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ABSTRACT

Deep neural networks are vulnerable to adversarial examples, which can mislead
classifiers by adding imperceptible perturbations. An intriguing property of ad-
versarial examples is their good transferability, making black-box attacks feasible
in real-world applications. Due to the threat of adversarial attacks, many meth-
ods have been proposed to improve the robustness, and several state-of-the-art
defenses are shown to be robust against transferable adversarial examples. In this
paper, we identify the attention shift phenomenon, which may hinder the transfer-
ability of adversarial examples to the defense models. It indicates that the defenses
rely on different discriminative regions to make predictions compared with nor-
mally trained models. Therefore, we propose an attention-invariant attack method
to generate more transferable adversarial examples. Extensive experiments on the
ImageNet dataset validate the effectiveness of the proposed method. Our best at-
tack fools eight state-of-the-art defenses at an 82% success rate on average based
only on the transferability, demonstrating the insecurity of the defense techniques.

1 INTRODUCTION

Recent progress in machine learning and deep neural networks has led to substantial improvements
in various pattern recognition tasks such as image understanding (Simonyan & Zisserman, 2015; He
et al., 2016a), speech recognition (Graves et al., 2013), and machine translation (Sutskever et al.,
2014). However, deep neural networks are highly vulnerable to adversarial examples (Biggio et al.,
2013; Szegedy et al., 2014; Goodfellow et al., 2015). They are maliciously generated by adding
small perturbations to legitimate examples, but make deep neural networks produce unreasonable
predictions. The existence of adversarial examples, even in the physical world (Kurakin et al., 2016;
Eykholt et al., 2018; Athalye et al., 2018b), has raised concerns in security-sensitive applications,
e.g., self-driving cars, healthcare and finance.

Attacking deep neural networks has drawn an increasing attention since the generated adversarial
examples can serve as a surrogate to evaluate the robustness of different models (Carlini & Wagner,
2017) and help to improve the robustness (Goodfellow et al., 2015; Madry et al., 2018). Several
methods have been proposed to generate adversarial examples with the knowledge of the gradient
information of a given model, such as fast gradient sign method (Goodfellow et al., 2015), basic
iterative method (Kurakin et al., 2016), and Carlini & Wagner (2017)’s method, which are known as
white-box attacks. Moreover, it is shown that adversarial examples have cross-model transferability
(Liu et al., 2017), i.e., the adversarial examples crafted for one model can fool a different model with
a high probability. The transferability of adversarial examples enables practical black-box attacks to
real-world applications and induces serious security issues.

The threat of adversarial examples has motivated extensive research on building robust models or
techniques to defend against adversarial attacks. These include training with adversarial examples
(Goodfellow et al., 2015; Kurakin et al., 2017; Tramèr et al., 2018; Madry et al., 2018), image de-
noising/transformation (Liao et al., 2018; Xie et al., 2018a; Guo et al., 2018), leveraging generative
models to move adversarial examples towards data manifold (Song et al., 2018; Samangouei et al.,
2018), and theoretically-certified defenses (Raghunathan et al., 2018; Wong & Kolter, 2018). Al-
though the non-certified defenses have demonstrated robustness against common attacks, they do so
by causing obfuscated gradients, which can be easily circumvented by new attacks (Athalye et al.,
2018a). However, some of the defenses (Tramèr et al., 2018; Liao et al., 2018; Xie et al., 2018a;
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Figure 1: Demonstration of the attention shift phenomenon of the defense models compared with
normally trained models. We adopt class activation mapping (Zhou et al., 2016) to visualize the
attentive regions of three normally trained models—Inception v3 (Szegedy et al., 2016), Inception
ResNet v2 (Szegedy et al., 2017), ResNet 152 (He et al., 2016a) and four defense models (Tramèr
et al., 2018; Liao et al., 2018; Xie et al., 2018a; Guo et al., 2018). These defense models focus their
attention on slightly different regions compared with normally trained models, which may affect the
transferability of adversarial examples.

