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Abstract
We present an effective blind image deblurring method based on a data-driven discriminative prior. Our work is motivated by
the fact that a good image prior should favor sharp images over blurred ones. In this work, we formulate the image prior as a
binary classifier using a deep convolutional neural network. The learned prior is able to distinguish whether an input image
is sharp or not. Embedded into the maximum a posterior framework, it helps blind deblurring in various scenarios, including
natural, face, text, and low-illumination images, as well as non-uniform deblurring. However, it is difficult to optimize the
deblurringmethod with the learned image prior as it involves a non-linear neural network. In this work, we develop an efficient
numerical approach based on the half-quadratic splitting method and gradient descent algorithm to optimize the proposed
model. Furthermore, we extend the proposed model to handle image dehazing. Both qualitative and quantitative experimental
results show that our method performs favorably against the state-of-the-art algorithms as well as domain-specific image
deblurring approaches.
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1 Introduction

Blind image deblurring aims to recover a latent image from
a blurred input, which is a classical problem in computer
vision. When the blur is spatially invariant, the blurring pro-
cess is usually modeled by

B = I ⊗ k + n, (1)

where ⊗ denotes the convolution operator, B, I , k and n
denote the blurred image, latent sharp image, blur ker-
nel, and noise, respectively. Recovering I and k from a
blurred image B is an ill-posed problem as there exist infi-
nite solutions to satisfy (1). Therefore, additional constraints
and prior knowledge on both blur kernels and images are
required.

The main success of the recent blind image deblurring
methods mainly stems from the development of effective
image priors and edge-prediction strategies. Edge-prediction
based methods (Cho and Lee 2009; Xu and Jia 2010) select
strong edges for estimating blur kernels, which do not per-
form well when such visual cues are not available in the
input image. To alleviate the issues with heuristic edge selec-
tions, numerous algorithms based on natural image priors
havebeenproposed, includingnormalized sparsity (Krishnan
et al. 2011), L0 gradients (Xu et al. 2013) and dark channel
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Fig. 1 A challenging blurred image with significant blur. We propose
a discriminative image prior learned by a deep binary classification
network for image deblurring. For the blurred image B in (a) and its
corresponding sharp image I , we obtain ‖∇ I‖0‖∇B‖0 = 0.85, ‖D(I )‖0‖D(B)‖0 = 0.82

and f (I )
f (B)

= 0.03, where ∇, D(·), ‖ · ‖0 and f (·) denote the gradient

operator (Xu et al. 2013), the dark channel ( Pan et al. 2016), L0 norm
(Pan et al. 2016; Xu et al. 2013) and the proposed classifier, respectively.
The proposed prior is more discriminative than the hand-crafted priors,
thereby leading to better deblurred results. A larger ratio indicates that
the prior responses for B and I are closer and cannot be well separated

prior (Pan et al. 2016). These algorithms perform effectively
on generic natural images but do not generalize well to spe-
cific scenarios, such as text (Pan et al. 2014b), face (Pan
et al. 2014a) and low-illumination images (Hu et al. 2014).
As most priors are hand-crafted and based on limited obser-
vations of specific scene statistics, these approaches do not
generalize well to handle various types of images. Therefore,
it is of great interest to develop a general image prior to deal
with different scenarios in the wild.

In this work, we propose a blind deblurring algorithm
based on a data-driven image prior. We formulate the image
prior as a binary classifier to distinguish sharp images from
blurred ones. Specifically, we first train a deep convolu-
tional neural network (CNN) to classify blurred (labeled
as 1) and sharp (labeled as 0) images. To handle arbi-
trary image sizes in the coarse-to-fine framework, we adopt
a global average pooling layer (Lin et al. 2013) in the
CNN. In addition, we use a multi-scale training strat-
egy to ensure the classifier is robust to different input
image sizes. We then take the learned CNN classifier as
a regularization term with respect to latent images in the
optimization framework. Figure 1 shows an example that
the proposed image prior is more discriminative (i.e., has
a lower ratio between the response of blurred and sharp
images) than the state-of-the-art hand-crafted prior (Pan et al.
2016).

While the intuition of this work is straightforward, in prac-
tice it is difficult to optimize the deblurring method with
the learned image prior as a non-linear CNN is involved.
To address this issue, we develop an efficient numerical
algorithm based on the half-quadratic splitting method and
gradient descent approach. The proposed algorithm con-
verges quickly in practice and can be applied to different
scenarios as well as non-uniform deblurring.

The main contributions of this work are summarized as
follows:

– We propose an effective discriminative image prior for
blind image deblurring, which can be learned via a
deep CNN classifier. To ensure that the proposed prior
(i.e., classifier) can handle images of different sizes, we
use the global average pooling and multi-scale training
strategy to train the proposed CNN.

– We use the learned classifier as a regularization term of
the latent image and develop an efficient optimization
algorithm to solve the deblurring model.

– We demonstrate that the proposed algorithm performs
favorably against the state-of-the-art methods on both
the natural image deblurring benchmarks and domain-
specific deblurring tasks.

– We show the proposed method can be directly extended
to the non-uniform deblurring and image dehazing.

2 RelatedWork

Recent years have witnessed significant advances in single
image deblurring. In this section, we focus our discussion on
the most relevant deblurring methods based on optimization
and learning.

2.1 Optimization-BasedMethods

Optimization-based approaches can be categorized into
implicit and explicit edge enhancementmethods.The implicit
edge enhancement approaches focus on developing effective
image priors to favor sharp images over blurred ones. Repre-
sentative image priors include sparse gradients (Fergus et al.
2006; Levin et al. 2009; Xu and Jia 2010), normalized spar-
sity (Krishnan et al. 2011), color-line (Lai et al. 2015), L0

gradients (Xu et al. 2013), patch priors (Sun et al. 2013), and
self-similarity (Michaeli and Irani 2014).
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Although these image priors have been successfully
applied to deblur natural images, these methods are less
effective for specific scenarios, such as text, face, and
low-illumination images. As the statistics of these domain-
specific images are significantly different from those of
natural scenes, Pan et al. (2014b) propose the L0-regularized
prior on both intensity and gradient for deblurring text
images. Hu et al. (2014) detect the light streaks from the
low-light images for estimating blur kernels. Recently, Pan
et al. (2016) propose a dark channel prior for deblurring
natural images, which can be applied to face, text and low-
illumination images as well. However, the dark channel prior
is less effective when no dark pixels can be extracted from
an image. Yan et al. (2017) propose to incorporate a bright
channel prior with the dark channel prior to improve the
robustness of the deblurring algorithm.

