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Abstract
Many potential applications of reinforcement
learning (RL) in the real world involve interacting
with other agents whose numbers vary over time.
We propose new neural architectures for these
multi-agent RL problems. In contrast to other
methods of training an individual, discrete pol-
icy for each agent and then enforcing cooperation
through some additional inter-policy mechanism,
we propose learning multi-agent relationships at
the policy level by using an attentional architec-
ture. In our method, all agents share the same
policy, but independently apply it in their own
context to aggregate the other agents’ state in-
formation when selecting their next action. The
structure of our architectures allow them to be
applied on environments with varying numbers
of agents. We demonstrate our architecture on a
benchmark multi-agent autonomous vehicle co-
ordination problem, obtaining superior results to
a full-knowledge, fully-centralized reference so-
lution, and significantly outperforming it when
scaling to large numbers of agents.

1. Introduction
Multi-agent reinforcement learning (RL) is said to be much
more difficult than conventional, single-agent, RL. In addi-
tion to the typical obstacles in single-agent RL (like tempo-
ral credit assignment due to sparse rewards and navigating
the exploration-exploitation tradeoff), multi-agent RL adds
complications such as an intrinsically higher dimensionality,
per-agent credit assignment, and (from the perspective of
each individual agent) environmental nonstationarity during
the learning process (i.e., if multiple interacting agents are
all learning at the same time, then one agent’s knowledge
about how others react to their actions quickly becomes

1 University of California, Berkeley, California, USA. Corre-
spondence to: Matthew A. Wright <mwright@berkeley.edu>.

36 th International Conference on Machine Learning, Workshop
on RL for Real Life. Long Beach, California. Copyright 2019 by
the author(s).

outdated) (Hernandez-Leal et al., 2018).

Many real-world problems where the application of RL has
been proposed can be classified as multi-agent problems.
Autonomous vehicle planning and control, for example, has
been considered as a natural domain for RL due to the dif-
ficulty of forming a complete first-principles model of the
driving environment for the application of classic control
(Shalev-Shwartz et al., 2016; Wu et al., 2017b). Many of
the complications in autonomous driving come from need-
ing to reason about and interact with other agents; e.g.,
other vehicles and pedestrians. Even assuming human-level
perception, these multi-agent interactions are the source
of inefficiencies. For example, it is well-known that inter-
vehicle dynamics, as drivers react to other drivers’ actions,
and those reactions are reacted to, etc., often lead to traf-
fic congestion and suboptimal outcomes for all involved
(Sugiyama et al., 2008). Advocates of autonomous vehi-
cle technologies argue that they will improve transportation
safety and efficiency by harmonizing these inter-vehicle be-
haviors. In fact, several authors have recently demonstrated
this potential by showing how a small number of computer-
controlled vehicles can dissipate stop-and-go congestion
waves (Cui et al., 2017; Stern et al., 2018; Vinitsky et al.,
2018; Wu et al., 2017b). Effective solutions to multiagent
RL can help autonomous vehicles deliver on their promised
gains.

An additional complexity that arises in real-world multi-
agent scenarios like driving is that, from an “ego” agent’s
perspective, the number of other agents varies. Of the
aforementioned works, three (Cui et al., 2017; Stern et al.,
2018; Wu et al., 2017b) only consider artificial environ-
ments where the number of other vehicles is fixed. The
fourth (Vinitsky et al., 2018) applies RL to more realistic
multi-agent coordinative vehicle control problems where
the number of agents varies, but unsatisfyingly relies on a
central coordinator, and observes that performance degrades
when the RL policy is asked to coordinate the actions of
a large number of vehicles. In real-world applications, it
would be desirable to obtain a control policy that is effective
for varying numbers of agents, and can improve perfor-
mance when the effective action space (e.g., when there are
more vehicles that can coordinate to mitigate congestion)



Neural-Attentional Architectures for Deep Multi-Agent Reinforcement Learning in Varying Environments

expands.

In this paper, we present a new framework for deep multi-
agent RL that attempts to address those problems. Our
proposed method centers on the application of new neural
network architectures specific for the multi-agent setting. In
particular, we apply neural attention (Bahdanau et al., 2015;
Vaswani et al., 2017) as a fundamental building block in our
learning model. We argue that this framework has appealing
properties: among other benefits, it provides a principled
solution to the per-agent credit assignment problem and can
be flexibly applied to situations with varying numbers of
agents.

