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ABSTRACT

The ever-increasing size of modern datasets combined with the difficulty of ob-
taining label information has made semi-supervised learning of significant prac-
tical importance in modern machine learning applications. In comparison to su-
pervised learning, the key difficulty in semi-supervised learning is how to make
full use of the unlabeled data. In order to utilize manifold information provided by
unlabeled data, we propose a novel regularization called the tangent-normal adver-
sarial regularization, which is composed by two parts. The two parts complement
with each other and jointly enforce the smoothness along two different directions
that are crucial for semi-supervised learning. One is applied along the tangent
space of the data manifold, aiming to enforce local invariance of the classifier on
the manifold, while the other is performed on the normal space orthogonal to the
tangent space, intending to impose robustness on the classifier against the noise
causing the observed data deviating from the underlying data manifold. Both of
the two regularizers are achieved by the strategy of virtual adversarial training.
Our method has achieved state-of-the-art performance on semi-supervised learn-
ing tasks on both artificial dataset and practical datasets.

1 INTRODUCTION

The recent success of supervised learning (SL) models, like deep convolutional neural networks,
highly relies on the huge amount of labeled data. However, though obtaining data itself might be
relatively effortless in various circumstances, to acquire the annotated labels is still costly, limiting
the further applications of SL methods in practical problems. Semi-supervised learning (SSL) mod-
els, which requires only a small part of data to be labeled, does not suffer from such restrictions.
The advantage that SSL depends less on well-annotated datasets makes it of crucial practical impor-
tance and draws lots of research interests. The common setting in SSL is that we have access to a
relatively small amount of labeled data and much larger amount of unlabeled data. And we need to
train a classifier utilizing those data. Comparing to SL, the main challenge of SSL is how to make
full use of the huge amount of unlabeled data, i.e., how to utilize the marginalized input distribution
p(z) to improve the prediction model i.e., the conditional distribution of supervised target p(y|z).
To solve this problem, there are mainly three streams of research.

The first approach, based on probabilistic models, recognizes the SSL problem as a specialized
missing data imputation task for classification problem. The common scheme of this method is to
establish a hidden variable model capturing the relationship between the input and label, and then
applies Bayesian inference techniques to optimize the model (Kingma et al., 2014} Zhu et al.| |2003;
Rasmus et al.,|2015). Suffering from the estimation of posterior being either inaccurate or computa-
tionally inefficient, this approach performs less well especially in high-dimensional dataset (Kingma
et al.l [2014).

The second line tries to construct proper regularization using the unlabeled data, to impose the
desired smoothness on the classifier. One kind of useful regularization is achieved by adversarial
training (Goodfellow et al.,2014b), or virtual adversarial training (VAT) when applied to unlabeled
data (Miyato et al., 20165 2017). Such regularization leads to robustness of classifier to adversarial
examples, thus inducing smoothness of classifier in input space where the observed data is presented.
The input space being high dimensional, though, the data itself is concentrated on a underlying man-
ifold of much lower dimensionality (Cayton, 2005; | Narayanan & Mitter,|2010; Chapelle et al., 2009;
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Rifai et al.| 2011). Thus directly performing VAT in input space might overly regularize and does
potential harm to the classifier. Another kind of regularization called manifold regularization aims
to encourage invariance of classifier on manifold (Simard et al., [ 1998; |Belkin et al.| |2006; Niyogi,
2013} [Kumar et al, [2017; Rifai et all 2011)), rather than in input space as VAT has done. Such
manifold regularization is implemented by tangent propagation (Simard et al., |1998}; [Kumar et al.,
2017) or manifold Laplacian norm (Belkin et al., |2006; Lecouat et al., 2018), requiring evaluating
the Jacobian of classifier (with respect to manifold representation of data) and thus being highly
computationally inefficient.

The third way is related to generative adversarial network (GAN) (Goodfellow et al.| 2014a)). Most
GAN based approaches modify the discriminator to include a classifier, by splitting the real class
of original discriminator into K subclasses, where K denotes the number of classes of labeled data
(Salimans et al., [2016; |Odenal [2016; [Dai et al., 2017; |Q1 et all 2018)). The features extracted for
distinguishing the example being real or fake, which can be viewed as a kind of coarse label, have
implicit benefits for supervised classification task. Besides that, there are also works jointly training
a classifier, a discriminator and a generator (Li et al., 2017)).

