
Workshop track - ICLR 2018

ACCELERATING NEURAL ARCHITECTURE SEARCH US-
ING PERFORMANCE PREDICTION

Bowen Baker∗, Otkrist Gupta∗, Ramesh Raskar
Media Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02142, USA
{bowen,otkrist,raskar}@mit.edu

Nikhil Naik
Faculty of Arts and Sciences
Harvard University
Cambridge, MA 02138, USA
naik@fas.harvard.edu

ABSTRACT

Methods for neural network hyperparameter optimization and architecture search
are computationally expensive due to the need to train a large number of model
configurations. In this paper, we show that simple regression models can predict
the final performance of partially trained model configurations using features based
on network architectures, hyperparameters, and time-series validation performance
data. We empirically show that our performance prediction models are much more
accurate than prominent Bayesian counterparts, are simpler to implement, and are
faster to train. Our models can predict final performance in both visual classifica-
tion and language modeling domains, are effective for predicting performance of
drastically varying model architectures, and can even generalize between model
classes. Using these prediction models, we also implement an early stopping
method for hyperparameter optimization and architecture search, which obtains a
speedup of a factor up to 6x in both hyperparameter optimization and architecture
search. Finally, we empirically show that our early stopping method can be seam-
lessly incorporated into both reinforcement learning-based architecture selection
algorithms and bandit based search methods. Through extensive experimentation,
we empirically show our performance prediction models and early stopping algo-
rithm are state-of-the-art in terms of prediction accuracy and speedup achieved
while still identifying the optimal model configurations.

1 INTRODUCTION

Significant human expertise and labor is required for designing high-performing neural network
architectures and successfully training them for different applications. Ongoing research in two
areas—architecture search and hyperparameter optimization—attempts to reduce the amount of
human intervention required for these tasks. Hyperparameter optimization methods (e.g., Hutter
et al. (2011); Snoek et al. (2015); Li et al. (2017)) focus primarily on obtaining good optimization
hyperparameter configurations for training human-designed networks, whereas architecture search
algorithms (Bergstra et al., 2013; Verbancsics & Harguess, 2013; Baker et al., 2017; Zoph & Le, 2017)
aim to design neural network architectures from scratch. Both sets of algorithms require training a
large number of neural network configurations for identifying the right set of hyperparameters or the
right network architecture and are hence computationally expensive.

When sampling many different model configurations, it is likely that many subpar configurations
will be explored. Human experts are quite adept at recognizing and terminating suboptimal model
configurations by inspecting their partial learning curves. In this paper we seek to emulate this behav-
ior and automatically identify and terminate subpar model configurations in order to speedup both
architecture search and hyperparameter optimization methods. Our method parameterizes learning
curve trajectories with simple features derived from model architectures, training hyperparameters,
and early time-series measurements from the learning curve. We use these features to train a set of
simple regression models that predict the final validation performance of partially trained neural net-
work configurations using a small training set of fully trained curves, and we empirically validate our

∗Equal Contribution

1



Workshop track - ICLR 2018

0% 20% 40% 60% 80% 100%

Percent Training Complete

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

MetaQNN - CIFAR10

0% 20% 40% 60% 80% 100%

Percent Training Complete

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

u
ra

cy

Deep Resnets - Tiny Imagenet

0% 20% 40% 60% 80% 100%

Percent Training Complete

0

100

200

300

400

500

600

700

800

P
e
rp

le
x
it

y

LSTM - Penn Treebank

Figure 1: Example Learning Curves: Example learning curves from experiments considered in this
paper. Note the diversity in convergence times and overall learning curve shapes.

method in both image classification and language modeling domains. We use these predictions along
with uncertainty estimates obtained from small model ensembles to construct a simple early stopping
algorithm that can speedup both architecture search and hyperparameter optimization methods.

While there is some prior work on neural network performance prediction using Bayesian meth-
ods (Domhan et al., 2015; Klein et al., 2017), our proposed method is significantly more accurate,
accessible, and efficient. We hope that our work leads to inclusion of neural network performance
prediction and early stopping in the practical neural network training pipeline.

2 RELATED WORK

Neural Network Performance Prediction: There has been limited work on predicting neural
network performance during training. Domhan et al. (2015) introduce a weighted probabilistic
model for learning curves and utilize this model for speeding up hyperparameter search in small
convolutional neural networks (CNNs) and fully-connected networks (FCNs). Building on Domhan
et al. (2015), Klein et al. (2017) train Bayesian neural networks for predicting unobserved learning
curves using a training set of fully and partially observed learning curves. Both methods rely on
expensive Markov chain Monte Carlo (MCMC) sampling procedures and handcrafted learning curve
basis functions. We also note that Swersky et al. (2014) develop a Gaussian Process kernel for
predicting individual learning curves, which they use to automatically stop and restart configurations.

Architecture Search: We define architecture search as an algorithmic approach for designing neural
network architectures from scratch. The earliest architecture search approaches were based on genetic
algorithms (Schaffer et al., 1992; Stanley & Miikkulainen, 2002; Verbancsics & Harguess, 2013) or
Bayesian optimization (Bergstra et al., 2013; Shahriari et al., 2016). More recently, reinforcement
learning methods have become popular. Baker et al. (2017) use Q-learning to design competitive
CNNs for image classification. Zoph & Le (2017) use policy gradients to design state-of-the-art
CNNs and recurrent cell architectures. Several methods for architecture search (Cortes et al., 2017;
Negrinho & Gordon, 2017; Zoph et al., 2017; Brock et al., 2017; Suganuma et al., 2017) have been
proposed this year since the publication of Baker et al. (2017) and Zoph & Le (2017).

Hyperparameter Optimization: We define hyperparameter optimization as an algorithmic approach
for finding optimal values of architecture independent hyperparameters such as learning rate and
batch size, along with a limited search through the network design space. Bayesian hyperparameter
optimization methods include those based on sequential model-based optimization (SMAC) (Hutter
et al., 2011), Gaussian processes (GP) (Snoek et al., 2012), TPE (Bergstra et al., 2013), and neural
networks Snoek et al. (2015). However, random search or grid search is most commonly used in
practical settings (Bergstra & Bengio, 2012). Recently, Li et al. (2017) introduced Hyperband, a multi-
armed bandit-based efficient random search technique that outperforms state-of-the-art Bayesian
optimization methods.

3 NEURAL NETWORK PERFORMANCE PREDICTION

We first describe our model for neural network performance prediction, followed by a description of
the datasets used to evaluate our model, and finally present experimental results.

2



Workshop track - ICLR 2018

3.1 MODELING LEARNING CURVES

Our goal is to model the validation performance yT of a neural network configuration x ∈ X ⊂ Rd
at epoch T ∈ Z+ using previous performance observations y(t). For each configuration x trained
for T epochs, we record a time-series y(T ) = y1, y2, . . . , yT of validation performances. We train
a population of n configurations, obtaining a set S = {(x1, y1(T )), (x2, y2(T )), . . . , (xn, yn(T ))}.
This problem formulation is very similar to Klein et al. (2017). Note that most architecture and
hyperparameter search methods naturally collect S.

