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ABSTRACT

Our work offers a new method for domain translation from semantic label maps
and Computer Graphic (CG) simulation edge map images to photo-realistic im-
ages. We train a Generative Adversarial Network (GAN) in a conditional way to
generate a photo-realistic version of a given CG scene. Existing architectures of
GANs still lack the photo-realism capabilities needed to train DNNs for computer
vision tasks, we address this issue by embedding edge maps, and training it in an
adversarial mode 1. We also offer an extension to our model that uses our GAN
architecture to create visually appealing and temporally coherent videos.

1 INTRODUCTION

The topic of image to image translation and more generally video to video translation is of major
importance for training autonomous systems. It is beneficial to train an autonomous agent in real
environments, but not practical, since enough data cannot be gathered Collins et al. (2018). However,
using simulated scenes for training might lack details since a synthetic image will not be photo-
realistic and will lack the variability and randomness of real images, causing training to succeed up
to a certain point. This gap is also referred to as the reality gap Collins et al. (2018). By combining
a non photo-realistic, simulated model with an available dataset, we can generate diverse scenes
containing numerous types of objects, lightning conditions, colorization etc. Chen & Koltun (2017).

In this paper, we depict a new approach to generate images from a semantic label map and a
flexible Deep Convolution Neural Network (DCNN) we called Deep Neural Edge Detector (DNED)
which embed edge maps. we combine embedded edge maps which act as a skeleton with a semantic
map as input to our model (fig 2.1), The model outputs a photo-realistic version of that scene. Using
the skeleton by itself will generate images that lack variability as it restricts the representation to that
specific skeleton itself. Instead, we learn to represent skeletons by a neural network and at test time,
we sample the closest appropriate skeleton the network has seen at training. Moreover, we have
extended this idea to generate photo-realistic videos (i.e. sequence of images) with a novel loss that
uses the optical flow algorithm for pixel coherency between consecutive images.

Figure 1: in this paper we propose a method for generating photo-realistic images from semantic
labels of a simulator scene. This figure provides images related to the Synthia dataset Ros et al.
(2016). Left - semantic map of the scene. Middle - generated image from pix2pixHD Wang et al.
(2018b). Right - Our generated image. The texture and color space in our generated image is more
natural giving the image the desired photo-realism.

Recent works in the field of image generation include pix2pix Isola et al. (2017) offering im-
age generation from semantic maps, cascaded refinement networks Chen & Koltun (2017) using
networks refining different resolutions in a cascade manner, pix2pixHD Wang et al. (2018b) can
generate HD images in a conditional manner using multi-scale discriminator and an dual generator
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used as a super resolution generator. L1 loss for image generation is known to generate low quality
images as the generated images are blurred and lack details Dosovitskiy & Brox (2016). Instead,
Gatys et al. (2016), Johnson et al. (2016) are using a modified version of the perceptual loss, al-
lowing generation of finer details in an image. Pix2pixHD Wang et al. (2018b) and CRN Chen &
Koltun (2017) are using a perceptual loss as well for training their networks, e.g. VGGnet Simonyan
& Zisserman (2014). Moreover, pix2pixHD are using instance maps as well as label maps to enable
the generator to separate several objects of the same semantics. This is of high importance when
synthesizing images having many instances of the same semantics in a single frame.

As for video generation the loss used by Wang et al. (2018a), Shahar et al. (2011) tend to be
computationally expensive while our approach is simpler. We are using two generators of the same
architecture, and they are mutually trained using our new optical flow based loss that is fed by dense
optical flow estimation. Our evaluation method is FID Heusel et al. (2017) and FVD Unterthiner
et al. (2018) as it is a common metric being used for image and video generation schemes. We call
this work s-Flow GAN since we embed Spatial information obtained from dense optical flow in a
neural network as a prior for image generation and flow maps for video coherency. This optical flow
is available since the simulated image is accessible at test time in the case of CG2real scheme.