Image priors can be considered as non-reference image
quality measurements, which can distinguish whether an
image is blurry or sharp based on the prior response. Zhao
et al. (2015) conduct a user study to measure image sharp-
ness and evaluate the performance of existing image quality
measurements. Leclaire and Moisan (2013) propose a sim-
plified sharpness index based on the Fourier transform and
use it for blind image deblurring.

While those algorithms demonstrate the state-of-the-art
performance, most priors are hand-crafted and designed
under limited observations. In this work, we propose to learn
a discriminative prior using a deep CNN. The data-driven
prior is able to distinguish blurred and sharp inputs for var-
ious types of images and serves as an effective prior in the
deblurring framework.

2.2 Learning-BasedMethods

With the success of deep CNNs on high-level vision prob-
lems (He et al. 2016; Long et al. 2015), several approaches
have adopted deep CNNs in image restoration tasks, includ-
ing super-resolution (Dong et al. 2014; Kim et al. 2016; Lai
et al. 2017), denoising (Mao et al. 2016) and JPEG deblock-
ing (Dong et al. 2015). A few methods (Schuler et al. 2016;
Sun et al. 2015; Yan and Shao 2016; Chakrabarti 2016) first
adopt deep networks to predict blur kernels and then use
conventional non-blind deconvolution algorithms to recover
sharp images. However, due to the complexity and variety of
blur kernels in the wild, estimating blur kernels from deep
networks is less robust and not effective compared to con-
ventional optimization-based methods.

Recently, several end-to-end methods are proposed for
handling dynamic scenes (Nah et al. 2017; Noroozi et al.
2017; Kupyn et al. 2018; Tao et al. 2018), text images (Hradiš
et al. 2015), and face images (Jin et al. 2018; Shen et al. 2018).
These approaches bypass the blur kernel estimation step and
directly restore a sharp image from a blurred input. However,

the state-of-the-art end-to-end CNN-based methods do not
perform competitively against conventional optimization-
based algorithms when the images suffer from significant
motion blur.

We note several approaches have been developed to train
deepCNNs as image priors or denoisers for non-blind decon-
volution (Sreehari et al. 2016; Zhang et al. 2017a, b; Bigdeli
et al. 2017). However, these methods focus on restoring fine
details and do not perform well on reconstructing strong
edges for blind deconvolution. In this work, we take advan-
tage of both the conventional optimization-based framework
and the discriminative strength of deep CNNs. We embed
the learned CNN prior into the coarse-to-fine optimization
framework for solving the blind image deblurring problem.

2.3 Single Image Dehazing

Several single image dehazing methods (He et al. 2011;
Berman et al. 2016) estimate the transmission maps and
atmospheric light based on hand-crafted image priors, while
recent approaches (Ren et al. 2016; Li et al. 2017a) train
deep networks for the estimation. However, existing meth-
ods recover the sharp image directly from an element-wise
division between the input image, atmospheric light, and
estimated transmission map, which tends to introduce color
distortion. To address this problem, we first learn an image
prior by training our classifier on a set of hazy/clean images.
We then apply an optimization method to restore the clean
image based on the estimated transmissionmap, atmospheric
light, and the learned image prior.

3 Learning a Data-Driven Image Prior

In this section, we describe the motivation, network design,
loss function, and implementation details of the proposed
image prior.

3.1 Motivation

Based on the image formation model (1), the optimization-
based blind image deblurring methods solve the following
problem:

min
I ,k

‖I ⊗ k − B‖22 + γ ‖k‖22 + λp(I ), (2)

where p(I ) is the regularization term (also known as image
prior), and ‖·‖22 denotes an L2 norm. In addition, γ and λ are
regularization weights. The key to the success of this frame-
work lies in the latent image prior p(I ). An effective image
prior should favor sharp images over blurred ones. As such,
an effective prior should have lower energies to sharp images
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Layers Filter size Stride Padding

CR1 3×3×1×64 1 1
CR2 3×3×64×64 1 1
M3 2×2 2 0
CR4 3×3×64×64 1 1
M5 2×2 2 0
CR6 3×3×64×64 1 1
M7 2×2 2 0
CR8 3×3×64×64 1 1
C9 3×3×64×1 1 1
G10 (M/8)×(N/8) 1 0
S11 - - -

(a) Network architecture (b) Network parameters

Fig. 2 Architecture and parameters of the proposed binary classifica-
tion network. We adopt a global average pooling layer instead of a
fully-connected layer to handle different sizes of input images. “CR”
denotes the convolutional layer followed by a ReLU non-linear func-

tion, “M” denotes the max-pooling layer, “C” denotes the convolutional
layer, “G” denotes the global average pooling layer and “S” denotes the
non-linear sigmoid function

than blurred ones when used in solving (2). This observation
motivates us to learn a data-driven discriminative prior via
binary classification. To this end, we train a deep CNN by
predicting blurred images as positive (labeled as 1) and sharp
images as negative (labeled as 0) samples. Compared with
the state-of-the-art image priors (Xu et al. 2013; Pan et al.
2016), the assumption of our prior is simple and straightfor-
ward without using any hand-crafted features or functions.

3.2 Binary Classification Network

We train a deep CNN to determine the probability of an input
being a blurry image patch. As we aim to embed the network
as a prior into the coarse-to-fine optimization framework,
this model should be able to handle images of different sizes.
Instead of using fully-connected layers, we adopt the global
average pooling layer (Lin et al. 2013) which converts fea-
ture maps of different sizes into a single scalar before the
sigmoid layer. In addition, there is no additional parameter in
the global average pooling layer, which alleviates the over-
fitting problem. Figure 2 shows the architecture and detail
parameters of our binary classification network.