We propose to use a set of features ux, derived from the neural network configuration x, along with
a subset of time-series performances y(τ) = (yt)t=1,2,...,τ (where 1 ≤ τ < T ) from S to train a
regression model for estimating yT . We use models without natural support for variable size input, so
we train T −1 regression models, where each successive model uses one more point of the time-series
validation data. As we shall see in subsequent sections, this use of sequential regression models
(SRM) is more computationally efficient and more precise than methods that train a single model.

Features: We use features based on time-series (TS) validation performances, architecture parame-
ters (AP), and hyperparameters (HP). (1) TS: Assume we are training the τ th model in the SRM. TS
features include the validation performances y(τ) = (yt)t=1,2,...,τ , the first-order differences of vali-
dation performances, i.e. yt′ = (yt − yt−1), the second-order differences of validation performances,
i.e. yt′′ = (yt

′ − y′t−1), and mean and standard deviation of performances. (2) AP: These include
total number of weights and number of layers. (3) HP: These include all hyperparameters used for
training the neural networks, e.g. initial learning rate and learning rate decay (full list in Appendix
Table 4).

3.2 DATASETS AND TRAINING PROCEDURES

Figure 1 shows example learning curves from three of the datasets considered in our experiments.
We provide brief summary of the datasets below. Please see Appendix Section A for further details
on the search space, preprocessing, hyperparameters and training settings of all datasets.

DATASETS WITH VARYING ARCHITECTURES:

Deep Resnets (TinyImageNet): We sample 500 ResNet architectures and train them on the TinyIm-
ageNet* dataset (containing 200 classes with 500 training images of 32× 32 pixels) for 140 epochs.
We vary depths, filter sizes and number of convolutional filter block outputs. The network depths
vary between 14 and 110.

Deep Resnets (CIFAR-10): We sample 500 39-layer ResNet architectures from a search space
similar to Zoph & Le (2017), varying kernel width, kernel height, and number of kernels. We train
these models for 50 epochs on CIFAR-10.

MetaQNN CNNs (CIFAR-10 and SVHN): We sample 1,000 model architectures from the search
space detailed by Baker et al. (2017), which allows for varying the numbers and orderings of
convolution, pooling, and fully connected layers. The models are between 1 and 12 layers for the
SVHN experiment and between 1 and 18 layers for the CIFAR-10 experiment. Each architecture is
trained on SVHN and CIFAR-10 datasets for 20 epochs.

LSTM (PTB): We sample 300 LSTM models and train them on the Penn Treebank dataset for 60
epochs, evaluating perplexity on the validation set. We vary number of LSTM cells and hidden layer
inputs between 10-1400.

DATASETS WITH VARYING HYPERPARAMETERS:

Cuda-Convnet (CIFAR-10 and SVHN): We train Cuda-Convnet architecture (Krizhevsky, 2012)
with varying values of initial learning rate, learning rate reduction step size, weight decay for
convolutional and fully connected layers, and scale and power of local response normalization layers.
We train models with CIFAR-10 for 60 epochs and with SVHN for 12 epochs.

*https://tiny-imagenet.herokuapp.com/

3



Workshop track - ICLR 2018

Dataset ν-SVR OLS BLR RF
MetaQNN (CIFAR-10) 97.22± 0.31 97.04± 0.42 97.11± 0.32 94.50± 0.78
Resnet (TinyImageNet) 87.12± 4.65 88.41± 3.76 82.40± 1.65 86.39± 3.58
LSTM (Penn Treebank) 98.03± 1.46 87.83± 21.53 97.99± 1.90 57.28± 24.98

Table 1: Performance Prediction Model Comparison: We report the coefficient of determination
R2 ∗ 100 for four standard methods. Each model is trained with 100 samples on 25% of the learning
curve. We find that ν-SVR works best on average, though not by a large margin.

0.2 0.4 0.6 0.8
True Performance

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ed

ict
ed

 P
er

fo
rm

an
ce R2 = 0.969

MetaQNN CNNs - CIFAR10

0.2 0.3 0.4 0.5
True Performance

0.0

0.1

0.2

0.3

0.4

0.5
R2 = 0.902

Deep ResNets - TinyImagenet

80 100
True Performance

70

80

90

100

110 R2 = 0.973

LSTMs - Penn Treebank

Figure 2: Predicted vs True Values of Final Performance: We show the shape of the predictive
distribution on three experiments: MetaQNN models, Deep Resnets, and LSTMs. Each ν-SVR model
is trained with 100 configurations with data from 25% of the learning curve. We predict validation
set classification accuracy for MetaQNN and Deep ResNets, and perplexity for LSTMs.

3.3 PREDICTION PERFORMANCE

Choice of Regression Method: We now describe our results for predicting final neural network
performance. For all experiments, we train our SRMs on 100 randomly sampled neural network
configurations. We obtain the best performing method using random hyperparameter search over
3-fold cross-validation. We then compute the regression performance over the remainder of the
dataset using the coefficient of determination R2. We repeat each experiment 10 times and report
the results with standard errors. We experiment with a few simple regression models, including
ordinary least squares (OLS), random forests (RF), Bayesian linear regression (BLR), and ν-support
vector machine regression (ν-SVR). For both OLS and ν-SVR, we choose between the linear and
RBF kernels based on prediction performance—after hyperparameter search, in case of ν-SVR. We
chose 100 as the number of sampled configurations somewhat arbitrarily, though we found that
prediction performance was quite poor below 50 and improves steadily after. As seen in Table 1,
ν-SVR performs the best on most datasets, though not by a large margin. For the rest of this paper,
we use ν-SVR unless otherwise specified.

Ablation Study on Feature Sets: In Table 2, we compare the predictive ability of different feature
sets, training SVR with time-series (TS) features obtained from 25% of the learning curve, along
with features of architecture parameters (AP), and hyperparameters (HP). TS features explain the
largest fraction of the variance in all cases and found that in general AP are more important that
HP. AP features almost match TS on the ResNet (TinyImageNet) dataset, indicating that choice of
architecture has a large influence on accuracy for ResNets. Figure 2 shows the true vs. predicted
performance for all test points in three datasets, trained with TS, AP, and HP features.

Generalization To Out Of Distribution Configurations: We also test to see whether our SRMs can
accurately predict the performance of out-of-distribution neural networks. For instance, if we train a
ν-SVR model on the Deep Resnet (TinyImagenet) dataset at 25% of the learning curve observed on
configurations below median depth (60 layers), we can achieve R2 = 0.86 on configurations above
median depth. The corresponding number for prediction below median depth is 0.89. We repeated
this experiment all datasets with different hyperparameter values below/above the median and found
that SRMs generally showed consistent performance across such splits. Full results can be found in
Appendix Section H.

