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ABSTRACT

Recent deep multi-task learning (MTL) has been witnessed its success in alle-
viating data scarcity of some task by utilizing domain-specific knowledge from
related tasks. Nonetheless, several major issues of deep MTL, including the effec-
tiveness of sharing mechanisms, the efficiency of model complexity and the flex-
ibility of network architectures, still remain largely unaddressed. To this end, we
propose a novel generalized latent-subspace based knowledge sharing mechanism
for linking task-specific models, namely tensor ring multi-task learning (TRMTL).
TRMTL has a highly compact representation, and it is very effective in transfer-
ring task-invariant knowledge while being super flexible in learning task-specific
features, successfully mitigating the dilemma of both negative-transfer in lower
layers and under-transfer in higher layers. Under our TRMTL, it is feasible for
each task to have heterogenous input data dimensionality or distinct feature sizes
at different hidden layers. Experiments on a variety of datasets demonstrate our
model is capable of significantly improving each single task’s performance, par-
ticularly favorable in scenarios where some of the tasks have insufficient data.

1 INTRODUCTION

Multi-task learning (MTL) (Caruana, 1997; Maurer et al., 2016) is an approach for boosting the
overall performance in each individual task by learning multiple related tasks simultaneously. In the
deep learning context, jointly fitting sufficiently flexible deep neural networks (DNNs) to data of
multiple tasks can be seen as adding an inductive bias to the deep models, which could be beneficial
to learn feature representations preferable by all tasks. Recently, the deep MTL has gained much
popularity and been successfully explored in an abroad range of applications, such as computer
vision (Zhang et al., 2014; Misra et al., 2016), natural language processing (Luong et al., 2015; Liu
et al., 2017), speech recognition (Wu et al., 2015; Huang et al., 2015) and so on.

However, a number of key challenges posed by the issues of ineffectiveness, inefficiency and in-
flexibility in deep MTL are left largely unaddressed. One major challenge is how to seek effective
information sharing mechanisms across related tasks, which is equivalent to designing better param-
eter sharing patterns in the deep networks. Some previous work (Zhang et al., 2014; Yin & Liu,
2017) tried to solve this problem by means of hard parameter sharing (Ruder, 2017), where the bot-
tom layers are all shared except with one branch per task at the top layers. Although being simple
and robust to over-fitting (Baxter, 1997), this kind of architecture can be harmful when learning
high-level task-specific features, since it focuses only on common low-level features of all tasks.
Moreover, these common features may be polluted by some noxious tasks, leading to the negative
transfer in low-level features among tasks (Yosinski et al., 2014). An alternative line of work miti-
gate this issue to some extent by following the soft parameter sharing strategy (Ruder, 2017), under
which one separate DNN is learned for each task with its own set of parameters, and the individual
DNNs are implicitly linked by imposing constraints on the aligned weights. The deep MTL models
of this type include using `2 norm regularization (Duong et al., 2015), trace norm regularization
(Yang & Hospedales, 2016) and tensor norm priors (Long & Wang, 2015; Long et al., 2017).

The lack of efficiency in model complexity gives rise to another great challenge for current deep
MTL. The above soft-sharing based deep models (one set of parameters per task) typically involve
enormous number of trainable parameters and require extremely large storage and memory. It is thus
usually infeasible to deploy those deep MTL models on resource-constrained devices such as mobile
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Figure 1: The overall sharing mechanisms of MRN, two variants of DMTRL (for the setting of CNN)
and our TRMTL w.r.t. two tasks. The shared portion is depicted in yellow. The circles, squares and
thin rectangles represent tensor cores, matrices and vectors, respectively. MRN: original weights are
totally shared at the lower layers and the relatedness between tasks at the top layers is modeled by
tensor normal priors. DMTRL (TT or Tucker): all layer-wise weights must be equal-sized so as to
be stacked and decomposed into factors. For each task, almost all the factors are shard at each layer
except the very last 1D vector. Such pattern of sharing is identical at all layers. TRMTL: layer-wise
weights are separately encoded into TR-formats for different tasks, and a subset of latent cores are
selected to be tied across two tasks. The portions of sharing can be different from layer to layer.

phones and wearable computers. Yang & Hospedales (2017) alleviated the issue by integrating ten-
sor factorization with deep MTL and proposed deep multi-task representation learning (DMTRL).
Specifically, they first stack up the layer-wise weights from all tasks and then decompose them into
low-rank factors, yielding a succinct deep MTL model with fewer parameters. Despite the compact-
ness of the model, DMTRL turns out to be rather restricted on sharing knowledge effectively. This
is because, as shown in Figure 1, DMTRL (TT or Tucker) shares almost all fractions of layer-wise
weights as common factors, leaving only a tiny portion of weights to encode the task-specific in-
formation. Even worse, such pattern of sharing must be identical across all hidden layers, which is
vulnerable to the negative transfer of the features. As an effect, the common factors become highly
dominant at each layer and greatly suppress model’s capability in expressing task-specific variations.

The last challenge arises from the flexibility of architecture in deep MTL. Most of deep MTL models
force tasks to have the equal-sized layer-wise weights or input dimensionality. This restriction makes
little sense for the case of loosely-related tasks, since individual tasks’ features (input data) can be
quite different and the sizes of layer-wise features (input data) may vary a lot from task to task.