3.3 Loss Function

We denote the input image by x and the network parameters
to be optimized by θ . The deep network learns a mapping
function f (x; θ) = P(x ∈ Blurred|x) that predicts the prob-
ability of the input image being a blurred one. We optimize
the network via the binary cross entropy loss function:

L(θ) = − 1

N

N∑

i=1

ŷi log(yi ) + (1 − ŷi ) log(1 − yi ), (3)

where N is the number of training samples in a batch, yi =
f (xi ) is the output of the classifier, and ŷi is the label of the
input image. We assign ŷ = 1 for blurred images and ŷ = 0
for sharp images.

3.4 Training Details

We sample 500 sharp images from the dataset of Huiskes and
Lew (2008), which contains natural, manmade scene, face,
low-illumination and text images. We then use the method of
Boracchi and Foi (2012) to generate 200 random blur kernels
with the size ranging from 7×7 pixels to 51×51 pixels, and
synthesize blurred images by convolving the sharp images
with blur kernels and adding the Gaussian noise with σ =
0.01. In total, we generate 100,000 blurred images as the
positive samples (labeled as 1) for training. We also sample
another 50,000 sharp images as the negative samples (labeled
as 0). During training, we randomly crop 200× 200 patches
from the training images. In order to make the classifier more
robust to different image size, we adopt amulti-scale training
strategy by randomly resizing the input images between one
quarter and full scale.

We implement our network using the MatConvNet
(Vedaldi and Lenc 2015) toolbox. We use the Xavier method
(Glorot and Bengio 2010) to initialize the network parame-
ters and use the Stochastic Gradient Descent (SGD) method
for optimizing the network. In this work, we use batch size of
50, momentum of 0.9 and weight decay of 10−4. The learn-
ing rate is set to 0.001 and decreased by a factor of 5 for every
50 epochs.

3.5 Effectiveness of the Binary Classifier

We train the binary classification network to predict the prob-
ability of an input image being blurred (from 0 to 1). We first
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Fig. 3 Robustness of the proposed CNN prior as the classifier. a Aver-
age ouput of different resize ratios on the dataset (Köhler et al. 2012), b
average output of different sizes of blur kernels. The multi-scale train-
ing strategy encourages the classifier to bemore robust to different sizes
of images

use images of 200× 200 pixels for training. We evaluate the
classification accuracy using the images from the dataset by
Köhler et al. (2012), where the image size is 800×800 pixels.
To analyze the performance of the classifier on different sizes
of images, we downsample each image by a ratio between
[1, 1/16] and plot the average output in Fig. 3a (green curve).
We use bicubic interpolation as the downsampling operator.
When the size of test images is large or close to the size of
training images, the output is near 1. However, the average

output drops significantly when images are downscaled by
more than 4 times. As the downsampling operation reduces
the blur effect, it is increasingly difficult for the classifier to
distinguish blurred and sharp images.

To address this issue, we use a multi-scale training strat-
egy by randomly downsampling each batch of images after
the blur process between a factor of 1 and 4. As shown in the
red curve of Fig. 3a, the classifier performs more robustly to
different size of input images with this multi-scale training
strategy, and fits well in the proposed coarse-to-fine opti-
mization framework.

We further analyze whether the proposed prior performs
robustly to the blur magnitude (i.e., blur kernel size). We
synthesize 240motion blur kernelswith the size ranging from
1×1 pixels to 51×51 pixels (i.e., 10 kernels for each size, and
blur kernels with the size 1 × 1 are delta function such that
the convolved images are sharp). We then plot the average
output of our binary classifier on an image of 800 × 800
pixels. Figure 3b shows that the proposed discriminative prior
performs robustly to a wide range of the blur kernel size.

Figure 4 shows the activation of one feature map from the
C9 layer (i.e., the last convolutional layer before the global
average pooling) in our classification network. The output of
the C9 layer is a single-channel feature map and is equiva-

Fig. 4 Activation of feature maps in our binary classification network. We show the activation from the C9 layer. The sharp image (or the sharp
region in a non-uniform blurred image) has much lower responses than that of the blurred images (region). The proposed network is effective to all
types of image blur
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Table 1 Average classifier response to different types of blurred images

Blur type Blurred image Sharp image

Gaussian 0.99 0.01

Out-of-focus 0.99 0.01

lent to the response of the CNN image prior. To evaluate the
robustness of the classifier to different blur types, we gen-
erate Out-of-focus and Gaussian blur images by convolving
the sharp image with a disk and Gaussian kernel, respec-
tively. We also provide a non-uniform blurred image, which
is caused by object motion, as input. All of these types of
blurred images donot appear in the trainingdataset.As shown
in Figure 4, the proposed classifier is effective to classify dif-
ferent types of blurred images. We also perform quantitative
evaluations on Gaussian and Out-of-focus images. We gen-
erate 100 blurred images by convolving 100 sharp images
with randomly chosen kernels for each type and output the
response of the classifier to both blurred and sharp images.
We randomly set the standard variation from0.5 to 5 to gener-
ate the Gaussian blur kernel and the radius from 2 to 5 pixels
to generate the Out-of-focus blur kernel (i.e., disk kernel).
Table 1 shows the quantitative evaluations of the classifier
on Gaussian and Out-of-focus blurred images. For a uniform
blurred image,while the blurred image has a high response on
the entire image, the activation of the sharp image has amuch
lower response except for smooth regions (e.g., sky). For a
non-uniform blurred image (e.g., caused by object motion
blur), the blurred image has a high response on the moving
objects but lower response on the non-smooth background
(i.e., sharp region).

Figure 4i–l demonstrate that the proposed prior is also
effective on non-uniform blurred images under the assump-
tion that non-uniform blurred images are locally-uniform
blur. We discuss the extension to non-uniform deblurring in
details in Sect. 5.

4 Blind Image Deblurring

We use the trained network as the latent image prior p(·)
in (2). In addition, we adopt the L0 gradient prior (Xu et al.
2013; Pan et al. 2016) as a regularization term. The proposed
model for uniform deblurring is

min
I ,k

‖I ⊗ k − B‖22 + γ ‖k‖22 + μ‖∇ I‖0 + λ f (I ), (4)

where γ ,μ, and λ are theweight parameters.We optimize (4)
by solving the latent image I and blur kernel k alternatively.