The remainder of this paper is organized as follows. In sec-
tion 2, we briefly review the mathematical framework of RL
in general and multi-agent RL. Section 3 discusses a partic-
ular benchmark problem in coordinated autonomous vehicle
control (Vinitsky et al., 2018) that we use as a framing prob-
lem. After a discussion of some of the needs for applying
RL to complex multi-agent problems like autonomous vehi-
cle coordination and our method’s promise towards meeting
those needs in section 4, section 5 reviews neural attention
and discusses its application on the problem introduced in
section 3. Section 6 provides exhaustive implementation
details for our application. Section 7 presents our prelimi-
nary results and discusses how they and our implementation
compare to the reference RL implementation from (Vinitsky
et al., 2018). Finally, section 8 summarizes next steps in de-
veloping our attention-based approach to deep multi-agent
RL.

2. Multi-Agent Reinforcement Learning:
Background

2.1. The general RL setting

RL is typically presented in the mathematical framework of
finite-time, discounted Markov decision processes (MDPs)
(Duan et al., 2016). These MDPs are defined by a tuple
(S,A, P, r, ρ0, γ, T ), where S is the state space, A is the
action space, P : S × A × S → R≥0 is the transition
probability distribution, r : S × A → R is the reward
function, ρ0 : S → R≥0 is the probability distribution on
initial states, γ ∈ (0, 1] is a reward discounting factor, and T
is the time horizon. The goal is to maximize the cumulative
discounted reward

∑T
t=0 γ

tr(st, at) where st and at are the
state and action, respectively, at time t.

In the RL problem, the probability distributions and/or the
reward function are unknown. The objective is to learn a
policy π : S×A → R that maximizes the expectation of the
discounted future reward, E

∑T
t=0 γ

tr(st, at). Tradition-
ally, the policy is assumed to be stochastic, i.e., a probability
distribution, and is written πθ(at|st) where θ is a parameter
vector that parameterizes the policy. The objective is then

to find the optimal parameter vector θ∗, defined as

θ∗ = argmax
θ

Eτ

T∑
t=0

γtr(st, at) (1)

where τ = (s0, a0, s1, a1, . . . ) is a shorthand for the entire
trajectory, at ∼ πθ(at|st), and st+1 ∼ P (st+1|st, at).

Most difficulties in RL stem from the fact that P and r are
unknown, but the solution to (1) is fundamentally dependent
on both of them. Methods to solve RL problems iterate on
their solution candidate θ for many iterations. Typically, it is
desired that, in early stages of the solution process, πθ’s are
chosen that can be used to gather information about the form
of P and r; and the πθ’s obtained in the end stages of the
solution process leverage the information gained to solve
(1) using the learned approximations of P and r. These
two sub-goals are often referred to as the “exploration vs
exploitation” problem.

The entity that draws actions at from πθ(at|st), exe-
cutes them, and observes the resulting sample st+1 ∼
P (st+1|st, at) and reward value r(st|at) (for the particular
st, at) is typically called the “agent.”

In modern deep RL, the policy πθ is expressed by a deep
neural network, with θ being the neural network weights.
Development of particular algorithms to iterate on the neural
network weights θ in deep RL has been a topic of much
research in recent years (Duan et al., 2016; Henderson et al.,
2017).

2.2. Multi-agent RL

So far, we have just described the background to traditional,
non-multi-agent RL. Multi-agent RL, as its name suggests,
adds complications by having multiple agents. Let I denote
the set of agents. Typically these agents are considered
to have discrete policies πiθ, where the superscript indexes
individual agents i ∈ I. The multi-agent RL problem is to
obtain the optimal policy πiθ∗ for either some or all of the
i ∈ I (e.g., all of the agents when the agents are cooperating,
but some subset of I when the agents are competing, e.g.,
learning to play opposing sides of a competitive game).