We make Three major contributions: First, our model can generate visually appealing photo-
realistic images from semantic maps having high definition details. Second, we incorporate a neural
network to embed edge maps, thus allowing generation of diverse versions of the same scenes.
Third, we offer a new loss function for generating natural looking videos using the above mentioned
image generation scheme. please refer to this link for videos and comparison to related work.

2 RELATED WORK

2.1 GENERATIVE ADVERSARIAL NETWORKS

Generative Adversarial Networks (GAN) were introduced in 2014 Goodfellow et al. (2014). This
method generate images that look authentic to human observers. They do so by having two neural
networks, one generating candidates while the other acts as a critique and tries to evaluate the gen-
eration quality Arjovsky et al. (2017),Radford et al. (2015),Zhao et al. (2016),Zhu et al. (2016),Sal-
imans et al. (2016). GANs are widely used for image generation; some image synthesis schemes
are used to generate low resolution images e.g. 32x32 Isola et al. (2017) while Brock et al. (2018)
were able to generate higher resolution images (up to 512x512). In addition, Wang et al. (2018b)
were able to generate even higher resolution images using coarse-to-fine generators. The reason
generating high resolution images is challenging is the high dimensionality of the image generation
task and the need to provide queues for high resolution Odena et al. (2017), Karras et al. (2017). We
offer queues as an edge map skeletons generated by our proposed DNED module. During training
the DNED is trained to learn the representations of real image edge maps. During test the DNED is
shown a CG (Computer Graphics) edge map, finds its best representation and provides the generator
with an appropriate generated edge map sampled from real image edge maps distribution.

Figure 2: example of the images for training the model. Left is the semantic map. Middle is the
edge map extracted from the real image. Right is the real image being used by the discriminator for
adversarial training. Please note that the real image is not used by the generator neither at training
nor at test time, but only its edge map. The main issue in the CG2real model compared to the image
to image models is that the simulators image is available to the generator at test time. We thus use
the simulators image to extract the edge map allowing the generator to generate the necessary fine
details in the output image.
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2.2 IMAGE SYNTHESIS

2.2.1 IMAGE TO IMAGE TRANSLATION

In the pix2pix setting, they used a Conditional GAN Mirza & Osindero (2014), where the networks
input is a semantic map of the scene, and while training in adversarial mode, a fake version of the real
image is given to the discriminator to distinguish. In the CG2real setting in addition to the semantic
map we also have access to the simulated image. Using the CG image as is, might be counter
productive since it will be trained to reconstruct CG images and not photo-realistic ones. Conversely
some of the underlying CG information correlates with the real world and can provide meaningful
prior to the synthesis. Since the relevant information lies in the image high frequencies Burt &
Adelson (1983), we learn the distribution of edge maps in real images (high resolution details), and
provide representation of it to the generator at test time. Some image generation tasks use label
maps only, e.g. Isola et al. (2017). The label maps provide only information about the class of a
given pixel. In order to generate photo-realistic images, some use instance maps as well Wang et al.
(2018b), This way, they can differentiate several adjacent objects of the same class. Nonetheless,
while most datasets provide object level information about classes like cars, pedestrians, etc. they
do not provide that information about vegetation and buildings. As a result, the generated images
might not correctly separate those adjacent objects, thus degrading photo-realism.

2.2.2 LEARNING EDGES BY A NEURAL NETWORK

Generating edge maps using neural networks is a well established method. Holistically-Nested
Edge Detection (HED) provides holistic image training and prediction for multi-scale and multi-
level feature learning Xie & Tu (2017). They use a composition of generated edge maps to learn a
fine description of the edge scene. Inspired by their work, we train a neural network to learn edge
maps of real images.

As mentioned before, our generator requires an edge map as input. we get the edge map using a
spacial Laplacian operator with threshold. Providing the generator with deterministic edge map will
produce the same scene, so we train the DNED to take as input that deterministic edge map, learn
its representation and produce a variant of that edge map, as a superposition of edges seen in real
datasets. This way the generator will be able to produce a varaiaty of photorealistic images for the
same scene.