In this work, we provide a generalized latent-subspace based solution to addressing aforementioned
difficulties of deep MTL, from all aspects of effectiveness, efficiency and flexibility. Regarding the
effectiveness, we propose to share different portions of weights as common knowledge at distinct
layers, so that each individual task can better convey its private knowledge. As for the efficiency,
our proposal shares knowledge in the latent subspace instead of original space by utilizing a general
tensor ring (TR) representation with a sequence of latent cores (Zhao et al., 2016; 2017). One moti-
vation of TR for MTL is it generalizes other chain structured tensor networks (Cichocki et al., 2016),
especially tensor train (TT) (Oseledets, 2011), in terms of model expressivity power, as TR can be
formulated as a sum of TT networks. On the other hand, TR is able to approximate tensors using
lower overall ranks than TT does (Zhao et al., 2016), thus yielding a more compact and sparsely-
connected model with significantly less parameters for deep MTL. Adopting TR-format with much
lower ranks could bring more benefits to deep MTL if we tensorize a layer-wise weight of each
task into a higher-order weight tensor, since the weight can be decomposed into a relatively larger
number but smaller-sized cores. This in turn facilitates the sharing of cores at a finer granularity and
further enhances the effectiveness of sharing. Additionally, Zhao et al. (2017) observed that different
cores control different levels of correlations in tensor data, e.g. for a tensorized image, each core
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Figure 2: The demonstration of four types generalizations from DMTRL-TT to our TRMTL.

affects one specific scale of the resolution. Such observation also provides a natural inspiration for
encoding weights of deep MTL via chain based tensor networks and then sharing the cores across
tasks. For the last challenge, the flexibility of deep MTL networks is maximally retained in our
proposal by parameterizing one DNN per task, while the discrepancy between tasks’ features is also
taken into account by encoding layer-wise weights of different tasks using distinct number of cores.
In this way, the network of each task may possess its own size of weight (or input dimensionality).
We refer to our framework as tensor ring multi-task learning (TRMTL), as depicted in Figure 1.
With above properties, TRMTL achieves the state-of-the-art performance on a variety of datasets
and we validate that each individual task can gain much benefit from the proposed architecture.

2 RELATED WORK

The classical matrix factorization based MTL (Kumar & Daume III, 2012; Romera-Paredes et al.,
2013; Wimalawarne et al., 2014) requires the dimensionality of weight vectors {wt ∈ RM}Tt=1
of T tasks to be equal-sized, so that these weights could be stacked up into one weight matrix
W ∈ RM×T . Kumar & Daume III (2012) assumes W to be low-rank and factorizes it as W = LS.
Here, L ∈ RM×K consists of K task-independent latent basis vectors, whereas each column vector
of S ∈ RK×T is task-specific and contains the mixing coefficients of these common latent bases.
(Yang & Hospedales, 2017) extended this matrix based MTL to its tensorial counterpart DMTRL
by making use of tensor factorization. Likewise, DMTRL starts by putting the equal-sized weight
matrices {Wt ∈ RM×N}Tt=1 side by side along the ‘task’ mode to form a 3rd-order weight tensor
W ∈ RM×N×T . In the case of CNN, this weight tensor corresponds to a 5th-order filter tensor
K ∈ RH×W×U×V×T . DMTRL then factorizes W (or K), for instance via TT-format, into 3 TT-
cores (or 5 TT-cores for K) (Yang & Hospedales, 2017). Analogously, the first 2 TT-cores (or the
first 4 TT-cores) play exactly the same role as L for the common knowledge; the very last TT-core
is in fact a matrix (similar to S), with each column representing the task-specific information.

Our TRMTL differs widely with DMTRL and generalizes DMTRL from a variety of aspects. In
order to reach TRMTL from DMTRL-TT, one needs to take four major types of generalizations
(G1-G4), as demonstrated in Figure 2. Firstly (in G1), TRMTL tensorizes the weight into a higher-
order weight tensor before factorizing it. By doing so, the weight can be embedded into more latent
cores than that of just 3 cores (or 5 cores) in DMTRL, which yields a more compact model and
makes the sharing at a finer granularity feasible. Secondly (in G2), DMTRL stringently requires
that the first D-1 cores (D is weight tensor’s order) must be all shared at every hidden layer, only
the last vector is kept for private knowledge. By contrast, TRMTL allows for any sharing pattern at
distinct layer. Thirdly (in G3), there is no need for layer-wise weights to be equal-sized and stacked
into one big tensor as in TRMTL, each task may have its individual input dimensionality. Finally
(in G4), TRMTL further generalizes TT to TR-format. For each task in DMTRL, the first core must
be a matrix and the last core must be a vector (with both border rank and outer mode size being
1). Notice that our TRMTL also conceptually subsumes DMTRL-Tucker in terms of the first three
aspects of generalizations (G1-G3). It is also worth mentioning that Wang et al. (2018) only applies
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Figure 3: The diagrams of a 4th-order tensor and its TT-format and TR-format.

TR-format for weight compression in a single deep net, whereas ours incorporates a more general
tensor network into the deep MTL context. The two methods differ in goals and applications.