4



Workshop track - ICLR 2018

Feature Set MetaQNN ResNets LSTM Cuda-Convnet
(CIFAR-10) (TinyImageNet) (Penn Treebank) (CIFAR-10)

HP −2.96± 2.71 0.48± 7.24 −1.72± 1.62 0.48± 7.24
AP 15.38± 4.66 67.66± 9.08 13.76± 12.08 67.66± 9.08
TS 97.00± 0.52 82.71± 4.31 97.38± 1.49 82.71± 4.31
AP+HP 14.89± 5.12 70.25± 6.42 13.76± 12.08 70.25± 6.42
TS+HP 97.02± 0.52 82.67± 6.81 97.38± 1.49 82.67± 6.81
TS+AP 97.12± 0.37 87.36± 4.23 97.87± 1.68 87.36± 4.23
TS+AP+HP 97.15± 0.48 86.05± 8.24 97.87± 1.68 86.05± 8.24

Table 2: Ablation Study on Feature Sets: We report the R2 ∗ 100 metric for different combinations
of features. Time-series features (TS) refers to the partially observed learning curves, architecture
parameters (AP) refer to the number of layers and number of weights in a deep model, and hyperpa-
rameters (HP) refer to the optimization parameters such as learning rate. All results are with ν-SVR.
25% of learning curve used for models including TS features.

3.3.1 COMPARISON WITH EXISTING METHODS:

We now compare the neural network performance prediction ability of SRMs with three existing
learning curve prediction methods: (1) Bayesian Neural Network (BNN) (Klein et al., 2017), (2)
the learning curve extrapolation (LCE) method (Domhan et al., 2015), and (3) the last seen value
(LastSeenValue) heuristic (Li et al., 2017). When training the BNN, we not only present it with the
subset of fully observed learning curves but also all other partially observed learning curves from
the training set. While we do not present the partially observed curves to the SRMs for training, we
felt this was a fair comparison as an SRM uses the entire partially observed learning curve during
inference. Methods (2) and (3) do not incorporate prior learning curves during training. Figure
3 shows the R2 obtained by each method for predicting the final performance versus the percent
of the learning curve used for training the model. We see that in all neural network configuration
spaces and across all datasets, ν-SVR outperform the competing methods. Bayesian linear regression
(BLR) also performs comparably well to ν-SVR and better than the more complex Bayesian methods
(BNN and LCE). The LastSeenValue heuristic only becomes viable when the configurations are
near convergence, and its performance is worse than an SRM for very deep models. We also find
that the SRMs outperform the LCE method in all experiments, even after we remove a few extreme
prediction outliers produced by LCE. Finally, while BNN outperforms the LastSeenValue and LCE
methods when only a few iterations have been observed, it does worse than our proposed method. In
summary, we show that our simple SRMs outperforms existing Bayesian approaches on predicting
neural network performance on modern, very deep models in computer vision and language modeling
tasks.

Since most of our experiments perform stepwise learning rate decay; it is conceivable that the
performance gap between SRMs and both LCE and BNN results from a lack of sharp jumps in
their basis functions. For completeness, we also experimented with exponential learning rate decay
(ELRD), which the basis functions in LCE are designed for. We trained 630 random nets with ELRD,
from the 1000 MetaQNN-CIFAR10 nets. Predicting from 25% of the learning curve, the R2 is 0.95
for ν-SVR, 0.48 for LCE (with extreme outlier removal, negative without), and 0.31 for BNN. This
comparison illuminates another benefit of our method: we do not require handcrafted basis functions
to model new learning curve types.

Moreover, SRMs are faster to train and do inference in than LCE and BNN. On 1 core of a Intel
6700k CPU, an ν-SVR with 100 training points trains in 0.006 seconds, and each inference takes
0.00006 seconds. In comparison, the LCE code takes 60 seconds and BNN code takes 0.024 seconds
on the same hardware for each inference.

4 APPLYING PERFORMANCE PREDICTION FOR EARLY STOPPING

To speed up hyperparameter optimization and architecture search methods, we develop an algorithm
to determine whether to continue training a partially trained model configuration using our sequential
regression models. This approach follows the idea proposed by Domhan et al. (2015) and further
expanded on by Klein et al. (2017). Concretely, if we would like to sample N total neural network

5



Workshop track - ICLR 2018

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0
R

2
MetaQNN CNNs - CIFAR10

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0 MetaQNN CNNs - SVHN

0% 20% 40% 60% 80% 100%
0.0

0.2

0.4

0.6

0.8

1.0 Deep ResNets - CIFAR10

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Cuda Convnet - CIFAR10

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0 LSTM - Penn Treebank

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0Deep ResNets - TinyImagenet

SVR BNN BLR LastSeenValue LCE LCE-No Outlier

Figure 3: Performance Prediction Results: We plot the performance of each method versus the
percent of learning curve observed. For BNN and ν-SVR, we sample 10 different training sets,
plot the mean R2, and shade the corresponding standard error. We compare our method against
BNN (Klein et al., 2017), LCE (Domhan et al., 2015), and a “last seen value” heuristic (Li et al.,
2017). Absent results for a model indicate that it did not achieve a positive R2. The results for
Cuda-Convnet on the SVHN dataset are shown in Appendix Figure 11.

configurations, we begin by sampling and training n� N configurations to create a training set S . We
then train a model f(xf ), where in our case f is an SRM with T − 1 individual models, to predict yT .
Now, given the current best performance observed yBEST, we would like to terminate training a new
configuration xNEW at iteration τ given its partial learning curve yNEW(τ) if f(xNEWf ) = ŷT ≤ yBEST
so as to not waste computational resources exploring a suboptimal configuration.

However, in the case f has poor out-of-sample generalization, we may mistakenly terminate the
optimal configuration. If we assume that our estimate can be modeled as a Gaussian perturbation
of the true value ŷT ∼ N (yT , σ(x, τ)), then we can find the probability p(ŷT ≤ yBEST|σ(x, τ)) =
Φ(yBEST; yT , σ), where Φ(·;µ, σ) is the CDF of N (µ, σ). Note that in general the uncertainty will
depend on both the configuration and τ , the number of points observed from the learning curve.
Because frequentist models do not admit a natural estimate of uncertainty, we assume that σ is
independent of x yet still dependent on τ and estimate it via Leave One Out Cross Validation
(LOOCV). In addition, we show results using a Bayesian linear regression SRM, which has natural
uncertainty estimates, removing the need for LOOCV.

Now that we can estimate the model uncertainty, given a new configuration xNEW and an observed
learning curve yNEW(τ), we may set our termination criteria to be p(ŷT ≤ yBEST) ≥ ∆. ∆ balances
the trade-off between increased speedups and risk of prematurely terminating good configurations.
In many cases, one may want several configurations that are close to optimal, for the purpose of
ensembling. We offer two modifications in this case. First, one may relax the termination criterion
to p(ŷT ≤ yBEST − δ) ≥ ∆, which will allow configurations within δ of optimal performance to
complete training. One can alternatively set the criterion based on the nth best configuration observed,
guaranteeing that with high probability the top n configurations will be fully trained.