Since our approach (using edge maps) is not class dependent, we do not need instance map informa-
tion to generate several adjacent instances of the same semantics. Moreover, this approach addresses
the problem of generating fine details within a class like buildings and vegetation as can bee seen in
fig 3.2.

2.3 VIDEO TO VIDEO SYNTHESIS

Generating temporally coherent image sequences is a known challenge. Recent works use GANs to
generate videos in an unconditional setting Saito et al. (2017),Tulyakov et al. (2018),Vondrick et al.
(2016), by sampling from a random vector, but don’t provide the generator with temporal constrains,
thus generating non coherent sequences of images. Other works like video matting Bai et al. (2009)
and video inpainting Wexler et al. (2004) translate videos to videos but rely on problem specific
constrains and designs. A recent work named vid2vid Wang et al. (2018a) offers to conditionally
generate video from video and is considered to one of the best approaches to date. Using FlowNet
2.0 Ilg et al. (2017) they predict the optical flow of the next image. In addition, they use a mask
to differentiate between two parts; the hallucinated image generated from instance-level semantic
segmentation masks and the predicted image from the previous frame. By adding these two parts,
this method can combine the predicted details from the previously generated image, with the details
from the newly generated image. Inspired by Wang et al. (2018a), we are using flow maps of
consecutive images to generate temporally coherent videos. Contrary to Wang et al. (2018a) we
are not using a CNN to predict the flow maps or a sequence generator, but a classical Computer
vision approach. This is since a pre-trained network (trained on real datasets) failed to generalize
and infer on simulated datasets e.g. Synthia. This enables better temporal coherency and improve
video generation robustness.
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3 MODEL

Our CG2real model aims to learn the conditional distribution of an image given a semantic map.
Our video generation model aims to use this learned distribution for generating temporally coherent
videos using the generated images from the CG2real scheme. We first depict the image generation
scheme, then we review our video generation model.

3.1 IMAGE GENERATION

We use a conditional GAN to generate images from semantic maps as in Isola et al. (2017). In
order to generate images, the generator receives the semantic segmentation images si and maps it to
photo-realistic images xi. In parallel, the discriminator takes two images, The real image xi (ground
truth) and the generated image fi and learns to distinguish between them. This supervised learning
scheme is trained in the well-known min max game Goodfellow et al. (2014),Salimans et al. (2016):

min
G

max
D
LGAN (D,G) (1)

LGAN(D,G) = E(x,s)[log(x, s)] + E(s∼pdata(s))[log(1−D(s,G(s)))] (2)

3.2 EMBEDDING EDGE MAPS

In order to generate photo-realistic visually appealing images containing fine details, we provide a
learnt representation of an edge map to the generator (fig 2.1), allowing it to learn the conditional
distribution of real images given semantic maps and edge maps, i.e.:

LGAN(D,G,e) = E(x,s)[log(x, s)] + E((s,e)∼pdata(s,e))[log(1−D(s,G(s, e)))] (3)

During training, given an example image xi, we can estimate its edge map by the well-known spatial
Laplacian operator Guattery & Miller (2000),Denton et al. (2015). This edge map is concatenated
to the semantic label map and both are given as priors to the generator for adversarial training of
the fake image fi vs. the real image xi. To allow a stable training we begin training our GAN with
the edge maps from the Laplacian operator. After stabilization of the generator and discriminator,
we provide our generator with edge maps from the DNED. We then jointly train the GAN with the
DNED.

The DNED architecture is a modified version of HED Xie & Tu (2017). In HED, they generate
several sized versions of the edge map, each having a different receptive field. The purpose is
to create an ensemble of edge maps, each allowing different level of details in the image. When
superimposing all, the resulting edge map will have coarse-to-fine level of details in the generated
edge map image. By changing the weights of that ensemble, we can generate the desired variability
in the generated edge map, thus allowing us to generate diverse versions of the output. To conclude,
the loss function for training the DNED is:

LDNED : = LDNED(E(x)) =

N∑
i=1

ai ∗BCE(di(x), E(x)) (4)

Where: di(x), i = 0 : 5 is the ith side output of a single scale, E(x) is the classic edge map
generated by the spatial Laplacian operator, BCE is the binary cross entropy loss. N = 6 in our
case. ai is the contribution of the ith scale to the ensemble.

