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ABSTRACT

To acquire a new skill, humans learn better and faster if a tutor, based on their
current knowledge level, informs them of how much attention they should pay
to particular content or practice problems. Similarly, a machine learning model
could potentially be trained better with a scorer that “adapts” to its current learning
state and estimates the importance of each training data instance. Training such an
adaptive scorer efficiently is a challenging problem; in order to precisely quantify
the effect of a data instance at a given time during the training, it is typically
necessary to first complete the entire training process. To efficiently optimize data
usage, we propose a reinforcement learning approach called Differentiable Data
Selection (DDS). In DDS, we formulate a scorer network as a learnable function
of the training data, which can be efficiently updated along with the main model
being trained. Specifically, DDS updates the scorer with an intuitive reward signal:
it should up-weigh the data that has a similar gradient with a dev set upon which
we would finally like to perform well. Without significant computing overhead,
DDS delivers strong and consistent improvements over several strong baselines on
two very different tasks of machine translation and image classification.1

1 INTRODUCTION

While deep learning models are remarkably good at fitting large data sets, their performance is also
highly sensitive to the structure and domain of their training data. Training on out-of-domain data
can lead to worse model performance, while using more relevant data can assist transfer learning.
Previous work has attempted to create strategies to handle this sensitivity by selecting subsets of the
data to train the model on (Jiang & Zhai, 2007; Wang et al.; Axelrod et al., 2011; Moore & Lewis,
2010), providing different weights for each example (Sivasankaran et al., 2017; Ren et al., 2018), or
changing the presentation order of data (Bengio et al., 2009; Kumar et al., 2019).

However, there are several challenges with the existing work on better data usage strategies. Most
work data filtering criterion or training curriculum rely on domain-specific knowledge and hand-
designed heuristics, which can be sub-optimal. To avoid hand designed heuristics, several works
propose to optimize a parameterized neural network to learn the data usage schedule, but most of
them are tailored to specific use cases, such as handling noisy data for classification (Jiang et al.,
2018), learning a curriculum learning strategy for NMT (Kumar et al., 2019), and actively selecting
data for annotation (Fang et al., 2017; Wu et al., 2018). Fan et al. (2018) proposes a more general
teacher-student framework that first trains a teacher network to select data that directly optimizes
development set accuracy over multiple training runs. However, because running multiple runs of
training simply to train this teacher network entails an n-fold increase in training time for n runs, this
is infeasible in many practical settings. In addition, in preliminary experiments we also found the
single reward signal provided by dev set accuracy at the end of training noisy to the extent that we
were not able to achieve results competitive with simpler heuristic training methods.

In this paper, we propose an alternative: a general Reinforcement Learning (RL) framework for
optimizing training data usage by training a scorer network that minimizes the model loss on the
development set. We formulate the scorer network as a function of the current training examples only,
making it possible to re-use the model architecture which is designed and trained for the main task.

1We will make the code publicly available upon acceptance.
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Thus, our method requires no heuristics and is generalizable to various tasks. To make the scorer
adaptive, we perform frequent and efficient updates of the scorer network using a reward function
inspired by recent work on learning using data from auxiliary tasks (Du et al., 2018; Liu et al., 2019b),
which use the similarity between two gradients as a measure of task relevance. We propose to use the
gradient alignment between the training examples and the dev set as a reward signal for a parametric
scorer network, as illustrated in Figure 1. We then formulate our framework as an optimization
problem found in many prior works such as meta-learning (Finn et al., 2017), noisy data filtering (Ren
et al., 2018), and neural architecture search (Liu et al., 2019a), and demonstrate that our proposed
update rules follow a direct differentiation of the scorer parameters to optimize the model loss on the
dev set. Thus we refer to our framework as “Differentiable Data Selection” (DDS).

Training  
Data

∇θ J(θ, Ddev)
∇θℓ(x, y; θ)

(x, y) p(x, y; ψ)Scorer
ψ

Model
θ(x, y)

Figure 1: The general workflow of DDS.

We demonstrate two concrete instantiations of
the DDS framework, one for a more general
case of image classification, and the other for
a more specific case of neural machine transla-
tion (NMT). For image classification, we test
on both CIFAR-10 and ImageNet. For NMT,
we focus on a multilingual setting, where we
optimize data usage from a multilingual corpus
to improve the performance on a particular language. For these two very different and realistic tasks,
we find the DDS framework brings significant improvements over the baselines for all settings.