4.1 EARLY STOPPING FOR ARCHITECTURE SEARCH

Baker et al. (2017) train a Q-learning agent to design convolutional neural networks. In this method,
the agent samples architectures from a large, finite space by traversing a path from input layer
to termination layer. However, the MetaQNN method uses 100 GPU-days to train 2700 neural
architectures and the similar experiment by Zoph & Le (2017) utilized 10,000 GPU-days to train
12,800 models on CIFAR-10. The amount of computing resources required for these approaches

6



Workshop track - ICLR 2018

0.80 0.85 0.90 0.95 1.00
Probability Threshold (∆)

2

3

4

5

6

7

S
im

u
la

te
d
 S

p
e
e
d
u
p

MetaQNN - CIFAR10

0.80 0.85 0.90 0.95 1.00
Probability Threshold (∆)

1.5

2.0

2.5

3.0

3.5

4.0

4.5 MetaQNN - SVHN
SVR

SVR Top 10
SVR δ= 0. 01

BLR

BLR Top 10
BLR δ= 0. 01

LCE

Figure 4: Simulated Speedup in MetaQNN Search Space: We compare the three variants of the
early stopping algorithm presented in Section 4 for both a ν-SVR and BLR SRM. Each SRM is
trained using the first 100 learning curves, and each algorithm is tested on 10 independent orderings
of the model configurations. Triangles indicate an algorithm that successfully recovered the optimal
model for more than half of the 10 orderings, and X’s indicate those that did not.

makes them prohibitively expensive for large datasets (e.g., Imagenet) and larger search spaces. The
main computational expense of reinforcement learning-based architecture search methods is training
the neural network configuration to T epochs (where T is typically a large number at which the
network stabilizes to peak accuracy).

We now detail the performance of ν-SVR and BLR SRMs in speeding up architecture search. First,
we take 1,000 random models from the MetaQNN (Baker et al., 2017) search space. We simulate
the MetaQNN algorithm by taking 10 random orderings of each set and running our early stopping
algorithm. We compare against the LCE early stopping algorithm (Domhan et al., 2015) as a baseline,
which has a similar probability threshold termination criterion. Our SRM trains off of the first 100
fully observed curves, while the LCE model trains from each individual partial curve and can begin
early termination immediately. Despite this “burn in” time needed by an SRM, it is still able to
outperform the LCE model (Figure 4). In addition, fitting the LCE model to a learning curve takes
between 1-3 minutes on a modern CPU due to expensive MCMC sampling, and it is necessary to fit a
new LCE model each time a new point on the learning curve is observed. However, the difference in
computing time between the methods is not as important as the difference in prediction accuracies.

0 500 1000 1500 2000 2500 3000 3500
Iterations

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

A
cc

u
ra

cy

Epsilon = 1.0 .9 .8 .7 .6 .5 .4 .3 .2 .1

CIFAR-10 Early Stopping Performance
Average Accuracy Per Epsilon

Rolling Mean Model Accuracy

Cumulative Maximum

Cumulative Maximum (Mean top 15)

Cumulative Maximum (Mean top 5)

Figure 5: MetaQNN on CIFAR-10 with
Early Stopping: A full run of the MetaQNN
algorithm (Baker et al., 2017) on the CIFAR-
10 dataset with early stopping. We use the
ν-SVR SRM with a probability threshold
∆ = 0.99. Light blue bars indicate the aver-
age model accuracy per decrease in ε, which
represents the shift to a more greedy policy.
We also plot the cumulative best, top 5, and
top 15 performance to show that the agent
continues to find better architectures.

We furthermore simulate early stopping for ResNets
trained on CIFAR-10. We found that only the prob-
ability threshold ∆ = 0.99 resulted in recovering the
top model consistently. However, even with such a
conservative threshold, the search was sped up by a
factor of 3.4 over the baseline. While we do not have
the computational resources to run the full experiment
from Zoph & Le (2017), our method could provide
similar gains in large scale architecture searches.

It is not enough, however, to simply simulate the
speedup because architecture search algorithms typi-
cally use the observed performance in order to update
an acquisition function to inform future sampling. In
the reinforcement learning setting, the performance
is given to the agent as a reward, so we also empiri-
cally verify that substituting ŷT for yT does not cause
the MetaQNN agent to converge to a subpar policy.
Replicating the MetaQNN experiment on CIFAR-10
(see Figure 5), we find that integrating early stopping
with the Q-learning procedure does not disrupt learn-
ing and resulted in a speedup of 3.8x with ∆ = 0.99.
After training the top models to 300 epochs, we also

7



Workshop track - ICLR 2018

0 50000 100000150000200000250000300000350000

Total SGD Iterations

0.785

0.790

0.795

0.800

0.805

0.810

0.815

C
u
m

u
la

ti
v
e
 M

a
x
im

u
m

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

Cifar-10 Hyperband
Best Performance vs Total Iterations

0 100000 200000 300000 400000 500000

Total SGD Iterations

0.950

0.952

0.954

0.956

0.958

SVHN Hyperband
Best Performance vs Total Iterations

Vanilla Hyperband
SVR =1.0

SVR =0.5

BLR =1.0

BLR =0.5

Figure 6: Simulated Max Accuracy vs SGD Iterations for Hyperband: We show the trajectories
of the maximum performance so far versus total computational resources used for 40 consecutive
Hyperband runs with η = 4.0 and ∆ = 0.95. Small vertical lines indicate the point at which each
f-Hyperband run has searched over the same number of models as vanilla Hyperband. On Cifar-10,
both BLR and ν-SVR f-Hyperbands outperform vanilla Hyperband, but on SVHN only ν-SVR
f-Hyperbands do. Each triangle marks the completion of full Hyperband algorithm.

find that the resulting performance (just under 93%)
is on par with original results of Baker et al. (2017).

4.2 EARLY STOPPING
FOR HYPERPARAMETER OPTIMIZATION

Recently, Li et al. (2017) introduced Hyperband, a random search technique based on multi-armed
bandits that obtains state-of-the-art performance in hyperparameter optimization in a variety of
settings. The Hyperband algorithm trains a population of models with different hyperparameter
configurations and iteratively discards models below a certain percentile in performance among the
population until the computational budget is exhausted or satisfactory results are obtained. Among
previous work, Klein et al. (2017) have improved Hyperband by algorithmically choosing the next
models to evaluate.

4.2.1 FAST HYPERBAND

We present a Fast Hyperband (f-Hyperband) algorithm based on our early stopping scheme. During
each iteration of successive halving, Hyperband trains ni configurations to ri epochs. In f-Hyperband,
we train an SRM to predict yri and do early stopping within each iteration of successive halving. We
initialize f-Hyperband in exactly the same way as vanilla Hyperband, except once we have trained
100 models to ri iterations, we begin early stopping for all future successive halving iterations that
train to ri iterations. By doing this, we exhibit no computational overhead over Hyperband other than
training the SRMs, which we have shown to be cheap. We also introduce a parameter κ which denotes
the proportion of the ni models in each iteration that must be trained to the full ri iterations. This
is similar to setting the criterion based on the nth best model in the previous section. See Appendix
section C for the full algorithmic representation of f-Hyperband.