Long et al. (2017) lately proposed MRN which incorporates tensor normal priors over the parameter
tensors of the task-specific layers. MRN jointly learns the transferable features as well as multilinear
relationship among tasks, with the objective to alleviate both under-transfer and negative-transfer
of the knowledge. However, like methods (Zhang et al., 2014; Ouyang et al., 2014; Chu et al.,
2015), MRN follows the architecture where all the lower layers are shared, which may harm the
transferability if tasks are loosely correlated. In addition, the relatedness of tasks is captured by the
covariance structures over features, classes and tasks. Constantly updating these covariance matrices
(via SVD in (Long et al., 2017)) becomes computationally prohibitive for large scale networks.
Compared to above mentioned non-latent-subspace methods, TRMTL is highly compact and hence
needs much fewer parameters, which is obviously advantageous in tasks with small sample size.

3 TENSOR PRELIMINARIES

High-order tensors (Kolda & Bader, 2009) are referred to as multi-way arrays of real numbers. Let
W ∈ RN1×···×ND be a Dth-order tensor in calligraphy letter, where D is called mode or way. Some
very original work have successfully applied tensor decompositions to applications such as imaging
analysis (Vasilescu & Terzopoulos, 2002; 2003) and computer vision (Vasilescu, 2011). A recent
tensor ring decomposition (TR) (Zhao et al., 2016) decomposes a tensor W into a sequence 3rd-
order latent cores that are multiplied circularly. An example of TR-format is illustrated in Figure 3.
In TR-format, any two adjacent latent cores are ‘linked’ by a common dimension of size Rk+1,
k ∈ {1, ..., D}. In particular, the last core is connected back to the first core by satisfying the border
rank condition RD+1 = R1. The collection of [R1, R2, ..., RD] is defined as TR-rank. Under
TR-format, merely

∑D
k=1NkRkRk+1 parameters are needed to represent the original tensorW of

size
∏D
k=1Nk. Compared with TT-format (Oseledets, 2011), TR generalizes TT by relaxing the

border rank condition. Zhao et al. (2016) conclude that TR is more flexible than TT w.r.t. low-rank
approximation. The authors observe the pattern of ranks distribution on cores tend to be fixed in TT.
In TT, the ranks of middle cores are often much larger than those of the side cores, while TR-ranks
has no such drawbacks and can be equally distributed on cores. The authors also claim that, under
the same approximation accuracy, the overall ranks in TR are usually much smaller than those in
TT, which makes TR a more compact model than TT. For more favorable properties, such as TR is
invariant under circular dimensional permutation, we refer readers to (Zhao et al., 2016; 2017).

4 METHODOLOGY

In general, our tensor ring multi-task learning (TRMTL) learns one DNN per task by representing the
original weight of each layer with a tensor ring layer (TRL), i.e., utilizing a sequence of TR-cores.
Then, a subset of TR-cores are tied across multiple tasks to encode the task-independent knowledge,
while the rest TR-cores of each task are treated as private cores for task-specific knowledge.

4.1 TENSOR RING LAYER

We start the section by describing the tensor ring layer (TRL), which lays a groundwork for our
TR based deep MTL approach. Following the TT-matrix (Novikov et al., 2015) representation,
TR is able to represent a large matrix more compactly via TR-matrix format. Specifically, let W
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be a matrix of size M × N with M =
∏D
k=1Mk, N =

∏D
k=1Nk, which can be reshaped in-

to a Dth-order tensor W ∈ RM1N1×M2N2···×MDND via bijective mappings φ(·) and ψ(·). The
map φ(i) = (φ1(i), ..., φD(i)) transforms the row index i ∈ {1, ...,M} into a D-dimensional
vector index (φ1(i), ..., φD(i)) with φk(i) ∈ {1, ...,Mk}; similarly, the map ψ(·) converts the
column index j ∈ {1, ..., N} also into a D-dimensional vector index (ψ1(j), ..., ψD(j)) where
ψk(j) ∈ {1, ..., Nk}. In this way, one can establish a one-to-one correspondence between a matrix
element W(i, j) and a tensor element W((φ1(i), ψ1(j)), ..., (φD(i), ψD(j))) using the compound
index (φk(·), ψk(·)) for mode k ∈ {1, ..., D}. We formulate the TR-matrix format as

W(i, j) =W((φ1(i), ψ1(j)), ..., (φD(i), ψD(j)))

=

R1∑
r1=1

R2∑
r2=1

· · ·
RD∑
rD=1

G(1)r1,(φ1(i),ψ1(j)),r2
G(2)r2,(φ2(i),ψ2(j)),r3

· · · G(D)
rD,(φD(i),ψD(j)),r1

=

R1∑
r1=1

g(1)Tr1
[(φ1(i), ψ1(j))]G(2)[(φ2(i), ψ2(j))] · · · g(D)

r1
[(φD(i), ψD(j))]

= Trace{G(1)[(φ1(i), ψ1(j))]G(2)[(φ2(i), ψ2(j))] · · ·G(D)[(φD(i), ψD(j))]}.

(1)

where G(k) denotes the kth latent core, while G(k)[(φk(i), ψk(j))] ∈ RRk×Rk+1 corresponds to the
(φk(i), ψk(j))th slice matrix of G(k). g(1)Tr1 [(φ1(i), ψ1(j))] represents the r1th row vector of the
G(1)[(φ1(i), ψ1(j))] and g(D)

r1 [(φD(i), ψD(j))] is the r1th column vector of G(D)[(φD(i), ψD(j))].
Notice that the third line in equation 1 implies TRL is more powerful than TT based layer in terms
of the modeling expressivity, as TRL can in fact be written as a sum of R1 TT layers. In the deep
MTL context, the benefits of tensorization in our TRL are twofold : a sparser, more compact tensor
network format for each task and a potentially finer sharing granularity across the tasks.