2 DIFFERENTIABLE DATA SELECTION

2.1 RISK, TRAINING, AND DEVELOPMENT SETS

Commonly in machine learning, we seek to find the parameters θ∗ that minimize the risk J(θ, P ),
the expected value of a loss function `(x, y; θ), where 〈x, y〉 are pairs of inputs and associated labels
sampled from a particular distribution P (X,Y ):

θ∗ = argmin
θ

J(θ, P ) where J(θ, P ) = Ex,y∼P (X,Y )[`(x, y; θ)] (1)

Ideally, we would like the risk J(·) to be minimized over the data distribution that our system
sees at test time, ie. Ptest(X,Y ). Unfortunately, this distribution is unknown at training time, so
instead we collect a training set Dtrain = {(xi, yi) : i = 1, ..., Ntrain} with distribution Ptrain(X,Y ) =
Uniform(Dtrain), and minimize the empirical risk by taking 〈x, y〉 ∼ Ptrain(X,Y ). Since we need
a sufficiently large training set Dtrain to train a good model, it is hard to ensure that Ptrain(X,Y ) ≈
Ptest(X,Y ). In fact, we often accept that training data comes from a different distribution than test
data. The discrepancy between Ptrain(X,Y ) and Ptest(X,Y ) manifests itself in the form of problems
such as overfitting (Zhang et al., 2017; Srivastava et al., 2014), covariate shift (Shimodaira, 2000),
and label shift (Lipton et al., 2018).

However, unlike the large training set, we can collect a relatively small development set Ddev =
{(xi, yi) : i = 1, ..., Ndev} with distribution Pdev(X,Y ) which is much closer to Ptest(X,Y )2. Since
Ddev is a better approximation of our test-time scenario3, we can use Ddev to get reliable feedback to
learn to better utilize our training data from Dtrain. In particular, we propose to train a scorer network,
parameterized by ψ, to provide guidance on training data usage to minimize J(θ,Ddev) .

2.2 REINFORCEMENT LEARNING FOR OPTIMIZING DATA USAGE

We propose to optimize the scorer’s parameters ψ in an RL setting. Our environment is the model
state θ and an example 〈x, y〉. Our RL agent is the scorer network ψ, which optimizes the data usage

2As is standard in machine learning experiments, we make sure that Ddev has no overlap with Dtrain or Dtest.
Details of how we construct the Ddev can be found in Appendix A.2 and A.4.

3For example, in Section 3.2 we would like to use training data from many different languages to improve
the performance of a particular low-resource language. Here we can gather a small set of Ddev from the low
resource language, even if we can’t gather a large training set in the language. Moreover, in a domain adaptation
setting we can obtain a small dev set in the target domain, or in a setting of training on noisy data we can often
obtain a small clean dev set.
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for the current model state. The agent’s reward on picking an example approximates the dev set
performance of the resulting model after the model is updated on this example.

Our scorer network is parameterized as a differentiable function that only takes as inputs the features
of the example 〈x, y〉. Intuitively, it represents a distribution over the training data where more
important data has a higher probability of being used, denoted P (X,Y ;ψ). Unlike prior methods
which generally require complicated featurization of both the model state and the data as input to the
RL agent (Fan et al., 2018; Jiang et al., 2018; Fang et al., 2017), our formulation is much simpler and
generalizable to different tasks. Since our scorer network does not consider the model parameters θt
as input, we update it iteratively with the model so that at training step t, P (X,Y ;ψt) provides an
up-to-date data scoring feedback for a given θt.

Although the above formulation is simpler and more general, it requires much more frequent updates
to the scorer parameter ψ. Existing RL frameworks simply use the change in dev set risk as the
regular reward signal, which makes the update expensive and unstable (Fan et al., 2018; Kumar et al.,
2019). Therefore, we propose a novel reward function as an approximation to ∆Jdev(x, y) to quantify
the effect of the training example 〈x, y〉. Inspired by Du et al. (2018) (which uses gradient similarity
between two tasks to measure the adaptation effect between them, we use the agreement between the
model gradient on data 〈x, y〉 and the gradient on the dev set to approximate the effect of 〈x, y〉 on
dev set performance. This reward simply implies that we prefer data that moves θ in the direction
that minimizes the dev set risk:

R(x, y) = ∆Jdev(x, y) ≈ ∇θ`(x, y; θt−1)> · ∇θJ(θt,Ddev) (2)

According to the REINFORCE algorithm (Williams, 1992), the update rule for ψ is thus
ψt+1 ← ψt +∇θ`(x, y; θt−1) · ∇θJ(θt,Ddev)︸ ︷︷ ︸

R(x,y)

∇ψlog(P (X,Y ;ψ)) (3)

The update rule for the model is simply
θt ← θt−1 −∇θJ(θt−1, P (X,Y ;ψ)) (4)

For simplicity of notation, we omit the learning rate term. Full derivation can be found in Appendix
A.1. By alternating between Eqn. 4 and Eqn. 3, we can iteratively update θ using the guidance from
the scorer network, and update ψ to optimize the scorer using feedback from the model.

Our formulation of scorer network as P (X,Y ;ψ) has several advantages. First, it provides the
flexibility that we can either sample a training instance or equivalently scale the update from the
training instance based on its score. Specifically, we provide an algorithm under the DDS framework
for multilingual NMT (see Sec. 3.2), where the former is more efficient, and another more general
algorithm for image classification (see Sec. 3.1), where the latter choice is natural. Second, it allows
easy integration of prior knowledge of the data, which is shown to be effective in Sec. 4.