We empirically evaluate f-Hyperband using Cuda-Convnet trained on CIFAR-10 and SVHN datasets.
Figure 6 shows that f-Hyperband evaluates the same number of unique configurations as Hyperband
within half the compute time, while achieving the same final accuracy within standard error. Moreover,
when we run f-Hyperband for the same amount of time as Hyperband, f-Hyperband with a ν-SVR
SRM outperforms f-Hyperband. When reinitializing hyperparameter searches, one can use previously-
trained set of SRMs to achieve even larger speedups. Figure 12 in Appendix shows that one can
safely achieve up to a 4x speedup in such cases.

8



Workshop track - ICLR 2018

5 CONCLUSION

In this paper we introduce a simple, fast, and accurate model for predicting future neural network
performance using features derived from network architectures, hyperparameters, and time-series
performance data. We show that the performance of drastically different network architectures can be
jointly learned and predicted on both image classification and language models. Using our simple
algorithm, we can speedup hyperparameter search techniques with complex acquisition functions,
such as a Q-learning agent, by a factor of 3x to 6x and Hyperband—a state-of-the-art hyperparameter
search method—by a factor of 2x, without disturbing the search procedure. We outperform all
competing methods for performance prediction in terms of accuracy, train and test time, and speedups
obtained on hyperparameter search methods. We hope that the simplicity and success of our method
will allow it to be easily incorporated into current hyperparameter optimization pipelines for deep
neural networks. With the advent of large scale automated architecture search (Baker et al., 2017;
Zoph & Le, 2017), methods such as ours will be vital in exploring even larger and more complex
search spaces.

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network archi-
tectures using reinforcement learning. International Conference on Learning Representations,
2017.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. JMLR, 13
(Feb):281–305, 2012.

James Bergstra, Daniel Yamins, and David D Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. ICML (1), 28:115–123, 2013.

Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston. Smash: One-shot model architecture
search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. AdaNet:
Adaptive structural learning of artificial neural networks. International Conference on Machine
Learning, 70:874–883, 2017.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. IJCAI, 2015.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pp. 507–523. Springer, 2011.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. International Conference on Learning Representations, 17, 2017.

Alex Krizhevsky. Cuda-convnet. https://code.google.com/p/cuda-convnet/, 2012.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. International Conference on
Learning Representations, 2017.

Renato Negrinho and Geoff Gordon. Deeparchitect: Automatically designing and training deep
architectures. arXiv preprint arXiv:1704.08792, 2017.

J David Schaffer, Darrell Whitley, and Larry J Eshelman. Combinations of genetic algorithms and
neural networks: A survey of the state of the art. International Workshop on Combinations of
Genetic Algorithms and Neural Networks, pp. 1–37, 1992.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

9



Workshop track - ICLR 2018

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. NIPS, pp. 2951–2959, 2012.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep neural
networks. In International Conference on Machine Learning, pp. 2171–2180, 2015.

Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topologies.
Evolutionary Computation, 10(2):99–127, 2002.

Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach
to designing convolutional neural network architectures. arXiv preprint arXiv:1704.00764, 2017.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

Phillip Verbancsics and Josh Harguess. Generative neuroevolution for deep learning. arXiv preprint
arXiv:1312.5355, 2013.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. International
Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. arXiv preprint arXiv:1707.07012, 2017.

10



Workshop track - ICLR 2018

APPENDIX

A DATASETS AND ARCHITECTURES

Deep Resnets (TinyImageNet): We sample 500 ResNet architectures and train them on the TinyIm-
ageNet† dataset (containing 200 classes with 500 training images of 32× 32 pixels) for 140 epochs.
We vary depths, filter sizes and number of convolutional filter block outputs. Filter sizes are sampled
from {3, 5, 7} and number of filters is sampled from {2, 3, 4, ..., 22}. Each ResNet block is composed
of three convolutional layers followed by batch normalization and summation layers. We vary the
number of blocks from 2 to 18, giving us networks with depths varying between 14 and 110. Each
network is trained for 140 epochs, using Nesterov optimizer. The learning rate is set to 0.1 and
learning rate reduction and momentum are set to 0.1 and 0.9 respectively.

Deep Resnets (CIFAR-10): We sample 500 39-layer ResNet architectures from a search space
similar to Zoph & Le (2017), varying kernel width, kernel height, and number of kernels. We train
these models for 50 epochs on CIFAR-10. Each architecture consists of 39 layers: 12 conv, a 2x2
max pool, 9 conv, a 2x2 max pool, 15 conv, and softmax. Each conv layer is followed by batch
normalization and a ReLU nonlinearity. Each block of 3 conv layers are densely connected via
residual connections and also share the same kernel width, kernel height, and number of learnable
kernels. Kernel height and width are independently sampled from {1, 3, 5, 7} and number of kernels
is sampled from {6, 12, 24, 36}. Finally, we randomly sample residual connections between each
block of conv layers. Each network is trained for 50 epochs using the RMSProp optimizer, with
weight decay 10−4, initial learning rate 0.001, and a learning rate reduction to 10−5 at epoch 30 on
the CIFAR-10 dataset.

MetaQNN CNNs (CIFAR-10 and SVHN): We sample 1,000 model architectures from the search
space detailed by Baker et al. (2017), which allows for varying the numbers and orderings of
convolution, pooling, and fully connected layers. The models are between 1 and 12 layers for the
SVHN experiment and between 1 and 18 layers for the CIFAR-10 experiment. Each architecture
is trained on SVHN and CIFAR-10 datasets for 20 epochs. Table 3 displays the state space of the
MetaQNN algorithm.

Layer Type Layer Parameters Parameter Values

Convolution (C)

i ∼ Layer depth
f ∼ Receptive field size
` ∼ Stride
d ∼ # receptive fields
n ∼ Representation size

< 12
Square. ∈ {1, 3, 5}
Square. Always equal to 1
∈ {64, 128, 256, 512}
∈ {(∞, 8], (8, 4], (4, 1]}

Pooling (P)
i ∼ Layer depth
(f, `) ∼ (Receptive field size, Strides)
n ∼ Representation size

< 12
Square. ∈

{
(5, 3), (3, 2), (2, 2)

}
∈ {(∞, 8], (8, 4] and (4, 1]}

Fully Connected (FC)
i ∼ Layer depth
n ∼ # consecutive FC layers
d ∼ # neurons

< 12
< 3
∈ {512, 256, 128}

Termination State s ∼ Previous State
t ∼ Type Global Avg. Pooling/Softmax

Table 3: Experimental State Space For MetaQNN. For each layer type, we list the relevant
parameters and the values each parameter is allowed to take. The networks are sampled beginning
from the starting layer. Convolutional layers are allowed to transition to any other layer. Pooling
layers are allowed to transition to any layer other than pooling layers. Fully connected layers are only
allowed to transition to fully connected or softmax layers. A convolutional or pooling layer may only
go to a fully connected layer if the current image representation size is below 8. We use this space
to both randomly sample and simulate the behavior of a MetaQNN run as well as directly run the
MetaQNN with early stopping.

