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Abstract

Variational inference based on χ2 divergence minimization (CHIVI) provides a way to ap-
proximate a model’s posterior while obtaining an upper bound on the marginal likelihood.
However, in practice CHIVI relies on Monte Carlo (MC) estimates of an upper bound ob-
jective that at modest sample sizes are not guaranteed to be true bounds on the marginal
likelihood. This paper provides an empirical study of CHIVI performance on a series of
synthetic inference tasks. We show that CHIVI is far more sensitive to initialization than
classic VI based on KL minimization, often needs a very large number of samples (over
a million), and may not be a reliable upper bound. We also suggest possible ways to de-
tect and alleviate some of these pathologies, including diagnostic bounds and initialization
strategies.
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1. Introduction

Estimating the marginal likelihood in probabilistic models is the holy grail of Bayesian
inference. Marginal likelihoods allow us to compute the posterior probability of model
parameters or perform Bayesian model selection (Bishop et al., 1995). While exact compu-
tation of the marginal is not tractable for most models, variational inference (VI) (Jordan
et al., 1999) offers a promising and scalable approximation. VI suggests choosing a simple
family of approximate distributions q and then optimizing the parameters of q to mini-
mize its divergence from the true (intractable) posterior. The canonical choice is the KL
divergence, where minimizing corresponds to tightening a lower bound on the marginal
likelihood. Recently, (Dieng et al., 2017a) showed that minimizing a χ2 divergence leads to
a chi-divergence upper bound (“CUBO”). Practitioners often wish to combine upper and
lower bound estimates to “sandwich” the model evidence in a narrow range for later decision
making, so the CUBO’s flexible applicability to all latent variable models is appealing.

However, both the estimation of the upper bound and computing its gradient for mini-
mization require Monte Carlo estimators to approximate tough integrals. These estimators
may have large variance even at modest number of samples. A natural question is then how
reliable CUBO minimization is in practice. In this paper, we provide empirical evidence
that CUBO optimization is often tricky, and the bound itself ends up being too loose even
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Figure 1: Minimizing χ2 divergence using MC gradient estimates via the reparametrization
trick can be challenging even with simple univariate Gaussian distributions. Each column
shows results under a different number of MC samples. The last column compares ELBO
and CUBO traces for S = 104; diamonds correspond to sanity-check estimator from Eq. (2).
Top row : variational parameter traces with fixed true variance but changing starting mean
locations. Bottom row: same, but with fixed true mean and changing start variance values.

using hundreds of samples. Our contributions include: i) evaluation of the CUBO in two
simple scenarios, and comparison to other bounds to gauge its utility; ii) empirical analysis
of CUBO optimization in both scenarios, in terms of convergence rate and sensitivity to the
number of samples; iii) review of alternative upper bounds and best practices for diagnosing
and testing new bounds.

2. χ-Divergence Variational Inference via Monte Carlo Gradient Descent

Let p(x, z) be the joint distribution of observed variables x and latent variables z. Varia-
tional inference (VI) approximates the posterior distribution p(z|x) through optimization.
The idea is to posit a family of variational distributions and find the member distribution
q(z;λ) which is as close as possible to the true posterior. Standard VI minimizes the KL
divergence DKL

(
q(z;λ)||p(z|x)

)
. Minimizing the KL divergence is equivalent to maximizing

the evidence lower bound (ELBO) on the model evidence log p(x). Alternatively, χ2 vari-
ational inference (Dieng et al., 2017b) minimizes the χ2 divergence DKL

(
p(z|x)||q(z;λ)

)
.

This is equivalent to minimizing the following upper bound (CUBO):

LCUBO(λ) =
1

2
logEq(z;λ)

[(p(x, z)

q(z;λ)

)2]
. (1)

The expectation in the CUBO is usually intractable, so we use Monte Carlo samples to

construct a biased estimate L(λ) = 1
2 log 1

S

∑S
s=1

(
p(x,z(s))

q(z(s);λ)

)2
where z(1), . . . , z(S) ∼ q(z;λ).

