach from Oh et al. (2015) as well as our
extensions for reward prediction in more detail.
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Figure 1: Network architecture for joint video frame and reward prediction. The architecture com-
prises three stages: an encoding stage mapping current input frames to some compressed latent
representation, a transformation stage integrating the current action into the latent representation
through element-wise vector multiplication denoted by ’×’, and a final predictive stage for recon-
structing the frame of the next time step and the current reward. The network uses three different
types of neuron layers (’Conv’ for convolutional, ’Deconv’ for deconvolutional and ’Fc’ for forward
connection) in combination with three different types of activation functions (’ReLU’, ’Softmax’ and
’Lin’ for linear activations). The dimensional extend of individual layers is either depicted beneath
or within layers. The network part coloured in red highlights the extension for reward prediction.

3 NETWORK ARCHITECTURE AND TRAINING

The deep network proposed by Oh et al. (2015) for video frame prediction in Atari games aims at
learning a function that predicts the video frame st+1 at the next time step t + 1, given the current
history of frames st−h+1:t with time horizon h and the current action at taken by the agent—see
Section 3.1. Here, we extend this work to enable joint video frame and reward prediction such that
the network anticipates the current reward rt as well—see Sections 3.2 and 3.3.

3.1 VIDEO FRAME PREDICTION

The video-frame-predictive architecture from Oh et al. (2015) comprises three information-
processing stages: an encoding stage that maps input frames to some compressed latent represen-
tation, a transformation stage that integrates the current action into the compressed latent represen-
tation, and a decoding stage that maps the compressed latent representation to the predicted next
frame—see Figure 1. The initial encoding stage is a sequence of convolutional and forward oper-
ations that map the current frame history st−h+1:t—a three-dimensional tensor—to a compressed
feature vector henc

t . The transformation stage converts this compressed feature vector henc
t into an

action-conditional representation hdec
t in vectorized form by integrating the current action at. The

current action at is represented as a one-hot vector with length varying from game to game since
there are at least 3 and at most 18 actions in ALE. The integration of the current action into the
compressed feature vector includes an element-wise vector multiplication—depicted as ’×’ in Fig-
ure 1—with the particularity that the two neuron layers involved in this element-wise multiplication
are the only layers in the entire network without bias parameters, see Section 3.2 in Oh et al. (2015).
Finally, the decoding stage performs a series of forward and deconvolutional operations (Dosovit-
skiy et al., 2015; Zeiler et al., 2010) by mapping the action-conditional representation hdec

t of the
current frame history st−h+1:t and the current action at to the predicted video frame st+1 of the
next time step t+1. Note that this necessitates a reshape operation at the beginning of the decoding
cascade in order to transform the vectorized hidden representation into a three-dimensional tensor.
The whole network uses linear and rectified linear units (Glorot et al., 2011) only. In all our experi-
ments, following DQN (Mnih et al., 2015), the video frames processed by the network are 84 × 84
grey-scale images down-sampled from the full-resolution 210× 160 Atari RGB images from ALE.
Following Mnih et al. (2015) and Oh et al. (2015), the history frame time horizon h is set to 4.
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3.2 REWARD PREDICTION

In this section we detail our proposed network architecture for joint state and reward prediction. Our
model assumes ternary rewards which result from reward clipping in line with Mnih et al. (2015).
Original game scores in ALE are integers that can vary significantly between different Atari games
and the corresponding original rewards are clipped to assume one of three values: −1 for negative
rewards, 0 for no reward and 1 for positive rewards. Because of reward clipping, rewards can be
represented as vectors rt in one-hot encoding of size 3.

In Figure 1, our extension of the video-frame-predictive architecture from Oh et al. (2015) to enable
reward prediction is highlighted in red. We add an additional softmax layer to predict the current
reward rt with information contained in the action-conditional encoding hdec

t . The motivation be-
hind this extension is twofold. First, our extension makes it possible to jointly train the network
with a compound objective that emphasizes both video frame reconstruction and reward prediction,
and thus encourages the network to not abstract away reward-relevant features to which the recon-
struction loss alone might be insensitive. Second, this formulation facilitates the future use of the
model for reward prediction through virtual roll-outs in the compressed latent space, without the
computational expensive necessity of reconstructing video frames explicitly—note that this requires
another ”shortcut” predictive model to map from hdec

t to henc
t+1.