2.3 DERIVING REWARDS THROUGH DIRECT DIFFERENTIATION

In this section, we show that the update for the scorer network in Eqn. 3 can be approximately derived
as the solution of a bi-level optimization problem (Colson et al., 2007), which has been applied to
many different lines of research (Baydin et al., 2018; Liu et al., 2019a; Ren et al., 2018).

Under our framework, the scorer samples the data by 〈x, y〉 ∼ P (X,Y ;ψ), and ψ will be chosen so
that θ∗ that optimizes J(θ, P (X,Y ;ψ)) will approximately minimize J(θ, Pdev(X,Y )):

ψ∗ = argmin
ψ

J(θ∗(ψ),Ddev) where θ∗(ψ) = argmin
θ

Ex,y∼P (X,Y ;ψ) [`(x, y; θ)] (5)

The connection between ψ and θ in Eqn. 5 shows that J(θt,Ddev) is differentiable with respect to ψ.
Now we can approximately compute the gradient∇ψJ(θt,Ddev) as follows:

∇ψJ(θt,Ddev) = ∇θtJ(θt,Ddev)
> · ∇ψθt(ψ) (chain rule)

= ∇θtJ(θt,Ddev)
> · ∇ψ (θt−1 −∇θJ(θt−1, ψ)) (substitute θt from Eqn 4)

≈ −∇θtJ(θt,Ddev)
> · ∇ψ (∇θJ(θt−1, ψ)) (assume∇ψθt−1 ≈ 0)

= −∇ψEx,y∼P (X,Y ;ψ)

[
∇θJ(θt,Ddev)

> · ∇θ`(x, y; θt−1)
]

= −Ex,y∼P (X,Y ;ψ)

[(
∇θJ(θt,Ddev)

> · ∇θ`(x, y; θt−1)
)
· ∇ψ logP (x, y;ψ)

]
(6)
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Here, we make a Markov assumption that∇ψθt−1 ≈ 0, assuming that at step t, given θt−1 we do not
care about how the values of ψ from previous steps led to θt−1. Eqn. 9 leads to a rule to update ψ
using gradient descent, which is exactly the same as the RL update rule in Eqn. 3.

Note that our derivation above does not take into the account that we might use different optimizing
algorithms, such as SGD or Adam (Kingma & Ba, 2015), to update θ. We provide detailed derivations
for several popular optimization algorithms in Appendix A.1.

One potential concern with our approach is that because we optimize ψt directly on the dev set using
J(θt,Ddev), we may risk indirectly overfitting model parameters θt by selecting a small subset of
data that is overly specialized. However we do not observe this problem in practice, and posit that
this because (1) the influence of ψt on the final model parameters θt is quite indirect, and acts as a
“bottleneck” which has similarly proven useful for preventing overfitting in neural models Grézl et al.
(2007), and (2) because the actual implementations of DDS (which we further discuss in Section 3)
only samples a subset of data from Dtrain at each optimization step, further limiting expressivity.

3 CONCRETE INSTANTIATIONS OF DDS

We now turn to discuss two concrete instantiations of DDS that we use in our experiments: a more
generic example of classification, which should be applicable to a wide variety of tasks, and a
specialized application to the task of multilingual NMT, which should serve as an example of how
DDS can be adapted to the needs of specific applications.

3.1 FORMULATION FOR CLASSIFICATION

Algorithm 1: Training a classification model with DDS.
Input :Dtrain, Ddev
Output :Optimal parameters θ∗

1 Initializer θ0 and ψ0

2 for t = 1 to num_train_steps do
3 Sample B training data points xi, yi ∼ Uniform(Dtrain)
4 Sample B validation data points x′i, y

′
i ∼ Uniform(Ddev)

. Optimize θ

5 Update θt ← GradientUpdate
(
θt−1,

∑B
i=1 p(xi, yi;ψt−1)∇θ`(xi, yi; θt−1)

)
. Evaluate θt on Ddev

6 Let dθ ← 1
B

∑B
j=1∇θ`(x′j , y′j ; θt)

. Optimize ψ

7 Let dψ ← 1
B

∑B
i=1

[(
d>θ · ∇θ`(xi, yi; θt−1)

)
· ∇ψ log p(xi, yi;ψ)

]
8 Update ψt ← GradientUpdate(ψt−1, dψ)
9 end

Algorithm 1 presents the pseudo code for the training process on classification tasks, using the
notations introduced in Section 2. The main classification model is parameterized by θ. The scorer
p(X,Y ;ψ) is an identical network with the main model, but with independent weights, i.e. p(X,Y ;ψ)
does not share weights with θ. For each example xi in a minibatch uniformly sampled from Dtrain,
this DDS model outputs a scalar from the data xi. All scalars are passed through a softmax function
to compute the relative probabilities of the examples in the minibatch, and their gradients are scaled
accordingly when applied to θ. Note that our actual formulation of p(X,Y ;ψ) does not depend on
Y , but we keep Y in the notation for consistency with the formulation of the DDS framework. Note
that we have two gradient update steps, one for the model parameter θt in Line 5 and the other for the
DDS scorer parameter ψ in Line 8. For the model parameter update, we can simply use any of the
standard optimization update rule. For the scorer ψ, we use the update rule derived in Section 2.3.

