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ABSTRACT

The policy gradients of the expected return objective can react slowly to rare re-
wards. Yet, in some cases agents may wish to emphasize the low or high returns
regardless of their probability. Borrowing from the economics and control liter-
ature, we review the risk-sensitive value function that arises from an exponential
utility and illustrate its effects on an example. This risk-sensitive value func-
tion is not always applicable to reinforcement learning problems, so we introduce
the particle value function defined by a particle filter over the distributions of an
agent’s experience, which bounds the risk-sensitive one. We illustrate the benefit
of the policy gradients of this objective in Cliffworld.

1 INTRODUCTION

The expected return objective dominates the field of reinforcement learning, but makes it difficult to
express a tolerance for unlikely rewards. This kind of risk sensitivity is desirable, e.g., in real-world
settings such as financial trading or safety-critical applications where the risk required to achieve
a specific return matters greatly. Even if we ultimately care about the expected return, it may be
beneficial during training to tolerate high variance in order to discover high reward strategies.

In this paper we introduce a risk-sensitive value function based on a system of interacting trajectories
called a particle value function (PVF). This value function is amenable to large-scale reinforcement
learning problems with nonlinear function approximation. The idea is inspired by recent advances in
variational inference which bound the log marginal likelihood via importance sampling estimators
(Burda et al., 2016; Mnih & Rezendel 2016), but takes an orthogonal approach to reward modifi-
cations, e.g. (Schmidhuber, [1991} Ng et al.| [{1999). In Section @ we review risk sensitivity and a
simple decision problem where risk is a consideration. In Section [3] we introduce a particle value
function. In Section 4} we highlight its benefits on Cliffworld trained with policy gradients.

2 RISK SENSITIVITY AND EXPONENTIAL UTILITY

We look at a finite horizon Markov Decision Process (MDP) setting where R, is the instantaneous
reward generated by an agent following a non-stationary policy 7, see Appendix [A] A utility func-
tion v : R — R is an invertible non-decreasing function, which specifies a ranking over possible
returns Z?:o R;. The expected utility ]E[U(ZZ;O R;)|So = s] specifies a ranking over policies
(Von Neumann & Morgenstern, |1953). For an agent following u, a natural definition of the “value”
of a state is the real number V7 (s, u) whose utility is the expected utility:

<ZR> sost. 0

Note, when w is the identity we recover the expected return. We consider exponential utilities u(x) =
sgn () exp(Bz) where 8 € R. This choice is well-studied, and it is implied by the assumption that
VJ (s,u) is additive for deterministic translations of the reward function (Pratt, |1964; Howard &
Matheson, |1972; (Coraluppi, |{1997). The corresponding value function is

T
eXp (5 Z Rt)
t=0

Vi (s,u) =u™? (IE

Vi (s,B) = %log]E

So = 81 5 (2)
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Value functions at distinct risk settings
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Figure 1: A two state MDP. The plot shows VX' (1, 3) for distinct 3, assuming aliased states and a
policy parameterized simply by the probability p € [0, 1] of remaining in a state.

and as § — 0 we recover the expected return. See Appendix [B|for details. One way to interpret this
value is through the following thought experiment. If the agent is given a choice between a single
interaction with the environment and an immediate deterministic return, then VJ (s, 5) represents
the minimum return that our agent would take in exchange for forgoing an interaction. If 8 < 0,
then V7 (s, ) < VF(s,0), meaning that the agent is willing to to take a loss relative to the expected
return in exchange for certainty. This is a risk-avoiding attitude, which emphasizes low returns. If
B > 0, then VZ (s, ) > VF(s,0), and the agent would only forgo an interaction for more than it
can expect to receive. This is risk-seeking behavior, which emphasizes high returns.