Thus, we divide the problem (4) into I sub-problem:

min
I

‖I ⊗ k − B‖22 + μ‖∇ I‖0 + λ f (I ), (5)

and k sub-problem:

min
k

‖I ⊗ k − B‖22 + γ ‖k‖22 . (6)

4.1 Solving I Sub-problem

In (5), both f (I ) and ‖∇ I‖0 are non-convex, which make
minimizing (5) computationally intractable. To tackle this
issue, we adopt the half-quadratic splitting method (Xu et al.
2011) to introduce the auxiliary variables u and g = (gh, gv)

with respect to the image and corresponding gradients in
horizonal and vertical directions, respectively. The energy
function (5) can be rewritten as

min
I ,g,u

‖I ⊗ k − B‖22 + α ‖∇ I − g‖22 + β ‖I − u‖22
+ μ‖g‖0 + λ f (u), (7)

where α and β are the penalty parameters. When α and β

approach infinity, the solution of (7) becomes equivalent to
that of (5). We solve (7) by minimizing I , g, and u alter-
natively and thus avoid directly minimizing the non-convex
functions f (I ) and ‖∇ I‖0.

We solve the latent image I by fixing g as well as u, and
optimizing:

min
I

‖I ⊗ k − B‖22 + α ‖∇ I − g‖22 + β ‖I − u‖22 , (8)

which is a least squares optimization problem. The closed-
form solution is:

I = F−1

(
F(k)F(B) + βF(u) + αFG

F(k)F(k) + β + αFD

)
, (9)

where F(·) and F−1(·) denote the Fourier and inverse Fourier
transforms; and F(·) is the complex conjugate operator. In
(9),

FG =
∑

d∈{h,v} F(∇d)F(gd), (10)

FD =
∑

d∈{h,v} F(∇d)F(∇d), (11)

where ∇h = [1,−1] and ∇v = [1,−1]� are the horizontal
and vertical differential operators, respectively.

Given the latent image I , we solve g and u by:

min
g

α ‖∇ I − g‖22 + μ‖g‖0, (12)
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Algorithm 1 Blur Kernel Estimation
Input: Blurred Image B
Output: Intermediate latent image I and blur kernel k.
1: initialize k with results from the coarser level
2: while i < itermax do
3: solve for I by (7).
4: solve for k by (16).
5: i ← i + 1
6: end while

min
u

β ‖I − u‖22 + λ f (u). (13)

Since (12) is an element-wise minimization problem, we
adopt the strategy of Pan et al. (2014b) to solve it:

g =
{∇ I , ‖∇ I‖2 ≥ μ

α
,

0, otherwise.
(14)

To solve (13), we use the back-propagation approach to com-
pute the derivative of f (·). We update u using the gradient
descent method:

u(s+1) = u(s) − η

[
β

(
u(s) − I

)
+ λ

d f (u(s))

du(s)

]
, (15)

where η is the step size and s denotes the iteration index.

4.2 Solving k Sub-problem

We estimate the blur kernel using the image gradients (Cho
andLee 2009; Pan et al. 2014b, 2016), which has been shown
to be more effective than using the image intensity (Pan et al.
2018). We re-formulate (6) to:

min
k

‖∇ I ⊗ k − ∇B‖22 + γ ‖k‖22 , (16)

which can also be efficiently solved by the Fast Fourier Trans-
form (FFT). We then set the negative elements in k to 0 and
normalize k so that the sum of all elements is equal to 1.

4.3 Non-blind Deconvolution

We use an effective ringing suppression non-blind deconvo-
lution algorithm (Pan et al. 2014b) to recover the latent image
after the kernel is estimated. We first (Krishnan and Fergus
2009) to recover the latent image Il . Then, we restore another
latent image I0 by solving the following minimization prob-
lem:

min
I

‖I ⊗ k − B‖22 + μ‖∇ I‖0. (17)

The final deblurred image Î is obtained by

Î = Il − BF(Il − I0), (18)

where BF represents the bilateral filter. As Il may contain
ringing artifacts and I0 only contain the main structure of the
image, applying the bilateral filter on the difference Il−I0 can
be viewed as a step to suppress the ringing artifacts. Unless
mentioned otherwise, we use the same non-blind deconvo-
lution method to restore the final sharp images in all the
experiments.

4.4 Implementation Details

We use the coarse-to-fine strategy with an image pyramid
(Pan et al. 2014b, 2016) to optimize (4). At each pyramid
level,we alternatively solve (5) and (16) for itermax iterations.
We then upsample the estimated k and I as the initial solution
at the next pyramid scale. We summarize the main steps for
the blur kernel estimation in Algorithm 1. When performing
the convolution and discrete Fourier transform, we pad the
image periodically to handle the boundary condition. In all
the experiments, we set λ = μ = 0.004, γ = 2, and η =
0.1. To balance the accuracy and speed, we empirically set
itermax = 5 and smax = 10.

5 Extension to Non-uniform Deblurring

The proposed discriminative image prior can be easily
extended for non-uniform motion deblurring. Based on the
geometric model of camera motion (Tai et al. 2011; Whyte
et al. 2012), we represent a blurred image as the weighted
sum of a latent sharp image under a set of geometry trans-
formations:

B =
∑

t

ktHt I + n, (19)

where B, I and n are the blurred image, latent image and
noise in the vector forms, respectively; t denotes the index
of camera pose samples; kt is the weight of the t th camera
pose satisfying kt ≥ 0,

∑
t kt = 1; and Ht denotes a matrix

derived from the homography. We use the bilinear interpola-
tion when applying Ht on a latent image I. The blur model
(19) is then reduced to:

B = KI + n = Ak + n, (20)

where K = ∑
t ktHt , A = [H1I, H2I, . . . , Ht I] and

k = [k1, k2, . . . , kt ]�. We solve the non-uniform deblur-
ring problem by alternatively minimizing:
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Table 2 Datasets for performance evaluation of single image deblurring algorithms in this paper