Our work mainly follows the second line. We firstly sort out three important assumptions that
motivate our idea:

The manifold assumption The observed data presented in high dimensional space is with high
probability concentrated in the vicinity of some underlying manifold of much lower di-
mensionality (Cayton, [2005; Narayanan & Mitter, |2010; |Chapelle et al.,[2009; Rifai et al.|
2011)). We denote the underlying manifold as M. We further assume that the classification
task concerned relies and only relies on M (Rifai et al., 2011).

The noisy observation assumption The observed data x can be decomposed into two parts as v =
xo + n, where xg is exactly supported on the underlying manifold M and 7 is some noise
independent of zy (Bengio et al., 2013} Rasmus et al., 2015). With the assumption that the
classifier only depends on the underlying manifold M, the noise part might have undesired
influences on the learning of the classifier.

The semi-supervised learning assumption If two points 1,22 € M are close in manifold dis-
tance, then the conditional probability p(y|z1) and p(y|x2) are similar (Belkin et al.,|2006;
Rifai et al., 2011} Niyogi, 2013)). In other words, the true classifier, or the true condition
distribution p(y|X ) varies smoothly along the underlying manifold M.

Inspired by the three assumptions, we introduce a novel regularization

called the tangent-normal adversarial regularization (TNAR), which is T=x0+n
composed by two parts. The tangent adversarial regularization (TAR) L M/
induces the smoothness of the classifier along the tangent space of the ry /o /

underlying manifold, to enforce the invariance of the classifier along
manifold. And the normal adversarial regularization (NAR) penalizes

the deviation of the classifier along directions orthogonal to the tangent . .
Figure 1: Tllustration for

space, to impose robustness on the classifier against the noise carried in
observed data. The two regularization terms enforce different aspects of
the classifier’s smoothness and jointly improve the generalization perfor-
mance, as demonstrated in Section 4

To realize our idea, we have two challenges to conquer: how to estimate
the underlying manifold and how to efficiently perform TNAR.

For the first issue, we take advantage of the generative models equipped
with an extra encoder, to characterize coordinate chart of manifold (Ku-
mar et al., |2017; [Lecouat et al.l 2018} Qi et al.| 2018). More specif-
ically, in this work we choose variational autoendoer (VAE) (Kingma
& Welling| 2013)) and localized GAN (Qi et al.| [2018)) to estimate the
underlying manifold from data.

For the second problem, we develop an adversarial regularization ap-
proach based on virtual adversarial training (VAT) (Miyato et al.|[2017).

tangent-normal adversarial
regularization. x = xo +n
is the observed data, where
xo is exactly supported on
the underlying manifold M
and n is the noise indepen-
dent of mo. 7 is the ad-
versarial perturbation along
the tangent space to induce
invariance of the classifier
on manifold; r, is the ad-
versarial perturbation along
the normal space to impose
robustness on the classifier
against noise n.

Different from VAT, we perform virtual adversarial training in tangent space and normal space sep-
arately as illustrated in Figure|l} which leads to a number of new technical difficulties and we will
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elaborate the corresponding solutions later. Compared with the traditional manifold regularization
methods based on tangent propagation (Simard et al., |1998; [Kumar et al., 2017) or manifold Lapla-
cian norm (Belkin et al., 2006; |[Lecouat et al., 2018)), our realization does not require explicitly
evaluating the Jacobian of classifier. All we need is to calculate the derivative of matrix vector
product, which only costs a few times of back or forward propagation of network.

2 BACKGROUND

2.1 NOTATIONS

We denote the labeled and unlabeled dataset as D; = {(x;, y;)} and D,; = {x,,;} respectively, thus
D := D, UD,, is the full dataset. The output of classification model is written as p(y|z, §), where 0
is the model parameters to be trained. We use (-, -) to represent supervised loss function. And the
regularization term is denoted as ‘R with specific subscript for distinction. The observed space of z is
written as R”. And the underlying manifold of the observed data x is written as M = R¢, d < D.
We use z for the manifold representation of data x. We denote the decoder, or the generator, as
x = g(z) and the encoder as z = h(x), which form the coordinate chart of manifold together. If not
stated otherwise, we always assume x and z correspond to the coordinate of the same data point in
observed space R and on manifold M, i.e., g(z) = = and h(z) = 2. The tangent space of M at
point  is T, M = J,g(R?) = R?, where J.g is the Jacobian of g at point z. The tangent space
T, M is also the span of the columns of .J, g. For convenience, we define J := J,g.