Following previous work (Oh et al., 2015; Mnih et al., 2015), actions are chosen by the agent on
every fourth frame and are repeated on frames that were skipped. Skipped frames and repeated
actions are hence not part of the data sets used to train and test the predictive network on, and
original reward values are accumulated over four frames before clipping.

3.3 TRAINING

Training the model for joint video frame and reward prediction requires trajectory samples{(
s
(i)
n ,a

(i)
n , r

(i)
n

)N
n=1

}I

i=1

collected by some agent playing the Atari game, where i is an index

over trajectories and n is a time index over samples within one trajectory i. The parameter I denotes
the number of trajectories in the training set or the minibatch respectively and the parameter N de-
notes the length of an individual trajectory. In our case, we use agents trained according to Mnih
et al. (2015) in order to collect trajectory samples.

The original training objective in Oh et al. (2015) consists of a video frame reconstruction loss in
terms of a squared loss function aimed at minimizing the quadratic l2-norm of the difference vector
between the ground truth image and its action-conditional reconstruction. We extend this training
objective to enable joint reward prediction. This results in a compound training loss consisting of
the original video frame reconstruction loss and a reward prediction loss given by the cross entropy
(Simard et al., 2003) between the ground truth reward and the corresponding prediction:

LK(θ) =
1

2 · I · T ·K

I∑
i=1

T−1∑
t=0

K∑
k=1


∣∣∣∣∣∣s(i)t+k − ŝ

(i)
t+k

∣∣∣∣∣∣2
2︸ ︷︷ ︸

video frame reconstruction loss

+λ · (−1)
3∑

l=1

r
(i)
t+k[l] · lnp

(i)
t+k[l]︸ ︷︷ ︸

reward prediction loss

 ,

where ŝ
(i)
t+k denotes the k-step look ahead frame prediction with target video frame s

(i)
t+k and p

(i)
t+k

denotes the k-step look ahead probability values of the reward-predicting softmax layer—depicted
in red in Figure1—with target reward vector r(i)t+k. The parameter λ > 0 controls the trade-off be-
tween video frame reconstruction and reward loss. The parameter T is a time horizon parameter that
determines how often a single trajectory sample i is unrolled into the future, and K determines the
look ahead prediction horizon dictating how far the network predicts into the future by using its own
video frame predicted output as input for the next time step. Following Oh et al. (2015) and Michal-
ski et al. (2014), we apply a curriculum learning (Bengio et al., 2009) scheme by successively in-
creasing K in the course of training such that the network initially learns to predict over a short time
horizon and becomes fine-tuned on longer-term predictions as training advances (see Section A.1
for details). The network parameters θ are updated by stochastic gradient descent, derivatives of the
training objective w.r.t. θ are computed with backpropagation through time (Werbos, 1988).
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4 RESULTS

In our evaluations, we investigate cumulative reward predictions quantitatively and qualitatively on
five different Atari games (Q*bert, Seaquest, Freeway, Ms Pacman and Space Invaders). The quan-
titative analysis comprises evaluating the cumulative reward prediction error—see Section 4.1. The
qualitative analysis comprises visualizations of example predictions in Seaquest—see Section 4.2.