To illustrate one effect of risk, consider the two state MDP shown in Figure [} The agent begins
in state 1 and acts for two time steps, choosing between leaving or remaining. Suppose that the
agent’s policy is defined by a single parameter p € [0, 1] that describes the probability of remaining.
Then the expected return V' (1,0) = %pz — 2p + 1 has two local maxima at p € {0, 1} and the
solution p = 1 is not a global maximum. Any policy gradient trajectory initialized with p > 2/3 will
converge to the suboptimal solution p = 1, but as our risk appetite 5 grows, the basin of attraction to
the global maximum of p = 0 expands to the entire unit interval. This sort of state aliasing happens
often in reinforcement learning with non-linear function approximation. In these cases, modifying
the risk appetite (either towards risk-avoidance or seeking) may favorably modify the convergence

of policy gradient algorithms, even if our ultimate objective is the expected return.

The risk-seeking variant may be helpful in deterministic environments, where an agent can exactly
reproduce a previously experienced trajectory. Rare rewards are rare only due to our current policy,
and it may be better to pursue high yield trajectories more aggressively. Note, however, that V. (s, 5)
is non-decreasing in 3, so in general risk-seeking is not guaranteed to improve the expected return.
Note also that the literature on KL regularized control (Todorovl 2006} Kappen, [2005; Tishby &
Polani, 2011)) gives a different perspective on risk sensitive control, which mirrors the relationship
between variational inference and maximum likelihood. See Appendix [C]for related work.

3 PARTICLE VALUE FUNCTIONS

Algorithms for optimizing V7 (s, 8) may suffer from numerical issues or high variance, see Ap-
pendix Bl Instead we define a value function that bounds VT (s, 3) and approaches it in the infinite
sample limit. We call it a particle value function, because it assigns a value to a bootstrap particle
filter with K particles representing state-action trajectories. This is distinct, but related to |Kantas
(2009), which investigates particle filter algorithms for infinite horizon risk-sensitive control.

Briefly, a bootstrap particle filter can be used to estimate normalizing constants in a hidden Markov
model (HMM). Let (X, Y;) be the states of an HMM with transitions X; ~ p(:|X;_1) and emis-
sions Y; ~ ¢q(+|X;). Given a sample ¥y . ..yr, the probability p({Y; = y;}7_,) can be computed
with the forward algorithm. The bootstrap particle filter is a stochastic procedure for the forward al-
gorithm that avoids integrating over the state space of the latent variables. It does so by propagating a

set of K particles Xt(i) with the transition model X t(i) ~p(-| X t(i)l) and a resampling step in propor-
tion to the potentials ¢(y;|X ). The result is an unbiased estimator [[1_o (K1 35 ¢(y:| X))
of the desired probability (Del Moral, 2004; Pitt et al., 2012). The insight is that if we treat the

state-action pairs (S¢, A¢) as the latents of an HMM with emission potentials exp(8R: (S, At))
(similar to | Toussaint & Storkeyl [2006; [Rawlik et al.,|2010), then a bootstrap particle filter returns an

unbiased estimate of E[exp(S ZtT:O R)|So = s]. Algorithm |1|summarizes this approach.
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Algorithm 1 An estimator of the PVF VEK(S(D? IS ONe))

1: fori @ 1: K do 9: I ~P(I =j) o Wt@l # select random parent
2 S(%z') - @) 10: Si" ~ p(-IS{";, AL, # inherit from parent
30 A i)N mr (s )@) 11: AD ~ (1S5
4513 dvao = exp(BRy”) 12: Wi = exp(BR")
: en Oli K () 13: end for )
6: Zo =721 Wo 14: Zi= % Zli Wt(l)
7: fort =1:Tdo 15: end for e
8: for:=1: K do '

16: return S log Z,

Taking an expectation over all of the random variables not conditioned on we define the PVF asso-
ciated with the bootstrap particle filter dynamics:
, K
{587 =50} ] . 3)
i=1

Note, more sophisticated sampling schemes, see Doucet & Johansen|(2011)), result in distinct PVFs.