2



Challenges in Computing and Optimizing Upper Bounds of Marginal Likelihoods

In this paper, we consider two optimization strategies, both relying on the reparametrization
trick (Kingma and Welling, 2013; Rezende et al., 2014; Titsias and Lázaro-Gredilla, 2014):
i) optimizing the CUBO directly in Eq. (1) using biased gradient estimators; ii) optimizing
the exponentiated CUBO defined as LEXPCUBO(λ) = exp(2 LCUBO(λ)), whose gradients
are unbiased but might suffer from higher variance.

3. Case Study: CUBO Optimization for Univariate Gaussians

We consider a simple inference scenario: minimizing the divergence between two univariate
Gaussian distributions. We assume no data x, such that the true posterior is just the prior
fixed at p(z)

.
= N (0, 1). We consider two cases: a variational distribution q(z; µ̃, σ̃2) with

fixed σ̃ = 1.0 and varying mean µ̃ = {1, 2, 4, 10}, or the other way around, fixed µ̃ =
0.0 and varying σ̃ = {0.1, 0.5, 2.0, 10.0}. All experiments were performed using stochastic
gradient descent (Bottou, 2010) and grid-searching the learning rate for each different bound
independently in a fine grid between 10−4 and 1.0.

Fig. 1 shows the evolution of the variational parameters over time when minimizing the
χ2 divergence (ChiSq) or maximizing the KL divergence (KL) from different initialization
points. While the KL trajectories always converge to the true values, the ChiSq variational
parameters fail to converge for 5 out of the 8 cases when the number of MC samples S = 100.
If we increase the number of samples S to 1M, 3 out of 8 cases still fail to find the true
values. Most alarming, in several cases, e.g., fixed mean and varying σ̃ initialized at 0.1, the
CUBO MC estimator present values below 0 (the true marginal likelihood value), so it is not
an upper bound anymore, even with 1M samples. Appendix A show similar pathological
behaviors for the exponentiated CUBO case.

To assess CUBO correctness, consider an alternative MC estimator that samples from
the prior p, rather than from q:

LCUBO(λ) =
1

2
logEp(z)

[
p(x|z)2

(
p(z)

q(z;λ)

)]
≈ 1

2
log

1

S

S∑
s=1

p(x|z(s))2
(

p(z(s))

q(z(s);λ)

)
, (2)

where z(1), . . . , z(S) ∼ p(z). In general, since CUBO optimization is sensitive to initializa-
tion, it is a good practice to do warm initializations, either with MAP estimation or by
performing KL optimization first during a few iterations.

4. Case Study: CUBO Optimization for Topic Models

We consider applying the CUBO training objective to the Latent Dirichlet Allocation (LDA)
topic model (Blei et al., 2003). We focus on single-document inference, where the length
of the document should directly impact posterior uncertainty about which topics are used.
We assume that there are K = 3 topics and V = 3 vocabulary words. We are given
a set of topic-word probabilities φ where φkv is the probability of word v under topic
k. Each document d is represented by counts of V discrete words or features, xd ∈ ZV+.
These counts are generated via a document-specific mixture of K topics, xd ∼ Mult(xd |∑K

k=1 πdkφk, Nd). The probabilities πd,where
∑K

k=1 πdk = 1, have a conjugate Dirichlet prior
with hyperparameter α: πd ∼ Dir(πd | α1, . . . αK). Given a specific document d, our goal
is to estimate an approximate posterior q(πd) over the document-topic probabilities via
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method log p(x) (5%, 95%)

q(π) : Dirichlet 102 samples 105 samples
warm init
optimized ELBO UB KLpq -25.06 (-25.07,-25.04) -25.06 (-25.06,-25.06)

q(π) : LogisticNorm 102 samples 105 samples

cold init
optimized ELBO

CUBO -24.59 (-25.18,-22.99)

UB KLpq -23.33 (-23.84,-22.73)