The perturbation in the observed space R” is denoted as € RP, while the perturbation on the
manifold representation is denoted as € R, Hence the perturbation on manifold is g(z + 1) —
g(z) € RP. When the perturbation 7 is small enough for the holding of the first order Taylor’s
expansion, the perturbation on manifold is approximately equal to the perturbation on its tangent
space, g(z +n) — g(z) = J - € T, M. Therefore we say a perturbation » € R” is actually on
manifold, if there is a perturbation 7 € R?, such that r = .J - .

2.2  VIRTUAL ADVERSARIAL TRAINING

VAT (Miyato et al., 2017) is an effective regularization method for SSL. The virtual adversar-
ial loss introduced in VAT is defined by the robustness of the classifier against local pertur-
bation in the input space R”. Hence VAT imposes a kind of smoothness condition on the
classifier. Mathematically, the virtual adversarial loss in VAT for SSL is L(D;, Dy, 0) =
E . yen i, p(yler, 0)) + aEeepRya(, 0), where the VAT regularization Ry, is defined as
Ryar(z;0) = max),|,<c dist(p(yl|z,0), p(ylz + r,0)), where dist(-,-) is some distribution dis-
tance measure and e controls the magnitude of the adversarial example. For simplicity, define

F(z,r,0) = dist(p(y|z,0),p(y +1,0)). (1)
Then Ryy = max,|,<cF(x,r,0). The so called virtual adversarial example is 7* :=
arg maxj,| <. £'(z,7,0). Once we have 7", the VAT loss can be optimized with the objective as
L(D1, D, 0) = Bz, ypyen, £y, (yl21,0)) + aBocp F(x, 7", 0).

To obtain the virtual adversarial example 7*, Miyato et al.| (2017) suggested to apply second order
Taylor’s expansion to F'(z, 7, ) around r = 0 as

1
F(z,r60) = §rTHr, 2)

where H := V2F(x,r,0)|,—o denotes the Hessian of F’ with respect to r. The vanishing of the first
two terms in Taylor’s expansion occurs because that dist(-, -) is a distance measure with minimum
zero and r = 0 is the corresponding optimal value, indicating that at » = 0, both the value and the
gradient of F'(z,r,0) are zero. Therefore for small enough €, r* ~ arg maxj . <. %TTHT, which

is an eigenvalue problem and the direction of * can be solved by power iteration.

2.3  GENERATIVE MODELS FOR DATA MANIFOLD

We take advantage of generative model with both encoder / and decoder g to estimate the underlying
data manifold M and its tangent space 7, M. As assumed by previous works (Kumar et al.| 2017
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Lecouat et al.||2018)), perfect generative models with both decoder and encoder can describe the data
manifold, where the decoder g(z) and the encoder h(x) together serve as the coordinate chart of
manifold M. Note that the encoder is indispensable for it helps to identify the manifold coordinate
z = h(x) for point x € M. With the trained generative model, the tangent space is given by
T, M = J.g(R%), or the span of the columns of J = .J.g.

In this work, we adopt VAE (Kingma & Welling} 2013)) and localized GAN (Qi et al.|, |2018)) to learn
the targeted underlying data manifold M as summarized below.

VAE VAE (Kingma & Welling| 2013) is a well known generative model consisting of both encoder
and decoder. The training of VAE is by optimizing the variational lower bound of log likelihood,

logp(xa 0) > Ezwq(z\x,e) [1ng(17|2, 0)] - KL(q(Z|17, 0)||p(z)) (3)

Here p(z) is the prior of hidden variable z, and ¢(z|z, 8), p(z|z, §) models the encoder and decoder
in VAE, respectively. The derivation of the lower bound with respect to 6 is well defined thanks to
the reparameterization trick, thus it could be optimized by gradient based method. The lower bound
could also be interpreted as a reconstruction term plus a regularization term (Kingma & Welling,
2013). With a trained VAE, the encoder and decoder are given as h(x) = argmax, ¢(z|z) and
g(z) = argmax,, q(z|z) accordingly.