The review paper (Hernandez-Leal et al., 2018) notes that
the natural approach of training each agent independently,
iterating on each agent’s πiθ using samples (sit+1, s

i
t, a

i
t, r

i
t)

as outlined in section 2.1, is likely to fail in the multi-agent
case. This is because the unknown transition distribution P
is now a function of every agent’s state and action, i.e.,

P (st+1|st, at) =
∏
i∈I

P (sit+1|st, at) (2)

where st and at in (2) now denote the set of states and
actions for all agents i ∈ I: st = {sit : i ∈ I}, at =
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{ait : i ∈ I}. That is, every agent is interacting with the
environment and each other at the same time.

The great difficulty in the multi-agent learning process
comes from the fact that, typically, every agent is learning
at the same time. This means that, from the point of view
of a single agent i that only has control over its own action
ait, the optimal θ∗i from (1) is now a function of the other
agents’ actions ajt , j ∈ I \ {i}. Those actions are of course
dependent on the other agents’ policies πjθ, j ∈ I \ {i}. If
all agents are updating their policies πiθ, then P (2) changes
continuously.

The reward function in the multi-agent case will differ based
on whether the agents are cooperating or competing. If the
agents are purely cooperating, then the reward r(st, at) will
be functions of the same set st, at’s from (2). If the agents
are competing, then different rewards are given to each agent
or team of agents.

Defining local rewards for each agent, r(sit, a
i
t), can make

the learning process easier by decoupling then, but in many
RL problems defining them is infeasible (Hernandez-Leal
et al., 2018). A major thrust of multi-agent RL research
is thus to construct methods to relate each agent’s (sti, a

t
i)

to the global reward r(st, at). This is called the per-agent
credit assignment problem and is a central problem in multi-
agent RL.

2.3. Approaches to multi-agent RL

Many authors have proposed approaches more sophisticated
training approaches to overcome the difficulties just men-
tioned. The review paper (Hernandez-Leal et al., 2018)
notes three trends: 1) encouraging agents to learn how to
communicate information to other agents, 2) encouraging
agents to learn behaviors that are inherently cooperative, and
3) encouraging agents to form an internal model of other
agents’ policies. In general, these approaches retain the idea
of training individual policies per agent, but adjust the train-
ing goal to include context-specific multi-agent information.
This adjustment is done, by, for example, altering the reward
function, adding auxillary learning tasks or auxillary NN
modules to solve the aforementioned problems specific to
multi-agent settings. These auxillary modules tie the per-
agent NNs together, and are to propagate information about
other agents back to each individual one. (Rashid et al.,
2018) note that these supervisory coordinating modules de-
scribe a problem setting where the agents can be trained
concurrently in a controlled environment where the global
information for the auxillary modules is available. At test
time, the agents will be deployed without these auxillary
modules, and will hopefully exhibit multi-agent-aware be-
haviors obtained during the controlled training. For more
details on specific techniques, see (Hernandez-Leal et al.,
2018).

Figure 1. “Merge” benchmark road network, with zoom-in to show
simulated vehicles. From (Vinitsky et al., 2018).

2.4. Our approach

We propose a new approach to multi-agent RL: learning
how to relate individual agents’ policies both to a) the global
reward, and to b) each other (at the policy level), via neural
attentional architectures in both value and policy networks.
Unlike the prior works that introduce new coordinative
modules or cooperation-inducing rewards, our framework
changes the architecture of the agent policies πθ. To give the
explanation of our method a more concrete base, we next
discuss a particular motivating multi-agent RL problem.

3. Our Framing Problem
In this work, we frame our discussion against a benchmark
multi-agent RL problem introduced by (Vinitsky et al., 2018)
(shown in Figure 1). The work proposed several multi-agent
reinforcement learning problems based on mixed-autonomy
traffic (road traffic with mixtures of autonomous and human-
driven vehicles). We will consider the “Merge” problem.
In this problem, two single-lane roads merge into one. At
the merge, the vehicles will compete for space, inducing
congestion and a high social cost. The RL problem is to
take control of some subset of the vehicles and dissipate this
congestion.

For each controlled vehicle, the state space S is a five-
dimensional vector of its own speed and the speed and
bumper-to-bumper gap of the immediately preceding and
following vehicles. The action space A is the controlled
vehicles acceleration (a scalar value). The problems reward
function encourages all vehicles to move quickly, while
having the controlled vehicles maintain not-too-small inter-
car distances.