4.1 QUANTITATIVE REWARD PREDICTION ANALYSIS: CUMULATIVE REWARD ERROR

Our quantitative evaluation examines whether our joint model of system dynamics and reward func-
tion results in a shared latent representation that enables accurate cumulative reward prediction. We
assess cumulative reward prediction on test sets consisting of approximately 50,000 video frames per
game, including actions and rewards. Each network is evaluated on 1,000 trajectories—suitable to
analyze up to 100-step ahead prediction—drawn randomly from the test set. Look ahead prediction
is measured in terms of the cumulative reward error which is the difference between ground truth
cumulative reward and predicted cumulative reward. For each game, this results in 100 empirical dis-
tributions over the cumulative reward error—one distribution for each look ahead step—consisting
of 1,000 samples each (one for each trajectory). We compare our model predictions to a baseline
model that samples rewards from the marginal reward distribution observed on the test set for each
game. Note that negative reward values are absent in the games investigated for this study.

Figure 2 illustrates 20 of the 100 empirical cumulative reward error distributions in all games for
our network model in blue and for the baseline model in red (histograms, bottom), together with
the median and the 5 to 95 percentiles of the cumulative reward error over look ahead steps (top).
Across all games, we observe that our joint state and reward prediction model accurately predicts fu-
ture cumulative rewards at least 20 look ahead steps, and that it predicts future rewards substantially
more accurately than the baseline model. This is evidenced by cumulative reward error distributions
that maintain a unimodal form with mode zero and do not flatten out as quickly as the distributions
for the random-prediction baseline model. Best results are achieved in Freeway and Q*bert where
the probability of zero cumulative reward error at 51 look ahead steps is still around 80% and 60%
respectively—see Figure 2. Note that 51 look ahead steps correspond to 204 frames because the
underlying DQN agent, collecting trajectory samples for training and testing our model, skipped
every fourth frame when choosing an action—see Section 3.2. Lowest performance is obtained in
Seaquest where the probability of zero cumulative reward error at 26 steps (104 frames) is around
40% and begins to flatten out soon thereafter—see Figure 2. Running the ALE emulator at a fre-
quency of 60fps, 26 steps correspond to more than 1 second real-time game play because of frame
skipping. Since our model is capable of predicting 26 steps ahead in less than 1 second, our model
enables real-time planning and could be therefore utilized in an online fashion.

We now turn our attention to error analysis. While the look ahead step at which errors become
prominent differs substantially from game to game, we find that overall our model underestimates
cumulative reward. This can be seen in the asymmetry towards positive cumulative reward error
values when inspecting the 5 to 95 percentile intervals in the first plot per each game in Figure 2.
We identify a likely cause in (pseudo-)stochastic transitions inherent in these games. Considering
Seaquest as our running example, objects such as divers and submarines can enter the scene ran-
domly from the right and from the left and at the same time have an essential impact on which
rewards the agent can potentially collect. In the ground truth trajectories, the agent’s actions are
reactions to these objects. If the predicted future trajectory deviates from the ground truth, targeted
actions such as shooting will miss their target, leading to underestimating true reward. We analyze
this effect in more detail in Section 4.2.

All our experiments were conducted in triplicate with different initial random seeds. Different initial
random seeds did not have a significant impact on cumulative reward prediction in all games except
Freeway—see Section A.5 for a detailed analysis. So far, we discussed results concerning reward
prediction only. In the appendix, we also evaluate the joint performance of reward and video frame
prediction on the test set in terms of the optimization objective as in Oh et al. (2015), where the
authors report successful video frame reconstruction up to approximately 100 steps (400 frames),
and observe similar results—see Section A.6.
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4.2 QUALITATIVE REWARD PREDICTION ANALYSIS: EXAMPLE PREDICTIONS IN SEAQUEST

In the previous section, we identified stochasticity in state transitions as a likely cause for relatively
low performance in long-term cumulative reward prediction in games such as Seaquest. In Seaquest
objects may randomly enter a scene in a non-deterministic fashion. Errors in predicting these events
result in predicted possible futures that do not match actually observed future states, resulting in
inaccurate reward predictions. Here, we support this hypothesis by visualizations in Seaquest illus-
trating joint video frame and reward prediction for a single network over 20 steps (80 frames)—see
Figure 3 where ground truth video frames are compared to predicted video frames in terms of er-
ror maps. Error maps emphasize the difference between ground truth and predicted frames through
squared error values between pixels in black or white depending on whether objects are absent or
present by mistake in the network’s prediction. Actions, ground truth rewards and model-predicted
rewards are shown between state transitions. Peculiarities in the prediction process are shown in red.