Localized GAN Localized GAN (Qi et al., [2018)) suggests to use a localized generator G(z, z) to
replace the global generator g(z) in vanilla GAN |Goodfellow et al.|(2014a). The key difference
between localized GAN and previous generative model for manifold is that, localized GAN learns a
distinguishing local coordinate chart for each point z € M, which is given by G(z, 2), rather than
one global coordinate chart. To model the local coordinate chart in data manifold, localized GAN re-
quires the localized generator to satisfy two more regularity conditions: 1) locality: G(x,0) = z, so
ac(z,z))T 2G(

0z

is non-degenerated. The two conditions are achieved by the following penalty during training of
localized GAN:

©,2) _
5, = I, to ensure G(, 2)

that G(z, z) is localized around z; 2) orthogonmality: (

-1

(aa@:, z))T G (z, 2)

Riocatized Gan = i1 ||G(z,0) — $H2 + p2 P P

Since G(z, z) defines a local coordinate chart for each x separately, in which the latent encode of x
is z = 0, there is no need for the extra encoder to provide the manifold representation of x.

3 METHOD

In this section we elaborate our proposed tangent-normal adversarial regularization (TNAR) strat-
egy. The TNAR loss to be minimized for SSL is

L(Dy, Dui, 0) :=E (4, yyep (Y1, p(yl71,0)) + 1 ErepRiangent (T, 0) + a2 Eze D Rnormal (2, 6). (4)

The first term in Eq. @) is a common used supervised 10ss. Riangent and Rnormal is the so called
tangent adversarial regularization (TAR) and normal adversarial regularization (NAR) accordingly,
jointly forming the proposed TNAR. We assume that we already have a well trained generative
model for the underlying data manifold M, with encoder h and decoder g, which can be obtained
as described in Section[2.3]

3.1 TANGENT ADVERSARIAL REGULARIZATION

Vanilla VAT penalizes the variety of the classifier against local perturbation in the input space
RP (Miyato et al., |2017), which might overly regularize the classifier, since the semi-supervised
learning assumption only indicates that the true conditional distribution varies smoothly along the
underlying manifold M, but not the whole input space RP (Belkin et al., 2006} [Rifai et al., [2011};
Niyogi, 2013). To avoid this shortcoming of vanilla VAT, we propose the tangent adversarial regu-
larization (TAR), which restricts virtual adversarial training to the tangent space of the underlying
manifold 7, M, to enforce manifold invariance property of the classifier.

Riangent(x; 0) := max F(x,r0), 5
angent(T36) = e gy T 2T 6) ©)
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where F'(z,r,0) is defined as in Eq. . To optimize Eq. , we first apply Taylor’s expansion to

F(x,7,0) 50 that Riangent (5 0) ~ Max,|_ < ret, M—J.g(re) 37 Hr, where the notations and the

derivation are as in Eq. @) We further reformulate Rangent as

: st. |7, <e, r=Jn. (neRYJ:=J,gecRP* 0 e RP*D)
(6)

. 1
maximize -7’ Hr
reRP 2

Or equivalently,
1
maximize —nTJTHJn, st. nTJTgn < é. (7
neR? 2

This is a classic generalized eigenvalue problem, the optimal solution n* of which could be obtained
by power iteration and conjugate gradient (and scaling). The iteration framework is as

v JTHTn, p= (ST e e/l - ®)
Now we elaborate the detailed implementation of each step in Eq. (8).

Computing JTHJn. Note that z = h(x),z = g(z). Define r(n) = g(z + n) —
g(z). For F(x,r(n),@) = dist(p(y|z, 8)||p(ylx + r(n),0)), we have V%F(mm(n),ﬁ) =
(Joing)"VEF (2,7(n),0)(Joyng) + Vag(z + 1) - Vo F(2,7(n),0). While on the other hand,
since dist(-,-) is some distance measure with minimum zero and r(0) = 0 is the corresponding
optimal value, we have F(x,7(0),60) = 0,V,F(z,7(0),0) = 0. Therefore, V2 F(z,7(0),0) =
(J.9)T'V2F(2,r(0),0)J.g = JTHJ. Thus the targeted matrix vector product could be effi-
ciently computed as JTHJny = ViF(x,r(0),0) - n = V, (V,F(z,7(0),0)-7n). Note that
V,F(z,r(0),0) - n is a scalar, hence the gradient of which could be obtained by back propagat-
ing the network for once. And it only costs twice back propagating for the computation of J* H Jn.

Solving J* Jy = v. Similarly, define K(n) := (g(z +n) — g(z))T (9(z+n) — g(z)). We have
VZK(n) = (Joyng)" Joyng + Vig(z + 1) - K(n). Since K(0) = 0, we have V2K(0) =
(J.9)¥J.g = JTJ. Thus the matrix vector product J7.Ju could be evaluated similarly as
JTJu =V, (VnK (0) - /1,). The extra cost for evaluating J7'.Jy is still back propagating the net-
work for twice. Due to J7J being positive definite (g is non-degenerated), we can apply several
steps of conjugate gradient to solve J7.Ju = v efficiently.