Guo et al., 2018) claim to be resistant to transferable adversarial examples, making black-box attacks
difficult to evade these defenses.

In this paper, we identify attention shift, that the defenses make predictions based on slightly dif-
ferent discriminative regions compared with normally trained models, as a phenomenon which may
hinder the transferability of adversarial examples to the defense models. For example, we show the
attention maps of several normally trained models and defense models in Fig. 1, to represent the dis-
criminative regions for their predictions. It is apparent that the normally trained models have similar
attention maps while the defenses induce shifting attention maps. The attention shift of the defenses
is caused by either training under different data distributions (Tramèr et al., 2018) or transforming
the inputs before classification (Liao et al., 2018; Xie et al., 2018a; Guo et al., 2018). Therefore, the
transferability of adversarial examples is largely reduced to the defenses since the structure infor-
mation hidden in adversarial perturbations may be easily overlooked if a model focuses its attention
on different regions.

To mitigate the effect of attention shift and evade the defenses by transferable adversarial examples,
we propose an attention-invariant attack method. In particular, we generate an adversarial example
for an ensemble of examples composed of an legitimate one and its shifted versions. Therefore the
resultant adversarial example is less sensitive to the attentive region of the white-box model being
attacked and may have a bigger chance to fool another black-box model with a defense mechanism
based on attention shift. We further show that this method can be simply implemented by convolv-
ing the gradient with a pre-defined kernel under a mild assumption. The proposed method can be
integrated into any gradient-based attack methods such as fast gradient sign method and basic itera-
tive method. Extensive experiments demonstrate that the proposed attention-invariant attack method
helps to improve the success rates of black-box attacks against the defense models by a large margin.
Our best attack reaches an average success rate of 82% to evade eight state-of-the-art defenses based
only on the transferability, thus demonstrating the insecurity of the current defenses.

2 RELATED WORK

Adversarial Examples. Deep neural networks are shown to be vulnerable to adversarial examples
first in the visual domain (Szegedy et al., 2014). Then several methods are proposed to generate
adversarial examples for the purpose of high success rates and minimal size of perturbations (Good-
fellow et al., 2015; Kurakin et al., 2016; Carlini & Wagner, 2017). They also exist in the physical
world (Kurakin et al., 2016; Eykholt et al., 2018; Athalye et al., 2018b). Although adversarial ex-
amples are recently crafted for many domains, we focus on image classification tasks in this paper.

Black-box Attacks. Black-box adversaries have no access to the architecture or parameters of the
target model, which are under a more challenging threat model to perform attacks. The transferabil-
ity of adversarial examples provides an opportunity to attack a black-box model (Liu et al., 2017).
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Several methods (Dong et al., 2018; Xie et al., 2018b) have been proposed to improve the trans-
ferability, which enable powerful black-box attacks. Besides the transfer-based black-box attacks,
there is another line of works that perform attacks based on adaptive queries. For example, Papernot
et al. (2017) use queries to distill the knowledge of the target model and train a surrogate model.
It therefore turns the black-box attacks to the white-box attacks. Recent methods use queries to
estimate the gradient or the decision boundary of the black-box model (??) to generate adversarial
examples. However, these methods usually require tremendous number of queries, which may be
impractical in real-world applications. In this paper, we resort to transferable adversarial examples
for black-box attacks.

Defend against Adversarial Attacks. A large variety of methods have been proposed to increase
the robustness of deep learning models. Besides directly making the models produce correct predic-
tions for adversarial examples, some methods attempt to detect them instead (?Metzen et al., 2017;
?). However most of the non-certified defenses demonstrate the robustness by causing obfuscated
gradients, which are successfully circumvented by new developed attacks (Athalye et al., 2018a).
Although these defenses are not robust in the white-box setting, some of them (Tramèr et al., 2018;
Liao et al., 2018; Xie et al., 2018a; Guo et al., 2018) empirically show the resistance against trans-
ferable adversarial examples in the black-box setting. In this paper, we focus on generating more
transferable adversarial examples against these defenses.

