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ABSTRACT

Self-supervised learning (SIfSL), aiming at learning feature representations
through ingeniously designed pretext tasks without human annotation, has
achieved compelling progress in the past few years. Very recently, SIfSL has
also been identified as a promising solution for semi-supervised learning (SemSL)
since it offers a new paradigm to utilize unlabeled data. This work further ex-
plores this direction by proposing a new framework to seamlessly couple SIfSL
with SemSL. Our insight is that the prediction target in SemSL can be modeled
as the latent factor in the predictor for the SIfSL target. Marginalizing over the
latent factor naturally derives a new formulation which marries the prediction tar-
gets of these two learning processes. By implementing this framework through a
simple-but-effective SIfSL approach — rotation angle prediction, we create a new
SemSL approach called Conditional Rotation Angle Prediction (CRAP). Specifi-
cally, CRAP is featured by adopting a module which predicts the image rotation
angle conditioned on the candidate image class. Through experimental evalu-
ation, we show that CRAP achieves superior performance over the other existing
ways of combining SIfSL and SemSL. Moreover, the proposed SemSL framework
is highly extendable. By augmenting CRAP with a simple SemSL technique and a
modification of the rotation angle prediction task, our method has already achieved
the state-of-the-art SemSL performance.

1 INTRODUCTION

The recent success of deep learning is largely attributed to the availability of a large amount of
labeled data. However, acquiring high-quality labels can be very expensive and time-consuming.
Thus methods that can leverage easily accessible unlabeled data become extremely attractive. Semi-
supervised learning (SemSL) and self-supervised learning (SIfSL) are two learning paradigms that
can effectively utilize massive unlabeled data to bring improvement to predictive models.

SemSL assumes that a small portion of training data is provided with annotations and the research
question is how to use the unlabeled training data to generate additional supervision signals for build-
ing a better predictive model. In the past few years, various SemSL approaches have been developed
in the context of deep learning. The current state-of-the-art methods, e.g. MixMatch (Berthelot et al.}
2019)), unsupervised data augmentation (Li et al., 2018), converge to the strategy of combining mul-
tiple SemSL techniques, e.g. II-Model (Laine & Aila, 2017), Mean Teacher (Tarvainen & Valpolal
2017), mixup (Zhang et al.||2018)), which have been proved successful in the past literature.

SIfSL aims for a more ambitious goal of learning representation without any human annotation. The
key assumption in SIfSL is that a properly designed pretext predictive task which can be effortlessly
derived from data itself can provide sufficient supervision to train a good feature representation.
In the standard setting, the feature learning process is unaware of the downstream tasks, and it is
expected that the learned feature can benefit various recognition tasks. SIfSL also offers a new
possibility for SemSL since it suggests a new paradigm of using unlabeled data, i.e., use them for
feature training. Recent work (Zhai et al,[2019) has shown great potential in this direction.

This work further advances this direction by proposing a new framework to seamlessly couple SIfSL
with SemSL. The key idea is that the prediction target in SemSL can serve as a latent factor in the
course of predicting the pretext target in a SIfSL approach. The connection between the predictive
targets of those two learning processes can be established through marginalization over the latent
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factor, which also implies a new framework of SemSL. The key component in this framework is a
module that predicts the pretext target conditioned on the target of SemSL. In this preliminary work,
we implement this module by extending the rotation angle prediction method, a recently proposed
SI{SL approach for image recognition. Specifically, we make its prediction conditioned on each
candidate image class, and we call our method Conditional Rotation Angle Prediction (CRAP).
The proposed framework is also highly extendable. It is compatible with many SemSL and SIfSL
approaches. To demonstrate this, we further extend CRAP by using a simple SemSL technique
and a modification to the rotation prediction task. Through experimental evaluation, we show that
the proposed CRAP achieves significantly better performance than the other SIfSL-based SemSL
approaches, and the extended CRAP is on par with the state-of-the-art SemSL methods. In summary,
the main contributions of this paper are as follows:

e We propose a new SemSL framework which seamlessly couples SIfSL and SemSL. It
points out a principal way of upgrading a SIfSL method to a SemSL approach.

e Implementing this idea with a SIfSL approach, we create a new SemSL approach (CRAP)
that can achieve superior performance than other SIfSL-based SemSL methods.

o We further extend CRAP with a SemSL technique and an improvement over the SIfSL task.
The resulted new method achieves the state-of-the-art performance of SemSL.

2 RELATED WORK

Our work CRAP is closely related to both SemSL and SIfSL.