Dataset Synthetic/real Image type Latent
images

Blur
kernels

Blurred
images

Non-blind deconvolution Evaluation
metric

Levin et al. (2009) Synthetic natural 4 8 32 Pan et al. (2014b) ERSR

Köhler et al. (2012) Real Natural 4 12 48 Pan et al. (2014b) PSNR

Sun et al. (2013) Synthetic Natural 80 8 640 Zoran and Weiss (2011) ERSR

Pan et al. (2014a) Synthetic Face 60 8 480 Pan et al. (2014b) PSNR

Pan et al. (2014b) Synthetic Text 15 8 120 Pan et al. (2014b) PSNR

PSNR and ERSR denote peak signal-to-noise ratio and error-ratio success rate, respectively

min
I

‖KI − B‖22 + λ f (I) + μ‖∇I‖0 (21)

and

min
k

‖Ak − B‖22 + γ ‖k‖22 . (22)

Following the strategies to optimize (5), we rewrite (21)
as

min
I,u,g

‖KI − B‖22 + α ‖∇I − g‖22 + β ‖I − u‖22
+ μ‖g‖0 + λ f (u), (23)

where u and g denote the vector forms of u and g in (7),
respectively. We use the same approach in (12) and (13) to
solve u and g.

In order to solve (23) with respect to I, we use the fast for-
ward approximation method (Hirsch et al. 2011) and assume
that the latent image I is locally uniform. The non-uniform
blur process is modeld as

B ≈ Z−1
I

P∑

p=1

ζ−1
p (F−1(diag(F(Zaap))))F(ζpdiag(mp))I,

(24)

where ζp(·) denotes the operator that crops the pth patch
from an image, ζ−1

p (·) denotes the operator to paste the patch
back to the original image, ZI and Za are the zero-padding
matrix whose size matches the size of the vector from the
summation, and diag(·) denotes a diagonal matrix with the
element of vector x on the main diagonal. In (24), mp is a
window function and the size is the same as I , which satisfies∑

p m p = 1. In addition, ap denotes the blur kernel in the

pth patch and satisfies ap = ∑
t kt b

p
t , where t is the index

of camera pose samples and bp
t is the kernel basis in the

pth patch. We determine the parameter t by counting the
overlapped patches in the whole image. In this work, we
sample local patches with a size of 31×31 and a stride of 15

pixels. Based on (24), the solution of (23) can be written as

I =
P∑

p=1

ζ−1
p

(
F−1

(
FK B + βF(ζp(u)) + αFG ′

FK ′ + β + αFD′

))
, (25)

where FK B , FG ′ , FK ′ , and FD′ are defined by:

FK B = F(Zaap)F(ζpdiag(mp)B), (26)

FG ′ =
∑

d∈{h,v} F(ζp(∇d))F(ζp(gd)), (27)

FK = F(Zaap)F(Zaap), (28)

FD′ =
∑

d∈{h,v} F(ζp(∇d))F(ζp(∇d)). (29)

We use the steps in Algorithm 1 and replace (25) with (7) to
solve (21) and (22).

6 Experimental Results

We evaluate the proposed algorithm on the natural scene
datasets (Levin et al. 2009; Köhler et al. 2012; Sun et al.
2013) as well as text (Pan et al. 2014b), and face (Pan et al.
2014a) image datasets. Table 2 shows a list of the evaluated
datasets in our experiments. All the experiments are carried
out on a desktop computer with an Intel Core i7-3770 proces-
sor and 32 GB RAM. The source code and the datasets will
be available on the project websites at https://sites.google.
com/view/lerenhanli/homepage/learn_prior_deblur.

6.1 Natural Images

We first evaluate the proposed algorithm on natural image
dataset ofKöhler et al. (2012), which contains 4 latent images
and12blur kernels.Wecomparewith 5generic imagedeblur-
ring methods (Cho and Lee 2009; Xu and Jia 2010; Whyte
et al. 2012; Pan et al. 2016;Yan et al. 2017;Kupyn et al. 2018;
Tao et al. 2018). Figure 5 shows the deblurred results of one
example in which our method generates sharper images with
fewer ringing artifacts.

123

https://sites.google.com/view/lerenhanli/homepage/learn_prior_deblur
https://sites.google.com/view/lerenhanli/homepage/learn_prior_deblur


International Journal of Computer Vision (2019) 127:1025–1043 1033

Fig. 5 A challenging example from the dataset (Köhler et al. 2012). The proposed algorithm restores visually more pleasing results with fewer
ringing artifacts

We use the same protocol as Köhler et al. (2012) to com-
pute the PSNR by comparing each deblurred image with 199
sharp images captured along the same camera motion trajec-
tory. As shown in Fig. 6a, our method achieves the highest
PSNR on average.

Next, we evaluate our algorithm on the deblurring dataset
provided by Sun et al. (2013), which consists of 80 sharp
images and 8 blur kernels from Levin et al. (2009). We
compare with the 6 optimization-based deblurring methods
(Levin et al. 2011; Krishnan et al. 2011; Xu et al. 2013; Xu
and Jia 2010; Sun et al. 2013; Pan et al. 2016) and one CNN-
based method (Chakrabarti 2016). We first compute the Sum
of Squared Differences (SSD) between the deblurred results
and the ground-truth images.Considering the error is affected
by the kernel size,wemeasure the ratio between the deblurred
error with the estimated kernel and that with the ground-truth
kernel.We then plot the cumulative histogram in Fig. 6b. The
percentage of the results with error ratios below a threshold
is defined as the success rate. For fair comparisons, we apply
the same non-blind deconvolution (Zoran and Weiss 2011)
to restore the latent images. The proposed method performs
competitively against the state-of-the-art algorithms.

We also compare our method with existing algorithms
(Krishnan et al. 2011; Xu et al. 2013; Pan et al. 2016; Kupyn
et al. 2018; Tao et al. 2018) on real-world blurred images.
Here we use the same non-blind deconvolution algorithm
(Pan et al. 2014b) for fair comparisons. As shown in Fig. 7,

Fig. 6 Quantitative evaluations on the benchmark datasets. a Köhler
et al. (2012) and b Sun et al. (2013)

our method generates sharper images with fewer artifacts
and performs comparably to the state-of-the-art method (Pan
et al. 2016).