-23.15 (-23.42,-20.20)

-23.39 (-23.41,-23.37)

warm init
optimized CUBO

CUBO -24.67 (-24.87,-24.19)

UB KLpq -24.42 (-24.55,-24.25)

-24.37 (-24.46,-24.08)

-24.39 (-24.40,-24.39)

cold init
optimized CUBO

N/A: Optimizer diverged

Table 1: Bounds on marginal likelihood for a “long” toy document under an LDA topic
model. We infer an approximate posterior for a single document with 100 words, using
either a Dirichlet q (top row) or MC gradient updates to fit a LogisticNormal q (bottom
rows) with 100 samples per gradient step. We evaluate CUBO and KLpq, see Appendix B.

variational inference. In particular, we explore two tasks: (i) estimating upper bounds on
the marginal likelihood given a fixed q, and (ii) optimizing q to try to improve such bounds.

Experiment: Reliability of Upper Bound Estimation To assess the reliability of up-
per bound estimation using approximate distributions, we fit four possible q: one Dirichlet
via closed-form updates optimizing the ELBO, and 3 separate Logistic Normal (LN) distri-
butions fit via Monte-Carlo gradient descent steps (see details for each q in the appendix).
The 3 LNs are respectively a cold-started optimization of the ELBO, a warm-started opti-
mization of the CUBO, and a cold-started optimization of the CUBO. Warm-starting here
means that the mean of q is set to the maximum likelihood estimator of the document-topic
vector πd, while cold-starting has random parameters not informed by the data. We hope
that these detailed experiments tease apart the impact of initialization and optimization.

In Tab. 1 and Tab. 2, for each q described above, we compare CUBO to an alternative
upper bound KLpq, detailed in Appendix B. For each stochastic upper bound estimator, we
compute 20 replicates using each 100 samples and 100,000 samples, then report the median
of these samples as well as 5-th and 95-th percentile value intervals. Our conclusions are:

CHIVI parameter estimation often diverges for cold initializations. We repli-
cated this issue across many settings, as reported in Tab. 1.

CUBO estimators are overconfident. Increasing sample size widens confidence inter-
vals. KLpq estimators are better behaved. Consider Tab. 2’s warm-init CUBO row (in
Appendix A): At 100 samples the CUBO seems to be within (-1.03, 0.77), but at many
more samples, the CUBO interval drops to (-0.86, -0.64), with a new median that is just
barely contained in the previous interval. In contrast, the 100 sample KLpq bound has an
interval that shrinks.

ELBO optimization followed by CUBO computation may be enough. The Dirich-
let q optimized for the ELBO but then fitted into a CUBO estimator produces competitive
bounds. This suggests that it may not always be necessary to optimize the CUBO directly.
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Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings
of COMPSTAT’2010, pages 177–186. Springer, 2010.

Adji B Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David M Blei. The
χ-divergence for approximate inference. 2017a.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Vari-
ational inference via χ upper bound minimization. In Advances in Neural Information
Processing Systems, pages 2732–2741, 2017b.

Andrew Gelman, Daniel Lee, and Jiqiang Guo. Stan: A probabilistic programming language
for bayesian inference and optimization. Journal of Educational and Behavioral Statistics,
40(5):530–543, 2015.

Chunlin Ji, Haige Shen, and Mike West. Bounded approximations for marginal likelihoods.
Technical Report 10–05, Duke University Dept. of Statistics, 2010.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An
introduction to variational methods for graphical models. Machine learning, 37(2):183–
233, 1999.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv:1312.6114
[cs, stat], December 2013. arXiv: 1312.6114.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropaga-
tion and Approximate Inference in Deep Generative Models. arXiv:1401.4082 [cs, stat],
January 2014. arXiv: 1401.4082.

Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational bayes for non-
conjugate inference. In International conference on machine learning, pages 1971–1979,
2014.