SemSL is a long-standing research topic which aims to learn a predictor from a few labeled examples
along with abundant of unlabeled ones. SemSL based on different principals are developed in the
past decades, e.g., "transductive” models (Gammerman et al., 1998} Joachims}, 2003), multi-view
style approaches (Blum & Mitchelll [1998; Zhou & Li, 2005) and generative model-based meth-
ods (Kingma et al., 2014; [Springenberg, 2016), etc. Recently, the consistency regularization based
methods have become quite influential due to their promising performance in the context of deep
learning. Specifically, II-Model (Laine & Aila, 2017) requires model’s predictions to be invariant
when various perturbations are added to the input data. Mean Teacher (Tarvainen & Valpola, [2017)
enforces a student model producing similar output as a teacher model whose weights are calculated
through the moving average over the weight of student model. Virtual Adversarial Training (Miyato
et al.,|2018) encourages the predictions for input data and its adversarially perturbed version to be
consistent. More recently, mixup (Zhang et al.| 2018} |Verma et al., 2019) has emerged as a power-
ful SemSL regularization method which requires the output of mixed data to be close to the output
mixing of original images. In order to achieve good performance, most state-of-the-art approaches
adopt the strategy of combining several existing techniques together. For example, Interpolation
Consistency Training (Verma et al., 2019) incorporates Mean Teacher into the mixup regularization,
MixMatch (Berthelot et al.| 2019) adopts a technique that uses fused predictions as pseudo predic-
tion target as well as the mixup regularization. Unsupervised data augmentation (Li et al.| [2018)
upgrades II-Model with advanced data augmentation methods.

SISL is another powerful paradigm which learns feature representations through training on pre-
text tasks whose labels are not human annotated (Kolesnikov et al., |2019). Various pretext tasks
are designed in different approaches. For example, image inpainting (Pathak et al., [2016) trains
model to reproduce an arbitrary masked region of the input image. Image colorization (Zhang et al.,
2016) encourages model to perform colorization of an input grayscale image. Rotation angle pre-
diction (Gidaris et al., [2018]) forces model to recognize the angle of a rotated input image. After
training with the pretext task defined in a SIfSL method, the network is used as a pretrained model
and can be fine-tuned for a downstream task on task-specific data. Generally speaking, it is still
challenging for SIfSL method to achieve competitive performance to fully-supervised approaches.
However, SIfSL provides many new insights into the use of unlabeled data and may have a profound
impact to other learning paradigms, such as semi-supervised learning.

SIfSL based SemSL is an emerging approach which incorporates SIfSL into SemSL. The most
straightforward approach is to first perform SIfSL on all available data and then fine-tune the learned
model on labeled samples. S*L (Zhai et al.l 2019) is a newly proposed method which jointly train
the downstream task and pretext task in a multi-task fashion without breaking them into stages. In
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this paper, we further advance this direction through proposing a novel architecture which explicitly
links these two tasks together and ensure that solving one task is beneficial to the other.

3 COUPLING SEMSL WITH SLFSL

In SemSL, we are given a set of training samples {1, 22, -+ ,z,} € X with only a few of them
X, ={x1,22, - ,2;} € X annotated with labels {y1,y2,--- , 4} € Y (usually I << n and y is
considered as discrete class label here). The goal of a SemSL algorithm is to learn a better posterior
probability estimator over y, i.e., p(y|x, #) with 6 denoting model parameters, from both labeled and
unlabeled training samples. SIfSL aims to learn feature representations via a pretext task. The task
usually defines a target z, which can be derived from the training data itself, e.g., rotation angle of
the input image. Once z is defined, SIfSL is equivalent to training a predictor to model p(z|z; 6).
There are two existing schemes to leverage SIfSL for SemSL. The first is to use SIfSL to learn the
feature from the whole training set and then fine-tuning the network on the labeled part. The other
is jointly optimizing the tasks of predicting y and z, as in the recently proposed S*L method. As
shown in Figure E] (a), S*L constructs a network with two branches and a shared feature extractor.
One branch for modeling p(y|x; #) and another branch for modeling p(z|x;#). However, in both
methods the pretext target z predictor p(z|x; 6) is implicitly related to the task of predicting y.