By iterating Eq. (8), we obtain the optimal solution 7, of Eq. . The desired optimal solution is
then v = eJn /|| Jn) |, using which we obtain Riungent(;0) = F(z,7),0).

Compared with manifold regularization based on tangent propagation (Simard et al., |1998}; [Kumar,
et al., [2017) or manifold Laplacian norm (Belkin et al., [2006; [Lecouat et al., [2018)), which is com-
putationally inefficient due to the evaluation of Jacobian, our proposed TAR could be efficiently
implemented, thanks to the low computational cost of virtual adversarial training.

3.2 NORMAL ADVERSARIAL REGULARIZATION

Motivated by the noisy observation assumption indicating that the observed data contains noise
driving them off the underlying manifold, we come up with the normal adversarial regularization
(NAR) to enforce the robustness of the classifier against such noise, by performing virtual adversarial
training in the normal space. The mathematical description is

F(z,r,0) = ETTHT. 9)

7?/normal(x; 6‘) = ~ ma.
rll,<erlTumm 2

max
HH'zSQTLTwM

Note that T, M is spanned by the coloums of .J = .J, g, thus r LT, M < JT . r = 0. Therefore we
could reformulate Eq. (9) as

1
maximize —r7 Hr, st. rlly<e, JT-r=0. (10)
reRP 2

However, Eq. (10) is not easy to optimize since .J” - r cannot be efficiently computed. To overcome
this, instead of requiring r being orthogonal to the whole tangent space T, M, we take a step back to
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demand r being orthogonal to only one specific tangent direction, i.e., the tangent space adversarial
perturbation ). Thus the constraint .J T .p = 0is relaxed to (rH)T -7 = 0. And we further replace
the constraint by a regularization term,

1
maximize —r’ Hr — ArT(r|‘rﬁ)r, st |rll, <, (11)
reRP 2

where A is a hyperparameter introduced to control the orthogonality of r.

Since Eq. (T) is again an eigenvalue problem, and we can apply power iteration to solve it. Note
that a small identity matrix A[[ry[|/ is needed to be added to keep 5 H — )\rurﬁ" + Allry |4 semi-
positive definite, which does not change the optimal solution of the eigenvalue problem. The power
iteration is as

1
T §H7'f)\(7'H)T7’H7’+)\Hr”||r. (12)

And the evaluation of Hr is by Hr = V,. (V,.F(z,0,6) - r) , which could be computed efficiently.
After finding the optimal solution of Eq. (11)) as 7 , the NAR becomes Rnormal (2, 0) = F(x,r1,0).

Finally, as in (Miyato et al., 2017)), we add entropy regularization to our loss function. It ensures
neural networks to output a more determinate prediction and has implicit benefits for performing
virtual adversarial training, Renwopy (2, 6) := — >, p(y|z,0)log p(y|z, 0). Our final loss for SSL is

L(Dla Dul; 9) ::E(xl,yl)eDlg (ylvp(y‘xla 0)) + O‘lEzE'DRtangent(xy 0)

(13)
+ aQExeDRnormal(JJa 9) + 053]E;ce”DRemropy(x7 0)

The TAR inherits the computational efficiency from VAT and the manifold invariance property from
traditional manifold regularization. The NAR causes the classifier for SSL being robust against the
off manifold noise contained in the observed data. These advantages make our proposed TNAR,
the combination of TAR and NAR, a reasonable regularization method for SSL, the superiority of
which will be shown in the experiment part in Section 4]

4 EXPERIMENTS

To demonstrate the advantages of our proposed TNAR for SSL, we conduct a series of experiments
on both artificial and real dataset. The compared methods for SSL include: 1) SL: supervised learn-
ing using only the labeled data; 2) VAT: vanilla VAT (Miyato et all 2017); 3) TNAR-VAE: the
proposed TNAR method, with the underlying manifold estimated by VAE; 4) TNAR-LGAN: the
proposed TNAR method, with the underlying manifold estimated by localized GAN; 5) TNAR-
Manifold: the proposed TNAR method with oracle underlying manifold for the observed data, only
used for artificial dataset; 6) TNAR-AE: the proposed TNAR method, with the underlying manifold
estimated roughly by autoendoer, only used for artificial dataset. 7) TAR: the tangent adversar-
ial regularization, used in ablation study. 8) NAR: the normal adversarial regularization, used in
ablation study. If not stated otherwise, all the above methods contain entropy regularization term.