Increasing the resolution of the image might be challenging for GAN training. In other methods
the discriminator needs a large receptive field Isola et al. (2017),Seif & Androutsos (2018),Simonyan
& Zisserman (2014),Luo et al. (2016), requiring a deeper network or larger convolution kernels.
Using a deeper network is prone to overfitting and in the case of GAN training, and might cause
training to be unstably. This challenge is usually addressed by the multi-scale approach Ghiasi &
Fowlkes (2016),Denton et al. (2015),Huang et al. (2017),Karras et al. (2017),Zhang et al. (2017).
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Since the DNED embed a learnt representation of skeletons, our architecture performs very well
on higher resolution images. Our original generated images were of size [512x256]. We have
successfully trained our model to generate images of size [768x384] , i.e. 1.5 times larger in each
dimension without changing the model while using a single discriminator (see 3.2).

Figure 3: comparison of 768x384 pix images generated by pix2pixHD (Left) and our model (Right).
Our model can generate lower level details in the image, thus improving its photo-realism. This
figure provides an example comparing (768x384 pix) resolution images of pix2pixHD (left side)
compared to our model (right).

We showed that generating high quality images when using a single discriminator is feasible and
training is stable. We provide comparison using our method with multi-scale discriminator 3.2. the
FM loss is computed with k=1 for single layer discriminator and k=3 for multi layer one:

Figure 4: Comparison of generated test images, when training with a single discriminator and a
multi-scale one. The left image is generated when the generator was trained with a single discrimi-
nator, while the right image while using a multi-scale one. This figure demonstrates that when using
our model (with our skeleton), training with a single discriminator might be enough.

Lk
FMm

: = Lk
FMm

(Dk, G, e) =

T∑
i=1

1

Ni
E(x,s,e)∼pdata(s,x,e)L1(Di

k(s, x)−Di
k(s,G(s, e)) (5)

In addition, following Dosovitskiy & Brox (2016),Gatys et al. (2016),Johnson et al. (2016),Zhu
et al. (2017) we are using the perceptual loss for improved visual performance and to encourage the
discriminator distinguish real or fake samples using a pre traind VGGnet Ledig et al. (2017).

Lpercep : = Lpercep(x,G(s, e)) =
1

P

P∑
i=1

L1(FLV GGi(x)− FLV GGi(G(s, e))) (6)

Where, P is the number of slices from a pre-trained VGG network and FLV GGi
are the features

extracted by the VGG network from the ith layer of the real and generated images respectively. To
conclude, our overall objective for generating photo-realistic, diverse images in the CG2real setting
is to minimize LCG2real:

LCG2real = min
G

max
Dk, k=1:lm

lm∑
l=1

LGAN (Dk, G, e)+λ1

lm∑
l=1

Lk
FMm

+λ2Lpercep +λ3LNNED (7)
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Figure 5: By using edge maps, the model learns to separate objects of the same semantics. The most
dominant example is buildings. Unlike cars, pedestrians or bicycle riders, that are separable using
the instance map, buildings are not. The semantic label provides the pixels in which the building
exists. Considering the fact that a scene of adjacent buildings is somewhat common, the ability
to separate them is of high value. Left - the label map. Middle - generated image by Wang et al.
(2018b). Right - our generated image. Our model can generate unique adjacent buildings from the
semantic label maps of better quality compared to Wang et al. (2018b).