Our framework is different in that we explicitly incorporate y into the predictor for z. Specifically,
we treat y as the latent factor in p(z|x; #) and factorize p(z|x; #) through marginalization:

p(zlz:0) =Y p(z,ylw:0) = pla, y; 0)p(ylw; 0). (D

Eq. |1|suggests that the pretext target predictor p(z|x; 6) can be implemented as two parts: a model
to estimate p(y|x;6) and a model to estimate z conditioned on both z and y, i.e., p(z|x,y;0).
For the labeled samples, the ground-truth y is observed and can be used for training p(y|z;6).
For unlabeled samples, the estimation from p(y|z; #) and p(z|z, y; §) will be combined together to
make the final prediction about z. Consequently, optimizing the loss for p(z|x; 6) will also provide
gradient to back-propagate through p(y|x;6). This is in contrast to the case of S*L, where the
gradient generated from the unlabeled data will not flow through p(y|x; 8). Theoretically, p(z|z; )
and p(y|x; 0) can be two networks, but in practise we model them as two branches connecting to a
shared feature extractor.

p(z|z; 0) suggested by Eq. |l|is essentially a pretext target predictor with a special structure and
partial observations on its latent variable, i.e. y. The benefits of using such a predictor can be under-
stood from three perspectives: (1) p(y|x; ) in Eq.|1|acts as a soft selector to select p(z|x, y; 0) for
predicting z. If the estimation of p(y|x; @) is accurate, it will select p(z|z,y = §(x); ) for predic-
tion and update, where §j(x) is the true class of . This selective updating will make p(z|z, y; 0) give
more accurate prediction over z if y matches §(x). After such an update, p(z|z, y; 6) will in turn en-
courage p(y|x; 6) to attain higher value for y = g(x) since the prediction from p(z|z,y = 3(x);0)
is more likely to be accurate. Thus, the terms p(y|z; ) and p(z|z, y; #) will reinforce each other
during training. (2) even if p(y|x; #) is not accurate (this may happen at the beginning of the train-
ing process), p(z|z, y; 0) can still perform the pretext target prediction and act as an unsupervised
feature learner. Thus, the features will be gradually improved in the course of training. With a better
feature representation, the estimation of p(y|z; 8) will also be improved. (3) Finally, to predict z in
Eq.[1} p(z|z, y; 0) needs to be evaluated for each candidate y. This in effect is similar to creating an
ensemble of diversified pretext target predictors and with the combination weight given by p(y|x; )
according to the marginalization rule. Thus, training features with Eq. [[|may enjoy the benefit from
ensemble learning. Again, this will lead to better features and thus benefit the modelling of p(y|x; 9)
and p(z|z,y; 0).

The above framework provides a guideline for turning a SIfSL method into a SemSL algorithm:
(1) modifying a SIfSL predictor p(z|z; ) by p(z|z,y; 6) and introducing a branch for p(y|z; 6) (2)
optimizing the prediction of z on the SemSL dataset and update the branches p(z|x, y; 0), p(y|z; 0)
and their shared feature extractor. (3) using p(y|z;6) as downstream task predictor or adding an
additional branch for training p(y|x; §) only with the labeled data as in S* L. More details about the
additional branch will be explained in Section 4}
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Figure 1: The structure comparison between S*L and our proposed CRAP method. The symbol C'
in our model denotes the number of semantic classes.

4 CRAP: SEMSL VIA CONDITIONAL ROTATION ANGLE PREDICTION

In the following part, we will describe an implementation of this framework, which is realized by
upgrading the rotation-angle prediction-based SIfSL to its conditional version.

Rotation angle prediction is a recently proposed SIfSL approach for image recognition. It randomly
rotates the input image by one of the four possible rotation angles ({0°,90°,180°,270°}) and re-
quires the network to give a correct prediction of the rotation angle. Despite being extremely simple,
this method works surprisingly well in practice. The underlying logic is that to correctly predict the
rotation angle, the network needs to recognize the canonical view of objects from each class and
thus enforces the network to learn informative patterns of each image category.

Following the proposed framework, we upgrade rotation angle prediction to conditional rotation
angle prediction (CRAP) for semi-supervised learning. In this case, z in Eq. [I]is the rotation angle
and y is the class label of input image x. We realize p(z|z,y;8) by allocating a rotation angle
prediction branch for each class. The prediction from each branch is then aggregated with the aid
of p(y|x; 0) for the final prediction of z as shown in Eq. [I} A more detailed schematic illustration
of the CRAP method is shown in Figure[I](b). As seen, our method adopts a network with multiple
branches and a shared feature extractor. Specifically, branches within the dashed box are called
auxiliary branches since they are only used for training and will be discarded at the test stage. It
contains C' rotation predictors which corresponds to p(z|z,y;6) and a semantic classifier which
generates p(y|x; 0). The auxiliary branches and feature extractor are trained by using the procedure
described in Section (3] Note that in CRAP, we do not directly use the semantic classifier from the
auxiliary branches as the final classifier. Instead, we introduce an additional semantic classifier and
learn it only via the loss incurred from the labeled data. This treatment is similar to S* L and we find
this strategy work slightly better in practice. We postulate the reason is that the p(y|x; @) branch in
auxiliary branches is mainly trained by the supervision generated from the optimization of p(z|x; ).
Such supervision is noisy comparing with the loss generated from the ground-truth y. It is better to
use such a branch just for feature training since the latter is more tolerant to noisy supervision.