T
1
Vi(sh,... 5 8) =E lﬁzlogzt
t=0

Consider the value if we initialize all particles at s, V7 r(s, 8) = VF (s,...,s,3). If 8 > 0, then
by Jensen’s inequality and the unbiasedness of the estimator we have that V7T x(s, ) < VF (s, B).
For 8 < 0 the bound is in the opposite direction. It is informative to consider the behaviour of
the trajectories for different values of 8. For § > 0 this algorithm greedily prefers trajectories
that encounter large rewards, and the aggregate return is a per time step soft-max. For 8 < 0 this
algorithm prefers trajectories that encounter large negative rewards, and the aggregate return is a per
time step soft-min. See Appendix D] for the Bellman equation and policy gradient of this PVFE.

4 EXPERIMENTS

To highlight the benefits of using PVFs we apply them to a variant of the Gridworld task called
Cliffworld, see Appendix |E|for comparison to other methods and more details. We trained time de-
pendent tabular policies using policy gradients from distinct PVFs for § € {—1,—0.5,0,0.5,1, 2}.
We tried K € {1,...,8} and learning rates ¢ € {1 x 1073,5 x 1074,1 x 1074,5 x 10~°}. For
the 5 = 0 case we ran K independent non-interacting trajectories and averaged over a policy gra-
dient with estimated baselines. Figure [2] shows the density over the final state of the trained MDP
under varying 3 treatments but K = 4. Notice that the higher the risk parameter, the broader the pol-
icy, with the agent eventually solving the task. No 8 = 0, corresponding to standard REINFORCE,
runs solved this task, even after increasing the number of agents to 64.

5 CONCLUSION

We introduced the particle value function, which approximates a risk-sensitive value function for a
given MDP. We will seek to address theoretical questions, such as whether the PVF is increasing in 3
and monotonic in the number of particles. Also, the PVF does not have an efficient tabular represen-
tation, so understanding the effect of efficient approximations would be valuable. Experimentally,
we hope to explore these ideas for complex sequential tasks with non-linear function approximators.
One obvious example of such tasks is variational inference over a sequential model.

MDP end state density
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Figure 2: Last state distribution under policies trained with PVFs with distinct .
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A MARKOV DECISION PROCESSES

We consider decision problems in which an agent selects actions and receives rewards in a stochastic
environment. For the sake of exposition, we consider a finite horizon MDP, which consists of: a finite
state space S, a finite action space A, a stationary environmental transition kernel satisfying the
Markov property p(-|S, A¢, ..., S0, Ag) = p(:|St, A¢), and reward functions rp_; : S x A — R.
At each time step the agent chooses actions according to a policy mr—(+|S;) given the current
state. ¢ (+|St) is the action distribution and rr_; the reward function when there are T' — ¢ steps
remaining. All together the MDP proceeds stochastically producing a sequence of random variables
(St, A¢) according to the following dynamics for T' € N time steps. Let ¢t € {0,...,T'},

So=s 4
At ~ WT—t("St) (5)
Sir1 ~ p('|St,At) 6)

The agent receives a reward R; = rp_¢(S;, A;) at each time step. We will call a single realization
of the MDP a trajectory. The objective in classical reinforcement learning is to discover the policies
7 = {m(-|s)} L., that maximize the value function,

T
Sh
t=0

where the expectation is taken with respect to all the stochastic elements not conditioned on.

Vi(s)=E

So = S] . (7)

All of the results we present can be simply extended to the infinite horizon case with discounted or
episodic returns as well as more general uncountable state and action spaces.

B RISK-SENSITIVE VALUE FUNCTION DETAILS

Utility theory gives us a language for describing the relative importance of high or low returns.
A utility function u : R — R is an invertible non-decreasing function, which specifies a ranking
over possible returns Zf,T:o R,. The expected utility E[u(thZO R:)|So = s] specifies a ranking
over policies (Von Neumann & Morgenstern, |1953). The expected utility does not necessarily have
an interpretable scale, because any affine transformation of the utility function results in the same
relative ordering of policies or return outcomes. Therefore we define the value associated with a
utility » by returning it to the scale of the rewards defined by the MDP. For an agent following w,
the “value” of a state is the real number V.7 (s, u) whose utility is the expected utility:

El)

Note that when w is the identity we recover the expected return. Of course for non-decreasing
invertible utilities, the value gives the same ranking over policies. One way to interpret this value is
through the following thought experiment. If the agent is given a choice between a single interaction
with the environment or an immediate deterministic return, then V7 (s, u) represents the minimum
return that our agent would take in exchange for forgoing an interaction. If

50281

then our agent is willing to take a loss relative to the expected return in exchange for certainty. This
is a risk-avoiding attitude, which emphasizes the smallest returns, and one can show that this occurs

iff u is concave. If
T
E Rt So = S‘|

t=0
then the agent would only forgo an interaction for more than it can expect to receive. This is risk-
seeking behavior, which emphasizes the largest returns, and one can show that this occurs iff w is

Vi (s,u) =u! (E So=s

T

Sn

t=0

VI(s,u) <E

VI(s,u) > E
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convex. The case when u(z) is linear is the risk-neutral case. For these reasons, V7 (s, u) is also
known as the certain equivalent in economics (Howard & Matheson, |1972).

We focus on exponential utilities of the form u(xz) = sgn(f)exp(Sx) where § € R. This is a

broadly studied choice that is implied by the assumption that the value function V¥ (s, u) is addi-

tive for deterministic translations of the return (Pratt, | 1964; Howard & Mathesonl [1972; |Coraluppi,

1997). This assumption is nice, because it preserves the Markov nature of the decision process: if

the agent were given a choice at every time step ¢ between continuing the interaction or terminating

and taking its value as a deterministic return, then additivity in the value function means that the

same decision is made regardless of the return accumulated so far (Howard & Matheson, |1972). The
value function corresponding to an exponential utility is

1 T

Vi (s.8) = 5 1ogE |exp (52&)

t=0

So = 8] N (9)

and as 8 — 0 we recover the expected return. We list a few of its properties.

1. For /3 near 0

T

>n

t=0

Vi(s,8) =E So=s So = s| +0(B?) (10)

+ gvgr

T
S h
t=0

2. limg_yo0 VA (5, 8) = sup{r| P(X;_, Ry = ) > 0}
3. limp s oo Vi (s, B) = inf{r| P(3,_, Re = 7) > 0}
4. V[ (s, B) is continous and non-decreasing in 3.

5. Vi (s, B) is risk-seeking for 5 > 0, risk-avoiding for 5 = 0, and risk-neutral for § = 0
For proofs,

1. From |Coraluppil (1997).

2. From |Coraluppil| (1997).

3. From |Coraluppi (1997).

4. V[ (s,B) is clearly continuous for all 8 # 0. If we extend V(s,0) =
E [Ztho R, ‘ So = 5} then 1. gives us the continuity everywhere. For non-decreasing

let «,8 € Rand o # 0 and 8 # 0. Furthermore assume 8 > «. Then §/a > 0 or
B/a > 1. Now,

o

S():S

r T B/a
=E |exp (aZRt> Sop=3s
i t=0
- T Bl
> E |exp (aZRt> So = s]
L t=0

since 2P is convex on z > 0 for p > 1 or p < 0, Jensen’s inequality gives us the result.
Taking log of both sides gives us the result in that case. In the case thata =0 or 3 = 0, 4.
and Jensen’s inequality gives us the result by the concavity of log.

From a practical point of view the value function VJ (s, 5) behaves like a soft-max or soft-min
depending on the sign of 3, emphasizing the avoidance of low returns when 8 < 0 and the pursuit
of high returns when 8 > 0. As § — oo the value V7 (s, 3) approaches the supremum of the returns
over all trajectories with positive probability, a best-case penalty. As 5 — —oo it approaches the
infimum, a worst-case value (Coraluppil [1997). Thus for large positive 3 this value is tolerant of
high variance if it can lead to high returns. For large negative [ it is very intolerant of rare low
returns.
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Despite having attractive properties the risk-sensitive value function is not always applicable to
reinforcement learning tasks (see also [Mihatsch & Neuneier| (2002)). The value function satisfies
the multiplicative Bellman equation

exp(BVE (s, 8)) = >_ mr(als)p(s'|s, a) exp(Brr(s, a) + BVE_ (s, B))- (11

a,s’