Figure 6: previous work test images Wang et al. (2018b) (Top) compared to our model test images
(Bottom). The images generated by our model contain low level details, allowing the desired photo-
realism

3.3 VIDEO GENERATION

Using pre trained CG2real networks, we generate two consecutive images, and then estimate two
flow maps. The first flow map is between xi, xi+1, where xi and xi+1 are two consecutive real im-
ages. The second flow map is between G(si, ei), G(si+1, ei+1) , where G(si, ei) and G(si+1, ei+1)
are two consecutive generated (fake) images. Note that the generation of G(si, ei), G(si+1, ei+1) is
done independently, meaning we apply our CG2real method twice, without any modifications. To
conclude we enforce temporal coherency by using the following loss:

Lflow = L1(Freal,Ffake) (8)

Where Freal = F(xi, xi+1), Ffake = F(G(si, ei), G(si+1, ei+1)) and F(∗) is the optical flow
operator. This formulation eliminates the need of using a sequential generator as in Wang et al.
(2018a), allowing us not only using our image generation model twice, which adds more constrains
to the video generation scheme, but also avoid errors accumulation arising from positive feedback
by feeding a generated image to the generator, as can be seen in figure 3.3 and in this video.

By adding Lflow to the LCG2real loss, the network learns to generate G(si+1, ei+1) taking the flow
maps into account, thus generating temporally coherent images as depicted in 3.3.

Lvideogen = Lflow + LCG2real (9)
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Figure 7: block diagram of the video generation model. Two identical CG2real models generate
Fake image (t) and Fake image (t+1). The two consecutive fake images are fed to the flow-fake
estimator, while two consecutive real images are fed to the flow-real estimator. Both real and fake
flow maps are trained using L1(Freal, Ffake) loss. This enables the pre-trained CG2real models to
learn the required coherency for generating photo-realistic videos.

4 RESULTS

Our goal is to generate photo-realistic images. In (fig 3.2) we can find some examples from the
CG2real image synthesis task, and in (fig 4) present consecutive images depicting the video to
video synthesis. We use the same evaluation methods as used by previous image to image works
,e.g. pix2pix Isola et al. (2017) , pix2pixHD Wang et al. (2018b) and others. The evaluation pro-
cess consist of performing semantic segmentation with a pre-trained seamntic segmentation network
Zhao et al. (2017) on synthesized images produces by our model, then calculating the semantic pixel
accuracy and the mean intersection over union (mIoU) over the classes in the dataset. As shown in
tables 1, 2 bellow, our network outperforms previous works. The ground-truth results are the pixel
accuracy and mIoU when performing the same semantic segmentation with the real images (Oracle).

Furthermore, to evaluate the image generation quality, we used another metric to evaluate dis-
tances between datasets called FID (Frchet Inception Distance) Heusel et al. (2017),Adler & Lunz
(2018). It is a very common metric for generative models as it correlates well with the visual
quality of generated samples Wang et al. (2018a). FID calculates the distance between two multi-
variate Gaussians real and generated respectively; where Xr ∼ N(µr,Σr) and Xg ∼ N(µg,Σg)
are the 2048-dimensional activations of the Inception-v3 pool3 layer Szegedy et al. (2016), and
FID = ‖µr −µg‖2 +Tr(Σr + Σg − 2(ΣrΣg)1/2) is the score for image distributions Xr and Xg .
Lower FID score is better, meaning higher similarity between real and generated samples.

Cityscapes Pix2pix Pix2pixHD Ours Oracle

Pixel accuracy [%] 0.7279 0.81 0.83 0.86
Mean IoU [%] 0.5324 0.67 0.69 0.701

Table 1: semantic segmentation results on the cityscapes Cordts et al. (2016) validation set

Synthia Pix2pix Pix2pixHD Ours Oracle

Pixel accuracy [%] 0.54 0.79944 0.860753 0.913132
Mean IoU [%] 0.36 0.55955 0.740040 0.8419

Table 2: semantic segmentation results on the Synthia Ros et al. (2016) dataset

As can be seen in tables 1, 2, pix2pixHDs results are better than pix2pix for pixel accuracy and
mIoU. Our results are better than pix2pixHD, and almost meet the oracles results on both Synthia
Ros et al. (2016) and cityscapes Cordts et al. (2016). In table 3, we compare the FID score for all
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FID,FVD Pix2pix Pix2pixHD Vid2vid Ours-img Ours-vid