6.2 Domain-Specific Images

We evaluate our algorithm on the text image dataset (Pan
et al. 2014b) which consists of 15 sharp text images and 8
blur kernels from Levin et al. (2009). We show the aver-
age PSNR in Table 3. While the text deblurring approach
(Pan et al. 2014b) achieves the highest PSNR, the pro-
posed method performs favorably against the state-of-the-art
generic deblurring algorithms (Cho and Lee 2009; Xu and
Jia 2010; Levin et al. 2011; Xu et al. 2013; Pan et al. 2016).
Figure 8 shows the deblurred results on a blurred text image.
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Fig. 7 Deblurred results on a real blurred image. Our result is sharper with fewer artifacts. (e Kupyn et al. (2018) and f Tao et al. (2018) are
end-to-end methods that do not have kernel estimation)

Table 3 Quantitative evaluations on the text image dataset (Pan et al.
2014b)

Methods Average PSNR

Cho and Lee (2009) 23.80

Xu and Jia (2010) 26.21

Levin et al. (2011) 24.90

Xu et al. (2013) 26.21

Pan et al. (2016) 27.94

Pan et al. (2014b) 28.80

Ours 28.10

Our method performs favorably against generic image deblurring
approaches and is comparable to the text deblurring method (Pan et al.
2014b)
Bold value indicates the best performance

The proposed method generates a much sharper image with
sharper texts.

Figure 9 shows an example of the low-illumination image
from the dataset of Pan et al. (2016). Due to the influence of
large saturated regions, the generic image deblurring method
(Xu et al. 2013) does not generate sharp images. In con-
trast, our method generates a comparable result with Hu et al.
(2014), which is specially designed for the low-illumination
images.

Figure 10 shows the deblurred results on a face image.
We note that the proposed method learns a generic image
prior and effectively deblurs images on different domains.
Compared with the state-of-the-art methods (Xu et al. 2013;
Yan et al. 2017; Shen et al. 2018), the proposed algorithm
generates the image with fewer ringing artifacts.

Fig. 8 Deblurred results on a text image. Our method generates sharper deblurred image with more sharper characters than the state-of-the-art text
deblurring algorithm (Pan et al. 2014b)

123



International Journal of Computer Vision (2019) 127:1025–1043 1035

Fig. 9 Deblurred results on a low-illumination image. Our method yields comparable results to Hu et al. (2014), which is specially designed for
deblurring low-illumination images

Fig. 10 Deblurred results on a face image. Our method generates visually more pleasing results. (e Shen et al. (2018) is an end-to-end method that
does not have kernel estimation)

6.3 Non-uniform Deblurring

Weevaluate the performance of ourmethod and existing non-
uniform deblurring algorithms on the dataset by Lai et al.
(2016), which contains 4 camera motion trajectories and 25
sharp images. As shown in Table 4, the proposed algorithm
performs favorably against the state-of-the-art non-uniform
image deblurringmethods (Whyte et al. 2012; Xu et al. 2013;
Pan et al. 2016; Kupyn et al. 2018; Tao et al. 2018) on the
dataset by Lai et al. (2016). We show the results of non-
uniform deblurring in Fig. 11. The proposed performs well
against the state-of-the-art-methods and restores imageswith
sharp edges and sharp textures.

7 Analysis and Discussion

In this section,wediscuss the connectionwith L0-regularized
priors and learning-based priors, and analyze the con-
vergence property, robustness to Gaussian noise as well
as hyper-parameters, and the limitations of the proposed
method.

7.1 Relation with L0-Regularized Priors

Several methods (Pan et al. 2014b; Xu et al. 2013) adopt the
L0-regularized priors for blind image deblurring due to the
strong sparsity of the L0 norm. For example, the deblurring
algorithms (Pan et al. 2016; Yan et al. 2017) enforce the L0

Table 4 Quantitative evaluations on the non-uniformdeblurring dataset
(Lai et al. 2016)

Methods Average PSNR

Whyte et al. (2012) 15.72

Xu et al. (2013) 18.51

Pan et al. (2016) 19.64

Kupyn et al. (2018) 16.36

Tao et al. (2018) 16.16

Ours 20.85

Ourmethod performs favorably against the state-of-the-art non-uniform
deblurring algorithms
Bold value indicates the best performance

sparsity on the extreme channels (i.e., dark and bright chan-
nels) as the blur process affects the distribution of the extreme
channels. In addition, the L0 gradient prior is adopted in both
the state-of-the-art approaches and the proposed method to
regularize the solution of latent images. We visualize the
intermediate results in Fig. 12. The methods based on the
L0-regularized prior on extreme channels (Pan et al. 2016;
Yan et al. 2017) do not recover strong edges when there
are not enough dark or bright pixels. The proposed method
without the learned image prior (i.e., using L0 gradient prior
only) cannot restore strong edges well for blur kernel esti-
mation. Although the CNN prior alone is not able to recover
the latent image well, the approach by combining L0 gra-
dient and CNN prior restores sharper edges in the early
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Fig. 11 Deblurred results on non-uniform blurred images (top: a synthetic image from Lai et al. (2016), bottom: a real image). We extend the
proposed method for non-uniform deblurring and provide comparative results with the state-of-the-art methods

stage of the optimization process and helps estimate blur
kernels.

To better understand the contribution of each term in
(4), especially the relation between the L0 gradient prior
and CNN prior, we compare the deblurring results using
different sparsity constraints on the gradient and with
or without CNN prior on the dataset by Levin et al.
(2009). As shown in Fig. 13a, while the L0 gradient prior
helps preserve more image structures, the integration with
the proposed CNN prior leads to significant performance
gain.

In addition, we apply L1-norm and L2-norm to image
gradients, and compare the performance with and without
the CNN prior. Figure 13a demonstrates that L0-norm is the
most effective approach to constrain the sparsity on image
gradients. The proposed CNN prior does not perform well
when used alone as the prior learns features only from the
image intensity, which cannot preserve structural informa-
tion well. However, the method integrating the CNN prior
and L0 gradient prior performs better than using each gradi-
ent prior solely. Furthermore, the proposed method performs
slightly better than that without the blur kernel regularization
(i.e., ‖k‖22).

7.2 Relation with Learning-Based Priors

Numerous non-blind deconvolutionmethods learn image pri-
ors based on the Gaussian mixture model (Zoran and Weiss
2011) or deep CNNs (Zhang et al. 2017a, b). These learned
image priors are effective for reducing noise and recovering
fine details for non-blind deconvolution. However, we note
it is not straightforward to extend these algorithms to effec-
tively handle blind image deblurring.