4.1 TWO-RINGS ARTIFICIAL DATASET

We introduce experiments on a two-rings artificial dataset to show the effectiveness of our proposed
methods intuitively. In this experiments, there is 3, 000 unlabeled data (gray dots) and 6 labeled data
(blue dots), 3 for each class. The detailed construction could be found in Appendix.

The performance of each compared methods is shown in Table [1} and the corresponding classifi-
cation boundary is demonstrated in Figure 2] The TNAR under true underlying manifold (TNAR-
Manifold) perfectly classifies the two-rings dataset with merely 6 labeled data, while the other meth-
ods fail to predict the correct decision boundary. Even with the underlying manifold roughly approx-
imated by an autoendoer, our approach (TNAR-AE) outperforms VAT in this artificial dataset. How-
ever, the performance of TNAR-AE is worse than TNAR-Manifold, indicating that the effectiveness
of TNAR relies on the quality of estimating the underlying manifold.
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Table 1: Classification errors (%) of com-
pared methods on two-ring artificial dataset.
We test with and without entropy regulariza-
tion in each method and report the best one.
In VAT and TNAR-AE, without entropy reg-
ularization is better; For TNAR-Manifold,
adding entropy regularization is better.

— SL
VAT
—— TNAR-AE

J— TNAR-Man

ol =~ Model Error (%)
) SL 32.95
~1.0 —0.5 0.0 0.5 1.0 VAT 2380
TNAR-AE 12.45
TNAR-Manifold 9.90

Figure 2: The decision boundaries of compared meth-  — AR -Manifold en) 0
ods on two-rings artificial dataset. Gray dots distributed
on two rings: the unlabeled data. Blue dots (3 in each
ring): the labeled data. Colored curves: the decision
boundaries found by compared methods.

4.2 FASHIONMNIST

We also conduct experiments on FashionMNIST dataseﬂ There are three sets of experiments with
the number of labeled data being 100, 200 and 1, 000, respectively. The details about the networks
are in Appendix.

The corresponding results are shown in Table[2] from which we observe at least two phenomena. The
first is that our proposed TANR methods (TNAR-VAE, TNAR-LGAN) achieve lower classification
errors than VAT in all circumstances with different number of labeled data. The second is that the
performance of our method depends on the estimation of the underlying manifold of the observed
data. In this case, TNAR-VAE brings larger improvement than TNAR-LGAN, since VAE produces
better diverse examples according to our observation. As the development of generative model
capturing more accurate underlying manifold, it is expected that our proposed regularization strategy
benefits more for SSL.

Table 2: Classification errors (%) of compared methods on FashionMNIST dataset.

Method 100 labels 200 labels 1000 labels
VAT 27.69 20.85 14.51
TNAR/TAR/NAR-LGAN  23.65/24.87/28.73  18.32/19.16/24.49  13.52/14.09/15.94
TNAR/TAR/NAR-VAE 23.35/26.45/27.83  17.23/20.53/24.81 12.86/14.02/15.44

A
ok

Figure 3: The perturbations and adversarial examples in the tangent space and the normal space. Note that the
perturbations is actually too small to distinguish easily, thus we show the scaled perturbations. First row: Fash-
ionMNIST dataset; Second row: CIFAR-10 dataset. From left to right: original example, tangent adversarial
perturbation, normal adversarial perturbation, tangent adversarial example, normal adversarial example.

'https://github.com/zalandoresearch/fashion-mnist
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4.3 ABLATION STUDY

We conduct ablation study on FashionMNIST datasets to demonstrate that both of the two regular-
ization terms in TNAR are crucial for SSL. The results are reported in Table 2] Removing either
tangent adversarial regularization (NAR) or normal adversarial regularization (TAR) will harm the
final performance, since they fail to enforce the manifold invariance or the robustness against the
off-manifold noise. Furthermore, the adversarial perturbations and adversarial examples are shown
in Figure 3] We can easily observe that the tangent adversarial perturbation focuses on the edges
of foreground objects, while the normal space perturbation mostly appears as certain noise over the
whole image. This is consistent with our understanding on the role of perturbation along the two
directions that capture the different aspects of smoothness.