In step 2, the model predicts reward by mistake because the agent barely misses its target. Steps 4
to 6 report how the model predicts reward correctly but is off by one time step. Steps 7 to 14 depict
problems caused by objects randomly entering the scene from the right which the model cannot
predict. Steps 26 to 30 show how the model has problems to predict rewards at steps 26 and 28 as
these rewards are attached to objects the model failed to notice entering the scene earlier.

5 CONCLUSION AND FUTURE WORK

In this paper, we extended recent work on video frame prediction (Oh et al., 2015) in Atari games
to enable reward prediction. Our approach can be used to jointly predict video frames and cumula-
tive rewards up to a horizon of approximately 200 frames in five different games (Q*bert, Seaquest,
Freeway, Ms Pacman and Space Invaders). We achieved best results in Freeway and Q*bert where
the probability of zero cumulative reward error after 200 frames is still around 80% and 60% respec-
tively, and worst results in Seaquest where the probability of zero cumulative reward error after 100
frames is around 40%. Our study fits into the general line of research using autoencoder networks
to learn a latent representation from visual data (Finn et al., 2016; Goroshin et al., 2015; Gregor
et al., 2015; Kulkarni et al., 2015; Srivastava et al., 2015; Wahlström et al., 2015; Watter et al., 2015;
Kingma & Welling, 2014; Rezende et al., 2014; Lange et al., 2012; Hinton et al., 2011; Ranzato
et al., 2007), and extends this line of research by showing that autoencoder networks are capable of
learning a combined representation for system dynamics and the reward function in reinforcement
learning settings with high-dimensional visual state spaces—a first step towards applying model-
based techniques for planning in environments where the reward function is not initially known.

Our positive results open up intriguing directions for future work. Our long-term goal is the inte-
gration of model-based and model-free approaches for effective interactive learning and planning
in complex environments. Directions for achieving this long-standing challenge include the Dyna
method (Sutton, 1990), which uses a predictive model to artificially augment expensive training data,
and has been shown to lead to substantial reductions in data requirements in tabular RL approaches.
Alternatively, the model could be could be utilized for planning via Monte-Carlo tree search (Guo
et al., 2014; Browne et al., 2012). We hypothesize that such an approach would be particularly
beneficial in multi-task or life-long learning scenarios where the reward function changes but the
environment dynamics are stationary. Testing this hypothesis requires a flexible learning framework
where the reward function and the artificial environment can be changed by the experimenter in
an arbitrary fashion, which is not possible in ALE where the environment and the reward function
are fixed per game. A learning environment providing such a flexibility is the recently released
Malmö platform for Minecraft (Johnson et al., 2016) where researchers can create user-defined en-
vironments and tasks in order to evaluate the performance of artificial agents. In the shorter-term,
we envision improving the prediction performance of our network by regularization methods such
as dropout and max norm regularization (Srivastava et al., 2014)—a state-of-the-art regularizer in
supervised learning—and by modifying the optimization objective to enforce similarity between
hidden encodings in multi-step ahead prediction and one-step ahead prediction—see Watter et al.
(2015). Finally, extensions of our model to non-deterministic state transitions through dropout and
variational autoencoder schemes (Kingma & Welling, 2014; Rezende et al., 2014) is a promising
direction to alleviate the limitations highlighted in Section 4.2—paving the way for models that
adequately predict and reason over alternative possible future trajectories.
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Figure 2: Cumulative reward error over look ahead steps in five different Atari games. There are
two plots for each game. The top plot per game shows how the median and the 5 to 95 percentiles
of the cumulative reward error evolve over look ahead steps for both our model (in blue) and a base-
line model that samples rewards from the marginal reward distribution of the test set (in red). Each
vertical slice of this concise representation corresponds to a single empirical distribution over the
cumulative reward error. We depict these for every fifth look ahead step in the compound plots be-
low for both models. These empirical error distributions demonstrate successful cumulative reward
prediction over at least 20 steps (80 frames) in all five games as evidenced by their zero-centered
and unimodal shape in the first column of each compound plot per game.
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Figure 3: Example predictions in Seaquest. Ground truth video frames, model predictions and error
maps emphasizing differences between ground truth and predicted frames—in form of the squared
error between pixel values—are compared column-wise. Error maps highlight objects in black or
white respectively depending on whether these objects are absent by mistake or present by mistake
in the model’s prediction. Actions taken by the agent as well as ground truth rewards (’rew’) and
reward predictions (’pred’) are shown below video and error frames. Peculiarities in the prediction
process are marked in red. The figure demonstrates how our predictive model fails to anticipate
objects that randomly enter the scene from the right and rewards associated to these objects.
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A APPENDIX