With TRL, the training can be conducted by applying the standard stochastic gradient descent based
methods on the cores. Note that TRL is similar to the recently proposed TR based weight compres-
sion (Wang et al., 2018) for neural network, but we adopt a different 4th-order latent cores in TR-
matrix. As for CNN setting, one can easily extend TR to a convolutional kernel K ∈ RH×W×U×V

K(h,w, u, v) = Trace{G(0)[(h,w)]G(1)[(φ1(u), ψ1(v))] · · ·G(D)[(φD(u), ψD(v))]}. (2)

4.2 TENSOR RING MULTI-TASK LEARNING

Our sharing strategy is to partition each layer’s parameters into task-independent TR-cores as well as
task-specific TR-cores. More specifically, for some hidden layer of an individual task t ∈ {1, ..., T},
we begin with reformulating the layer’s weights Wt ∈ RUt×Vt in terms of TR-cores by means of
TRL, where Ut =

∏Dt

k=1 U
k
t , Vt =

∏Dt

k=1 V
k
t . We thereafter reshape a layer’s input ht ∈ RUt into

a Dtth-order tensor Ht ∈ RU1
t ×···×UDt

t . Next, the layer’s input tensor Ht can be transformed into
layer’s output tensor Yt ∈ RV 1

t ×···×V Dt
t viaWt in TR-format. Finally, we have

Yt(v1, ..., vDt
) =

U1∑
u1=1

· · ·
UDt∑
uDt=1

Ht(u1, ..., uDt
)Trace{G(1)

com[(u1, v1)]

· · ·G(p)
t [(up, vp)] · · ·G(q)

com[(uq, vq)] · · ·G(r)
t [(ur, vr)] · · ·G(Dt)

com [(uDt
, vDt

)]}, (3)

where the common TR-cores subset {G(·)
com} has c elements which can be arbitrarily chosen from

the set of all Dt cores, leaving the rest cores {G(·)
t } as task-specific TR-cores. Pay close attention

that our TRMTL neither restricts on which cores to share, nor restricts the shared cores to be in an
consecutive order. Finally, we reshape tensor Yt back into a vector output yt ∈ RVt . Note that
the portion of sharing, which is mainly measured by c, can be set to different values from layer
to layer. According to equation 3, TRMTL represents each weight element in weight matrix as
function of a sequence product of the slice matrices of the corresponding shared cores and private
cores. Intuitively, this strategy suggests the value of each weight element is partially determined by
some common latent factors, and meanwhile, also partially affected by some private latent factors.
Thus, our sharing is carried out in an distributed fashion. This is more efficient than conventional
sharing strategies in which each weight element is either 100% shared or 100% not shared.

5



Under review as a conference paper at ICLR 2019

4.3 REMARKS ON CORE SELECTION

There are various strategies on how to select the shard cores w.r.t. both the location and the number.
Zhao et al. (2017) find that distinct cores control an image at different scales of resolution. The au-
thors demonstrate this by decomposing a tensorized 2D image into TR-cores, and then adding noise
to one specific core at a time. They show the core in the first location controls small-scale patches
while the core in the last location influences on large-scale partitions. Motivated by this, in current
work, we preferentially share the features from the detailed scale to the coarse scale, which means
we follow a natural left-to-right order in location to select different c number of cores at distinct lay-
ers. A more sophisticated and possible option is to automatically select sharable core pairs that have
highest similarity. We may consider two cores as a candidate pair if the same perturbation of the two
cores induces similar changes in the errors of respective tasks. In this way, one can adaptively select
most similar cores from tasks according to a certain threshold, leaving the rest as private cores.

5 EXPERIMENTAL RESULTS

We compare our TRMTL with single task learning (STL), MRN (Long et al., 2017), two variants
of DMTRL (Yang & Hospedales, 2017). To be fair, all the methods are adopted with same network
architecture. We repeat the experiments five times and record the average classification accuracy.
As for the sharing, we tensorize the layer-wise weight into a Dth-order tensor, whose D modes
have roughly the same dimensionality, such that the cores are approximately equal if we assume the
same TR-ranks. Therefore, we may measure the faction of sharing by the number of cores c, which
is needed to tune via cross validation. The search space of this hyper-parameter grows rapidly as
number of the layers increase. In practice, we can mitigate this issue a lot by following a useful
guidance that this number tends to decrease as the layers increase. Another solution is to apply a
greedy search on c layer by layer to effectively reduce the searching space. At last, we employ a
similar trick introduced in (Yang & Hospedales, 2017) to specify the TR-ranks R (or number D).

We conduct our experiments on following datasets : MNIST LeCun et al. (1998) contains handwrit-
ten digits from zero to nine. For this dataset, the task A is to classify the odd digits and the task B is
to classify the even ones. CIFAR-10 (Krizhevsky & Hinton, 2009) contains 60, 000 colour images
of size 32× 32 from 10 object classes. We assign 10 classes into 3 tasks, in which task A relates to
non-animals; task B comprises 4 animal classes including ‘cat’, ‘dog’, ‘deer’ and ‘horse’; tasks C
contains the remaining 2 classes. Omniglot (Lake et al., 2015) consists of 1623 unique characters
from 50 alphabets. There are only 20 examples for every character, drawn by a different person at
resolution of 105× 105. We divide the whole alphabets into five tasks (A to E), each of which links
to the alphabets from 10 different languages. In the Omniglot-MNIST multi-dataset setting, the
task A is assigned to classify the first 10 alphabets, while the task B is to recognize 10 digits. Due
to the paper limit, please refer to the appendix for architectures and more experimental results.