LSTM (PTB): We sample 300 LSTM models and train them on the Penn Treebank dataset for 60
epochs. Number of hidden layer inputs and lstm cells was varied from 10 to 1400 in steps of 20.
Each network was trained for 60 epochs with batch size of 50 and trained the models using stochastic

†https://tiny-imagenet.herokuapp.com/

11



Workshop track - ICLR 2018

gradient descent. Dropout ratio of 0.5 was used to prevent overfitting. Dictionary size of 400 words
was used to generate embeddings when vectorizing the data.

Cuda-Convnet (CIFAR-10 and SVHN): We train Cuda-Convnet architecture (Krizhevsky, 2012)
with varying values of initial learning rate, learning rate reduction step size, weight decay for
convolutional and fully connected layers, and scale and power of local response normalization layers.
We train models with CIFAR-10 for 60 epochs and with SVHN for 12 epochs. Table 4 show the
hyperparameter ranges for the Cuda Convnet experiments.

Experiment Hyperparameter Scale Min Max

CIFAR-10, Imagenet, SVHN Initial Learning Rate Log 5× 10−5 5
Learning Rate Reductions Integer 0 3

Conv1 L2 Penalty Log 5× 10−5 5
Conv2 L2 Penalty Log 5× 10−5 5

CIFAR-10, SVHN Conv3 L2 Penalty Log 5× 10−5 5
FC4 L2 Penalty Log 5× 10−5 5
Response Normalization Scale Log 5× 10−6 5
Response Normalization Power Linear 1× 10−2 3

Table 4: Range of hyperparameter settings used for the Hyperband experiment (Section 4.1)

B HYPERPARAMETER SELECTION IN PERFORMANCE PREDICTION MODELS

When training performance prediction models we divided the data into training and validation and
used 3-fold cross validation to select optimal hyperparameters. The models were then trained on full
training data using the best hyperparameters. For random forests we varied number of trees between
10 and 800, and varied ratio of number of features from 0.1 to 0.5. For ν-SVR, we perform a random
search over 1000 hyperparameter configurations from the space C ∼ LogUniform(10−5, 10), ν ∼
Uniform(0, 1), and γ ∼ LogUniform(10−5, 10) (when using the RBF kernel). For Bayesian linear
regression, we perform random search over the hyperparameters of the gamma prior distribution over
both noise and weights in the range [10−7, 10−5].

C F-HYPERBAND

Algorithm 1 of this text replicates Algorithm 1 from Li et al. (2017), except we initialize two
dictionaries: D to store training data and M to store performance prediction models. D[r] will
correspond to a dictionary containing all datasets with prediction target epoch r. D[r][τ ] will
correspond to the dataset for predicting yr based on the observed y(t)1−τ , and M [r][τ ] will hold the
corresponding performance prediction model. We will assume that the performance prediction model
will have a train function, and a predict function that will return the prediction and standard
deviation of the prediction. In addition to the standard Hyperband hyperparameters R and η, we
include ∆ and δ described in Section 4 and κ. During each iteration of successive halving, we train
ni configurations to ri epochs; κ denotes the fraction of the top ni models that should be run to the
full ri iterations. This is similar to setting the criterion based on the nth best model in the previous
section.

We also detail the run_then_return_validation_loss function in Algorithm 2. This
algorithm runs a set of configurations, adds training data from observed learning curves, trains the
performance prediction models when there is enough training data present, and then uses the models
to terminate poor configurations. It assumes we have a function max_k, which returns the kth max
value or −∞ if the list has less than k values.

12



Workshop track - ICLR 2018

Algorithm 1: f-Hyperband
input : R – (Max resources allocated to any configuration)

η – (default η = 3)
∆ – (Probability threshold for early termination)
δ – (Performance offset for early termination)
d – (# points required to train performance predictors)
κ – (Proportion of models to train)

initialize : D = dict()
M = dict()
smax = blogη(R)c
B = (smax + 1)R

1 for s ∈ {smax, . . . , 0} do
2 n = dBR

ηs

s+1e, r = Rη−s

3 // begin SUCCESSIVEHALVING with (n, r) inner loop
4 T = get_hyperparameter_configuration(n)
5 for i ∈ {0, . . . , s} do
6 ni = bnη−ic, ri = rηi

7 nnext = bni

η c if i! = s else 1
8 L = run_then_return_validation_loss(T, ri, nnext, D,M)
9 T = top_k(T, L, bni

η c)
10 end
11 end

Algorithm 2: run_then_return_validation_loss
input : T – hyperparameter configurations

r – resources to use for training
n – # configurations in next iteration of successive halving
D – dictionary storing training data
M – dictionary storing performance prediction models

initialize : L = []
1 for t ∈ T do
2 ` = []
3 for i ∈ {0, . . . , r − 1} do
4 `i = run_one_epoch_return_validation_loss(t)
5 `.append(`i)
6 if M [r][i].trained() then
7 ŷr, σ = M [r][i].predict(`)
8 if Φ(max_k(L, κn)− δ; ŷr, σ) ≥ ∆ then
9 L.append(ŷr)

10 break
11 end
12 end
13 else if i == r − 1 then
14 L.append(`i)
15 end
16 end
17 if length(D[r][0]) < d and length(`) == r then
18 {D[r][i].append({`[0, . . . , i], `[r]}): i ∈ {0, . . . , r − 1}}
19 if notM [r][i].trained() then
20 M [r][i].train(D[r][i])
21 end
22 end
23 end
24 return L

13



Workshop track - ICLR 2018

D F-HYPERBAND WITH SVR ACQUISITION FUNCTION

Similar to Klein et al. (2017), it is possible to use our simple models as an acquisition function for
Hyperband. As shown in Table 2, our models have reasonable performance with only AP and HP
features used, meaning we can use these models to rank hyperparameter settings before training the
configurations. In particular, for each Hyperband iteration, we randomly select 10,000 configurations,
weight them by their predicted performance and sample from this weighted distribution. In Figure 7,
we compare f-Hyperband with this ν-SVR acquisition function to f-Hyperband with the standard
uniform acquisition function and also to vanilla Hyperband. It seems that the acquisition function
could help slightly, but it does not improve performance across all experiments, and where it does
improve performance it does so only slightly.

0 50000 100000150000200000250000300000350000

Total SGD Iterations

0.785

0.790

0.795

0.800

0.805

0.810

0.815

C
u
m

u
la

ti
v
e
 M

a
x
im

u
m

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

Cifar-10 Hyperband
SVR Acquisition Function

0 100000 200000 300000 400000 500000

Total SGD Iterations

0.950

0.952

0.954

0.956

0.958

SVHN Hyperband
SVR Acquisition Function

Vanilla

SVR Acquisition =1.0

SVR Acquisition =0.5

=1.0

=0.5

Figure 7: f-Hyperband with SVR Acquisition Function: We compare f-Hyperband with an SVR
acquisition function to f-Hyperband with the uniform acquisition function (this is the standard version
described in the main text) and to vanilla Hyperband. The results shown are inconclusive; it seems
that there could be some benefit of incorporating the SVR acquisition function, but it isn’t significant
enough to make a strong statement.