A.1 TRAINING DETAILS

We performed all our experiments in Python with Chainer and adhered to the instructions in Oh et al.
(2015) as close as possible. Trajectory samples for learning the network parameters were obtained
from a previously trained DQN agent according to Mnih et al. (2015). The dataset for training
comprised around 500, 000 video frames per game in addition to actions chosen by the DQN agent
and rewards collected during game play. Video frames used as network input were 84×84 grey-scale
images with pixel values between 0 and 255 down-sampled from the full-resolution 210× 160 ALE
RGB images. We applied a further preprocessing step by dividing each pixel by 255 and subtracting
mean pixel values from each image leading to final pixel values ∈ [−1; 1]. A detailed network
architecture is shown in Figure 1 in the main paper. All weights in the network were initialized
according to Glorot & Bengio (2010) except for those two layers that participate in the element-wise
multiplication in Figure 1: the weights of the action-processing layer were initialized uniformly in
the range [−0.1; 0.1] and the weights of the layer receiving the latent encoding of the input video
frames were initialized uniformly in the range [−1; 1]. Training was performed for 1, 500, 000
minibatch iterations with a curriculum learning scheme increasing the look ahead parameter K
every 500, 000 iterations from 1 to 3 to 5. When increasing the look ahead parameter K for the first
time after 500, 000 iterations, the minibatch size I was also altered from 32 to 8 as was the learning
rate for parameter updates from 10−4 to 10−5. Throughout the entire curriculum scheme, the time
horizon parameter determining the number of times a single trajectory is unrolled into the future
was T = 4. The optimizer for updating weights was Adam (Kingma & Ba, 2015) with gradient
momentum 0.9, squared gradient momentum 0.95 and epsilon parameter 10−8. In evaluation mode,
network outputs were clipped to [−1; 1] so that strong activations could not accumulate over roll-out
time in the network.

In our experiments, we modified the reward prediction loss slightly in order to prevent exploding
gradient values by replacing the term − ln p with a first-order Taylor approximation for p-values
smaller than e−10—a similar technique is used in DQN (Mnih et al., 2015) to improve the sta-
bility of the optimization algorithm. To identify optimal values for the reward weight λ, we per-
formed initial experiments on Ms Pacman without applying the aforementioned curriculum learning
scheme instead using a fixed look ahead parameter K = 1. We evaluated the effect of different
λ-values ∈ {0.1, 1, 10, 100} on the training objective and identified λ = 1 for conducting further
experiments—see Section A.2. After identifying an optimal reward weight, we conducted additional
initial experiments without curriculum learning with fixed look ahead parameterK = 1 on all of the
five different Atari games used in this paper. We observed periodic oscillations in the reward predic-
tion loss of the training objective in Seaquest, which was fixed by adding gradient clipping (Pascanu
et al., 2013) with threshold parameter 1 to our optimization procedure—experiments investigating
the effect of gradient clipping in Seaquest are reported in Section A.3. The fine-tuning effect of
curriculum learning on the training objective in our final experiments is shown in Section A.4 for all
of the five analysed Atari games.