3 METHODOLOGY

In this section, we provide the detailed description of our algorithm. Let xreal denote a real example
and y denote the corresponding ground-truth label. Given a classifier f(x) : X → Y that outputs
a label as the prediction for an input, we want to generate an adversarial example xadv which is
visually indistinguishable from xreal but fools the classifier, i.e., f(xadv) 6= y.1 In most cases,
the Lp norm of the adversarial perturbation is required to be smaller than a threshold ε as ||xadv −
xreal||p ≤ ε. In this paper, we use the L∞ norm as the measurement. For adversarial example
generation, the objective is to maximize the loss function J(xadv, y) of the classifier, where J is
often the cross-entropy loss. So the constrained optimization problem can be written as

argmax
xadv

J(xadv, y), s.t. ‖xadv − xreal‖∞ ≤ ε. (1)

To solve this optimization problem, the gradient of the loss function with respect to the input needs
to be calculated, termed as white-box attacks. However in some cases, we cannot get access to the
gradient of the classifier, where we need to perform attacks in the black-box manner. We resort to
transferable adversarial examples which are generated for a different white-box classifier but have
high transferability for black-box attacks.

3.1 GRADIENT-BASED ADVERSARIAL ATTACK METHODS

Several methods have been proposed to solve the optimization problem in Eq. (1). We give a brief
introduction of them in this section.

Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) generates an adversarial example
xadv by linearizing the loss function in the input space and performing one-step update as

xadv = xreal + ε · sign(∇xJ(x
real, y)), (2)

where ∇xJ is the gradient of the loss function with respect to x. sign(·) is the sign function to
make the perturbation meet the L∞ norm bound. FGSM can generate more transferable adversarial
examples but is usually not effective enough for attacking white-box models (Kurakin et al., 2017).

Basic Iterative Method (BIM) (Kurakin et al., 2016) extends FGSM by iteratively applying gradi-
ent updates multiple times with a small step size α, which can be expressed as

xadv0 = xreal, xadvt+1 = xadvt + α · sign(∇xJ(x
adv
t , y)). (3)

To restrict the generated adversarial examples within the ε-ball of xreal, we can clip xadvt after each
update or set α = ε/T with T being the number of iterations. It has been shown that BIM induces

1This corresponds to untargeted attack. The method in this paper can be simply extended to targeted attack.
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much more powerful white-box attacks than FGSM at the cost of worse transferability (Kurakin
et al., 2017; Dong et al., 2018).

Momentum Iterative Fast Gradient Sign Method (MI-FGSM) (Dong et al., 2018) proposes to
improve the transferability of adversarial examples by integrating a momentum term into the iterative
attack method. The update procedure is

gt+1 = µ · gt +
∇xJ(x

adv
t , y)

‖∇xJ(xadvt , y)‖1
, xadvt+1 = xadvt + α · sign(gt+1), (4)

where gt gathers the gradient information up to the t-th iteration with a decay factor µ.

Diverse Inputs Iterative Fast Gradient Sign Method (Xie et al., 2018b) applies random transfor-
mations to the inputs and feeds the transformed images into the classifier for gradient calculation.
The image transformation includes random resizing and padding with a given probability. This
method can be combined with the momentum-based method to further improve the transferability.

Carlini & Wagner (2017)’s method is a powerful optimization-based method. It uses an auxiliary
variable vadv as xadv = 1

2 (tanh(v
adv) + 1), and optimizes vadv by solving

argmin
vadv

‖1
2
(tanh(vadv) + 1)− xreal‖p − c · J(

1

2
(tanh(vadv) + 1), y), (5)

where the loss function J could be different from the cross-entropy loss. This method aims to
find adversarial examples with minimal size of perturbations, to measure the robustness of different
models. It also lacks the efficacy for black-box attacks like BIM.