FID 116.69 71.21 154.36 69.25 69.81
FVD - - 0.706 - 0.326

Table 3: FID and FVD metric comparisson between pix2pix, pix2pixHD vid2vid and Ours.

the four image generation models w.r.t the Oracle. Ours-img (Our image generation model) outper-
forms both pix2pix and pix2pixHD. Moreover, adding a temporal consistency constrain to the image
generation process degrades image quality. Vid2vid uses pix2pixHD as its image generation model
imposes a substantial degradation in the image quality (71.21 to 154.36). Our video generation uses
our CG2real model had a marginal effect on the FID score of Ours-vid (69.25 to 69.81 and even
outperformed pix2pixHD) and did not degrade generated images quality (fig 4).

Our video generation evaluation method is FVD (Frchet Video Distance) proposed by Unterthiner
et al. (2018). FVD is a metric for video generation models evaluation and it uses a modified version
of FID. we calculated the FVD score for our generated video (Ours-vid) w.r.t. the Oracle (real video)
and did the same for vid2vid w.r.t the same Oracle. Our FVD score on the video test set is 0.326
while vid2vid’s is 0.706 meaning our videos are more than twice similar to the oracle. we suggest
that this substantial margin stems from the errors accumulated in the video generation model of
vid2vid (fig 4). As mentioned, Our video generation model uses our flow loss therefore does not
encounter this phenomena.

Figure 8: Comparison of video generation. Up - images generated by vid2vid Wang et al. (2018a).
Down - images generated by our video generation model. Our generated images are temporally
coherent and visually appealing In our images sky is more natural, road signs are clearer and build-
ings have finer level of details. This example emphasizes the error propagation of vid2vid’s model
wile our model does not accumulate errors (see street lights in upper right corner of each image).
The main objective of the video generation model is to enable generating non flickering images by
giving objects in consecutive images the same color and texture, i.e. sample from the same area in
the latent spaces. full videos can be seen here .

5 SUMMARY

We present a CG2real conditional image generation as well as a conditional video synthesis. We
offer to use a network learning the distribution of edge maps from real images and integrate it into a
generator (DNED). We were able to generate highly detailed and diverse images thus enabling bet-
ter photo-realism. Using the DNED enable generating diverse yet photo-realistic realizations of the
same desired scene without using instance maps. As for video generation, we offer a new scheme
that utilizes flow maps allowing better temporal coherence in videos. We compared our model to
recent works and found that it outperforms both current quantitative results and more importantly
generates appealing images. Furthermore, our video generation model generates temporally coher-
ent and consistent videos.
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A APPENDIX

Figure 9: Additional Test images from Cityscapes Dataset. Left - pix2pixHD. Right - Ours. These
images further demonstrate the photo-realism achieved by our model.
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Figure 10: Additional test images on Synthia dataset. Left - pix2pixHD. Right - Ours. These images
demonstrate improved image quality, better and finer details in the generated objects, buildings and
vegetation.
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Figure 11: Additional test images on Synthia dataset. Left - pix2pixHD. Right - Ours. These images
demonstrate improved image quality, better and finer details in the generated objects, buildings and
vegetation.
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Figure 12: Test video on CityScapes. Left - vid2vid. Right - Ours video gen model. These images
demonstrate better temporal coherency in the generated images. Moreover, in the top left corner of
the left video, we notice the error propagates. Better yet, the buildings in the right video are more
reasonable, w.r.t. windows, shades, general texture, etc. As for image quality, the road signs in the
right video are better emphasized.
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Figure 13: Test video on CityScapes. Left - vid2vid. Right - Ours video gen model. This figure
provides more images from the same video presented in fig 4. Pay attention to the error propagation
on the top right images of vid2vid. Again, our model demonstrates finer road signs and higher level
of details in the generated buildings.
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