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ABSTRACT

Reasoning over text and Knowledge Bases (KBs) is a major challenge for Artificial
Intelligence, with applications in machine reading, dialogue, and question answer-
ing. Transducing text to logical forms which can be operated on is a brittle and
error-prone process. Operating directly on text by jointly learning representations
and transformations thereof by means of neural architectures that lack the ability
to learn and exploit general rules can be very data-inefficient and not generalise
correctly. These issues are addressed by Neural Theorem Provers (NTPs) (Rock-
täschel & Riedel, 2017), neuro-symbolic systems based on a continuous relaxation
of Prolog’s backward chaining algorithm, where symbolic unification between
atoms is replaced by a differentiable operator computing the similarity between
their embedding representations. In this paper, we first propose Neighbourhood-
approximated Neural Theorem Provers (NaNTPs) consisting of two extensions to
NTPs, namely a) a method for drastically reducing the previously prohibitive time
and space complexity during inference and learning, and b) an attention mecha-
nism for improving the rule learning process, deeming them usable on real-world
datasets. Then, we propose a novel approach for jointly reasoning over KB facts
and textual mentions, by jointly embedding them in a shared embedding space. The
proposed method is able to extract rules and provide explanations—involving both
textual patterns and KB relations—from large KBs and text corpora. We show that
NaNTPs perform on par with NTPs at a fraction of a cost, and can achieve compet-
itive link prediction results on challenging large-scale datasets, including WN18,
WN18RR, and FB15k-237 (with and without textual mentions) while being able
to provide explanations for each prediction and extract interpretable rules.

1 INTRODUCTION

The main focus in Artificial Intelligence is building systems that exhibit intelligent be-
haviour (Levesque, 2014). In particular, Natural Language Understanding (NLU) and Machine
Reading (MR) aim at building models and systems with the ability to read text, extract meaningful
knowledge, and actively reason with it (Etzioni et al., 2006; Hermann et al., 2015; Weston et al.,
2015; McCallum et al., 2017a). This ability enables both the synthesis of new knowledge and the
possibility to verify and update a given assertion. For example, given the following statement:

The River Thames is in the United Kingdom.

and the following supporting text:

London is the capital and most populous city of England and the United Kingdom. Standing
on the River Thames in the south east of the island of Great Britain, London has been a major
settlement for two millennia.

a reader can verify that the statement is consistent since London is standing on the River Thames
and London is in the United Kingdom. Automated reasoning applied on text requires Natural
Language Processing (NLP) tools capable of extracting meaningful knowledge from free-form text
and compiling it into KBs (Niklaus et al., 2018). However, the compiled KBs tend to be incomplete,
ambiguous, and noisy, impairing the application of standard deductive reasoners (Huang et al., 2005).
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Figure 1: Overall architecture of NaNTPs: the two main contributions consist in a faster inference
mechanism (represented by the K-NN OR component, discussed in Section 3) and two dedicated
encoders, one for KB facts and rules, and another for text (discussed in Section 4).

A rich and broad literature in MR has approached this problem within a variety of frameworks,
including Natural Logic (MacCartney & Manning, 2007; Angeli & Manning, 2014) and Semantic
Parsing (Dong & Lapata, 2016; Bos, 2008), and by framing the problem as Natural Language
Inference—also referred to as Recognising Textual Entailment (Fyodorov et al., 2000; Condoravdi
et al., 2003; Dagan et al., 2005; Bowman et al., 2015; Rocktäschel et al., 2015) —and Question
Answering (Hermann et al., 2015). However, such methods suffer from several limitations. For
instance, they rely on significant amounts of annotated data to suitably approximate the implicit
distribution from which training and test data are drawn, and thus are often unable to generalise
correctly in the absence of a sufficient quantity of training data or appropriate priors on model
paramaters (e.g. via regularisation). Orthogonally, even if accurate, such methods also cannot provide
explanations for a given prediction (Evans & Grefenstette, 2018; Marcus, 2018).

A promising strategy for overcoming these issues consists of combining neural models and symbolic
reasoning, given their complementary strengths and weaknesses (Rocktäschel & Riedel, 2017; Evans
& Grefenstette, 2018). While symbolic models can generalise well from a small number of examples
when the problem domain fits the inductive biases presented by the symbolic system at hand, they are
brittle and prone to failure when the observations are noisy and ambiguous, or when the domain’s
properties are not known or formalisable, all of which being the case for natural language (Raedt
& Kersting, 2008). On the other hand, neural models are robust to noise and ambiguity but prone
to overfitting (Marcus, 2018) and not easily interpretable (Lipton, 2018), making them incapable of
providing explanations or incorporating background knowledge.