3.2 ATTENTION-INVARIANT ATTACK METHOD

Although many attack methods (Dong et al., 2018; Xie et al., 2018b) can generate adversarial exam-
ples with very high transferability across normally trained models, they are less effective to attack
defense models in the black-box manner. Some of the defenses (Tramèr et al., 2018; Liao et al.,
2018; Xie et al., 2018a; Guo et al., 2018) are shown to be quite robust against black-box attacks. So
we want to answer that: Are these defenses really free from transferable adversarial examples?

We identify the attention shift phenomenon which may inhibit the transferability of adversarial ex-
amples to the defenses. The attention shift refers to that the discriminative regions used by the de-
fenses to identify object categories are slightly different from those used by normally trained models,
as shown in Fig. 1. The adversarial examples generated for one model can be hardly transferred to
another model with attention shift since that the structure information in adversarial perturbations
may be easily destroyed if the model focuses its attention on different regions.

To reduce the effect of attention shift, we propose an attention-invariant attack method. In partic-
ular, rather than optimizing the objective function at a single point as Eq. (1), the proposed method
uses a set of shifted images to optimize an adversarial example as

argmax
xadv

∑
i,j

wijJ(Tij(x
adv), y), s.t. ‖xadv − xreal‖∞ ≤ ε, (6)

where Tij(x) is a transformation operation that shifts image x by i and j pixels along the two-
dimensions respectively, i.e., each pixel (a, b) of the transformed image is Tij(x)a,b = xa−i,b−j ,
and wij is the weight for the loss J(Tij(xadv), y). We set i, j ∈ {−k, ..., 0, ..., k} with k being the
maximal number of pixels to shift. With this method, the generated adversarial perturbations are
less sensitive to the attentive regions of the white-box model, which may be transferred to another
model with a higher success rate. However, we need to calculate the gradients for (2k+1)2 images,
which introduces much more computations. Sampling a small number of shifted images for gradient
calculation is a feasible way (Athalye et al., 2018b). But we show that we can perform attacks by
calculating the gradient for only one image under a mild assumption.

Convolutional neural networks are known to have the shift-invariant property (LeCun & Bengio,
1995), that an object in the input can be recognized in spite of its position. Pooling layers contribute
resilience to slight transformation of the input. Therefore, we make an assumption that the shifted
image Tij(x) is almost the same as x as inputs to the models, as well as their gradients

∇xJ(x, y)
∣∣
x=Tij(x̂)

≈ ∇xJ(x, y)
∣∣
x=x̂

. (7)
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Based on this assumption, we calculate the gradient of the loss defined in Eq. (6) at a point x̂ as

∇x

(∑
i,j

wijJ(Tij(x), y)
)∣∣

x=x̂
=
∑
i,j

wij∇xJ(Tij(x), y)
∣∣
x=x̂

=
∑
i,j

wij
(
∇Tij(x)J(Tij(x), y) ·

∂Tij(x)

∂x

)∣∣∣
x=x̂

=
∑
i,j

wijT−i−j
(
∇xJ(x, y)

∣∣
x=Tij(x̂)

)
≈
∑
i,j

wijT−i−j(∇xJ(x, y)
∣∣
x=x̂

).

(8)

Given Eq. (8), we do not need to calculate the gradients for (2k + 1)2 images. Instead, we only
need to get the gradient for the unchanged image x̂ and then average all the shifted gradients. This
procedure is equivalent to convolving the gradient with a kernel composed of all the weights wij as∑

i,j

wijT−i−j(∇xJ(x, y)
∣∣
x=x̂

)⇔W ∗ ∇xJ(x, y)
∣∣
x=x̂

, (9)

where W is the kernel matrix of size (2k + 1) × (2k + 1) with Wi,j = w−i−j . In this paper,
we generate the kernel W from a two-dimensional Gaussian function because: 1) the images with
bigger shifts have relatively lower weights to make the adversarial perturbation fool the model at the
unshifted image effectively; 2) by using a Gaussian function, this procedure is known as Gaussian
blur, which is widely used in image processing.