Operating in log-space breaks the ability to exploit this recurrence from Monte Carlo returns gener-
ated by a single trajectory, because expectations do not exchange with log. Operating in exp-space
is possible for TD learning algorithms, but we must cap the minimum/maximum possible return so
that exp(BV] (s, 8)) does not underflow/overflow. This can be an issue when the rewards represent
log probabilities as is often the case in variational inference. The policy gradient of V[ (s, 3) is

T
VaVr(s,8) =E l; ZGXP(ﬂQ7:F_t(St7At,m — BV7 (S, B))V log mr—t(Ae[St)|So = s
= (12)
where
1 T
Q%(&aaﬁ): BlogE lexp <52Rt> 30:57140:& (13)
t=0

Even ignoring underflow/overflow issues, REINFORCE (Williams, [{1992) style algorithms would
find difficulties, because deriving unbiased estimators of the ratio exp(8Q7F._,(St, A, B) —
BVF(s,B)) from single trajectories of the MDP may be hard. Lastly, the policy gradient of

E {exp (ﬁ ZZ;O Rt) ’ So = s}
So = 8] ,

ol (i)
(14)

There are particle methods that would address the estimation of this score, e.g. (Kantas et al.,|2015),
but for large 7" the estimate suffers from high mean squared errors.

T T
=K Z exp <ﬁ Z Rt> VlOg WT_t(At|St)
t=0

t=0

C RELATED WORK

Risk sensitivity originates in the study of utility and choice in economics (Von Neumann & Mor-
genstern, |1953; [Pratt, |1964; |Arrow, |1974). It has been extensively studied for the control of MDPs
(Howard & Matheson, |1972;|Coraluppi, |1997; Marcus et al.| |{1997; [Borkar & Meyn, 2002} Mihatsch
& Neuneier, 2002} [Biuerle & Rieder, 2013). In reinforcement learning, risk sensitivity has been
studied (Koenig & Simmons| |1994; Neuneier & Mihatschl (1998} |[Shen et al., [2014), although none
of these consider the direct policy gradient approach considered in this work. Most of the methods
considered are variants of a Q learning approach or policy iteration. As well, the idea of treating
rewards as emissions of an HMM is not a new idea (Toussaint & Storkeyl [2006; Rawlik et al.,2010).

The idea of treating reinforcement learning as an inference problem is not a new idea (see e.g.
Albertini & Runggaldier;, |1988; [Dayan & Hinton| |1997; Kappen, [2005; [Toussaint & Storkeyl, 2006
Hoffman et al., [2007; [Tishby & Polanil 2011 Kappen et al.l |2012). Broadly speaking, all of these
works still optimize the expected reward objective V7 (s, 0) = E[ZtT:o R, | Sy = s] with or without
some regularization penalties on the policy. The ones that share the closest connection to the risk
sensitive objective VT (s, ) studied here, are the KL regularized objectives of the form

™, o’ 1 (Atlst)
V E R +
! 7 (A]Sy)

So = 31 (15)

where the MDP dynamics are sampled from 7’. These are studied for example in|Albertini & Rung-
galdier (1988)); [Kappen| (2005); [Tishby & Polani| (2011); [Kappen et al.| (2012); |Fox et al.| (2015));
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Ruiz & Kappen|(2016). The observation is that in an MDP with fully controllable transition dynam-
ics, optimizing a policy 7/, which completely specifies the transition dynamics, achieves the risk
sensitive value at 7:

max V7™ (s, 8) = V7 (s, ) (16)

Note that this has an interesting connection to Bayesian inference. Here, 7w plays the role of the

prior, 7’ the role of the variational posterior, V; ’”,(s, B) the role of the variational lower bound,
and V (s, B) the role of the marginal likelihood. In effect, KL regularized control is like variational
inference, where risk sensitive control is like maximum likelihood. Finally, when the environmental
dynamics p(-|s, a) are stochastic, does not necessarily hold, therefore the risk sensitive value
is distinct in this case. Yet, in certain special cases, risk sensitive objectives can also be cast as
solutions to path integral control problems (Broek et al., 2012).