Per-Example Gradient. As seen from Line 7 of Algorithm 1, as well as from Eqn. 13, DDS re-
quires us to compute ∇θ`(xi, yi; θt−1), i.e. the gradient for each example in a batch of training
data. This operation is very slow and memory intensive, especially when the batch size is large,
e.g. our experiments on ImageNet use a batch size of 4096 (see Section 4). Therefore, we propose an
efficient approximation of this per-example gradient computation via the first-order Taylor expansion
of `(xi, yi; θt−1). In particular, for any vector v ∈ R|θ|, with sufficiently small ε > 0, we have:

v> · ∇θ`(xi, yi; θt−1) ≈
1

ε

(
`
(
xi, yi; θt−1 + εv

)
− `
(
xi, yi; θt−1

))
, (7)
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Eqn 7 can be implemented by keeping a shadow version of parameters θt−1, caching training loss
`(xi, yi; θt−1), and computing the new loss with θt−1 +εv. Here, v is dθ as in Line 7 of Algorithm 1.

3.2 FORMULATION FOR MULTILINGUAL NMT

Next we demonstrate an application of DDS to multilingual models for NMT, specifically for
improving accuracy on low-resource languages (LRL) (Zoph et al., 2016; Neubig & Hu, 2018). In
this setting, we assume that we have a particular LRL S that we would like to translate into target
language T , and we additionally have a multilingual corpus Dtrain that has parallel data between n
source languages (S1, S2, ..., Sn) and target language T . We would like to pick parallel data from
any of the source languages to the target language to improve translation of a particular LRL S, so
we assume that Ddev exclusively consists of parallel data between S and T . Thus, DDS will attempt
to select data from Dtrain that improve accuracy on S-to-T translation as represented by Ddev.

Algorithm 2: Training multilingual NMT with DDS.
Input :Dtrain; K: number of data to train the NMT model before updating ψ; E: number of updates

for ψ; α1,α2: discount factors for the gradient
Output :The converged NMT model θ∗

1 Initialize ψ0, θ0
. Initialize the gradient of each source language

2 grad[Si]← 0 for i in n
3 while θ not converged do
4 X,Y ← load_data(ψ,Dtrain,K)

. Train the NMT model
5 for xi, y in X,Y do
6 θt ← GradientUpdate

(
θt−1,∇θt−1

`(xi, y; θt−1)
)

7 grad[Si]← α1 × grad[Si] + α2 ×∇θt−1
`(xi, y; θt−1)

8 end
. Optimize ψ

9 for iter in E do
10 sample B data pairs from Dtrain

11 dψ ← 1
B

∑B
j=1

∑n
i=1

[
grad[Si]

>grad[S] · ∇ψt−1
log (p (Si|yj ;ψt−1))

]
12 ψt ← GradientUpdate(ψt−1, dψt−1

)
13 end
14 end

To make training more efficient and stable in this setting, we make three simple modifications of the
main framework in Section 2.3 that take advantage of the problem structure of multilingual NMT.
First, instead of directly modeling p(X,Y ;ψ), we assume a uniform distribution over the target
sentence Y , and only parameterize the conditional distribution of which source language sentence to
pick given the target sentence: p(X|y;ψ). This design follows the formulation of Target Conditioned
Sampling (TCS; Wang & Neubig (2019)), an existing state-of-the-art data selection method that uses
a similar setting but models the distribution p(X|y) using heuristics. Since the scorer only needs to
model a simple distribution over training languages, we use a fully connected 2-layer perceptron
network. Second, we only update ψ after updating the NMT model for a fixed number of steps.
Third, we sample the data according to p(X|y;ψ) to get a Monte Carlo estimate of the objective in
Eqn. 5. This significantly reduces the training time compared to using all data. The pseudo code of
the training process is in Algorithm 2.

4 EXPERIMENTS

We now discuss experimental results on both image classification, an instance of the general classifi-
cation problem using Algorithm 1, and multilingual NMT using Algorithm 2.