4.4 CIFAR-10 AND SVHN

There are two classes of experiments for demonstrating the effectiveness of TNAR in SSL, SVHN
with 1,000 labeled data, and CIFAR-10 with 4, 000 labeled data. The experiment setups are iden-
tical with Miyato et al.| (2017). We test two kinds of convolutional neural networks as classifier
(denoted as ”small” and “large”) as in|Miyato et al.|(2017). Since it is difficult to obtain satisfying
VAE on CIFAR-10, we only conduct the proposed TNAR with the underlying manifold identified
by Localized GAN (TNAR-LGAN) for CIFAR-10. Note that in Miyato et al.| (2017), the authors
applied ZCA as pre-processing procedure, while other compared methods do not use this trick. For
fair comparison, we only report the performance of VAT without ZCA. More detailed experimental
settings are included in Appendix.

Table 3: Classification errors (%) of compared methods on SVHN / CIFAR-10 dataset.

Method SVHN 1,000 labels ~ CIFAR-10 4,000 labels

VAT (small) 4.37 15.67

VAT (large) 4.23 15.29

ALI (Dumoulin et al.}[2016) 7.41 17.99

Improved GAN (Salimans et al.;[2016) 8.11 18.63

Tripple GAN (Li et al.|[2017) 5.77 16.99

FM GAN (Kumar et al.,[2017) 4.39 16.20

LGAN (Qi et al.,[2018) 4.73 14.23
TNAR-VAE (small) 3.93 -
TNAR-VAE (large) 3.84 -

TNAR-LGAN (small) 4.10 13.63

TNAR-LGAN (large) 3.93 13.53

In Table [3] we report the experiments results on CIFAR-10 and SVHN, showing that our proposed
TNAR outperforms other state-of-the-art SSL methods on both SVHN and CIFAR-10, demonstrat-
ing the superiority of our proposed TNAR.

5 CONCLUSION

We present the tangent-normal adversarial regularization, a novel regularization strategy for semi-
supervised learning, composing of regularization on the tangent and normal space separately. The
tangent adversarial regularization enforces manifold invariance of the classifier, while the normal
adversarial regularization imposes robustness of the classifier against the noise contained in the ob-
served data. Experiments on artificial dataset and multiple practical datasets demonstrate that our
approach outperforms other state-of-the-art methods for semi-supervised learning. The performance
of our method relies on the quality of the estimation of the underlying manifold, hence the break-
throughs on modeling data manifold could also benefit our strategy for semi-supervised learning,
which we leave as future work.
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A  TWO-RINGS DATASET

The underlying manifold for two-rings data is given by M = M, U M_, where M, =
{(Il,l’g) |23 + a3 = 0.92} and M_ = {(Il,Ig) |23 + a3 = 1.12 } represent two different
classes. The observed data is sampled as © = x¢ + n, where z( is uniformly sampled from M

and n ~ N(0,272). We sample 6 labeled training data, 3 for each class, and 3,000 unlabeled
training data, as shown in Figure[2]

B EXPERIMENTS DETAILS ON FASHIONMNIST

In FashionMNIS experiments, we preserver 1,00 data for validation from the original training
dataset. That is, we use 100/200/1, 000 labeled data for training and the other 100 labeled data for
validation. For pre-processing, we scale images into 0 ~ 1. The classification neural network is as
following. (a,b) means the convolution filter is with @ X a shape and b channels. The max pooling
layer is with stride 2. And we apply local response normalization (LRN) (Robinson et al.l [2007).
The number of hidden nodes in the first fully connected layer is 512.

Conv(3,32) — ReLU — Conv(3,32) — ReLU — MaxPooling — LRN
— Conv(3,64) — ReLU — Conv(3,64) — ReLU — MaxPooling — LRN
— FC1 — ReLU — FC2

For the labeled data, the batch size is 32, and for the unlabeled data, the batch size is 128. All
networks are trained for 12, 000 updates. The optimizer is ADAM with initial learning rate 0.001,
and linearly decay over the last 4,000 updates. The hyperparameters tuned is the magnitude of
the tangent adversarial perturbation (e;), the magnitude of the normal adversarial perturbation (e2)
and the hyperparameter A\ in Eq. (11). Other hyperparameters are all set to 1. We tune A from
{1,0.1,0.01,0.001}, and €7, e randomly from [0.05, 20].

https://github.com/zalandoresearch/fashion-mnist
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Table 4: The structure of convolutional neural networks for experiments on CIFAR-10 and SVHN,
based on |Springenberg et al.| (2014); [Salimans et al.| (2016)); Laine & Ailal (2016). All the con-
volutional layers and fully connected layers are followed by batch normalization except the fully
connected layer on CIFAR-10. The slopes of all IReL U functions in the networks are 0.1.