To our knowledge no work has considered using particle filters for risk sensitive control by treating
the particle filter’s estimator of the log partition function as a return whose expectation bounds the
risk sensitive value and whose policy gradients are cheap to compute.

D PARTICLE VALUE FUNCTION DETAILS

Recalling Algorithm[I]and the definition of the MDP in Appendix [A] define
R = rp (S5, A% (17)

the particle value function associated with the bootstrap particle filter dynamics:

T
1 . K
Fs,. s, 8)=E |2 logZ (1) — 500 . 1
VT(S ) yS 55) [6 s 0g 4y {SO S }i:1 ( 8)

We can also think of this value function as the expected return of an agent whose actions space is
the product space A%, in an environment with state space S whose transition kernel includes the

resampling dynamic. Let s("5) = (s(1) . s(5)) then the PVF satisfies the Bellman equation
BVE (s, 8) = 3 (@ 0)st ) log Z7 (o), s(H10) (19)
a(liK)

Z Z HT(UI(LK)‘S(l:K))PT(U(LK)‘a(l:K),S(I:K))ﬁVrITle(O'(LK)’ﬁ)

a(LK) 5(1:K)

(20
where
K
HT(a(lzK)|S(1:K)) _ HWT(a(i)‘S(i)) 21
log ZT(a(l’K), (b K = log < Zexp (Brr(s @) q z)))> (22)

Kk [ K o
Pr(o®8]qt110, 5110 ] (2 2@Brrl?ha) oy 000y 23)
i1 D Y exp(Brr(st), ak))

The policy gradient of V7 (s() | 3) is

T T K
. 1 i) ali
VAVESEE 8) =B [ 233" g Zy Vieg mr_o(Af|5")

{58 = s“’)}f&] (24)

In this sense we can think of log Z;/f as the immediate reward for the whole system of particles
and Y1 log Z; /8 as the return.
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The key point is that the use of interacting trajectories to generate the Monte Carlo return ensures
that this particle value function defines a bound on V7 (s, 3). Indeed, consider the particle value
function that corresponds to initializing all K trajectories in state s € S and define, V[ (s, 8) =

VE(s,...,s,0). Now, for 3 > 0 we have, by Jensen’s inequality,

T
117
t=0
and since the bootstrap particle filter is unbiased (Del Moral, [2004; [Pitt et al., [2012)),

=V7i(s,B) (26)
For < 0 we get the reverse inequality, V7 i (s, ) > VI (s, 3). As K — oo the particle value

function converges to V7 (s, ) since the estimator is consistent (Del Moral, 2004). We list this and
some other properties:

L. VE (5,8) < VE(s,B).
2. Mg oo Vi (5, 8) = VI (s, B).

3. limg0 Vi g(s,0) =E [ZtT:o Ry

4. VI (s, ) is continuous in f3.

1
V'ZZT,K(SHB) < B IOgE

{s§ = s}fill (25)

So = s] = V7 (s, B).

For proofs,
1. H;T:O Zy is an unbiased estimator of E[exp(8 ZtT:O R:)|So = s] (Del Moral, 2004) and
the rest follows from Jensen’s inequality.

2. Hf:o Z, is a consistent estimator (Del Moral, [2004)), and the rest follows from exchanging
the limit with an expectation.

- T
3. VT,1(5a B) =E {tho Ry
proaches the algorithm that resamples uniformly and the value under that sampling strategy
is

So = s} is clear. Otherwise the limit limg_,o V7 x(s,B) ap-

éim Vik(s,B)=E

{58 = s}fil]

—0 =0
T K {4 '
=E | > LR[S = s}fil]
. t:}: 7,:11 | |
=23 " B {557 = sH |

1
=S > ZE[R ]S =3
t=0 i=1
=E ZRf SOS]
t=0

4. VI 1(s,0) is a finite sum of continuous terms, and if we extend the definition of
VF k(5,0) = limg0 VF (s, B), then we’re done.