To demonstrate the effectiveness of the proposed discrim-
inative image prior, we extend existing learning-based priors
(Zhang et al. 2017b; Zoran andWeiss 2011) to recover latent
images for blind image deblurring. Specifically, we replace
our image prior [i.e., f (u) in (4)] with priors by Zhang
et al. (2017b) and Zoran and Weiss (2011), and use the same
strategy in Algorithm 1 to estimate blur kernels. We com-
pare these learning-based image priors on the dataset by
Levin et al. (2009) and present quantitative evaluations in
Fig. 13. The method using the proposed discriminative prior
performs favorably against those based on other learning-
based priors. Figure 14 shows that the methods based on
the priors (Zhang et al. 2017b; Zoran and Weiss 2011) do
not restore sharp edges for blur kernel estimation. In con-
trast, the proposed image prior is able to recover strong
edgeswhich are useful for estimating blur kernelsmore accu-
rately.

7.3 Run Time and Convergence Analysis

As the proposed optimization model involves a non-linear
and non-convex term, it is of great interest to analyze the run
time and convergence rate. We evaluate the state-of-the-art
methods on images of different sizes and report the aver-
age execution time in Table 5. The proposed method runs
competitively with the state-of-the-art approaches (Pan et al.
2016; Yan et al. 2017). In addition, we quantitatively eval-
uate convergence rate of the proposed optimization using
images from the dataset of Levin et al. (2009). We com-
pute values of the objective function (4) at the finest image
scale. We also evaluate the average kernel similarity (Hu and
Yang 2012) between estimated kernel K and ground-truh
K̂ :
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Fig. 12 Deblurred images and intermediate results. We show the inter-
mediate latent images over iterations (from left to right) in (e–h). Our
discriminative prior recovers intermediate results with more strong
edges for kernel estimation

Fig. 13 Quantitative evaluations on proposed CNN prior on the dataset
by Levin et al. (2009). a Comparisons with different sparsity constraints
on image gradient andw/ orw/o the proposedCNNprior,b comparisons
with the state-of-the-art learning priors

S(K , K̂ ) = max
χ

∑
χ K (τ ) · K̂ (τ + χ)

‖K‖22 · ‖K̂‖22
, (30)

Fig. 14 Deblurred images and intermediate results. We compare the
deblurred results with the state-of-the-art learning based methods
[Zoran andWeiss 2011 (EPLL); Zhang et al. 2017b (Denoiser)] in (a–d)
and illustrate the intermediate latent images over iterations (from left to
right) in (e–h). The proposed prior recovers intermediate results with
strong edges for kernel estimation while others fail

Table 5 Execution time comparisons

Method 255 × 255 600 × 600 800 × 800

Xu et al. (2013) (C++) 1.11 3.56 4.31

Krishnan et al. (2011) 24.23 111.09 226.58

Levin et al. (2011) 117.06 481.48 917.84

Pan et al. (2014b) 115.23 412.88 767.54

Pan et al. (2016) 134.31 691.71 964.90

Yan et al. (2017) 264.78 996.03 1150.48

Ours 109.27 379.52 654.65

We report the average execution time (in seconds) on three different
sizes of images.All the algorithms are implemented inMATLABexcept
the method of Xu et al. (2013)

where χ is the possible shift between the two kernels, and τ

denotes element coordinates in the kernel. In addition, K (τ )

and K̂ (τ ) are zeros when τ is out of the kernel range. Fig-
ure 15a, b show that our algorithm converges well within 50
iterations.
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Fig. 15 Convergence analysis.We analyze the kernel similarity and the
objective function (4) at the finest image scale. Our method converges
well within 50 iterations. We also evaluate the energy function (15).

The function converges within 15 iterations at the step of 0.1. (The red
lines denote average Kernel Similarity/Energy function which the green
ones denote the standard deviations)

Fig. 16 Analysis on gradient descend method (15). Characters in the intermediate results become clearer long with the gradient descend (Color
figure online)

Furthermore, we evaluate the convergence of the gradi-
ent descent method (15). As shown in Fig. 15c, the method
converges well within 15 iterations at the step of 0.1. To bet-
ter understand the gradient descent method, we use a text
image to illustrate how u changes in (15) along with the
iterations. As shown in Fig. 16, characters in the intermedi-
ate results (i.e., u) become clearer along with the gradient
descent method.

7.4 Robustness to Image Noise

Figure 17 shows the deblurred results on a blurred image
which contains Gaussian noise. As the dark channel (Pan
et al. 2016) and extreme channel priors (Yan et al. 2017)
are based on pixel intensity, these methods do not perform
well due to the influence of image noise. In contrast, we
add 1% Gaussian noise on blurred images when training our
discriminative prior. As such, the proposed method performs
more robustly to Gaussian noise and generates images with
fewer artifacts.

For quantitative performance evaluation, we add 1–5%
Gaussian or salt and pepper noise on five blurred images
from the dataset of Levin et al. (2009). For fair comparisons,
we use the same non-blind deconvolution method (Zoran
and Weiss 2011) to restore latent images. Figure 18a shows
that the proposed algorithm performs favorably against the

Fig. 17 A blurred image with Gaussian noise. The image priors based
on intensity information (Pan et al. 2016; Yan et al. 2017) is less robust
to images with Gaussian noise. In contrast, the deblurred results from
the proposed algorithm contain fewer artifacts as shown in the zoom-in
areas

state-of-the-art methods (Pan et al. 2016; Yan et al. 2017) on
different Gaussian noise levels. However, both the state-of-
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Fig. 18 Evaluations on blurred images with noise. Our method per-
forms favorably against the state-of-the-art methods (Pan et al. 2016;
Yan et al. 2017) on handling Gaussian noise. However, both the state-
of-the-art approaches and proposed algorithm are less robust to salt and
pepper noise

the-art approaches and our algorithm are less effective when
images contain salt and pepper noise (Fig. 18b).