4.1 EXPERIMENTAL SETTINGS

Data. We apply our method on established benchmarks for image classification and multilingual
NMT. For image classification, we use CIFAR-10 (Krizhevsky, 2009) and ImageNet (Russakovsky
et al., 2015). For each dataset, we consider two settings: a reduced setting where only roughly 10%
of the training labels are used, and a full setting, where all labels are used. Specifically, the reduced
setting for CIFAR-10 uses the first 4000 examples in the training set, and with ImageNet, the reduced
setting uses the first 102 TFRecord shards as pre-processed by Kornblith et al. (2019). We use the
size of 224× 224 for ImageNet.
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Table 1: Results for image classification accuracy (left) and multilingual MT BLEU (right). For MT, the
statistical significance is indicated with ∗ (p < 0.005) and † (p < 0.0001).

Methods CIFAR-10 (WRN-28-k) ImageNet (ResNet-50)

4K, k = 2 Full, k = 10 10% Full

Uniform 82.60±0.17 95.55±0.15 56.36/79.45 76.51/93.20
SPCL 81.09±0.22 93.66±0.12 - -
BatchWeight 79.61±0.50 94.11±0.18 - -
MentorNet 83.11±0.62 94.92±0.34 - -

DDS 83.63± 0.29 96.31± 0.13 56.81/79.51 77.23/93.57
retrained DDS 85.56±0.20 97.91±0.12 - -

Methods aze bel glg slk
Uniform 10.31 17.21 26.05 27.44
SPCL 9.07 16.99 23.64 21.44
Related 10.34 15.31 27.41 25.92
TCS 11.18 16.97 27.28 27.72

DDS 10.74 17.24 27.32 28.20∗

TCS+DDS 11.84∗ 17.74† 27.78 27.74

For multilingual NMT, we use the 58-language-to-English TED dataset (Qi et al., 2018). Following
prior work (Qi et al., 2018; Neubig & Hu, 2018; Wang et al., 2019b), we evaluate translation from
four low-resource languages (LRL) Azerbaijani (aze), Belarusian (bel), Galician (glg), and
Slovak (slk) to English, where each is paired with a similar high-resource language Turkish (tur),
Russian (rus), Portugese (por), and Czech (ces) (details in Appendix A.3). We combine data from
all 8 languages, and use DDS to optimize data selection for each LRL.

Models and Training Details. For image classification, on CIFAR-10, we use the pre-activation
WideResNet-28 (Zagoruyko & Komodakis, 2016), with width factor k = 2 for the reduced setting and
k = 10 for the normal setting. For ImageNet, we use the post-activation ResNet-50 (He et al., 2016).
These implementations reproduce the numbers reported in the literature (Zagoruyko & Komodakis,
2016; He et al., 2016; Xie et al., 2017), and additional details can be found in Appendix A.4.

For NMT, we use a standard LSTM-based attentional baseline (Bahdanau et al., 2015), which is
similar to previous models used in low-resource scenarios both on this dataset (Neubig & Hu, 2018;
Wang et al., 2019b) and others (Sennrich & Zhang, 2019) due to its relative stability compared to
other options such as the Transformer (Vaswani et al., 2017). Accuracy is measured using BLEU
score (Papineni et al., 2002). More experiment details are noted in Appendix A.2.

Baselines and Our Methods. For both image classification and multi-lingual NMT, we compare the
following data selection methods. Uniform where data is selected uniformly from all of the data that
we have available, as is standard in training models. SPCL (Jiang et al., 2015), a curriculum learning
method that dynamically updates the curriculum to focus more on the “easy” training examples based
on model loss. DDS, our proposed method.

For image classification, we compare with several additional methods designed for filtering noisy
data on CIFAR-10, where we simply consider the dev set as the clean data. BatchWeight (Ren
et al., 2018), a method that scales example training loss in a batch with a locally optimized weight
vector using a small set of clean data. MentorNet (Jiang et al., 2018), a curriculum learning method
that trains a mentor network to select clean data based on features from both the data and the main
model. For machine translation, we also compare with two state-of-the-art heuristic methods for
multi-lingual data selection. Related where data is selected uniformly from the target LRL and
a linguistically related HRL (Neubig & Hu, 2018). TCS, a recently proposed method of “target
conditioned sampling”, which uniformly chooses target sentences, then picks which source sentence
to use based on heuristics such as word overlap (Wang & Neubig, 2019). Note that both of these
methods take advantage of structural properties of the multi-lingual NMT problem, and do not
generalize to other problems such as classification.

DDS is a flexible framework to incorporate prior knowledge about the data using the scorer network,
which can be especially important when the data has certain structural properties such as language or
domain. We test such a setting of DDS for both tasks. For image classification, we use retrained
DDS, where we first train a model and scorer network using the standard DDS till convergence. The
trained scorer network can be considered as a good prior over the data, so we use it to train the final
model from scratch again using DDS. For multilingual NMT, we experiment with TCS+DDS, where
we initialize the parameters of DDS with the TCS heuristic, then continue training.

4.2 MAIN RESULTS

The results of the baselines and our method are listed in Table 1. First, comparing the standard
baseline strategy of “Uniform” and the proposed method of “DDS” we can see that in all 8 settings

6
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Figure 3: Example images from the ImageNet and their weights assigned by DDS.