Note that we only illustrate how to calculate the gradient of the loss function defined in Eq. (6),
but do not specify the update algorithm for generating adversarial examples. This indicates that our
method can be integrated into any gradient-based attack methods including FGSM, BIM, MI-FGSM,
etc. Specifically, in each step we calculate the gradient ∇xJ(x

adv
t , y) at the current solution xadvt ,

then convolve the gradient with the pre-defined kernel W , and finally get the new solution xadvt+1
following the update rule in different attack methods (In FGSM, there is only one step of update).

4 EXPERIMENTS

In this section, we present the experimental results to demonstrate the effectiveness of the proposed
method on improving the transferability of adversarial examples to the defense models.

4.1 EXPERIMENTAL SETTINGS

We use an ImageNet-compatible dataset2 comprised of 1000 images to conduct experiments. This
dataset was used in the NIPS 2017 adversarial competition. We include eight defense models which
are shown to be robust agsinst black-box attacks on the ImageNet dataset. These are

• Inc-v3ens3, Inc-v3ens4, IncRes-v2ens (Tramèr et al., 2018);
• high-level representation guided denoiser (HGD, rank-1 submission in the NIPS 2017 de-

fense competition) (Liao et al., 2018);
• input transformation through random resizing and padding (R&P, rank-2 submission in the

NIPS 2017 defense competition) (Xie et al., 2018a);
• input transformation through JPEG compression or total variance minimization (TVM)

(Guo et al., 2018);
• rank-3 submission3 in the NIPS 2017 defense competition (NIPS-r3).

To attack these defenses based on the transferability, we also include four normally trained models—
Inception v3 (Inc-v3) (Szegedy et al., 2016), Inception v4 (Inc-v4), Inception ResNet v2 (IncRes-
v2) (Szegedy et al., 2017), and ResNet v2-152 (Res-v2-152) (He et al., 2016b), as the white-box
models to generate adversarial examples.

2https://github.com/tensorflow/cleverhans/tree/master/examples/nips17_
adversarial_competition/dataset

3https://github.com/anlthms/nips-2017/tree/master/mmd
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Figure 2: The adversarial examples generated for Inc-v3 using FGSM and A-FGSM.

Table 1: The success rates (%) of black-box attacks against eight defenses. The adversarial examples
are crafted for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using FGSM and A-FGSM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

Inc-v3 FGSM 15.6 14.7 7.0 2.1 6.5 19.9 18.8 9.8
A-FGSM 28.2 28.9 22.3 18.4 19.8 25.5 30.7 24.5

Inc-v4 FGSM 16.2 16.1 9.0 2.6 7.9 21.8 19.9 11.5
A-FGSM 28.2 28.3 21.4 18.1 21.6 27.9 31.8 24.6

IncRes-v2 FGSM 18.0 17.2 10.2 3.9 9.9 24.7 23.4 13.3
A-FGSM 32.8 33.6 28.1 25.4 28.1 32.4 38.5 31.4

Res-v2-152 FGSM 20.2 17.7 9.9 3.6 8.6 24.0 22.0 12.5
A-FGSM 34.6 34.5 27.8 24.4 27.4 32.7 38.1 30.1

In our experiments, we integrate our method into the fast gradient sign method (FGSM) (Goodfellow
et al., 2015), momentum iterative fast gradient sign method (MI-FGSM) (Dong et al., 2018) and
diverse input iterative fast gradient sign method with momentum (DIM) (Xie et al., 2018b). We do
not include the basic iterative method and Carlini & Wagner (2017)’s method since that they are
not good at generating transferable adversarial examples (Dong et al., 2018). We denote the attacks
combined with our attention-invariant method as A-FGSM, A-MI-FGSM and A-DIM respectively.

For the settings of hyper-parameters, we set the maximum perturbation to be ε = 16 among all
experiments with pixel value in [0, 255]. For the iterative attack methods, we set the number of
iteration as 10 and the step size as α = 1.6. For MI-FGSM and A-MI-FGSM, we adopt the default
dacay factor µ = 1.0. For DIM and A-DIM, the transformation probability is set to 0.7. Please note
that the settings for each attack method and its attention-invariant version are the same, because our
method is not concerned with the specific attack precedure.