5.1 VALIDATION ON SHARING PATTERNS AND MODEL COMPACTNESS

In order to see how sharing styles affect our performance, we examine various patterns from three
representative categories, as shown in Figure 4. For instance, the patterns in ‘bottom-heavy’ cate-
gory mean more parameters are shared at the bottom layers than the top layers, while ‘top-heavy’
indicates the opposite style. The validation is conducted on MNIST using MLP with three tensorized
hidden layers, each of which is encoded using 4 TR-cores. The pattern ‘014’, for example, means the
c are 0, 1 and 4 from lower to higher layers, respectively. We gauge the transferability between tasks
with unbalanced training samples by the averaged accuracy on the small-sample tasks. Clearly, the
‘bottom-heavy’ patterns achieve significantly better results than those from the other two categories.
The pattern ‘420’ makes a lot sense and obviously outperforms the pattern ‘044’ in Figure 4, since

Samples A vs B STL MRN Tucker DMTRL-TT Ours-410 Ours-420
A B A B A B A B A B A B

1800 vs 1800 96.8 96.9 96.4 96.6 95.2 96.2 96.2 96.7 97.5 97.7 97.4 97.6
1800 vs 100 96.8 88.1 96.5 88.6 95.2 85.5 96.1 86.3 97.6 90.2 97.5 89.9
100 vs 1800 88.0 96.9 89.3 96.5 85.4 96.6 87.1 96.6 90.1 97.5 90.3 97.6
100 vs 100 88.0 88.1 88.2 88.4 84.3 84.8 86.8 86.0 88.7 89.6 89.2 89.5

Table 1: Performance comparison of STL, MRN, DMTRL and our TRMTL on MNIST.
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Figure 4: The averaged accuracy of two tasks involved with 50 samples. The training samples for
‘task A vs task B’ are ‘1800 vs 50’ and ‘50 vs 1800’.
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Figure 5: Performance comparison of MRN, DMTRL-Tucker, DMTRL-TT and our TRMTL-4431
on CIFAR-10 with different fractions of training data. Top row: 100% data for two of the three
tasks, and show the accuracy for the other one task (in solid lines) as well as the averaged accuracy
of all three tasks (in dotted lines). Bottom row: 100% data for one of the three tasks, and show the
accuracies for the other two tasks (in dashed and solid lines).

‘044’ overlaps all weights at the top layers but shares nothing at the bottom layer. Within each cate-
gory, TRMTL is robust to small perturbation of c for pattern selection. For example, also in Table 1,
both ‘410’ and ‘420’ patterns obtain similarly good performance. As for the model complexity, STL
and MRN have enormous 6060K and 3096K parameters, since they share weights in the original
space. DMTRL-Tucker and TT (1800 vs 1800) are parameterized by a large number of parameters
of 1194K and 1522K. With TRMTL, this number is significantly down to 13K. The huge reduction
is mainly due to the tensorization and the resulting more sparser TRL with overall lower ranks.

5.2 RESULTS ON TASKS WITH INSUFFICIENT SAMPLES

In this section, we like to verify the effectiveness of different models in transferring the useful
knowledge from data-abundant task to data-scarcity task. To this end, we first test on CIFAR dataset
using CNN with settings where each task may have insufficient training samples like 5%, 10% or
50%. Figure 5 illusrates how the accuracies of one task (two tasks) vary with sample fractions, given
the remaining two tasks (one task) get access to the full data. We observe the trends in which the
accuracies of our model exceed the other competitors by a relatively large margin (shown in solid
lines), in the cases of limited training samples, e.g., 5% or 10%. In the mean time, the advantage
of our TRMTL is still significant in terms of the averaged accuracies of three tasks (shown in dash
lines), which implies the data-scarcity task has little bad influence on the data-abundant tasks. Our
second test is carried out on the Omniglot with CNN architecture. We now test a more challenging
case, where only 1 task (task C) has sufficient samples while the samples of the other 4 tasks (task
A, B, D and E) are limited. Figure 6 demonstrates the amount of the accuracy changes for each task,
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Figure 6: The results of accuracy changes of tasks A, B, D and E, when the faction of the data for
training for task C is increased from 10% to 90%. ‘+’ corresponds to the results after the samples
augmentation of task C. Left (Right): 10% (50%) data for training for task A, B, D and E.

both with and without the aid of the data-rich task. We observe our TRMTL is able to make the
most of the useful knowledge from task C and cause the accuracy to increase for most of the time.
Particularly, the gap of the accuracy enhancement is more obvious for the case of 10% data.

5.3 RESULTS ON TASKS WITH HETEROGENEOUS INPUT DIMENSIONALITY

We next show the advantage of our method in handling tasks with heterogeneous inputs. In this test,
the tasks are assigned to input images with different spatial sizes or distinct channels (i.e. RGB or
grayscale). In order to apply DMTRL, one has to first convert the heterogeneous inputs into equal-
sized features using one hidden layer with totally unshared weights, so that the weights in following
layers can be stacked up and factorized. To better show the influence of heterogeneous inputs on
the competitors, we adopt MLP with 4 hidden layers. For a good pattern of our TRMTL, such as
‘5410’, the first hidden layer of each task is encoded into 6 TR-cores, 5 of which can be shared. As
recorded in Table 2, DMTRL based methods behave significantly worse than our TRMTL by a very
large margin. The poor performance of DMTRL is induced by fact that lowest features from related
tasks cannot be shared at all because of the heterogeneous input dimensionality.