E CLIFFWORLD DETAILS

We considered a finite horizon Cliffworld task, which is a variant on Gridworld. The world is 4
rows by 12 columns, and the agent can occupy any grid location. Each episode begins with the

10
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Figure 3: Cliffworld is a n x m gridworld. S denotes the start state, G the goal state, and the agent
is currently in state (4,2). The arrows show the actions available to the agent.
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Figure 4: Left plot: probability of solving task with standard deviation, defined as achieving positive
average return. Right plot: Average reward during training with standard deviation. Both VIMCO
and PVF trained with 8 = 1.0 and learning rate ¢ = 1 x 1073, Averages are for 8 runs. At 3
particles, some PVF runs began solving Cliffworld, while no VIMCO ones did.

agent in state (0,0) (marked as S in Figure[3) and ends when 24 timesteps have passed. The actions
available to the agent are moving north, east, south, and west, but moving off the grid is prohibited.
All environmental transitions are deterministic. The ‘cliff” occupies all states between the start and
the goal (marked G in Figure [3) along the northern edge of the world. All cliff states are absorbing
and when the agent enters any cliff state it initially receives a reward of -100 and receives 0 reward
each timestep thereafter. The goal state is also absorbing, and the agent receives a +100 reward upon
entering it and 0 reward after. The agent receives a -1 reward for every action that does not transition
into a cliff or goal state. The optimal policy for Cliffworld is to hug the cliff and proceed from the
start to the goal as speedily as possible, but doing so could incur high variance in reward if the agent
falls off the cliff. For a uniform random policy most trajectories result in large negative rewards and
occasionally a high positive reward. This means that initially for independent trajectories venturing
east is high variance and low reward.

We trained non-stationary tabular policies parameterized by parameters 6 of size 4 x 12 x 4 x 24:
exp(f[s1, s2,a,T — 1])

22:0 exp(0[817 52, 0Q, T - t])

The policies were trained using policy gradients from distinct PVFs for 3 € {—1,—-0.5,0,0.5,1,2}.
We tried K € {1,...,8} and learningrates ¢ € {1 x 1073,5 x 1074, 1 x 107%,5 x 10~°}. For the
B = 0 case we ran K independent non-interacting trajectories and averaged over a policy gradient
with estimated baselines. For 8 = 0, we used instead a REINFORCE (Williams, |1992) estimator,
that was simply estimated from the Monte Carlo returns. For control variates, we used distinct base-
lines depending on whether 5 = 0 or not. For 3 = 0, we used a baseline that was an exponential
moving average with smoothing factor 0.8. The baselines were also non-stationary, and with dimen-
sionality 4 x 12 x 24. For 8 # 0 we used no baseline except for VIMCO’s control variate (Mnih
& Rezende, |2016) for the immediate reward. The VIMCO control variate is not applicable for the
whole return as future time steps are correlated with the action through the interaction of trajectories.

We also compared directly to VIMCO (Mnih & Rezende,[2016). Consider VIMCO’s value function,

1 1 K T ]
3 log (K > exp <Z 5R§”> )] Q7
=1 t=0
(i)

where R, is a reward sequence generated by an independent Monte Carlo rollout of the original
MDP. VIMCO is also a risk sensitive value function, but it does not decompose over time and so

mr—¢(als) =

‘777{1((575) =E
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does not have a temporal Bellman equation. In this case, though, VIMCO policy gradients were able
to solve Cliffworld under most of the conditions that the policy gradients of PVF were able to solve.
For K = 3 and 8 = 1.0, PVF occasionally solved Cliffworld while VIMCO did not. See Figure 4]
However, once in the regime where VIMCO could solve the task, it did so with more reliability than
the PVF variant. Note that in no case did REINFORCE on the expected return solve this variant.
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