4.2 SINGLE-MODEL ATTACKS

We first perform adversarial attacks for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using
FGSM, MI-FGSM, DIM and their extensions by combining with the proposed attention-invariant
attack method as A-FGSM, A-MI-FGSM and A-DIM. We then use the generated adversarial exam-
ples to attack the eight defense models we consider based only on the transferability. We report the
success rates of black-box attacks in Table 1, Table 2 and Table 3, where the success rates are the
misclassification rates of the corresponding defense models with adversarial images as inputs. In
the attention-invariant based attacks, we set the size of the kernel matrix W as 15 × 15 across all
experiments, and we will study the effect of kernel size in Section 4.4.

From the tables, we observe that the success rates against the defenses are improved by a large mar-
gin when using the proposed method regardless of the attack algorithms or the white-box models
being attacked. In general, the attention-invariant based attacks consistently outperform the baseline
attacks by 5% ∼ 30%. In particular, when using A-DIM, the combination of our method and DIM,
to attack the IncRes-v2 model, the resultant adversarial examples have about 60% success rates
against the defenses (as shown in Table 3). It demonstrates the vulnerability of the current defenses
against black-box attacks. The results also validate the effectiveness of the proposed method. Al-
though we only compare the results of our attack method with baseline methods against the defense
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Table 2: The success rates (%) of black-box attacks against eight defenses. The adversarial examples
are crafted for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using MI-FGSM and A-MI-
FGSM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

Inc-v3 MI-FGSM 20.5 17.4 9.5 6.9 8.7 20.3 19.4 12.9
A-MI-FGSM 35.8 35.1 25.8 25.7 23.9 28.2 34.9 26.7

Inc-v4 MI-FGSM 22.1 20.1 12.1 9.6 12.1 26.0 24.8 15.6
A-MI-FGSM 36.7 39.2 28.7 27.8 28.0 31.6 38.4 29.5

IncRes-v2 MI-FGSM 31.3 27.2 19.7 19.6 18.6 31.6 34.4 22.7
A-MI-FGSM 50.7 51.7 49.3 45.1 45.2 45.9 55.4 46.2

Res-v2-152 MI-FGSM 25.1 23.7 13.3 15.1 14.6 31.2 24.5 18.0
A-MI-FGSM 39.9 37.7 32.8 31.8 31.1 38.3 41.2 34.4

Table 3: The success rates (%) of black-box attacks against eight defenses. The adversarial examples
are crafted for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using DIM and A-DIM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

Inc-v3 DIM 24.2 24.3 13.0 9.7 13.3 30.7 24.4 18.0
A-DIM 46.9 47.1 37.4 38.3 36.8 37.0 44.2 41.4

Inc-v4 DIM 28.3 27.5 15.6 14.6 17.2 38.6 29.1 14.1
A-DIM 48.6 47.5 38.7 40.3 39.3 43.5 45.6 41.9

IncRes-v2 DIM 41.2 40.0 27.9 32.4 30.2 47.2 41.7 37.6
A-DIM 61.3 60.1 59.5 58.7 61.4 55.7 66.2 61.5

Res-v2-152 DIM 40.5 36.0 24.1 32.6 26.4 42.4 36.8 34.4
A-DIM 56.1 55.5 49.5 51.8 50.4 50.8 55.7 52.9

models, our attacks remain the success rates of baseline attacks in the white-box setting and the
black-box setting against normally trained models, which will be shown in the Appendix.

We show several adversarial images generated for the Inc-v3 model by FGSM and A-FGSM in
Fig. 2. It can be seen that by using A-FGSM, in which the gradients are convolved by a kernel
W before applying to the raw images, the adversarial perturbations are much smoother than those
generated by FGSM. The smooth effect also exists in other attention-invariant based attacks.

4.3 ENSEMBLE-BASED ATTACKS

In this section, we further present the results when adversarial examples are generated for an en-
semble of models. Liu et al. (2017) have shown that attacking multiple models at the same time
can improve the transferability of the generated adversarial examples. It is due to that if an example
remains adversarial for multiple models, it is more likely to transfer to another black-box model.