5

http://www.jstor.org/stable/2335470


Challenges in Computing and Optimizing Upper Bounds of Marginal Likelihoods

Appendix A. Extra Experiments

Figure 2: Univariate Gaussian case study. Minimizing the exponentiated CUBO using
MC gradient estimates via the reparameterization trick can be challenging even with simple
univariate Gaussian distributions. Each column shows results under a different number of
MC samples. Las columns shows ELBO and CUBO traces for S = 104 samples. Top row :
Comparison of variational parameter traces, while minimizing ELBO and CUBO, with fixed
true variance but changing starting locations of the mean (farther and farther from true
mean). Bottom row: Comparison of ELBO and CUBO traces, with fixed true mean but
changing start variance values (some larger, some smaller).
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method log p(x) (5%, 95%)

exact -1.0986

q(π) : Dirichlet 102 samples 105 samples
warm init
optimized ELBO UB KLpq -1.08 ( -1.12, -1.04) -1.08 ( -1.08, -1.07)

q(π)=LogisticNorm 102 samples 105 samples

warm init
optimized ELBO

CUBO (q) -0.89 ( -1.19, -0.16)

UB KLpq -0.67 ( -0.90, -0.46)

-0.31 ( -0.51, 0.13)

-0.70 ( -0.71, -0.69)

warm init
optimized CUBO

CUBO (q) -0.89 ( -1.03, -0.77)

UB KLpq -0.81 ( -0.87, -0.69)

-0.82 ( -0.86, -0.64)

-0.79 ( -0.80, -0.79)

cold init
optimized CUBO

CUBO (q) -0.88 ( -0.98, -0.79)

UB KLpq -0.80 ( -0.88, -0.67)

-0.80 ( -0.86, -0.67)

-0.79 ( -0.79, -0.78)

Table 2: Topic model case study. Bounds on marginal likelihood for a “short” toy
document under an LDA topic model. We infer an approximate posterior over doc-topic
probabilities for a single document with just 1 word, using either closed-form coordinate
ascent updates to fit a Dirichlet q (top row) or MC gradient updates to fit a LogisticNormal
q (bottom rows) with 100 samples per gradient step. Using the final fitted q, we then
compute 20 replicates of our stochastic upper bounds on marginal likelihood using either
the CUBO or the KLpq estimator (see Appendix B, using S = 102 or 105 samples for each.
We show the median value and the (5%, 95%) interval.

Appendix B. The “KLpq” bound : reliable but expensive.

Given any approximate posterior q(πd) parameterized by v̂d ∈ V, the following is an upper
bound on the marginal likelihood:

UBx KLpq(xd, φ, v̂d) , Eπd∼p(πd|xd)
[

log
p(πd, xd|φ)

q(πd|v̂d)

]
,≈ 1

S

S∑
s=1

[
log

p(πsd, xd|φ)

q(πsd)

]
(3)

Ji et al. (2010) show that minimizing this bound is equivalent to minimizing KL(p||q), which
computes the asymmetric KL divergence in the opposite direction of typical variational
methods, which minimize KL(q||p). We suggest that this bound is a useful comparison
point for the CUBO bound.

The “KLpq” upper bound can be approximated using S samples from the posterior
πsd ∼ p(πd|xd, φ). For our LDA model, we compute S samples from a Hamiltonian Monte
Carlo posterior using Stan (Gelman et al., 2015).
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Appendix C. Details on Variational Approximate Posteriors for Topic
Models

C.1. LDA Optimization #1: Dir-Cat + ELBO + CoordAscent

Consider the approximate posterior q(πd, zd):

q(πd|θ̂d) = Dir(πd | θ̂d1 . . . θ̂dK), (4)

q(zd|r̂d) =

Ud∏
u=1

Cat(zdu|r̂du1 . . . r̂duK)

Objective expression for Dir-Cat

L(xd, θ̂d, r̂d) , Eq
[

log p(xd, πd, zd)− log q(πd, zd|θ̂d, r̂d)
]

(5)