Remark: (1) One potential obstacle of our model is that the quantity of parameters in the auxil-
iary branches would increase significantly with a large C. To tackle this, we propose to perform
dimension reduction for the features feeding into the rotation predictor. Results in Section show
that this scheme is effective as our performance will not drop even when the dimension is reduced
from 2048 to 16. (2) The CRAP method is also highly expendable. In the following, we will extend
CRAP from two perspectives: improving p(y|x; 6) and improving p(z|x, y; 9).

4.1 EXTENSION 1: INCORPORATING AN ADDITIONAL SEMSL LOSS

As discussed in Section[3] our method essentially introduces a network module with a special struc-
ture and partial observations on the latent variable y. Besides using labeled data to provide supervi-
sion for y, we can also use existing SemSL techniques to provide extra loss for modeling p(y|x; ).
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To implement such an extension, we employ a simple SemSL loss as follows: we rotate each image
in four angles within one batch (the prediction of the rotated image can be obtained as the byproduct
of CRAP) and obtain the arithmetic average p of the predicted distributions across these four rotated
samples. Then we perform a sharpening operation over p as in MixMatch :

. _ (pi) T
" 25:1(151‘)%

where C'is the number of classes and T € (0, 1] is a temperature hyper-parameter. Then we use the
cross entropy between p; and p(y|x; @) (in auxiliary branches) as an additional loss.

) 2

Note that other (more powerful) SemSL can also apply here. We choose the above SemSL tech-
nique is simply because its operation, i.e. image rotation, has already been employed in the CRAP
algorithm and thus could be reused to generate the additional SemSL loss without increasing the
complexity of the algorithm.

4.2 EXTENSION 2: USING CONDITIONAL DENOISING ROTATION PREDICTION

We also make another extension over CRAP by introducing an improved version of the conditional
rotation prediction task. Specifically, we require the rotation prediction branch to predict rotation
angle for a mixed version of the rotated image, that is, we randomly mix the input image x; with
another randomly sampled rotated image x; via Tmix = ax; + (1 — a)z;, with o sampled from
[0.5,1]. Meanwhile, the class prediction p(y|x;; ) is calculated from the unmixed version of the
input z;. In such a design, the network needs to recognize the rotation angle of the target object with
the noisy distraction from another image, and we call this scheme denoising rotation prediction.
The purpose of introducing this modified task is to make the SIfSL task more challenging and more
dependent on the correct prediction from p(y|x; 6). To see this point, let’s consider the following
example. Letter ‘A’ is rotated with 270° and is mixed with letter ‘B’ with rotation 90°. Directly
predicting the rotation angle for this mixed image encounters an ambiguity: whose rotation angle,
A’s or B’s, is the right answer? In other words, the network cannot know which image class is
the class-of-interest. This ambiguity can only be resolved from the output of p(y|x;8) since its
input is unmixed target image. Therefore, this improved rotation prediction task relies more on
the correct prediction from the semantic classifier and training through CRAP is expected to give
stronger supervision signal to p(y|z;6). Note that although the denoising rotation prediction also
uses mix operation, it is completely different from mixup. The latter constructs a loss to require
the output of the mixed image to be mixed version of the outputs of original images. This loss is
not applied in our method. For more algorithm details about CRAP and the extended CRAP, please
refer to the Appendix

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the proposed CRAP methocﬂ The purpose
of our experiments is threefolds: (1) to validate if CRAP is better than other SIfSL-based SemSL
algorithms. (2) to compare CRAP and extended CRAP (denoted as CRAP+ hereafter) against the
state-of-the-art SemSL methods. (3) to understand the contribution of various components in CRAP.

5.1 EXPERIMENTAL DETAILS

To make a fair comparison to recent works, different experimental protocols are adopted for different
datasets. Specifically, for CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) and SVHN (Netzer,
et al., 2011), we directly follow the settings in (Berthelot et al.l 2019). For ILSVRC-2012 (Rus-
sakovsky et al 2015)), our settings are identical to (Zhai et al.} 2019) except for data pre-processing
operations for which we only use the inception crop augmentation and horizontal mirroring. We
ensure that all the baselines are compared under the same setting. Followed the standard settings of
SemSL, the performance with different amount of labeled samples are tested. For CIFAR-10 and
SVHN, sample size of labeled images is ranged in five levels: {250, 500, 1000, 2000, 4000}. For
CIFAR-100, 10000 labeled data is used for training. For ILSVRC-2012, 10% and 1% of images are

!'Source code: https://www.dropbox.com/s/ciummongkdSu3as/CRAP.zip?d1=0
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Table 1: Comparison of error rates (%) for SIfSL based SemSL on CIFAR10.