We adopt the ensemble method proposed by Dong et al. (2018), which fuses the logit activations of
different models. We attack the ensemble of Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 with equal
ensemble weights using FGSM, A-FGSM, MI-FGSM, A-FGSM, DIM and A-DIM respectively. We
also set the kernel size in the attention-invariant based attacks as 15× 15.

In Table 4, we show the results of black-box attacks against the eight defenses. The proposed method
also improves the success rates across all experiments over the baseline attacks. It should by noted
that the adversarial examples generated by A-DIM can fool the state-of-the-art defenses at an 82%
success rate on average based on the transferability. And the adversarial examples are generated for
normally trained models unaware of the defense strategies. The results in the paper demonstrate that
the current defenses are far from real security, and cannot be deployed in real-world applications.

4.4 THE EFFECT OF KERNEL SIZE

The size of the kernel W plays a key role for improving the success rates of black-box attacks. If the
kernel size equals to 1× 1, the attention-invariant based attacks degenerate to their vanilla versions.
Therefore, we conduct an ablation study to examine the effect of different kernel sizes.

We attack the Inc-v3 model by A-FGSM, A-MI-FGSM and A-DIM with the kernel length ranging
from 1 to 21 with a granularity 2. In Fig. 3, we show the success rates against five defense models—
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Table 4: The success rates (%) of black-box attacks against eight defenses. The adversarial examples
are crafted for the ensemble of Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 using FGSM, A-FGSM,
MI-FGSM, A-MI-FGSM, DIM and A-DIM.

Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens HGD R&P JPEG TVM NIPS-r3

FGSM 27.5 23.7 13.4 4.9 13.8 38.1 30.0 19.8
A-FGSM 39.1 38.8 31.6 29.9 31.2 43.3 39.8 33.9
MI-FGSM 50.5 48.3 32.8 38.6 32.8 67.7 50.1 43.9

A-MI-FGSM 76.4 74.4 69.6 73.3 68.3 77.2 72.1 71.4
DIM 66.0 63.3 45.9 57.7 51.7 82.5 64.1 63.7

A-DIM 84.8 82.7 78.0 82.6 81.4 83.4 79.8 83.1
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(c) A-DIM

Figure 3: The success rates (%) of the adversarial examples generated for Inc-v3 agasinst IncRes-
v2ens, HGD, R&P, TVM and NIPS-r3, with the kernel length ranging from 1 to 21.

Kernel Length=1 Kernel Length=3 Kernel Length=5 Kernel Length=7 Kernel Length=9 Kernel Length=11 Kernel Length=13 Kernel Length=15

Figure 4: The adversarial examples generated for Inc-v3 by A-FGSM with different kernel sizes.

IncRes-v2ens, HGD, R&P, TVM and NIPS-r3. The success rate continues increasing at first, and
turns to remain stable after the kernel size exceeds 15× 15.

We also show the adversarial images generated for the Inc-v3 model by A-FGSM with different
kernel sizes in Fig. 4. Due to the smooth effect given by the kernel, we can see that the adversarial
perturbations are smoother when using a bigger kernel.

5 CONCLUSION

In this paper, we propose an attention-invariant attack method to mitigate the attention shift phe-
nomenon and generate more transferable adversarial examples against the defense models. Our
method optimizes an adversarial image by using a set of shifted images. Based on an assumption,
our method is simply implemented by convolving the gradient with a pre-defined kernel, and can be
integrated into any gradient-based attack methods. We conduct experiments to validate the effective-
ness of the proposed method. Our best attack A-DIM, the combination of the proposed attention-
invariant method and diverse input iterative method (Xie et al., 2018b), can fool eight state-of-the-art
defenses at an 82% success rate on average, where the adversarial examples are generated against
four normally trained models. The results identify the vulnerability of the current defenses, which
raises security issues for the development of more robust deep learning models.
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APPENDIX

