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ABSTRACT

Learning disentangled representation from any unlabelled data is a non-trivial
problem. In this paper we propose Information Maximising Autoencoder (In-
foAE) where the encoder learns powerful disentangled representation through
maximizing the mutual information between the representation and given infor-
mation in an unsupervised fashion. We have evaluated our model on MNIST
dataset and achieved 98.9 (±.1) % test accuracy while using complete unsuper-
vised training.

1 INTRODUCTION

Learning disentangled representation from any unlabelled data is an active area of research (Good-
fellow et al. (2016)). Self supervised learning (Gidaris et al. (2018); Zhang et al. (2016); Oord
et al. (2018)) is a way to learn representation from the unlabelled data but the supervised signal is
needed to be developed manually, which usually varies depending on the problem and the dataset.
Generative Adversarial Neural Networks (GANs) (Goodfellow et al. (2014)) is a potential candidate
for learning disentangled representation from unlabelled data (Radford et al. (2015); Karras et al.
(2017); Donahue et al. (2016)). In particular, InfoGAN (Chen et al. (2016)), which is a slight modifi-
cation of the GAN, can learn interpretable and disentangled representation in an unsupervised fash-
ion. The classifier from this model can be reused for any intermediate task such as feature extraction
but the representation learned by the classifier of the model is fully dependent on the generation of
the model which is a major shortcoming. Because if the generator of the InfoGAN fails to generate
any data manifold, the classifier is unable to perform well on any sample from that manifold. Tricks
from Mutual Information Neural Estimation paper (Belghazi et al. (2018)) might help to capture
the training data distribution, yet learning all the training data manifold using GAN is a challenge
for the research community (Goodfellow et al. (2016)). Adversarial autoencoder (AAE) (Makhzani
et al. (2016)) is another successful model for learning disentangled representation. The encoder
of the AAE learns representation directly from the training data but it does not utilize the sample
generation power of the decoder for learning the representations. In this paper, we aim to address
this challenge. We aim to build a model that utilizes both training data and the generated samples
and thereby learns more accurate disentangled representation maximizing the mutual information
between the random condition/information and representation space.

2 INFORMATION MAXIMIZING AUTOENCODER

InfoAE consists of an encoderE, a decoderD and a generatorG. G network produces latent variable
space from a random latent distribution and a given condition/information. D is used to generate
samples from the latent variable space generated by the generator. It also maximizes the mutual
information between the condition and the generated samples. E is forced to learn the mapping of
the train samples to the latent variable space generated by the generator. The model has three other
networks for regulating the whole learning process: a classifier C, a discriminator Di and a self
critic S. Figure 1 shows the architecture of the model.
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2.1 ENCODER AND DECODER

The encoding network E, takes any sample x ∈ p(x), where p(x) is the data distribution. E outputs
latent variable ze = E(x), where ze ∈ q(z) and q(z) can be any continuous distribution learned by
E. This ze is feed to decoder network D to get sample x̂r so that x̂r ∈ p(x) and x̂r ≈ x.

2.2 GENERATOR AND DISCRIMINATOR

Generator networkG generates latent variable zg =G(z, c) ∈ p(z), from any sample z and cwhere z
∈ u(z) and c ∈ Cat(c). Here p(z) can be any continuous distribution learned by G, u(z) is random
continuous distribution (e.g., continuous uniform distribution) and Cat(c) is random categorical
distribution. To validate zg , decoder D learns to generate sample x̂g = D(G(zg, c)) so that x̂g ∈
p(x). The discriminator network Di forces decoder to create sample from the data distribution.

Figure 1: The architecture of the InfoAE, where E, D, G, C, S and Di are encoder, decoder,
generator, classifier, self critic and discriminator, respectively. The right section of the figure shows
the discriminating networksDi and S where the green and red boxes shows the true and false sample
respectively.

2.3 CLASSIFIER AND SELF CRITIC

While generator generates zg from z, it can easily ignore the given condition c. To maximise the
Mutual Information (MI) between c and zg , we use classifier network C to classify zg into ĉg =
C(G(zg, c)) according to the given condition c. We also want encoder E to learn encoding ẑe =
E(x̂g) so that ẑe ∈ p(z) and MI(ẑe, c) is maximised. To ensure MI(ẑe, c) is maximised again the
classifier networkC is utilised to classify ẑe into ĉe =C(ẑe) according to given condition c. To make
sure q(z) ≈ p(z), we use a discriminator network S, which forces E to encode x into p(z). S learns
through discriminating (x, ze) as fake and (x̂g , zg) as real sample. We named this discriminator as
Self Critic as it criticises two generations from the sub networks of a single model where they are
jointly trained.

2.4 TRAINING OBJECTIVES

The InfoAE is trained based on multiple losses. The losses are : Reconstruction loss, Rl =√∑
(x̂r − x)2 for both Encoder and Decoder; Discriminator loss, Dil = logDi(x) + log(1 −

Di(D(zg)) ; Decoder has loss Dlg, for the generated image x̂g and loss Dle for the reconstructed
image x̂, where Dlg = log(1 − Di(D(zg))) and Dle = log(1 − Di(D(E(x)))) ; Encoder loss
El = log(1 − S(ze, x)) ; Self Critic loss Sl = logS(zg, x̂g) + log(1 − S(ze, x)) ; Two clas-
sification losses Clg, Cle respectively for Generator and Encoder where Clg = −

∑
c log(ĉg) and
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Cle = −
∑
c log(ĉe). We get our total loss, Tl in equation 1 where α , β and γ are hyper parameters.