This expression has the following closed-form:

L(xd, θ̂d, r̂d) =
K∑
k=1

Ud∑
u=1

cxdur̂duk log φk,ixdu from Eq[log p(xd|zd)]

(6)

−
K∑
k=1

Ud∑
u=1

cxdur̂duk log r̂duk from − Eq[log q(zd)]

cK(α)− cK(θ̂) +

K∑
k=1

(Ndk + α− θ̂dk)(ψ(θ̂dk)− ψ(θ̂d·)) from Eq[log
p(πd, zd)

q(πd)
]

where the log cumulant cK(·) of the K-dimensional Dirichlet log pdf is a log ratio of Gamma
functions:

cK(a1, . . . aK) = log Γ(
∑K

k=1 ak)−
∑K

k=1 log Γ(ak) (7)

C.2. LDA Optimization #2: Logistic Normal + MonteCarloGD

Approximate posterior: Logistic Normal. Alternatively, we consider another ap-
proximating posterior family which treats the vector πd as a logistic normal (LN) random
variable (Aitchison and Shen, 1980) and marginalizes away q(zd). We will call this the
LN-Marg family for short.

q(πd|m̂d, ŝd) = LN(πd | m̂d, diag(ŝ2d)), m̂d ∈ RK−1, ŝd ∈ RK−1+ (8)

Here, m̂d is a vector of mean parameters, and ŝd a vector of standard deviation parameters.
Each has length K − 1, which is a minimal representation.
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Because LN random variables are not very common, we write the log probability density
function of the approximate posterior here, using results from Aitchison and Shen (1980,
Eq. 1.3):

log q(πd) = −
K∑
k=1

log πdk −
K − 1

2
log[2π]−

K−1∑
k=1

log ŝdk −
1

2

K−1∑
k=1

1

ŝ2dk
(log

πdk
πdK

− m̂dk)
2 (9)

The entropy of the distribution is then:

Eq[− log q(πd)] =

K∑
k=1

Eq[log πdk] +
K − 1

2
log[2π] +

K−1∑
k=1

log ŝdk +
K − 1

2
(10)

where we have used standard results to simplify that last term:

1

2

K−1∑
k=1

1

ŝ2dk
Eq(π)[(log

πdk
πdK

− m̂dk)
2] =

1

2

K−1∑
k=1

1

ŝ2dk
Euk∼N (mk,s

2
k)

[(uk − m̂dk)
2] =

K − 1

2
(11)

This expectation Eπd∼q[log πdk] unfortunately has no closed form.

Reparameterization trick. We can write the random variable πd as a deterministic
transform of a standard normal random variable ud.

First, recall we can map any K − 1-length real vector u ∈ RK−1 to the K-dimensional
simplex ∆K via the softmax transformation:

smax([u1, . . . uK−1]) =
[ eu1

1 +
∑K−1

`=1 eu`
, . . . ,

euK−1

1 +
∑K−1

`=1 eu`
,

1

1 +
∑K−1

`=1 eu`

]
(12)

This transformation is one-to-one invertible, and also differentiable w.r.t. its input vector.
Now, to generate πd ∈ ∆K , we can draw πd in three steps: (1) draw ud from a standard

normal, (2) scale it with the appropriate mean and standard deviation parameters, and (3)
apply the softmax transformation,

πd ← smax(ŝd · ud + m̂d), ud ∼ N (0, IK−1) (13)

C.3. LDA Optimization #3: Overcomplete-Logistic-Normal + MonteCarloGD

Transformation between overcomplete simplex and the reals We now consider an
overcomplete representation of the K-dimensional simplex. Rather than the minimal K−1
parameters in the LN-Marg approximation above, let’s look at transformations that use
K free parameters. In this overcomplete space, we must augment our probability vector
πd ∈ ∆K (which has only K − 1 degrees of freedom) with an additional scalar real random
variable wd ∈ R, so the combined vector [πd1 . . . πd,K−1 wd] has the required K linearly-
independent dimensions. Now, we can create an invertible transformation between two