We further show the results of the proposed attention-invariant attack method for white-box attacks
and black-box attacks against normally trained models. We adopt the same settings for attacks.
We also generate adversarial examples for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively
using FGSM, A-FGSM, MI-FGSM, A-MI-FGSM, DIM and A-DIM. For the attention-invariant
based attacks, we set the kernel size as 7 × 7 since that the normally trained models have similar
attentions. We then use these adversarial examples to attack six normally trained models—Inc-v3,
Inc-v4, IncRes-v2, Res-v2-152, VGG-16 and Res-v1-152. The results are shown in Table 5, Table 6
and Table 7. The attention-invariant based attacks get better results in most cases than the baseline
attacks.

Table 5: The success rates (%) of adversarial attacks against six normally trained models—Inc-v3,
Inc-v4, IncRes-v2, Res-v2-152, VGG-16 and Res-v1-152. The adversarial examples are crafted for
Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using FGSM and A-FGSM. * indicates the
white-box attacks.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2-152 VGG-16 Res-v1-152

Inc-v3 FGSM 79.6* 35.9 30.6 30.2 49.7 36.3
A-FGSM 75.4* 37.3 32.1 34.1 62.0 44.9

Inc-v4 FGSM 43.1 72.6* 32.5 34.3 50.7 37.7
A-FGSM 45.3 68.1* 33.7 35.4 63.3 46.2

IncRes-v2 FGSM 44.3 36.1 64.3* 31.9 49.4 38.6
A-FGSM 49.7 41.5 63.7* 40.1 64.2 46.7

Res-v2-152 FGSM 40.1 34.0 30.3 81.3* 50.5 40.8
A-FGSM 46.4 39.3 33.4 78.9* 64.7 50.4

Table 6: The success rates (%) of adversarial attacks against six normally trained models—Inc-v3,
Inc-v4, IncRes-v2, Res-v2-152, VGG-16 and Res-v1-152. The adversarial examples are crafted
for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using MI-FGSM and A-MI-FGSM. *
indicates the white-box attacks.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2-152 VGG-16 Res-v1-152

Inc-v3 MI-FGSM 97.8* 47.1 46.4 38.7 50.3 38.1
A-MI-FGSM 97.9* 52.4 47.9 41.1 63.4 48.1

Inc-v4 MI-FGSM 67.1 98.8* 54.3 47.0 58.5 43.2
A-MI-FGSM 68.6 98.8* 55.3 47.7 69.0 51.3

IncRes-v2 MI-FGSM 74.8 64.8 100.0* 54.5 59.3 50.8
A-MI-FGSM 76.1 69.5 100.0* 59.6 74.4 61.5

Res-v2-152 MI-FGSM 54.2 48.1 44.3 97.5* 52.6 48.7
A-MI-FGSM 55.6 50.9 45.1 97.4* 65.6 59.6

Table 7: The success rates (%) of adversarial attacks against six normally trained models—Inc-v3,
Inc-v4, IncRes-v2, Res-v2-152, VGG-16 and Res-v1-152. The adversarial examples are crafted
for Inc-v3, Inc-v4, IncRes-v2 and Res-v2-152 respectively using DIM and A-DIM. * indicates the
white-box attacks.

Attack Inc-v3 Inc-v4 IncRes-v2 Res-v2-152 VGG-16 Res-v1-152

Inc-v3 DIM 98.3* 73.8 67.8 58.4 62.5 49.3
A-DIM 98.5* 75.2 69.2 59.0 74.3 59.1

Inc-v4 DIM 81.8 98.2* 74.2 65.1 65.5 51.4
A-DIM 80.7 98.7* 73.2 62.7 77.4 59.8

IncRes-v2 DIM 86.1 83.5 99.1* 73.5 67.9 62.7
A-DIM 86.4 85.5 98.8* 76.3 79.3 72.2

Res-v2-152 DIM 77.0 77.8 73.5 97.4* 67.4 67.8
A-DIM 77.0 73.9 73.2 97.2* 78.4 77.8
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