# Labels 250 500 1000 2000 4000

Labeled-only  55.69+2.07 45.11+£1.85 37.69+1.67 29.14+2.95 20.83+1.09
Fine-tune 53.30+£4.05 36.23+£0.96 28.31+0.67 21.94+0.20 17.77+£0.35
S'L 37.26£1.23  31.35£1.20 29.03+£0.67 24.71+£0.88 20.27+£1.60
CRAP 17.26+1.22 15.13+0.42 12.79+0.10 10.73+0.05 9.26+0.17

Table 2: Comparison of error rates (%) for SIfSL based SemSL on SVHN and SVHN+Extra.

# Labels 250 500 1000 2000 4000

Labeled-only  25.20+2.69 16.66+1.48 13.05+0.64  9.64+0.14 7.66£0.40
% Fine-tune 47.17£1.78 32.64+£3.33 23.63£0.82 17.78+£0.08 13.83£0.45
5) SiL 28.97+£0.98 25.09+£4.50 18.74+£0.94 15.21+£0.48 12.70+0.28

CRAP 10.21£1.45 7.994+0.34  5.81+0.11 5.07+0.37  4.61+0.27
s Fine-tune 39.23+£2.23  24.89+1.31 17.67£0.63 12.161+0.53 9.38+0.39
5 SiL 19.19£1.26  14.80£1.23  12.39£0.63  11.00£0.39 9.16+0.29
+ CRAP 7214032  5.49+0.20 4.79+0.17  4.31+0.22  3.77+0.08

labeled among the whole dataset. In each experiment, three independent trials are conducted for all
datasets except for ILSVRC-2012. See more details in Table 8]in Appendix.

5.2 COMPARE WITH SLFSL-BASED SEMSL METHODS

Firstly, we compare CRAP to other SIfSL-based SemSL algorithms on five datasets: CIFAR-10,
CIFAR-100, SVHN, SVHN+Extra and ILSVRC-2012.

Two SIfSL-based SemSL baseline approaches are considered: 1) Fine-tune: taking the model pre-
trained on the pretext task as an initialization and fine-tuning with a set of labeled data. We term this
method Fine-tune in the following sections. 2) S*L: S*L method proposed in (Zhai et al.,2019).
Note that we do not include any methods which combine other SemSL techniques. For this reason,
we only use our basic CRAP algorithm in the comparison in this subsection. As a reference, we also
report the performance obtained by only using the labeled part of the dataset for training, denoting
as Labeled-only. The experimental results are as follows:

CIFAR-10 The results are presented in Table [I} We find that the “Fine-tune” strategy leads to a
mixed amount of improvement over the “Labeled-only” case. It is observed that a large improvement
can be obtained when the amount of labeled samples is ranged from 500 to 2000 but not on 250 and
4000’s settings. It might be because on one hand too few labeled samples are not sufficient to
perform an effective fine-tuning while on the other hand the significant improvement diminishes
after the sample size increase. In comparison, S*L achieves much better accuracy for the case of
using few samples. This is largely benefited from its down-stream-task awareness design — the
labeled training samples exerts impact at the feature learning stage. Our CRAP method achieves
significantly better performance than those two ways of incorporating SIfSL for SemSL and always
halves the test error of S*L in most cases.

SVHN and SVHN+Extra Table[2]shows the results of each method. Somehow surprisingly, we find
that the Fine-tune and S*L do not necessarily outperform the Labeled-only baseline. They actually
performs worse than Labeled-only on SVHN. With more training data in SVHN + Extra, S* L tends
to bring benefits for enhancing performance when the size of labeled samples are small e.g., with
250 samples. In comparison, the proposed CRAP still manages to produce significant improvement
over Labeled-only in all those settings. This result clearly demonstrates that the simple combination
of SIfSL and SemSL may not necessarily bring improvement and a properly-designed strategy of
incorporating SIfSL with SemSL is crucial.

CIFAR-100 As shown in Table[3] it is obvious that all SIfSL-based SemSL methods can have better
accuracy than that of Labeled-only. S*L leads to a marginal improvement over Fine-tune although
its performance is a little bit unstable on different partitions as shown by its higher variance. Again,
the proposed CRAP achieves significant improvement over those baselines.
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Table 3: Comparison of error rates (%) for SIfSL based SemSL on CIFAR-100.