Model RGB Gray Gray Gray RGB Gray 16×16 32×32 16×32 32×32 16×32 16×16
A B C A B C A B C A B C

STL 74.0 56.8 77.3 68.4 62.3 77.3 73.9 62.3 82.2 74.0 62.0 83.1
DMTRL-Tucker 72.8 55.2 76.6 66.6 61.6 77.2 72.9 60.9 82.1 73.1 61.2 82.5

DMTRL-TT 73.1 54.1 77.2 66.2 61.5 77.4 72.3 61.9 82.5 73.1 62.2 82.2
TRMTL-5410 79.4 59.3 82.9 73.5 64.9 83.5 74.8 63.2 86.8 74.9 62.8 86.6

Table 2: The results of heterogenous input dimensionality on CIFAR-10. Left columns: each task
associates with RGB or grayscale image. Right columns: tasks with images of different spatial sizes.

5.4 RESULTS ON TASKS FROM MULTIPLE DATASETS

Our TRMTL also finds its usefulness when applied to multiple datasets, where the tasks are loosely
related. We verify this through recognizing character symbols (task A on Omniglot) and handwritten
digits (task B on MNIST) at the same time. Task A is much harder than task B, as each character
in task A has much fewer training samples. TRMTL is established using three hidden layers with 5
cores at each layer. Task A and B are partially shared by 2 cores at the first layer. To apply DMTRL,
we use a similar strategy as previous section. As expected, TRMTL outperforms other methods
and TRMTL-211 significantly improves task A by 4.2%, 4.9% and 4.7% w.r.t. STL, whereas both
DMTRL-Tucker and TT fail in the Omniglot task with poor accuracies.

Omniglot A vs MNIST B STL DMTRL-Tucker DMTRL-TT TRMTL-200 TRMTL-211
A B A B A B A B A B

50% vs 100% 55.0 98.1 47.3 98.5 50.0 98.4 58.4 98.3 59.7 98.3
70% vs 100% 60.5 98.1 46.1 98.3 50.9 98.6 62.9 98.3 65.4 98.3
100% vs 100% 63.3 98.1 50.7 98.5 52.3 98.5 66.8 98.3 67.5 98.3

Table 3: The results of multi-dataset tasks on Omniglot (task A) and MNIST (task B).
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6 CONCLUSION

In this paper, we have introduced a novel knowledge sharing mechanism for connecting task-specific
models in deep MTL, namely TRMTL. The proposed approach models each task separately in
the form of TR representation using a sequence latent cores. Next, TRMTL shares the common
knowledge by ting any subset of layer-wise TR cores among all tasks, leaving the rest TR cores
for private knowledge. TRMTL is highly compact yet super flexible to learn both task-specific and
task-invariant features. TRMTL is empirically verified on various datasets and achieves the state-
of-the-art results in helping the individual tasks to improve their overall performance.
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Samples A vs B vs C Task STL MRN DMTRL Ours-4444 Ours-4431 Ours-4421

100% vs 100% vs 100%

A 91.4 91.8 92.2 90.6 92.1 92.2
B 80.9 82.3 82.3 81.6 83.0 82.6
C 91.8 93.9 92.3 93.4 94.1 93.9

Average 88.0 89.3 88.9 88.5 89.8 89.6

5% vs 5% vs 5%

A 72.7 72.9 73.7 72.4 74.4 74.7
B 57.0 60.3 55.5 59.0 61.3 61.5
C 80.6 82.7 79.5 82.7 82.9 84.4

Average 70.1 72.0 69.6 71.4 72.9 73.5

5% vs 5% vs 100%

A 72.7 73.3 74.2 73.6 76.1 76.4
B 57.0 61.2 56.3 60.2 62.3 63.0
C 91.8 92.1 91.5 91.8 93.1 93.0

Average 73.8 75.5 74.0 75.2 77.2 77.4

5% vs 100% vs 100%

A 72.7 75.9 74.3 76.9 79.9 79.8
B 80.9 80.2 79.7 79.5 81.2 .81.1
C 91.8 93.3 92.1 92.7 93.9 93.9

Average 81.8 83.1 82.0 83.0 85.0 84.9

Table 4: Performance comparison of STL, MRN, DMTRL and our TRMTL on CIFAR-10 with
unbalanced training samples, e.g., ‘5% vs 5% vs 5%’ means 5% of training samples are available
for the respective task A, task B and task C. TR-ranks R = 10 for TRMTL.

(a) DMTRL features in task A

Plane
Mobile
Ship
Truck

(b) DMTRL features in task B

Cat
Deer
Dog
Horse

(c) DMTRL features in task C

Bird
Frog

(e) TRMTL features in task A

Plane
Mobile
Ship
Truck

(f) TRMTL features in task B

Cat
Deer
Dog
Horse

(g) TRMTL features in task C

Bird
Frog

Figure 7: Features visualization of 2000 CIFAR-10 images. Tasks A, B and C correspond to three
categories in CIFAR-10, i.e., non-animals, animals with bird and frog excluded, bird and frog. Top
row: DMTRL features. Bottom row: our features.