In (Vinitsky et al., 2018), the canonical solution uses a
single-agent approach rather than a multi-agent approach.
There, a central controller receives all observations, stacks
them into one vector, and computes all actions. However, the
number of controlled vehicles on the network will change
as they enter and exit, so to use a traditional single-agent
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MLP (successive fully-connected neural network layers)
architecture, a fixed number of vehicles to control (five, in
this case), and the network-wide observation vector is either
truncated or zero-padded as needed. On the action end, if
there are fewer than five controllable vehicles present, extra
actions are discarded, and when there are more than five,
some are left uncontrolled.

4. Why Our Method?
The original proposers of the “merge” benchmark (Vinit-
sky et al., 2018) note that the reference solution has several
shortcomings. Most critical is the “unfixed” state and action
spaces. In most RL problems, including multi-agent RL
problems, the state and action spaces are of fixed size. The
state space may be, for example, readings from a fixed num-
ber of sensors, an image with a constant number of pixels,
etc., and the action dimension a fixed number of actuators.
Even in complex multi-agent RL problems like computer
strategy games (Hernandez-Leal et al., 2018), there exist a
fixed number of agents, making the joint state and action
spaces fixed in dimension.

In contrast, in the “merge” problem (and, indeed, in many
coordinative transportation control tasks like using CACC
to form platoons dynamically), the number of agents varies
over time. In the merge problem, this happens as control-
lable vehicles enter and exit the network. The benchmark’s
proposers (Vinitsky et al., 2018) note that the reference so-
lution of controlling at most five vehicles effectively throws
away extra information when more than five vehicles are
present. Although unmentioned, the padding and truncation
likely also makes the learning problem harder because the
RL agent is expected to learn by itself to not assign credit
to the ignored actions (without knowledge that they have
been ignored), making the credit assignment problem even
more difficult. One solution is to train different policies for
different numbers of agents and select between them as the
situation changes, but training many policies would, among
other issues, vastly increase the RL sample requirements. In
contrast, our proposed method seeks to be cross-trainable by
allowing valid backpropagation for any number of agents.

(Vinitsky et al., 2018) also note that the fully-centralized
controller is “unlikely to be possible in real road networks.”
A method to decentralize RL training and execution is a
critical step towards its deployment to real transportation
networks. Our method has an advantage in this area in
that, since it is valid for any number of agents, it can by
construction be executed by a single agent in a fully de-
centralized manner. This means that, to the best of our
knowledge, this paper represents the first work on a decen-
tralized multi-agent solution to the mixed-autonomy traffic
problems presented in (Vinitsky et al., 2018).

As of this writing, our method is immature, and (as we will
discuss near the end of the following section) our neural
architecture is lacking many features of state-of-the-art at-
tentional methods, so results that deliver to RL the same
performance boost as attention did to machine translation
(Bahdanau et al., 2015; Vaswani et al., 2017) are not pre-
sented here. Nevertheless, given the appealing properties
outlined in this section, it is worth investigating how the at-
tention framework can be adapted from supervised learning
to RL at all. The next section covers our efforts towards
this.

5. Attentional Architectures for RL
5.1. Overview

Neural attention (Bahdanau et al., 2015; Luong et al., 2015;
Vaswani et al., 2017) is a powerful neural architectural tech-
nique. It allows a deep neural network to learn how to relate
distinct entities (e.g., in an RL context, distinct agents) and
their associated data to each other, and, to assign importance
to these relations. For example, several high-profile papers
((Bahdanau et al., 2015; Vaswani et al., 2017), etc.) have dis-
cussed how, in a language translation problem, an attention
module in a neural network appeared to assign importance
to word pairings that appear important to meaning (e.g.,
assigning high importance from the position of a pronoun,
to the noun to the pronoun is referring).

Many overviews of the intricacies of neural attention exist
(e.g., (Bahdanau et al., 2015; Battaglia et al., 2018; Luong
et al., 2015; Vaswani et al., 2017), and others). We give
only a brief summary here, and refer to the particulars of
the “merge” problem discussed in section 3.