A.2 EFFECT OF REWARD WEIGHT IN MS PACMAN

To identify optimal values for the reward weight λ, we conducted initial experiments in Ms Pacman
without curriculum learning and a fixed look ahead horizon K = 1. We tested four different λ-
values ∈ {0.1, 1, 10, 100} and investigated how the frame reconstruction loss and the reward loss
of the training objective evolve over minibatch iterations—see Figure 4. Best results were obtained
for λ = 1 and for λ = 10, whereas values of λ = 0.1 and λ = 100 lead to significantly slower
convergence and worse overall training performance respectively.

A.3 EFFECT OF GRADIENT CLIPPING IN SEAQUEST

After identifying an optimal value for the reward weight, see Section A.2, we observed oscillations
in the reward loss of the training objective in Seaquest—see first column in Figure 5—which was
solved by adding gradient clipping to our optimization procedure—see second and third column in
Figure 5. We tested two different values for the gradient clipping threshold (5 and 1) both of which
worked, but for a value of 1 the oscillation vanished completely.
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Figure 4: Effect of reward weight on training loss in Ms Pacman. Each of the four panels depicts
one experiment with a different reward weight λ. Each panel shows how the training loss evolves
over minibatch iterations in terms of two subplots reporting video frame reconstruction and reward
loss respectively. Each experiment was conducted three times with different initial random seeds
depicted in blue, green and red. Graphs were smoothed with an exponential window of size 1000.
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Figure 5: Effect of gradient clipping on training loss in Seaquest. The three panels compare ex-
periments with no reward clipping to those with reward clipping using the threshold values 5 and 1
respectively. Subplots within each panel are similar to those in Figure 4 but display in the first row
the evolution of the compound training loss in addition to the frame reconstruction and reward loss.

A.4 EFFECT OF CURRICULUM LEARNING

In our final experiments with curriculum learning, the networks were trained for 1, 500, 000 mini-
batch iterations in total but the look ahead parameter K was gradually increased every 500, 000
iterations from 1 to 3 to 5. The networks were hence initially trained on one-step ahead prediction
only and later on fine-tuned on further-step ahead prediction. Figure 6 shows how the training ob-
jective evolves over iterations. The characteristic ”bumps” in the training objective every 500, 000
iterations as training evolves demonstrate improvements in long-term predictions in all games ex-
cept Freeway where the training objective assumed already very low values within the first 500, 000
iterations and might have been therefore insensitive to further fine-tuning by curriculum learning.
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Figure 6: Effect of curriculum learning on five different Atari games. Each panel corresponds to a
different game, individual panels are structured in the same way as are those in Figure 5

A.5 EFFECT OF RANDOM SEEDS

We conducted three different experiments per game with different initial random seeds. The effect
of different initial random seeds on the cumulative reward error is summarized in Figure 7 which
reports how the median and the 5 to 95 percentiles of the cumulative reward error evolve over look
ahead steps in the different experiments per game. Note that the results of the first column in Figure 7
are shown in Figure 2 from the main paper together with a more detailed analysis depicting empirical
cumulative reward error distributions for some look ahead steps. The random initial seed does not
seem to have a significant impact on the cumulative reward prediction except for Freeway where the
network in the third experiment starts to considerably overestimate cumulative rewards at around 30
to 40 look ahead steps.