6.1 MORE RESULTS ON TASKS WITH INSUFFICIENT SAMPLES ON CIFAR-10

In this section, we conduct more experiments on CIFAR-10 dataset. We adopt the following archi-
tecture: (3× 64C3)− (64× 128C3)− (128× 256C3)− (256× 512C3)− (8192× 1024FC)−
(1024×512FC)−(512×10FC), whereC3 stands for a 3×3 convolutional layer. We employ TRL
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Samples A vs B vs C vs D vs E Task STL MRN DMTRL Tucker Ours-432

10% vs 10% vs 10% vs 10% vs 10%

A 30.4 31.2 30.5 28.9 31.6
B 32.4 35.4 35.3 32.9 38.9
C 47.5 47.8 44.1 47.9 48.2
D 29.2 29.5 27.8 28.4 29.9
E 40.5 41.2 38.7 43.0 42.7

Average 36.0 37.0 35.3 36.2 38.3

50% vs 50% vs 50% vs 50% vs 50%

A 61.1 70.1 63.6 59.0 73.6
B 66.4 71.7 69.5 67.3 73.0
C 73.1 77.8 75.3 70.9 80.5
D 55.8 62.1 56.8 55.8 61.0
E 68.8 73.0 70.9 71.0 75.4

Average 65.0 70.9 67.2 64.8 72.7

90% vs 90% vs 90% vs 90% vs 90%

A 72.2 78.6 74.0 75.5 80.5
B 75.4 80.7 77.9 76.4 79.5
C 82.7 86.5 81.7 82.5 88.7
D 60.5 69.7 65.3 62.7 72.2
E 74.9 82.1 76.7 75.4 80.7

Average 73.1 79.5 75.1 74.5 80.3

Table 5: Performance comparison of STL, MRN, DMTRL and our TRMTL on Omniglot with
different fractions of training samples.

on the last two CNN layers and first two FC layers, in which the most of the parameters concentrate,
yielding 4 TR-cores per layer.

We show more results on the effectiveness of different models when transferring the useful knowl-
edge from data-abundant task to data-scarcity task. For this purpose, we begin with the test cases
where all of task have insufficient training samples, e.g., ‘5% vs 5% vs 5%’. After that, we compare
the precision improvement of the individual task(s) when the other task(s) is (are) equipped with the
whole training data. Table 4 records the results of our two best patterns (‘4431’ and ‘4421’), as well
as the one with ‘bad’ pattern ‘4444’. Clearly, TRMTL (‘4431’ and ‘4421’) outperforms other meth-
ods in nearly all the cases. As for task A, for instance, the precision of TRMTL-4431 is increased
by 1.7% when the data of the task C becomes 100%. Even more, such enhancement further grows
up to 5.5% in the situation that both task B and C’s training samples are fully available. This is in
contrast to MRN whose precision improvements are merely 0.4% and 3.0% in the corresponding
scenarios. Again, the performance of TRMTL-4431 is superior to that of TRMTL-4444, indicating
sharing all nodes like ‘4444’ is not a desirable style.

It is also interesting to get an idea on what our model has learned via the visualization of the high
level features. Figure 7 illustrates the task-specific features of our TRMTL (and DMTRL) using t-
SNE for the dimensionality reduction. We can see a clear pattern of the clustered features produced
by our model that are separated for different classes, which could be more beneficial the down-
stream classification tasks.

6.2 MORE RESULTS ON TASKS WITH INSUFFICIENT SAMPLES ON OMNIGLOT

For this dataset, we adopt a similar architecture as in the previous experiment for CNN as

(1× 8 C3)− (8× 16 C3)− (16× 32 C3)− (23, 328× 256 FC)− (256× 50 FC),

where the last two convolution layers and first fully connected layer are represented using TRL with
the input/output feature modes of TR-cores being {2, 2, 2}, {4, 2, 2}, and {2, 2, 2, 2}, {4, 4, 2, 2},
and {18, 12, 12, 9}, {4, 4, 4, 4}. The best sharing pattern of our model is ‘432’, which is selected by
CV. Table 5 summarizes the performance of the compared methods when the distinct fractions of
data are used as training data. Our TRMTL obtains the best overall performance in both data-rich
and data-scarcity situations.

6.3 MORE RESULTS ON TASKS WITH HETEROGENEOUS INPUT DIMENSIONALITY

Table 6 records the complete results on tasks with heterogeneous input dimensionality.
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Model RGB Gray Gray Gray RGB Gray Gray Gray RGB
A B C A B C A B C

STL 74.0 56.8 77.3 68.4 62.3 77.3 68.4 56.8 83.2
DMTRL-Tucker 72.8 55.2 76.6 66.6 61.6 77.2 66.3 55.4 82.6

DMTRL-TT 73.1 54.1 77.2 66.2 61.5 77.4 66.7 54.8 81.7
TRMTL-5410 79.4 59.3 82.9 73.5 64.9 83.5 74.4 59.4 88.9

Model 16×16 32×32 16×32 32×32 16×32 16×16 16×32 16×16 32×32
A B C A B C A B C

STL 73.9 62.3 82.2 74.0 62.0 83.1 74.3 62.4 82.2
DMTRL-Tucker 72.9 60.9 82.1 73.1 61.2 82.5 72.6 61.2 82.6

DMTRL-TT 72.3 61.9 82.5 73.1 62.2 82.2 73.4 61.5 82.8
TRMTL-5410 74.8 63.2 86.8 74.9 62.8 86.6 75.2 62.4 86.7

Table 6: The results of heterogenous input dimensionality on CIFAR-10. Top: each task associates
with RGB or grayscale image. Bottom: each task has input images of different spatial sizes.