Suppose that at time t, there exist |I(t)| controllable ve-
hicles. Rather than stacking the |I(t)| per-vehicle states
si(t) ∈ R5, i ∈ I(t) into a |I(t)| · 5-dimensional vector,
then then padding or truncating it to a fixed size, we leave
the observations as an |I(t)| × 5 tensor, with the first di-
mension being dynamic. This sort of variable-size tensor
is a valid input into (self-) attention-type layers, unlike a
traditional fully-connected layer.

The output of our attention-structured deep neural network
is a dynamically-sized tensor whose shape is |I(t)| × η,
with η being the parameters that parameterize a single ve-
hicle’s stochastic policy π, e.g., if a vehicle’s stochastic
policy is a Gaussian parameterized by a mean and vari-
ance that are themselves functions of the state and pa-
rameterized by the neural network weights (symbolically,
ait ∼ N (µθ(st), σθ(st))), then η = 2.

Next, we dive into some more details on the particulars.
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5.2. Architecture Details

We use an attention-structured deep network that will always
return |I(t)| actions, while allowing each vehicle’s action
to depend on others’ state information. At its most funda-
mental level, the structure of an attentional neural network
layer uses two subnetworks: one for embedding and one for
aggregation. Let i ∈ I(t), and say that si ∈ R5 is the state
associated with vehicle i. Then, define f : R5 → Rm as
the embedding subnetwork, and g : R5 × R5 → R as the
aggregation subnetwork. Then hi ∈ Rm, (we use h here
to denote this layer output vector in light of the fact that it
is usually a “hidden layer” in a deep neural network) the
output of an attention layer corresponding to that vehicle, is

hi =
∑
j∈I(t)

softmax(g)jf(sj) (3)

where by softmax(g)j we mean the jth entry of the softmax
of a logit vector whose jth logit is g(si, sj). The idea is
that the embedding subnetwork f(si) learns to map each
vehicle’s state into a useful representation, and the aggrega-
tion subnetwork learns, as a function of both si and sj , the
relative usefulness of the f(sj)’s for the encoding in hi.

In this way, the output of the attention layer has a discrete el-
ement for each agent, but each element contains information
from all agents.

In the results presented here, we use the “scaled dot-product”
attention layer of (Vaswani et al., 2017), where f(·) and
g(·, ·) are made of matrix multiplications. We also make use
of the relative position embeddings of (Shaw et al., 2018)
and multi-headed attention (Vaswani et al., 2017). Multi-
head attention allows the attentional layer to learn multiple
independent embeddings of the input data. (Shaw et al.,
2018)’s relative position embeddings add a learned bias
vector to both the f(sj) and g(si, sj) computations, where
the bias vector is different for different (i, j) relationships.
In this work, we use (Shaw et al., 2018)’s relative position
embeddings such that the bias vector used depends on the
relative position upstream or downstream of j to i. There
is one bias vector for i = j, one for i being the next-most-
downstream controlled vehicle from j, etc. We clip the
representations at a distance of three vehicles; all i, j pairs
of a relative distance of three or more share the same bias
vector.

In this work, we use 4 attention heads of 16 units each. The
output of the attention layer is thus a tensor of dimension
b × |I(t)| × m, where b is the batch dimension, I(t) is
the number of vehicles, and m = 64 (4 heads times 16).
This tensor is passed through a fully-connected hidden layer
with 64 units (each of the b · |I(t)| attention layer outputs
pass through this layer identically and in parallel). Both the
attentional and fully-connected sublayers are followed by a
ReLu nonlinearity and a layer-normalization operation (Ba

et al., 2016) (with learned scale and location parameters), in
that order.

The output of the above layers then goes into the output
layer, whose output parameterizes the stochastic policy. In
this work, our stochastic policy is a per-agent Gaussian
distribution with mean and log-variance computed by the
same fully-connected layer for each agent. The same layers
are used for all vehicles i ∈ I(t), and can be computed fully
in parallel.

This structure of attentional sublayer followed by shared-
over-agents fully-connected sublayer is inspired by the
Transformer architecture of (Vaswani et al., 2017), though
we use only one such layer and omit any residual connec-
tions.