DDS improves over the uniform baseline. This is a strong indication of both the consistency of the
improvements that DDS can provide, and the generality – it works well in two very different settings.
Next, we find that DDS outperforms SPCL by a large margin for both of the tasks, especially for
multilingual NMT. This is probably because SPCL weighs the data only by their easiness, while
ignoring their relevance to the dev set, which is especially important in settings where the data in the
training set can have very different properties such as the different languages in multilingual NMT.

DDS also brings improvements over the state-of-the-art intelligent data utilization methods. For
image classification, DDS outperforms MentorNet and BatchWeight on CIFAR-10 in all settings.
For NMT, in comparison to Related and TCS, vanilla DDS performs favorably with respect to these
state-of-the-art data selection baselines, outperforming each in 3 out of the 4 settings (with exceptions
of slightly underperforming Related on glg and TCS on aze). In addition, we see that incorporating
prior knowledge into the scorer network leads to further improvements. For image classification,
retrained DDS can significantly improve over regular DDS, leading to the new state-of-the-art result
on the CIFAR-10 dataset. For mulitlingual NMT, TCS+DDS achieves the best performance in three
out of four cases (with the exception of slk, where vanilla DDS already outperformed TCS).4

DDS does not incur much computational overhead. For image classification and multilingual NMT
respectively, the training time is about 1.5× and 2× the regular training time without DDS5.

4.3 ANALYSIS
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Figure 2: Class distributions of
CIFAR-10 4K.

Image Classification. Prior work on heuristic data selection has
found that the model performs better if we feed higher quality or
more domain-relevant data towards the end of training (van der Wees
et al., 2017; Wang et al., 2019a). Here we verify this observation
by analyzing the learned importance weight at the end of training
for image classification. Figure 2 shows that at the end of training,
DDS learns to balance the class distribution, which is originally
unbalanced due to the dataset creation. Figure 3 shows that at the
end of training, DDS assigns higher probabilities to images with clearer class content from ImageNet.
These results show that DDS learns to focus on higher quality data towards the end of training.

NMT. Next, we focus on multi-lingual NMT, where the choice of data directly corresponds to picking
a language, which has an intuitive interpretation. Since DDS adapts the data weights dynamically to
the model throughout training, here we analyze how the dynamics of learned weights.
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Figure 4: Language usage for TCS+DDS by training step. From left to right: aze, bel, glg, slk.

We plot the probability distribution of the four HRLs (because they have more data and thus larger
impact on training) over the course of training. Figure 4 shows the change of language distribution

4For the NMT significance tests (Clark et al., 2011) find significant gains over the baseline for aze, slk, and
bel. For glg the gain is not significant, but DDS-uniform without heuristics performs as well as the TCS baseline.

5The code for multilingual NMT is not optimized, so its training time could be reduced further
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for TCS+DDS. Since TCS selects the language with the largest vocabulary overlap with the LRL,
the distribution is initialized to focus on the most related HRL. For all four LRLs, the percentage of
their most related HRL starts to decrease as training continues. For aze, DDS quickly comes back to
using its most related HRL. However, for bel, DDS continues the trend of using all four languages.
This shows that DDS is able to maximize the benefits of the multi-lingual data by having a more
balanced usage of all languages.
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Figure 5: Language usage for DDS by training step. From left to right: aze, bel, glg, slk.

Figure 5 shows a more interesting trend of DDS without heuristic initialization. For both aze and
bel, DDS focuses on the most related HRL after a certain number of training updates. Interestingly,
for bel, DDS learns to focus on both rus, its most related HRL, and ces. Similarly for slk,
DDS also learns to focus on ces, its most related HRL, and rus, although there is little vocabulary
overlap between slk and rus. Also notably, the ratios change significantly over the course of
training, indicating that different types of data may be more useful during different learning stages.

5 RELATED WORK

Many machine learning approaches consider how to best present data to models. First, difficulty-
based curriculum learning estimates the presentation order based on heuristic understanding of the
hardness of examples (Bengio et al., 2009; Spitkovsky et al., 2010; Tsvetkov et al., 2016; Zhang
et al., 2016; Graves et al., 2017; Zhang et al., 2018; Platanios et al., 2019). These methods, though
effective, often generalize poorly because they require task-specific difficulty measures. On the other
hand, self-paced learning (Kumar et al., 2010; Lee & Grauman, 2011) defines the hardness of the
data based on the loss from the model, but is still based on the assumption that the model should
learn from easy examples. Our method does not make these assumptions. Closest to the learning to
teach framework (Fan et al., 2018) but their formulation involves manual feature design and requires
expensive multi-pass optimization. Instead, we formulate our reward using bi-level optimization,
which has been successfully applied for a variety of other tasks (Colson et al., 2007; Anandalingam
& Friesz, 1992; Liu et al., 2019a; Baydin et al., 2018; Ren et al., 2018).