Tl = α ∗ (Clg + Cle) + β ∗ (El +Dle +Dlg) + γ ∗Rl (1)

All the networks are trained together and the weights of theE,D, C, andG are updated to minimise
the total loss, Tl while the weights of the S and Di are updated to maximise the loss Sl, Dil,
respectively. So the training objective can be express by the equation 2

min
E,D,C,G

max
D

V (Di, S) = Tl +Dil + Sl (2)

3 IMPLEMENTATION DETAILS

Our model has different components as shown in Figure 1. We used Convolutional Neural Network
(CNN) for E, Di and S. Batch Normalization (Ioffe & Szegedy (2015)) is used except for the
first and the last layer. We did not use any maxpool layer and the down sampling is done through
increasing the stride. For classifier C and generator G we used simple two layers feedforward
network with hidden layer. For Decoder D we used Transpose CNN.

Our experiments show that the training of the whole model is highly sensitive to α, β and γ. After
experimenting with different values of α, β and γ, we received best result for α = 1, β = 1 and γ =
0.4. For c variable we used random one hot encoding of size 10(c ∼ Cat(K = 10, p = 0.1)) and z
∈ R 100 , which is randomly sampled from a uniform distribution U(−1, 1). The weights of all the
networks are updated with Adam Optimizer (Kingma & Ba (2014)) and the learning rate of 0.0002
is used for all of them.

4 RESULTS AND DISCUSSION

We have evaluated the model on MNIST dataset and received outstanding results. InfoAE is trained
on MNIST training data without any labels. After trainning, We encoded the test data with Encoder,
E and got classification label with the Classifier, C. Then we clustered the test data according to
label and received classification accuracy of 98.9 (±.05), which is better than the popular methods
as shown in Table 1.

Table 1: Comparison of Unsupervised Classification error rate of different models on MNIST test
dataset.

MODEL ERROR RATE

InfoGAN (Chen et al. (2016)) 5
Adversarial Autoencoder (Makhzani et al. (2016)) 4.10 (± 1.12)
Convolutional CatGAN (Springenberg (2015)) 4.27
PixelGAN Autoencoders (Makhzani & Frey (2017)) 5.27 (± 1.81)
InfoAE 1.1 (± .1)

The latent variable produced by the encoder on test data is visualized in figure 2(b). For visualiza-
tion purpose we reduced the dimension of the latent vector with T-distributed Stochastic Neighbor
Embedding or t-SNE (Van der Maaten & Hinton (2008)). In the visualization, we can observe that
representation of similar digits are located nearby in the 2D space while different digits. This sug-
gests that the encoder was able to disentangle the digits category in the representation space, which
has eventually resulted in the superior performance. Also, the generator was able to generate la-
tent space according to the condition and the decoder was able to generate samples from that latent
variable space, disentangling the digit category as shown in Fig. 2(a).

Let us consider two latent variables z1 = E(x1) and z2 = E(x2) where x1, x2 are two sample
images from the test data. Now let us do a linear interpolation between z1 toward z2 with z1 +
(s/n) ∗ (z2 − z1) where s ∈ {1, 2, ...., n} and n is the number of steps and feed the latent variables
to the Decoder for generating sample. Figure 2(c) shows the interpolation between the samples from
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different category. A smooth transition between different types of digits suggest the latent space is
well connected.

Figure 2(d) show the interpolation between the same category of the samples and we can observe that
the encoder was able to disentangle the styles of the digits in the latent space. This same category
interpolation can be used as data augmentation.

(a) (b)

(c) (d)

Figure 2: (a) Generated samples from the decoder. Rows show the samples D(G(z, c)) generated
for different latent variables z and columns show the samples generated for categorical variables
{c1, c2, ......c10}. (b) Representation of latent variables for the MNIST test data. Different colors
indicate different category of the digits. (c) Visualization of linear interpolation between two recon-
structed test samples from different categories (left to right). (d) Visualization of linear interpolation
between two reconstructed test samples of the same category (left to right).

5 CONCLUSION AND FUTURE WORK

In this paper we present and validate InfoAE, which learns the disentangled representation in a
completely unsupervised fashion while utilizing both training and generated samples. We tested
InfoAE on MNIST dataset and achieved test accuracy of 98.9 (±.1), which is a very competitive
performance compared to the best reported results including InfoGAN. We observe that the encoder
is able to disentangle the digit category and styles in the representation space, which results in the
superior performance. InfoAE can be used to learn representation from unlabelled dataset and the
learning can be utilized in a related problem where limited labeled data is available. Moreover, its
power of representation learning can be exploited for data augmentation. This research is currently
in progress. We are currently attempting to mathematically explain the results. We are also aiming
to analyze the performance of InfoAE on large scale audio and image datasets.
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