MNIST Task A (Odd) Task B (Even)

Layer 1 input modes [7, 7, 4, 4] [7, 7, 4, 4]
output modes [6, 6, 6, 6] [6, 6, 6, 6]

Layer 2 input modes [6, 6, 6, 6] [6, 6, 6, 6]
output modes [6, 6, 6, 6] [6, 6, 6, 6]

Layer 3 input modes [6, 6, 6, 6] [6, 6, 6, 6]
output modes [4, 4, 4, 4] [4, 4, 4, 4]

Layer 4 input modes [256] [256]
output modes [10] [10]

Table 7: Specification of network architecture and factorized TRL representation of the experiments
for the validation of sharing pattern and model compactness on MNIST dataset.

Omniglot Kernel/Weight Task A Task B

Layer 1 input modes window size [1] [3, 3] [1] [3, 3]output modes [8] [8]

Layer 2 input modes window size [2, 2, 2] [3, 3] [2, 2, 2] [3, 3]output modes [4, 2, 2] [4, 2, 2]

Layer 3 input modes window size [2, 2, 2, 2] [3, 3] [2, 2, 2, 2] [3, 3]output modes [4, 2, 2, 2] [4, 2, 2, 2]

Layer 4 input modes [18, 16, 9, 9] [18, 16, 9, 9]
output modes [4, 4, 4, 4] [4, 4, 4, 4]

Layer 5 input modes [256] [256]
output modes [10] [10]

Table 8: Specification of network architecture and factorized TRL representation of the experiments
for the insufficient sample tasks on Omniglot dataset.
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Heterogenous Spatial Sizes Task A (RGB) Task B (Gray) Task C (Gray)

Layer 1 input modes [4, 4, 4, 4, 4, 3] [4, 4, 4, 4, 4, 1] [4, 4, 4, 4, 4, 1]
output modes [4, 4, 4, 4, 4, 6] [4, 4, 4, 4, 4, 6] [4, 4, 4, 4, 4, 6]

Layer 2 input modes [8, 8, 6, 4, 4] [8, 8, 6, 4, 4] [8, 8, 6, 4, 4]
output modes [8, 8, 6, 4, 8] [8, 8, 6, 4, 8] [8, 8, 6, 4, 8]

Layer 3 input modes [8, 8, 6, 8, 4] [8, 8, 6, 8, 4] [8, 8, 6, 8, 4]
output modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]

Layer 4 input modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]
output modes [3, 3, 3, 3, 3] [3, 3, 3, 3, 3] [3, 3, 3, 3, 3]

Layer 5 input modes [243] [243] [243]
output modes [10] [10] [10]

Table 9: Specification of network architecture and factorized TRL representation of the experiments
on heterogenous inputs with distinct spatial sizes for CIFAR-10.

RGB and Grayscale Task A (16×32) Task B (16×16) Task C (32×32)

Layer 1 input modes [4, 4, 4, 4, 3, 2] [4, 4, 4, 4, 3, 1] [4, 4, 4, 4, 3, 4]
output modes [4, 4, 4, 4, 3, 8] [4, 4, 4, 4, 3, 8] [4, 4, 4, 4, 3, 8]

Layer 2 input modes [8, 8, 6, 4, 4] [8, 8, 6, 4, 4] [8, 8, 6, 4, 4]
output modes [8, 8, 6, 4, 8] [8, 8, 6, 4, 8] [8, 8, 6, 4, 8]

Layer 3 input modes [8, 8, 6, 8, 4] [8, 8, 6, 8, 4] [8, 8, 6, 8, 4]
output modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]

Layer 4 input modes [8, 8, 6, 8, 8] [8, 8, 6, 8, 8] [8, 8, 6, 8, 8]
output modes [3, 3, 3, 3, 3] [3, 3, 3, 3, 3] [3, 3, 3, 3, 3]

Layer 5 input modes [243] [243] [243]
output modes [10] [10] [10]

Table 10: Specification of network architecture and factorized TRL representation of the experi-
ments on heterogenous inputs with distinct channels (RGB and grayscale image) for CIFAR-10.

Omniglot-MNIST Task A (105×105) Task B (28×28)

Layer 1 input modes [7, 7, 5, 5, 3, 3] [7, 7, 4, 4]
output modes [7, 7, 5, 5, 3, 3] [7, 7, 5, 5]

Layer 2 input modes [7, 7, 5, 5, 3, 3] [7, 7, 4, 4]
output modes [7, 7, 5, 5, 3, 3] [7, 7, 5, 5]

Layer 3 input modes [7, 7, 5, 5, 3, 3] [7, 7, 4, 4]
output modes [2, 2, 2, 2, 2, 2] [2, 2, 2, 2]

Layer 4 input modes [64] [16]
output modes [10] [10]

Table 11: Specification of network architecture and factorized TRL representation of the experi-
ments for multi-dataset task on Omiglot-MNIST.
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