In order to investigate this reward overestimation in Freeway further, we analyse visualizations of
joint video frame and reward prediction for this particular seed (similar in style to Figure 3 from
Section 4.2 in the main paper). The results are shown in Figure 8 where a peculiar situation occurs
after 31 predicted look ahead steps. In Freeway, the agent’s job is to cross a busy road from the
bottom to the top without bumping into a car in order to receive reward. If the agent bumps into
a car, the agent is propelled downwards further away from the reward-yielding top. This propelled
downwards movement happens even when the agent tries to move upwards. Exactly that kind of
situation is depicted at the beginning of Figure 8 and occurs for this particular prediction after 31
steps. Our predictive model is however not able to correctly predict the aforementioned downwards
movement caused by the agent hitting the car, which is highlighted in red throughout steps 31 to 35
documenting an increasing gap between ground truth and predicted agent position as the propelled
downwards movement of the ground truth agent continues. In the course of further prediction, the
network model assumes the agent to reach the reward-yielding top side of the road way too early
which results in a sequence of erroneous positive reward predictions throughout steps 41 to 50,
and as a side effect seemingly that the predictive model loses track of other objects in the scene.
Concluding, this finding may serve as a possible explanation for cumulative reward overestimation
for that particular experiment in Freeway.
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Figure 7: Effect of different initial random seeds on cumulative reward error. The plots show how
the cumulative reward error evolves over look ahead steps in terms of the median and the 5 to
95 percentiles for our network model (blue) as well as the baseline model (red) in each experiment.
Each row refers to a different game, each column refers to a different experiment per game initialized
with a different random seed. The first column of this figure is presented in Figure 2 of the main
paper explaining the results in more detail by additionally illustrating empirical distributions over
the cumulative reward error for some look ahead steps.
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Figure 8: Example predictions in Freeway over 20 steps. The figure is similar in nature to Figure 3
from the main paper with the only difference that predictions are depicted from time step 31 onwards.
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A.6 LOSS ON TEST SET

In the main paper, our analysis focuses on evaluating how well our model serves the purpose of
cumulative reward prediction. Here, we evaluate network performance in terms of both the video
frame reconstruction loss as well as the reward prediction loss on the test set following the analysis
conducted in Oh et al. (2015). For each game, we sample 300 minibatches of size I = 50 from
the underlying test set and compute the test loss over K = 100 look ahead steps with the formula
presented in the main paper in Section 3.3 used for learning network parameters, but without aver-
aging over look ahead steps because we aim to illustrate the test loss as a function of look ahead
steps—statistics of this analysis are plotted in Figure 9.

Best overall test loss is achieved in Freeway and for initial look ahead steps (up to roughly between
40 and 60 steps) in Q*bert, which is in accordance with results for cumulative reward prediction
from the main paper. Also in line with results from the main paper is the finding that the reward
loss on the test set is worse in Seaquest, Ms Pacman and Space Invaders when compared to Q*bert
(up to approximately 40 steps) and Freeway. Worst video frame reconstruction loss is observed
for Space Invaders in compliance with Oh et al. (2015) where the authors report that there are
objects in the scene moving at a period of 9 time steps which is hard to predict by a network only
taking the last 4 frames from the last 4 steps as input for future predictions. At first sight, it might
seem a bit surprising that the reward prediction loss in Space Invaders is significantly lower than
in Seaquest and Ms Pacman for long-term ahead prediction despite the higher frame reconstruction
loss in Space Invaders. A possible explanation for this paradox might be the frequency at which
rewards are collected—this frequency is significantly higher in Seaquest and Ms Pacman than in
Space Invaders. A reward prediction model with bias towards zero rewards—as indicated by the
main results in the paper—might therefore err less often in absolute terms when rewards are collected
at a lower frequency and may hence achieve lower overall reward reconstruction loss.
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Figure 9: Loss on test set over look ahead steps. Each row reports the loss on the test set over 100
look ahead steps for a different game. The first column illustrates the compound loss consisting of
the video frame reconstruction loss (second column) and the reward prediction loss (third column).
The loss on the test set is computed according to Oh et al. (2015) similar to the training loss for
learning network parameters, however with a different look ahead parameter K = 100 and a differ-
ent minibatch size I = 50, and without averaging over look ahead steps since we aim to plot the test
loss as a function of look ahead steps. For each game, the test loss is computed for 300 minibatches
resulting in an empirical distribution with 300 loss values per look ahead step. The figure shows the
mean (in green), the median (in red), the 5 to 95 percentiles (in shaded blue) as well as minimum
and maximum elements (in black dashed lines) of these empirical distributions.
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