Data selection for domain adaptation for disparate tasks has also been extensively studied (Moore
& Lewis, 2010; Axelrod et al., 2011; Ngiam et al., 2018; Jiang & Zhai, 2007; Foster et al., 2010;
Wang et al.). These methods generally design heuristics to measure domain similarity. Submodular
optimization (Kirchhoff & Bilmes, 2014; Tschiatschek et al., 2014) selects training data that are
similar to dev set, but the criterion is often based on hand-designed features and the data usage is
predefined before training. Besides domain adaptation, selecting also benefits training in the face of
noisy or otherwise undesirable data (Vyas et al., 2018; Pham et al., 2018).

Our method is also related to works on training instance weighting (Sivasankaran et al., 2017; Ren
et al., 2018; Jiang & Zhai, 2007; Ngiam et al., 2018). These methods reweigh data based on a
manually computed weight vector, instead of using a parameterized neural network. Notably, Ren
et al. (2018) tackles noisy data filtering for image classification, by using meta-learning to calculate a
locally optimized weight vector for each batch of data. In contrast, our work focuses on the general
problem of optimizing data usage. We train a parameterized scorer network that optimizes over the
entire data space, which can be essential in preventing overfitting mentioned in Sec. 2; empirically
our method outperform Ren et al. (2018) by a large margin in Sec. 4. (Wu et al., 2018; Kumar et al.,
2019; Fang et al., 2017) propose RL frameworks for specific natural language processing tasks, but
their methods are less generalizable and requires more complicated featurization.
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6 CONCLUSION

We present Differentiable Data Selection, an efficient RL framework for optimizing training data
usage. We parameterize the scorer network as a differentiable function of the data, and provide an in-
tuitive reward function for efficiently training the scorer network. We formulate two algorithms under
the DDS framework for two realistic and very different tasks, image classification and multilingual
NMT, which lead to consistent improvements over strong baselines.
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A APPENDIX

A.1 DERIVING GRADIENT OF ψ FOR DIFFERENT OPTIMIZERS

First, we rewrite the update rule of θ in Eqn. 4 to incorporate the effect of its specific optimization
algorithm.

For a fixed value of ψ, J(θ, ψ) can be optimized using a stochastic gradient update. Specifically, at
time step t, we update

θt ← θt−1 − g
(
∇θJ(θt−1, ψ)

)
(8)

where g(·) is any function that may be applied to the gradient∇θJ(θt−1, ψ). For instance, in standard
gradient descent g(·) is simply a linear scaling of ∇θJ(θt−1, ψ) by a learning rate ηt, while with the
Adam optimizer (Kingma & Ba, 2015) g also modifies the learning rate on a parameter-by-parameter
basis.

Due to the relationship between θt and ψ as in Eqn 8, J(θt,Ddev) is differentiable with respect to ψ.
By the chain rule, we can compute the gradient∇ψJ(θt,Ddev) as follows:

∇ψJ(θt,Ddev) = ∇θtJ(θt,Ddev)
> · ∇ψθt(ψ) (chain rule)

= ∇θtJ(θt,Ddev)
> · ∇ψ

(
θt−1 − g

(
∇θJ(θt−1)

))
(substitute θt from Eqn 8)

≈ −∇θtJ(θt,Ddev)
> · ∇ψg

(
∇θJ(θt−1)

)
(assume∇ψθt−1 ≈ 0)

(9)

Here, we make a Markov assumption that∇ψθt−1 ≈ 0, assuming that at step t, given θt−1 we do not
care about how the values of ψ from previous steps led to θt−1. Eqn 9 leads to a rule to update ψ
using gradient descent:

ψt+1 ← ψt + ηψ∇θtJ(θt,Ddev)
> · ∇ψg

(
∇θJ(θt−1, ψt)

)
, (10)

Here we first derive ∇ψg for the general stochastic gradient descent (SGD) update, then provide
examples for two other common optimization algorithms, namely Momentum (Nesterov, 1983) and
Adam (Kingma & Ba, 2015).

SGD Updates. The SGD update rule for θ is as follows

θt ← θt−1 − ηt∇θJ(θt−1, ψ) (11)

where ηt is the learning rate. Matching the updates in Eqn 11 with the generic framework in Eqn 8,
we can see that g in Eqn 8 has the form:

g
(
∇θJ(θt−1, ψ)

)
= ηt∇θJ(θt−1, ψ) (12)

This reveals a linear dependency of g on ∇θJ(θt−1,ψ), allowing the exact differentiation of g with
respect to ψ. From Eqn 10, we have

∇J(θt,Ddev)
> · ∇ψg

(
∇θJ(θt−1, ψ)

)
= ηt · ∇ψEx,y∼p(X,Y ;ψ)

[
J(θt,Ddev)

> · ∇θ`(x, y; θt−1)
]

= ηtEx,y∼p(X,Y ;ψ)

[(
J(θt,Ddev)

> · ∇θ`(x, y; θt−1)
)
· ∇ψ log p(x, y;ψ)

] (13)

Here, the last equation follows from the log-derivative trick in the REINFORCE algorithm (Williams,
1992).