E GAUSSIAN ERROR ASSUMPTION

In order to have uncertainty estimates with frequentist models, we estimated the mean and variance of
the error from leave-one-out cross validation and assumed that the error was Gaussian. In Figure 8 we
compare example error distributions between training and validation from a ν-SVR SRM. Visually
one can see that the assumption holds very well for both visual classification tasks and holds slightly
less well for the language modeling task. In Figure 9, we show the mean log likelihood of held
out prediction errors being drawn from a Gaussian parameterized by the mean and variance of the
error on the training set is very close to the mean log likelihood of samples drawn from the same
distribution, which shows that our Gaussian error assumption is relatively strong.

F ANALYZING IMPORTANCE OF FEATURES IN THE PREDICTION MODEL

We used a linear ν-SVR model to compare the weights of all features, which are normalized
before training. Figure 10 shows the weight trends for time-series features, and Tables 5, 6, and 7
compare weights of some architecture features and hyperparameter features to statistics of time-series
features for the MetaQNN (CIFAR-10), LSTMs (Penn Treebank), and Deep Resnets (TinyImagenet)
experiments, respectively. We found the following main insights across datasets:

• The time-series (TS) features are on average have higher weights than HP and AP features (which
is confirmed by our ablation studies in Table 2 as well). The original validation accuracies (yt) have
higher weights on average than the first-order differences (yt′) and second-order differences (yt′′).

• In general, later epochs in yt have higher weights. In other words, the latest performance of the
model available for prediction is much more important for performance prediction than initial

14



Workshop track - ICLR 2018

M
e
ta

Q
N

N
 C

if
a
r-

1
0

10% Observed 25% Observed 50% Observed 75% Observed

LS
T
M

P
e
n
n
 T

re
e
b
a
n
k

Prediction Error

D
e
e
p
 R

e
sn

e
ts

T
in

y
 I
m

a
g
e
n
e
t

Prediction Error Prediction Error Prediction Error

Figure 8: Example Error Distributions: Here we compare example error distributions between
training and validation from a ν-SVR SRM. From left to right we see plots for models trained
with increasing amounts of the learning curve. The blue line shows the Gaussian probability
density function estimated from the training set with LOOCV. The orange histogram shows the error
distribution of the held out validation set.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Percent Learning Curve Observed

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Lo
g
 L

ik
e
lih

o
o
d

MetaQNN Cifar-10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Percent Learning Curve Observed

6

5

4

3

2

1 LSTM Penn Treebank

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Percent Learning Curve Observed

2

1

0

1

2

3

4 Deep Resnets Tiny Imagenet

Baseline Log Likelihood

Log Likelihood

Figure 9: Error Log Likelihood: In orange we show the mean log likelihood of prediction errors
measured from validation sets being drawn from the Gaussian distribution parameterized by the mean
and variance of the training error, again measured with LOOCV. For a baseline, we show the mean
log likelihood for 1,000,000 samples drawn from the same Gaussian. We calculate these metrics over
10 data splits and report the mean and standard error.

performance, when the model has just started training. However, the weights for earlier performance
metrics are non-zero, indicating there are high order autoregressive functions being learned.

• Early values of (yt′) also have high weights, which indicates learning quickly in the beginning of
training is a predictor of better final performance in our datasets.

15



Workshop track - ICLR 2018

• Among AP and HP features, the total number of parameters and depth have non-zero weight for
the CNNs, and they are assigned weights comparable or higher than late epoch accuracies (yt).
However, they have much lower weight in the LSTM experiment. The number of filters in each
convolutional layer also has a high positive weight for CNNs. In general, architectural features are
much more important for CNNs as compared to LSTMs. Hyperparameters like initial learning rate
and step size were generally not as important as the architectural features, which is corroborated by
the ablation study in Table 1 in the main text.

0% 10%20%30%40%50%60%70%80%90%
0.000

0.005

0.010

0.015

0.020

0.025

R
a
w

 P
e
rf

o
rm

a
n
ce

 W
e
ig

h
ts

MetaQNN Cifar-10

0% 10%20%30%40%50%60%70%80%90%
1

0

1

2

3

4

5

6 LSTM Penn Treebank

0% 10%20%30%40%50%60%70%80%90%
0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010 Deep Resnets Tiny Imagenet

0% 10%20%30%40%50%60%70%80%90%
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Fi
rs

t 
O

rd
e
r 

D
if
fs

 W
e
ig

h
ts

0% 10%20%30%40%50%60%70%80%90%
1

0

1

2

3

4

5

6

7

8

0% 10%20%30%40%50%60%70%80%90%
0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0% 10%20%30%40%50%60%70%80%90%

Percent Learning Curve Observed

0.005

0.000

0.005

0.010

0.015

S
e
co

n
d
 O

rd
e
r 

D
if
fs

 W
e
ig

h
ts

0% 10%20%30%40%50%60%70%80%90%

Percent Learning Curve Observed

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0% 10%20%30%40%50%60%70%80%90%

Percent Learning Curve Observed

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004
10%

20%

30%

40%

50%

60%

70%

80%

90%

Figure 10: Time Series Weights: We show the trends for weights for time-series features, along
with first- and second-order differences.

16



Workshop track - ICLR 2018

Percent Mean Std Dev Mean 1st Mean 2nd Depth # Params Learning
Observed Perf Perf Order Diff Order Diff Rate
10 0.022989 0.013845 0.017069 0.009021 0.014638 0.005541 0.005355
20 0.016971 0.010882 0.010117 0.003494 0.008153 0.003408 0.005335
30 0.013733 0.007396 0.006921 0.002550 0.004199 0.002098 0.003310
40 0.011125 0.007023 0.005031 0.001903 0.002847 0.003041 0.002968
50 0.009409 0.005836 0.004594 0.001234 0.000578 0.000223 0.001107
60 0.008099 0.004768 0.003370 0.000923 0.001306 -0.000906 0.000287
70 0.007016 0.004246 0.002573 0.000627 0.000458 -0.000777 -0.000324
80 0.006190 0.003417 0.002159 0.000494 0.000454 0.000355 0.000583
90 0.005553 0.003141 0.001792 0.000371 0.000382 0.000020 0.000259

Table 5: Summary of weights for a linear kernel ν-SVR SRM trained on configurations from
MetaQNN (CIFAR-10).