Methods Labeled-only  Fine-tune S1L CRAP
CIFAR-100  46.83+0.42  45.40+0.60 42.984+3.91 30.32+0.83

Table 4: ILSVRC-2012 accuracies (%) of SIfSL Table 5: ILSVRC-2012 accuracies (%) for re-

based SemSIL. methods. ducing the dimension of input feature channels.

# Labels 10% 1% # Labels 10% 1%

Topl  TopS | Topl  TopS Topl TopS | Topl  TopS

Labeled-only - 80.43 - 4843 Dim-2048 65.34 87.07 | 49.26  75.57

Fine-tune - 78.53 - 4511 Dim-512 65.46 87.04 | 49.25 75.79

SYL - 83.82 - 5337 Dim-256 6545 86.95 | 49.08 75.62

Labeled-only 59.16 83.07 | 41.26  69.07 Dim-28 ) R | e

‘L 84 8628 | 46.90 74.1 1m- : : : :
gRAP gg :8,,4 gg 03 48 22 "5 Sg Dim-32 65.33 87.08 | 48.96 75.41
- : - - Dim-16 65.39 86.85 | 48.78 75.36

ILSVRC-2012 Table [] presents the results of each method. The top block of Table f] shows
the reported results in the original S*L paper and we also re-implement S*L based on the code
of (Kolesnikov et al.}[2019). Due to the difference of data pre-processing, results in the upper block
cannot be directly compared to those below. Again, we have observed that CRAP is consistently
superior to S*L in all settings. As mentioned in Section [4] for saving the computational cost, we
propose to reduce the dimensionality of features fed into the rotation angle predictor when there is
a large number of classes. In Table E} we demonstrates the effect of this scheme. As seen, the test
performance stays the same when the feature dimensions is gradually reduced from 2048 to only 16
dimensions. This clearly validates the effectiveness of the proposed scheme.

5.3 COMPARE WITH THE STATE-OF-THE-ART SEMSL

In the following section, we proceed to demonstrate the performance of CRAP+, that is, the extended
CRAP method by incorporating the two extensions discussed in Section .1 and d.2] We compare
its performance against the current state-of-the-art methods in SemSL. Similar to (Berthelot et al.,
2019)), several SemSL baselines are considered: Pseudo-Label, II-Model, Mean Teacher, Virtual
Adversarial Training (VAT), MixUp and MixMatch ﬂ Since a fair and comprehensive comparison
has been done in (Berthelot et al., |2019) and we strictly follow the same experimental setting, we
directly compare CRAP+ to the numbers reported in (Berthelot et al., 2019).

The experimental results are shown in

Figure 2} Figure [3] and Table [l As Table 6: Error rate (%) comparison of CRAP+ to SOTA
seen from those Figures and Table, the SemSL methods on CIFAR-100.

proposed CRAP+ is on-par with the
best performed approaches, e.g., Mix- Methods SWA  MixMatch CRAP+
match, in those datasets. This clearly CIFAR-100  28.8  25.88+£0.30 25.97+0.40
demonstrates the power of the proposed
method. Note that the current state-of-
the-art in SemSL is achieved by carefully combining multiple existing successful ideas in SemSL.
In contrast, our CRAP+ achieves excellent performance via an innovative framework of marrying
SIfSL with SemSL. Conceptually, the latter enjoys greater potential. In fact, CRAP might be further
extended by using more successful techniques in SemSL, such as MixUp. Since the focus of this
paper is to study how SIfSL can benefit SemSL, we do not pursue this direction here.

5.4 ABLATION STUDY

Since there are several components in CRAP and CRAP+, we study the effect of adding or removing
some components in order to provide additional insight into the role of each part. Specifically, we

2For CIFAR-100, we only compare CRAP+ against SWA (Tarvainen & Valpolal[2017) and MixMatch, since
those methods achieve the best reported performance in literature.
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Figure 2: CIFAR-10 error rates of CRAP+
and SOTA SemSL methods.

Figure 3: SVHN error rates of CRAP+ and
SOTA SemSL methods.

Table 7: Ablation study for CRAP on CIFAR-10 with 250 and 4000 labels.