7.5 Analysis on Hyper-Parameters

There are four important hyper-parameters in the proposed
model [λ, μ, γ in (4), and η in (15)]. For sensitivity analysis,
we evaluate the proposed algorithm by varying one hyper-
parameter andfixingothers.Wecompute the kernel similarity
metric (Hu andYang 2012) tomeasure the accuracy of kernel
estimation on the dataset of Levin et al. (2009). Figure 19
shows that the proposed method is not sensitive to change of
each hyper-parameter within a wide range.

7.6 Limitations

The proposed algorithm is less effective when the linear con-
volution model does not hold for the blurred input images.
We evaluate the proposed method on severe noise images,
dynamic scene blurred images, and portrait images with out-
of-focus backgrounds.

Severe noise Experimental results in Sect. 7.4 show that
our image prior can handle Gaussian noise better than other
intensity-based imagepriors (Pan et al. 2016;Yan et al. 2017).
However, the proposed prior is less effective for images
containing significant amount of noise. Figure 20 shows
examples with 5% Gaussian noise and salt and pepper noise.
The algorithm based on (2) cannot handle the denoising and
deblurring problems jointly. Thus, the proposed algorithm

Fig. 20 Limitations on severe noise images of the proposed method.
Our learned image prior is not effective on handling images with sig-
nificant amount of noise

cannot restore the image well as shown in Fig. 20b. A sim-
ple solution is to first apply a low-pass filter to reduce image
noise before deblurring. We adopt the Gaussian filter and
median filter when input images contain the Gaussian noise
and salt and pepper noise, respectively. As shown in Fig. 20c,
the proposed method with these filters performs better while
the details are not preserved well in the restored images. Our
future work will consider jointly handling the deblurring and
denoising in a principled way.

Object motion and out-of-focus blur The blur caused by out-
of-focus or object motion is highly non-uniform. Existing
methods often require image segmentation or depth estima-
tion to deblur the image. As the linear convolution model
used in the proposed algorithm does not hold for such cases,
the proposed algorithm is less effective as shown in Figs. 21
and 22.

8 Extension to Image Dehazing

We demonstrate that the proposed discriminative prior can
be extended to solve the image dehazing problem. Image
dehazing aims to recover the clean image from a hazy or

Fig. 19 Sensitivity analysis on the hyper-parameters λ, μ, γ , and η in the proposed model
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Fig. 21 Limitations on dynamic scene blur images of the proposed method. Our method is not effective on dynamic scene deblurring

Fig. 22 Limitations on deblurring the background in a portrait image

foggy input.Ahazy image canbe formulatedby the following
model:

J (x) = I (x)t(x) + A(1 − t(x)), (31)

where J (x) denotes the hazy image, I (x) represents the clean
image, t(x) is the transmission map, and A describes the
atmospheric light. Solving (31) is also an well-known ill-
posed problem. He et al. (2011) propose to first estimate t(x)
and A and then compute the clean image I (x) by

I (x) = J (x) − A(1 − t(x))

t(x)
. (32)

However, computing I (x) by direct element-wise division
tends to introduce artifacts and color distortion when J (x)
contains noise or the estimated t(x) and A are not accurate
enough. To address this problem, we restore the clean image
I (x) by solving the following optimization problem:

min
I (x)

‖J (x) − I (x)t(x) − A(1 − t(x))‖22 + θ f (I (x)), (33)

where θ is the weight to balance the prior term f (I (x)). The
transmission map t(x) and atmospheric light A are estimated
by the method of He et al. (2011). We set θ = 0.01 and use
the half-quadratic and gradient descent methods as described
in Sect. 4 to solve (33).

In order to embed the learned image prior into the
optimization-based framework (33), we re-train the classifier
with hazy images (labeled as 1) andhaze-free images (labeled
as 0). We use the dataset of Ren et al. (2016), which contains
2413 synthetic hazy images and corresponding clean images.
We adopt the same training strategy in Sect. 3.4 to train our
classifier. As shown in Fig. 23, the re-trained classifier gen-
erates different feature maps for hazy and clean images.

We evaluate the proposed method on the synthetic test set
of the image dehazing benchmark dataset (Li et al. 2019),
which contains 500 synthetic hazy images. Table 6 shows
our method performs favorably against the state-of-the-art
single-image dehazing algorithms (He et al. 2011; Berman
et al. 2016; Ren et al. 2016; Pan et al. 2018; Li et al. 2017b)
in terms of PSNR and SSIM.

As shown in Fig. 24e, the results of our method are visu-
ally more pleasing and have less color distortion compared

Fig. 23 Activation of feature maps of a pair of hazy and clean images. Our re-trained classifier can distinguish whether an image is hazy or not
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Fig. 24 Dehazing results on real hazy images. Our dehazing approach generates better results compared with the state-of-the-art methods (He et al.
2011; Ren et al. 2016; Pan et al. 2018)

Table 6 Average PSNR/SSIM values on the SOTS dataset from
RESIDE (Li et al. 2019)

Methods PSNR/SSIM

He et al. (2011) 15.49/0.73

Berman et al. (2016) 17.27/0.75

Ren et al. (2016) 17.57/0.81

Pan et al. (2018) 18.84/0.85

Li et al. (2017b) 19.06/0.85

Ours 19.35/0.88

Our method performs favorably against the state-of-the-art image
dehazing approaches
Bold value indicates the best performance

with those by solving (32) (Fig. 24b). The proposed method
generates images with clearer details than the state-of-the-art
approaches (He et al. 2011; Ren et al. 2016; Pan et al. 2018).

9 Concluding Remarks

In this paper, we propose a data-driven discriminative prior
for blind image deblurring. We learn the image prior via a
binary classification network based on the criterion that the
prior should favor sharp images over blurred ones in vari-
ous scenarios. We adopt a global average pooling layer and
a multi-scale training strategy such that the network per-
forms robustly to different sizes of images. We then embed
the learned image prior into a coarse-to-fine optimization
framework and develop an efficient half-quadratic splitting

algorithm for estimating blur kernels. Our prior performs
well on several types of images, including natural, text, face
and low-illumination images, and can be easily extended to
the non-uniform deblurring and image dehazing problems.
Extensive quantitative and qualitative evaluations demon-
strate that the proposed method performs favorably against
the state-of-the-art generic and domain-specific blind deblur-
ring algorithms.
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