5.3. Attentional Proximal Policy Optimization

Proximal Policy Optimization (PPO) methods (Schulman
et al., 2017) are a popular class of RL training algorithms.
One attractive quality of PPO methods is their relative sim-
plicity compared to other RL training algorithms. For this
reason, in this work we use PPO for evaluating our atten-
tional architectures.

The traditional PPO algorithm assumes only a single agent.
In this section, we describe some necessary generalizations
to be able to apply PPO to our attentional multi-agent archi-
tectures.

One general PPO objective function of a policy parameter
vector θ at timestep t is of the form (Schulman et al., 2017)

LPPOt (θ) = E
[
LCLIPt (θ)− c1LV Ft (θ) + c2S [πθ] (st)

]
where

LCLIPt (θ) = E
[
min

(
rt(θ) · Ât,

clip(rt(θ), 1− ε, 1 + ε) · Ât
)]

with rt(θ) =
πθ(at|st)
πθold (at|st)

the ratio of the likelihood of the
actually-taken action at under θ to the likelihood under θold,
the initial value of θ, clip(·, ·, ·) a clipping function that clips
rt(θ) within ε of 1, Ât an estimate of the advantage at time
t, and where LV Ft is the squared error of an estimate of the
value function V (st), S[πθ](st) is the entropy of the policy
distribution outputted by the neural network for input state
st, and c1 and c2 are constants.

The key insight that allows us to apply PPO to the attentional
multi-agent architecture is that every term is a function of
the policy πθ (and the action(s) taken by that policy) rather
than any particular agent. More specifically, given a set of
per-agent states and rewards (sit, a

i
t), i ∈ I(t) and a scalar

reward r(t), we can define the policy distribution πθ(st) as



Neural-Attentional Architectures for Deep Multi-Agent Reinforcement Learning in Varying Environments

simply
πθ(st) =

∏
i∈I(t)

πiθ(st) (4)

and the policy likelihood of at|st as just

πθ(at|st) =
∏
i∈I(t)

πiθ(a
i
t|st). (5)

where by πiθ(st) we mean the distribution generated by the
parameter vector θ when viewing st from agent i’s perspec-
tive. Using (4) and (5), one can compute all terms involving
the policy distribution in the PPO objective, as well as an es-
timate of the Kullbeck-Leiber divergence between between
two piθ’s in a straightforward matter.

Architecturally, generating an estimator of the scalar value
function Vθ(st) from per-agent deep embeddings of each
agent’s perspective of st is less principled. In this work, we
use a value network with identical architecture to the policy
network described above, add an agent-wise max pooling
operation at the end, and pass the output of that through a
fully-connected layer to produce a scalar value estimate.

5.4. Attention’s Real-World Applicability

It is worth noting a few details that make the attentional
architecture appealing for multi-agent RL problems. Of
key importance is that each agent’s actions is computed
fully in parallel. What this means is that each agent can
actually compute its action locally, independent of the other
agents, using only its knowledge of its and the other agents’
states. While we discussed the above computations in terms
of tensors batched over agents, in practice this batching is
only for purposes of computational parallelism and ease of
explanation.

Also of note is how using the attentional architecture allows
for the straightforward application of a simple and rela-
tively well-understood single-agent RL training algorithm
(namely, PPO). As noted, this is because, technically speak-
ing, the actions and reward are conditioned on the policy,
which is held fixed across agents (showing this with appro-
priate mathematical rigor is part of ongoing work). The
question of how each agent needs to reason about all other
agents when determining its own action is made part of the
end-to-end learning problem. The ability to deploy classic
RL algorithms like PPO, as opposed to needing multi-agent-
specific RL algorithms like QMIX (Rashid et al., 2018) is
noteworthy.

Since all the agents use the same policy, we may think about
each agent’s state and action, and the states of the other
agents, as an individual training example for the single pol-
icy. It seems that the only obstacle to a fully-decentralized
training regime, where gradients can be computed locally,
is the fact that to estimate the scalar reward, we need to

aggregate encoded information over agents in our value net-
work by, e.g., our max-pooling. However, since all agents
share the same policy, we should be able to assume that
any agent with knowledge of the others’ states can perform
an estimate not only of its own action, but also the others’.
This means that the value function is fully estimable locally,
by each agent. While in our current setting, the presence in
the PPO loss of an action log-likelihood term (for us, that
means the joint log-likelihood of all agents’ actions given
their per-agent policy parameters) prevents a clean break to
fully-decentralized training, such an effort is an important
part of future work.