# Labels 250 4000
CRAP 17.07 9.07
CRAP + extension 1 12.68 7.05
CRAP + extension 1 + extension 2 (CRAP+) 10.76 5.98
CRAP w/o semantic classifier in the main branch 20.10  10.25
CRAP w/o rotation prediction branches + extension 1~ 54.09  14.38
CRAP w/o whole auxiliary branches 62.73  27.31

measure the effect of (1) only adding extension 1 to CRAP, i.e., incorporating an additional SemSL
loss through sharpening operations on the semantic classifier in auxiliary branches (2) further adding
extension 2 to CRAP. The resulted model is identical to CRAP+ (3) removing semantic classifier of
main branch from CRAP. This is equivalent to using the semantic classifier in auxiliary branches for
testing (4) removing rotation angle prediction branch from auxiliary branches and adding extension
1 to CRAP. The resulted structure can be seen as a variant of only using the SemSL technique in
Extension 1 (but also with the classifier in main branch) (5) removing whole auxiliary branches from
CRAP, i.e., pure supervised method with data rotated.

We conduct ablation studies on CIFAR-10 with 250 and 4000 labels with results presented in Ta-
ble[7] The main observations are: (1) The two extensions in CRAP+ will bring varying degrees
of improvement. Extension 1 in Section i.e., a stronger p(y|z;#) modeling, perhaps leads
to greater improvement. (2) Using an additional semantic classifier leads to a slight performance
improvement over the strategy of directly utilizing p(y|x;#) in the auxiliary branches for testing
(method in third line from the bottom). (3) Using the sharpening strategy as in our extension 1 and
training a SemSL method alone does not produce good performance. This indicates the superior
performance of CRAP+ is not simply coming from a strong SemSL method but its incorporation
with the CRAP framework. (4) Applying rotation as a data augmentation for labeled data (the last
method in Table[7) will not lead to improved performance over the labeled-only baseline as by cross
referring the results in Table [0] This shows that the advantage of CRAP is not coming from the
rotation data augmentation.

6 CONCLUSION

In this work, we introduce a framework for effectively coupling SemSL with SIfSL. The proposed
CRAP method is an implementation of this framework and it shows compelling performance on
several benchmark datasets compared to other SIfSL-based SemSL methods. Furthermore, two
extensions are incorporated into CRAP to create an improved method which achieves comparable
performance to the state-of-the-art SemSL methods.
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A APPENDIX

A.1 ALGORITHM DETAILS OF CRAP AND CRAP+

Algorithm 1: CRAP Pseudocode

Inputs:
{X1,Y}: collection of labeled samples
X, collection of unlabeled samples

Smain_cls: semantic classifier of main branch
Jfaux_cls: semantic classifier of auxiliary branches

&;LLIXJ”O > A
T total number of iterations

B: minibatch size
Outputs:
fmain_c1s: semantic predictor for test set
Process:
1: fort < 1to T do

. rotation angle classifier of auxiliary branches, where i € [1,2,--- , C]

2:  Sample B examples from {X;,Y;} and X, respectively

3:  Obtain semantic class prediction on both main and auxiliary branches:
p(ymain‘xl) = fmain,cls(l'l>» p(yaux|xl) = faux,cls (xl) and train with
CrossEntropy (p(Ymain|Z1), ¥1) and CrossEntropy (p(Yaux|z:1), y1) losses

4:  Obtain rotation angle prediction

plzlz) = 3, p(ely. @) - p(yla) = S35 finror(%) -+ fumets(x) and train with

CrossEntropy(p(z|x), 2) loss // 2
5: end for

rotation angle ground truth

Algorithm 2: CRAP+ Pseudocode

Inputs:
{X;,Y;}: collection of labeled samples
X, collection of unlabeled samples

Smain_cls: semantic classifier of main branch
faux_cls: semantic classifier of auxiliary branches
Jhsror: Totation angle classifier of auxiliary branches, where i € [1,2,- -, C|

T total number of iterations
B: minibatch size
Outputs:
Smain_cls: semantic predictor for test set
Process:
1: fort < 1to 7T do

2:  Sample B examples from {X,Y;} and X, respectively

3:  Obtain semantic class prediction on both main and auxiliary branches:
p(ymain‘xl) = fmain,cls(xl)7 p(yaux|xl) = faux,cls (xl) and train with
CrossEntropy (p(Ymain|Z1), ¥1) and CrossEntropy (p(Yaux|z1), y1) losses

4:  Construct sharpened target p for unlabeled data // see extension 1 in Section

5:  Obtain semantic class prediction for unlabeled data on auxiliary branch
P(Yu|Tw) = fauxels(@o) and train with CrossEntropy (p(yu | ), P) loss
6:  Construct mixed images {x,, } from {X;, X,,} // see extension 2 in Section

7. Obtain rotation angle prediction

P(Zm|Tm) = Zy P(Zm|y, Tm) - p(y|z) = Z?:l zfux,rot(xm) * faux_cts () and train with