Percent Mean Std Dev Mean 1st Mean 2nd Depth # Params Learning
Observed Perf Perf Order Diff Order Diff Rate Step
10 1.129178 -0.952712 2.562584 0.822748 -2.608709 0.599052 -1.940918
20 0.388479 -0.168798 0.828343 0.287950 -1.148619 0.390338 -0.667870
30 0.202656 -0.254058 0.282163 0.132048 -1.134044 -0.033193 -0.301467
40 0.149271 -0.205868 0.183959 0.093839 -0.280646 0.050759 -0.057207
50 0.129166 -0.160091 0.127230 0.078865 -0.219122 -0.044931 -0.119674
60 0.116550 -0.160410 0.122557 0.085949 -0.128821 0.040022 -0.097907
70 0.112243 -0.144278 0.104209 0.078584 -0.082918 -0.077808 -0.057439
80 0.102105 -0.127418 0.078328 0.068932 -0.062506 0.054454 -0.006713
90 0.106653 -0.067369 0.141887 0.074515 0.079686 -0.169534 0.158086

Table 6: Summary of weights for a linear kernel ν-SVR SRM trained on configurations from
LSTMs (Penn Treebank).

Percent Mean Std Dev Mean 1st Mean 2nd Depth # Params Kernel
Observed Perf Perf Order Diff Order Diff Size
10 0.008486 0.008576 0.001861 0.001502 0.005985 0.010987 0.000267
20 0.004723 0.004851 0.001092 0.000996 0.001709 0.005239 0.002484
30 0.003229 0.002848 0.000789 0.000619 0.004533 0.002553 -0.001138
40 0.002394 0.002985 0.000660 0.000557 0.003443 0.001092 -0.000302
50 0.001754 0.001993 0.000461 0.000396 0.001318 0.001081 0.000072
60 0.001456 0.001946 0.000370 0.000309 0.000968 0.000559 0.000036
70 0.001428 0.002678 0.000499 0.000344 0.001161 -0.000590 -0.000971
80 0.001168 0.001895 0.000352 0.000256 0.000455 0.000131 -0.001092
90 0.001015 0.001640 0.000285 0.000215 0.000208 -0.000091 -0.000958

Table 7: Summary of weights for a linear kernel ν-SVR SRM trained on configurations from
Deep Resnets (TinyImagenet).

17



Workshop track - ICLR 2018

G ADDITIONAL PLOTS

Figure 11 shows the performance prediction results for the Cuda Convnet SVHN experiment. The
instability of BLR with low percentage of learning curve observed may be what caused suboptimal
performance of BLR f-Hyperband shown in Figure 6. Figure 12 shows the relative speedup of
f-Hyperband over vanilla Hyperband for each consecutive iteration of Hyperband. However, Figure
13, which shows results for f-Hyperband with pretrained ν-SVR SRMs, shows that more aggressive
settings of f-Hyperband result in suboptimal performance. We see that we can safely get a 3-4x
speedup over vanilla Hyperband with pretrained SRMs.

0% 20% 40% 60% 80% 100%
Percent Learning Curve Observed

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Cuda Convnet - SVHN

SVR

BNN

BLR

LastSeenValue

LCE

LCE-No Outlier

Figure 11: Cuda Convnet SVHN Performance Prediction Results: We plot the performance of
each method versus the percent of learning curve observed for the Cuda Convnet SVHN experiment.
For BNN, ν-SVR, and BLR we sample 10 different training sets, plot the mean R2, and shade the cor-
responding standard error. We compare our method against BNN (Klein et al., 2017), LCE (Domhan
et al., 2015), and a “last seen value” heuristic (Li et al., 2017). Absent results for a model indicate
that it did not achieve a positive R2.

0 10 20 30 40
Hyperband Iteration

2

4

6

8

S
im

ul
at

ed
 S

pe
ed

up

Cifar­10 Hyperband
Speedup vs Hyperband Iteration

0 10 20 30 40
Hyperband Iteration

2

4

6

8

SVHN Hyperband
Speedup vs Hyperband Iteration

Top 100% Top 50% Top 10% Top 1 Top 1  =0.01

Figure 12: Simulated Speedup on Hyperband vs Hyperband Iteration: We show the speedup
using the f-Hyperband algorithm over Hyperband on 40 consecutive runs with η = 4.0 and ∆ = 0.95.
The major jump in speedup comes at iteration 10, where we have trained more than 100 models to
the full R iterations.

18



Workshop track - ICLR 2018

0 50000 100000150000200000250000300000350000

Total SGD Iterations

0.77

0.78

0.79

0.80

0.81
C

u
m

u
la

ti
v
e
 M

a
x
im

u
m

V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

Cifar-10 Hyperband
Best Performance vs Total Iterations

0 50000 100000150000200000250000300000350000

Total SGD Iterations

0.925

0.930

0.935

0.940

0.945

0.950

0.955

0.960

SVHN Hyperband
Best Performance vs Total Iterations

Vanilla
=1.0

=0.5

=0.1

Top 1
Top 1 δ= 0. 01

Figure 13: Simulated f-Hyperband with Pretrained SRMs: Each f-Hyperband model is initialized
with a pretrained SRM, which simulates the case where one reinitializes an experiment. Every triangle
indicates a full run of Hyperband, and small vertical lines indicate the point at which the f-Hyperband
runs have completed the same number of full Hyperband runs as shown for vanilla Hyperband. Top
1 indicates only training the best model to ri iterations, and δ represents an offset off the threshold
used for early stopping (See Section 4).More aggressive f-Hyperband settings lead to suboptimal
performance, indicating that there is a limit to how much speedup f-Hyperband can achieve.

H SRM ROBUSTNESS TO OUT OF DISTRIBUTION CONFIGURATIONS

Table 8 shows that SRMs are relatively robust when training below or above the median of a specific
architecture or training hyperparameter and testing on the other split.

Cuda Convnet (CIFAR-10) Learning Rate WeightDecay LRN Scale LRN Power
Test < Median 93.06 ± 0.18 95.93 ± 0.21 97.27 ± 0.0068 96.96 ± 0.13
Test > Median 81.97 ± 1.26 96.19 ± 0.13 93.37 ± 0.23 95.05 ± 0.19

LSTMs (Penn Treebank) Number of Nodes Depth
Test < Median 98.08 ± 0.26 98.58 ± 0.04
Test > Median 22.83 ± 5.55 96.96 ± 0.91

Deep Resnets (TinyImagenet) Depth Number of Kernels Kernel Size
Test < Median 89.49 ± 1.84 85.12 ± 2.24 81.83 ± 0.59
Test > Median 85.92 ± 1.78 62.37 ± 0.82 89.61 ± 0.31

MetaQNN (CIFAR-10) Depth
Test < Median 96.69 ± 0.16
Test > Median 79.31 ± 5.66

Table 8: Accuracy when splitting test and train set based on median values for hyperparameters for
different datasets.

19


	Introduction
	Related Work
	Neural Network Performance Prediction
	Modeling Learning Curves
	Datasets and Training Procedures
	Prediction Performance
	Comparison with Existing Methods:


	Applying Performance Prediction For Early Stopping
	Early Stopping for Architecture Search
	Early Stopping for Hyperparameter Optimization
	Fast Hyperband


	Conclusion
	Datasets and architectures
	Hyperparameter selection in Performance Prediction Models
	f-Hyperband
	f-Hyperband with SVR Acquisition Function
	Gaussian Error Assumption
	Analyzing Importance of Features in the Prediction Model
	Additional Plots
	SRM Robustness to Out Of Distribution Configurations