9
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K-length vectors: a vector u of real values, and the augmented pair π,w:

u1(π,w) = log π1 + w π1(u) =
eu1∑K
`=1 e

u`
(14)

u2(π,w) = log π2 + w π2(u) =
eu2∑K
`=1 e

u`
. . .

uK−1(π,w) = log πK−1 + w πK−1(u) =
euK−1∑K
`=1 e

u`

uK(π,w) = log(1−
K−1∑
`=1

π`) + w w(u) = log
K∑
`=1

eu`

Because this is an invertible transformation, we can compute the Jacobian:

J(π,w) =


∂u1
∂π1

∂u1
∂π2

. . . ∂u1
∂w

∂u2
∂π1

∂u2
∂π2

. . . ∂u2
∂w

...
. . .

∂uK
∂π1

∂uK
∂π2

. . . ∂uK
∂w

 =



1
π1

0 0 . . . 0 1

0 1
π2

0 . . . 0 1

0 0 1
π3

. . . 0 1
...

. . .

0 0 0 . . . 1
πK−1

1
−1

1−
∑K−1

`=1 π`

−1
1−

∑K−1
`=1 π`

−1
1−

∑K−1
`=1 π`

. . . −1
1−

∑K−1
`=1 π`

1


Next, we wish to compute the determinant of this Jacobian, as a function of π and w.
First, we perform row and column swaps until only the first column and first row have
non-diagonal entries, like this:

J ′ =



1 −1
rem(π)

−1
rem(π) . . . −1

rem(π)

1 1
π1

0 0 . . . 0

1 0 1
π2

0 . . . 0

1 0 1
π3

. . . 0 0
...

. . .

1 0 0 . . . 1
πK−1


(15)

Here, we have defined the remaining mass beyond the K − 1 independent entries of the
vector π as rem(π) = 1 −

∑K−1
k=1 πk for simplicity. The number of swaps needed to create

J ′ from J is always an even number (there will be the some a swaps needed to fix the rows,
and then the same number a swaps for the columns, so 2a swaps total). Each single row
or column swap changes the sign of the determinant but not the value. An even number
of swaps thus leaves the determinant unchanged: |J ′| = |J |. We can then apply the Schur
determinant formula, which says, for any square matrix, we can compute its determinant
by manipulating its subcomponent blocks:

det

∣∣∣∣A B
C D

∣∣∣∣ = det|D| det|A−BD−1C| (16)

10
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Let us choose D as the diagonal block of J ′: D = diag( 1
π1
. . . 1

πK−1
). Then we have:

det J(π,w) = det J ′ =

[
K−1∏
k=1

1

πk

](
1− −1

rem(π)

K−1∑
k=1

πk

)
=

[
K−1∏
k=1

1

πk

][
1

1−
∑K−1

`=1 π`

]
(17)

The simplification arises via algebra after plugging in the definition of rem(π). Armed
with the Jacobian and its determinant, we have all the tools needed to perform variational
inference in this representation.

Approximate posterior: Overcomplete LN. Returning to our topic modeling task,
we consider again the LDA generative model for a document as a given, and wish to com-
pute an approximate posterior for the document-topic vector πd. We suggest an approx-
imate posterior family based on the overcomplete logistic normal above. We can draw
samples from this in two steps. First generate a vector of reals ud = [ud1 . . . udK ] such
that udk ∼ N (m̂dk, ŝ

2
dk). Second, transform this vector ud to the simplex-plus-real vector

[πd1 . . . πdK−1 wd] via Eq. (14).
This leads to the following log probability density function over the joint space of π,w ∈

∆K × R:

log q(π,w) = log |det J(π,w)|+
K∑
k=1

logN (uk(π,w)|m̂dk, ŝ
2
dk) (18)

Our generative model does not include the log-scale variable wd, but we can easily just give
it a N (0, 1) prior and keep it decoupled from the data.
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