6. Implementation Details
The “merge” baseline described above is implemented in
the framework Flow (Wu et al., 2017a), which is a Python
codebase built on the widely-used microscopic vehicle traf-
fic simulator SUMO (Krajzewicz et al., 2012) that adapts
SUMO to the widely-used RL problem standard “env” de-
veloped in OpenAI Gym (Brockman et al., 2016). We im-
plemented our neural network architecture in Ray, (Moritz
et al., 2017). In particular, we modified Ray’s implemen-
tation of Proximal Policy Optimization (PPO) (Schulman
et al., 2017) to be compatible with the network architecture
we described above.

All PPO hyperparameters (training minibatch size, train-
ing epochs, Generalized Advantage Estimator parameter λ,
MDP discount factor γ, Adam learning rate, PPO entropy
coefficient, PPO clipping parameters) were left as the the
same as in the reference solution (Vinitsky et al., 2018).

We also used Ray to produce a reference solution similar to
(Vinitsky et al., 2018)’s that used a single-agent policy with
the padding and truncation discussed in section 3. For our
single-agent reference, we use a two-hidden-layer policy
with 64 units in each hidden fully-connected layer and a
tanh nonlinearity in between, a common policy architecture
in the RL literature (Henderson et al., 2017). This 64x64
architecture serves as a comparison to the attentional archi-
tecture that has the same number of hidden units. We note
that the original authors of the reference solution used a
neural network of greater depth.

Our code, taking the form of modules for Ray, is available
online at github.com/mawright/attn rl.

7. Results
(Vinitsky et al., 2018) proposed several different configu-
rations of the “Merge” problem, varying in the penetration
rate of autonomous vehicles and the maximum number of
vehicles that are allowed to be controlled. At the low end,
“Merge 0” requires the control of at most 5 vehicles, and

https://github.com/mawright/attn_rl
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Figure 2. Learning curves for PPO on the “Merge 0” and “Merge
2” benchmarks of (Vinitsky et al., 2018). “Merge 0” requires the
control of up to 5 vehicles, and “Merge 2” the control of up to
17. The mean and 95% confidence interval of episode reward over
four runs for each architecture are shown.

on the high end, “Merge 2” requires the control of up to 17
vehicles.

Figure 2 shows learning curves for PPO on the “Merge
0” and “Merge 2” benchmarks, for both our attentional ar-
chitecture and the reference MLP architecture. On both
problems, we obtain superior performance to the reference
architecture. While our gain in performance at first glance
appears modest, it must be emphasized that the single-agent
MLP implementation is a high bar to clear. The single-agent
MLP acts as a global coordinating controller. In contrast,
during execution our attentional architecture truly acts in
a distributed manner, with each agent’s action computed
independently. The ability of our distributed controller to
outperform a centralized controller is likely due to the ex-
tra difficulty in per-agent credit assignment introduced in
the single-agent problem by padding and truncation, as dis-
cussed in section 4. This perhaps also explains why our
attentional policy improves significantly on the Merge 2
problem relative to the Merge 0 problem, while the MLP
policy’s performance gain when enjoying more than three
times as many degrees of freedom is more modest (for the
MLP, the enhancement of its action space comes with a far
greater degree of potential padding).

8. Conclusion
We proposed attentional architectures for deep multi-agent
RL. Our architectures present principled solutions to several
important problems in multi-agent RL. First, using attention
allows for the use of a single policy for multiple numbers
of agents, by making each agent’s local aggregation of the
other agents’ states part of the end-to-end learning problem.

Second, attention allows the application of classic “single-
agent” RL training algorithms like PPO, obviating the need
for multi-agent-specific training regimes. Third, the sharing
of policies among agents allows for a greater degree of
decentralization in RL training and execution. Future work
should explore the extension of both of these points to move
towards greater contextual transferability and decentralized
coordination in deep RL.
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