CrossEntropy (p(zm|zm), £) loss //
8: end for

Z is

rotation angle ground truth

A.2 EXPERIMENTAL DETAILS

The experimental details are presented in Table

11
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Table 8: Experimental details.

datasets CIFAR-10 ~ SVHN/+Extra CIFAR-100 ILSVRC2012-1% ILSVRC2012-10%
architecture WRN-28-2 WRN-28-2 WRN-28-8.4375 ResNet50v2 ResNet50v2
# training set 50000 73257/+531131 50000 1281167 1281167

# labeled set {250, 500, 1000, 2000, 4000} 10000 13762 128866

# validation set 5000 7325 5000 5005 50046
minibatch size 64 64 64 256 256
optimizer Adam Adam Adam SGD SGD

LR 0.002 0.002 0.002 0.01 0.1
weight decay 0.02 0.02/0.0001 0.04 0.01 0.001

# epoch 1024 500 300 1000 200

# iteration/epoch 1024 1024 1024 53 503

LR rampup X X X 10 epoch 5 epoch
LR decay X X X 10 10

LR decay at X X X {700,800,900} {140,160,180}
EMA model v v v X X

A.3 TABULAR RESULTS

Table 9] and [I0] presents a summary for error rate comparison of CRAP and CRAP+ to existing
SemSL methods on CIFAR-10 and SVHN respectively. Results in top block are reported in literature
where mark 1 means that the results come from (Oliver et al., 2018]), mark  means that the results
come from (Verma et al.,|2019) and others are from (Berthelot et al.,[2019). Results locating in the
bottom block are achieved by our implementation.

Table 9: Error rate (%) comparison of CRAP to existing SemSL methods on CIFAR-10.

# Labels 250 500 1000 2000 4000
Labeled-only ' - - - - 20.26+0.38
IT-Model 53.0242.05 41.82+1.52 31.53+£0.98 23.07+0.66 17.4140.37
Pseudo-Label ~ 49.98+1.17 40.55+£1.70 30.91£1.73 21.96+0.42 16.21+0.11
Mixup 47434092  36.17+£1.36 25.7240.66 18.14£1.06 13.15+0.20
VAT 36.034£2.82  26.11+£1.52  18.6840.40 14.40+0.15 11.05+0.31
MeanTeacher ~ 47.3244.71 42014586 17.3244.00 12.174£0.22  10.36+0.25
MixMatch 11.0840.87  9.65+0.94  7.75+£0.32  7.03+0.15  6.2440.06
ICT? - - 15484078  9.2640.09  7.2940.02
Labeled-only  55.69£2.07 45.11£1.85 37.69£1.67 29.14£295 20.83£1.09
Fine-tune 53.3044.05 36234096 28.3140.67 21944020 17.77+0.35
S*L 37264123 31.35£120 29.03+0.67 24.71+0.88 20.27+1.60
CRAP 17264122 15134042 12.7940.10 10.73+£0.05  9.26+0.17
CRAP+ 11.484+1.46 9374046  7.61£0.16  6.98+0.19  6.16+0.17

Table 10: Error rate (%) comparison of CRAP to existing SemSL methods on SVHN.

# Labels 250 500 1000 2000 4000

Labeled-only " - - 12.83+0.47 - -
II-Model 17.65+£0.27 11.44+0.39 8.60£0.18 6.9440.27 5.574+0.14
Pseudo-Label  21.164+0.88 14.35+0.37 10.1940.41 7.54+0.27 5.71£0.07
Mixup 39.97+£1.89  29.62+1.54 16.79+0.63 10.4740.48 7.964+0.14
VAT 8.41+1.01 7.44+0.79 5.98+0.21 4.85+0.23 4.20£0.15
MeanTeacher 6.454+2.43 3.8240.17 3.7540.10 3.5140.09 3.3940.11
MixMatch 3.78+0.26 3.64+0.46 3.27+0.31 3.04+0.13 2.89+0.06
ICT? 4.784+0.68 4.234+0.15 3.89+0.04 - -
Labeled-only  25.20+2.69 16.66+1.48 13.051+0.64 9.64+0.14 7.66£0.40
Fine-tune 47174178  32.644+3.33  23.63+0.82 17.78+0.08 13.83+£0.45
StL 28.97+0.98 25.094+4.50 18.74+0.94 15.214+0.48 12.701+0.28
CRAP 10.21+1.45 7.99+0.34 5.81+0.11 5.07+0.37 4.61+£0.27
CRAP+ 4.3940.25 4.201+0.04 3.9340.06 3.5240.07 3.371+0.01
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