Conv-Small on SVHN | Conv-Small on CIFAR-10 | Conv-Large
32x32 RGB image

3%x3 conv. 64 IReLU 3x%x3 conv. 96 IReLU 3%x3 conv. 128 IReLU
3x3 conv. 64 IReLU 3x3 conv. 96 IReLU 3x3 conv. 128 IReLU
3x3 conv. 64 IReLU 3x3 conv. 96 IReLU 3x3 conv. 128 IReLU

22 max-pool, stride 2
dropout, p = 0.5

3%x3 conv. 128 IReLU 3%x3 conv. 192 IReLU 3%x3 conv. 256 IReLU
3%x3 conv. 128 IReLU 3x3 conv. 192 IReLU 3x3 conv. 256 IReLU
3x3 conv. 128 IReLU 3x3 conv. 192 IReLU 3x3 conv. 256 IReLU

22 max-pool, stride 2
dropout, p = 0.5

3%x3 conv. 128 IReLU 3%x3 conv. 192 IReLU 3%x3 conv. 512 IReLU
1x1 conv. 128 IReLU 1x1 conv. 192 IReLU 1x1 conv. 256 IReLU
1x1 conv. 128 IReLU 1x1 conv. 192 IReLU 1x1 conv. 128 IReLU

global average pool, 6x6 — 1x1
dense 128 — 10 | dense 192— 10 | dense 128— 10

10-way softmax

The encoder of the VAE for identify the underlying manifold is a LeNet-like one, with two convolu-
tional layers and one fully connected layer. And the decoder is symmetric with the encoder, except
using deconvolutional layers to replace convolutional layer. The latent dimensionality is 128. The
localized GAN for identify the underlying manifold is similar as stated in |Q1i et al.|(2018]). And the
implementation is modified from https://github.com/z331565360/Localized—GAN.
We change the latent dimensionality into 128.

We tried both joint training the LGAN with the classifier, and training them separately, observing no
difference.

C EXPERIMENTS DETAILS ON SVHN AND CIFAR-10

In SVHI\E| and CIFAR—](ﬂ experiments, we preserve 1,000 data for validation from the original
training set. That is, we use 1,000/4, 000 labeled data for training and the other 1, 000 labeled data
for validation. The only pre-processing on data is to scale the pixels value into 0 ~ 1. We do not
use data augmentation. The structure of classification neural network is shown in Table {] which is
identical as in|[Miyato et al.| (2017).

For the labeled data, the batch size is 32, and for the unlabeled data, the batch size is 128. For
SVHN, all networks are trained for 48, 000 updates. And for CIFAR-10, all networks are trained
for 200, 000 updates. The optimizer is ADAM with initial learning rate 0.001, and linearly decay
over the last 16, 000 updates. The hyperparameters tuned is the magnitude of the tangent adversarial
perturbation (e ), the magnitude of the normal adversarial perturbation (e2) and the hyperparameter
A in Eq. . Other hyperparameters are all set to 1. We tune X from {1,0.1,0.01,0.001}, and
€1, €2 randomly from [0.05, 20].

*http://ufldl.stanford.edu/housenumbers/
*nttps://www.cs.toronto.edu/~kriz/cifar.html
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The VAE for identify the underlying manifold for SVHN is implemented as in https://
github.com/axium/VAE-SVHN. The only modification is we change the coefficient of the
regularization term from 0.01 to 1. The localized GAN for identify the underlying manifold for
SVHN and CIFAR-10 is similar as stated in (2018). And the implementation is mod-
ified from https://github.com/z331565360/Localized-GAN. We change the latent
dimensionality into 512 for both SVHN and CIFAR-10.

D MORE ADVERSARIAL EXAMPLES

More adversarial perturbations and adversarial examples in tangent space and normal space are
shown in Figure ] and Figure 5]

Figure 4: The perturbations and adversarial examples in tangent space and normal space for FashionMNIST
dataset. Note that the perturbations is actually too small to distinguish easily, thus we show the scaled pertur-
bations. From left to right: original example, tangent adversarial perturbation, normal adversarial perturbation,
tangent adversarial example, normal adversarial example.
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Figure 5: The perturbations and adversarial examples in tangent space and normal space for CIFAR-10 dataset.
Note that the perturbations is actually too small to distinguish easily, thus we show the scaled perturbations.
From left to right: original example, tangent adversarial perturbation, normal adversarial perturbation, tangent
adversarial example, normal adversarial example.
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