Momentum Updates. The momentum update rule for θ is as follows

mt ← µtmt−1 + ηt∇θJ(θt−1, ψ)

θt ← θt−1 −mt,
(14)

where µt is the momentum coefficient and ηt is the learning rate. This means that g has the form:

g(x) = µmt−1 + ηtx

g′(x) = ηt
(15)

Therefore, the computation of the gradient∇ψ for the Momentum update is exactly the same with
the standard SGD update rule in Eqn 13.
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Adam Updates. We use a slightly modified update rule based on Adam (Kingma & Ba, 2015):

gt ← ∇θJ(θt−1, ψ)

vt ← β2vt−1 + (1− β2)g2t
v̂t ← vt/(1− βt2)

θt ← θt−1 − ηt · gt/
√
v̂t + ε

(16)

where β2 and ηt are hyper-parameters. This means that g is a component-wise operation of the form:

g(x) =
ηt
√

1− βt2 · x√
β2vt−1 + (1− β2)x2 + ε

g′(x) =
ηt
√

1− βt2(β2vt−1 + ε)(
β2vt−1 + (1− β2)x2 + ε

)3/2 ≈ ηt
√

1− βt2
β2vt−1

,

(17)

the last equation holds because we assume vt−1 is independent of ψ. Here the approximation
makes sense because we empirically observe that the individual values of the gradient vector
∇θJ(θt−1, ψ), i.e. gt, are close to 0. Furthermore, for Adam, we usually use β2 = 0.999. Thus,
the value (1 − β2)x2 in the denominator of Eqn 17 is negligible. With this approximation, the
computation of the gradient ∇ψ is almost the same with that for SGD in Eqn 13, with one extra
component-wise scaling by the term in Eqn 17.

A.2 HYPERPARAMETERS FOR MULTILINGUAL NMT

In this section, we give a detailed description of the hyperparameters used for the multilingual NMT
experiments.

• We use a 1 layer LSTM with hidden size of 512 for both the encoder and decoder, and set
the word embedding to size 128.
• For multilingual NMT, we only use the scorer to model the distribution over languages.

Therefore, we use a simple 2-layer perceptron network as the scorer architecture. Suppose
the training data is from n different languages. For each target sentence and its corresponding
source sentences, the input feature is a n-dimensional vector of 0 and 1, where 1 indicates a
source language exists for the given target sentence.
• We simply use the dev set that comes with the dataset as Ddev to update the scorer.
• The dropout rate is set to 0.3.
• For the NMT model, we use Adam optimizer with learning rate of 0.001. For the distribution

parameter ψ, we use Adam optimizer with learning rate of 0.0001.
• We train all models for 20 epochs without any learning rate decay.
• We optimize both the NMT and DDS models with Adam, using learning rates of 0.001 and

0.0001 for θ and ψ respectively.

A.3 DATASET STATISTICS FOR MULTILINGUAL NMT

LRL Train Dev Test HRL Train
aze 5.94k 671 903 tur 182k
bel 4.51k 248 664 rus 208k
glg 10.0k 682 1007 por 185k
slk 61.5k 2271 2445 ces 103k

Table 2: Statistics of the multilingual NMT datasets.

A.4 HYPERPARAMETERS FOR IMAGE CLASSIFICATION

In this section, we provide some additional details for the image classification task:
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• We use the cosine learning rate decay schedule (Loshchilov & Hutter, 2017), starting at 0.1
for CIFAR-10 and 3.2 for ImageNet, both with 2000 warmup steps.
• For image classification, we use an identical network architecture with the main model, but

with independent weights and a regressor to predict the score instead of a classifier to predict
image classes.
• To construct the Ddev to update the scorer, we hold out about 10% of the training data.

For example, in CIFAR-10 (4,000), Ddev is the last 400 images, while in ImageNet-10%,
since we use the first 102 TFRecord shards, Ddev consists of the last 10 shards. Here, “last”
follows the order in which the data is posted on their website for CIFAR-10, and the order
in which the TFRecord shards are processed for ImageNet. All data in Ddev are excluded
from Dtrain. Thus, for example, with CIFAR-10 (4,000), |Dtrain| = 3600, ensuring that in
total, we are only using the amount of data that we claim to use.
• We maintain a moving average of all model parameters with the rate of 0.999. Follow-

ing Kornblith et al. (2019), we treat the moving statistics of batch normalization (Ioffe &
Szegedy, 2015) as untrained parameters and also add them to the moving averages.
• For ImageNet, we use the post-activation ResNet-50 (He et al., 2016). The batch sizes

for CIFAR-10 and for ImageNet are 128 and 4096, running for 200K steps and 40K steps,
respectively.
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