Recent work in neuro-symbolic systems (Garcez et al., 2015) has made progress in learning neural
representations that allow for comparison of symbols not on the basis of identity, but of their semantics
(as learned in continuous representations of said symbols), while maintaining interpretability and
generalisation, thereby inheriting the best of both worlds. Among such systems, NTPs (Rocktäschel &
Riedel, 2017) are end-to-end differentiable deductive reasoners based on Prolog’s backward chaining
algorithm, where unification between atoms is replaced by a differentiable operator computing their
similarity between their embedding representations. NTPs are especially interesting since they allow
learning interpretable rules from data, by back-propagating a KB reconstruction error to the rule
representations. Furthermore, NTPs are explainable: by looking at the proof tree associated with the
highest proof score, it is possible to know which rules are activated during the reasoning process—this
enables providing explanations for a given reasoning outcome, performing error analysis, and driving
modelling choices. So far, due to their computational complexity, NTPs have only been successfully
applied to learning tasks involving very small KBs. However, most human knowledge is still stored
in large KBs and natural language corpora, which are difficult to reason over automatically.

With this paper we aim at addressing these issues, by proposing:a) An efficient method for significantly
reducing the time and space complexity required by NTPs by reducing the number of candidate
proof scores and by using an attention mechanism for reducing the number of parameters required
for learning new rules (Section 3), and b) An extension of NTPs towards text, by jointly embedding
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predicates and textual surface patterns in a shared embedding space by means of an efficient reading
component (Section 4).

2 NEURAL THEOREM PROVING

Mimicking backward chaining, NTPs recursively build a neural network enumerating all the possible
proof states for proving a goal over the KB. NTPs rely on three modules for building this neural
network; the Unification module, which compares subsymbolic representations of symbols, and
mutually recursive OR and AND modules, which jointly enumerate all the proof paths, before the
final aggregation choses the single, highest scoring state. We briefly overview these modules and the
training procedure in the following.

Unification Module. In backward chaining, unification is the operator that matches two atoms like
locatedIn(LONDON, UK) and situatedIn(X, Y). Discrete unification checks for equality
between the elements of the atom (e.g. locatedIn 6= situatedIn) and binds variables to
symbols via substitution (e.g. {X/LONDON, Y/UK}). Unification in NTPs matches two atoms by
comparing their embedding representations via a differentiable similarity function, which enables
matching different symbols with similar semantics, such as locatedIn and situatedIn.

The unifyθ(H, G, S) operator creates a neural network module that does exactly that. Given
two atoms H = [locatedIn, LONDON, UK] and G = [situatedIn, X, Y], and a proof state
S = (Sψ, Sρ) consisting of a set of substitutions Sψ and a proof score Sρ, the unify module
compares the embedding representations θlocatedIn: and θsituatedIn: with a Radial Basis Function
(RBF) kernel k, updates the variable binding substitution set S′ψ = Sψ ∪ {X/LONDON, Y/UK}, and
calculates the new proof score S′ρ = min (Sρ, k (θlocatedIn:,θsituatedIn:)). The resulting proof
state S′ = (S′ψ, S

′
ρ) is further expanded with the or and and modules.

OR Module. The or module unifies the goal with all the facts and rules in a KB. Concretely, for
each rule H :– B in KB K, orK

θ (G, d, S) unifies the goal G with the rule head H, and invokes the and
module to prove atoms in the body B of the rule H, keeping track of the maximum proof depth d. For
example, given a goal G = [situatedIn, Q, UK], a rule H :– B with H = [locatedIn, X, Y]
and B = [[locatedIn, X, Z], [locatedIn, Z, Y]] , the model would unify the goal G with the
head H of the rule, and instantiate and modules, to prove sub-goals in the body G of the rule. Note
that each fact F can be represented as a rule F :– [] with no body atoms.

AND Module. The and module recursively tries to prove a list of sub-goals for a rule body.
Concretely, given the first sub-goal G and the following sub-goals G, the andK

θ (G : G, d, S) module
will substitute variables in G with constants according to the substitutions in S, and invoke the or
module on G. The resulting state be used to prove the atoms in G, by recursively invoking the and
module. For example, when invoked on the rule body B mentioned above, the and module will first
substitute variables with constants for the sub-goal [locatedIn, X, Z] and invoke the or module,
whose resulting state will be the basis of the next invocation of and module on [locatedIn, Z, Y].

Proof Aggregation. After building a neural network that enumerates all the proof paths of the goal
G on a KB K, NTPs select the proof path with the maximum proof score:

ntpK
θ (G, d) = argmax

S ∈ orK
θ (G,d,(∅,1))

S 6=FAIL

Sρ

where d is a predefined maximum proof depth. The initial proof state is set to (∅, 1), an empty
substitution set, and a proof score of 1.

Training In NTPs, predicate and constant embeddings are learned by optimising a cross-entropy
loss on the final proof score, by iteratively masking facts in the KB and trying to prove them using
available facts and rules (Rocktäschel & Riedel, 2017). Negative examples are sampled from the
positive ones by corrupting the entities (Nickel et al., 2016).

Other than learning embeddings of predicates and constants, NTPs can also learn interpretable
rules from data. Rocktäschel & Riedel (2017) show that it is possible to learn rules from data by
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specifying rule templates H :– B, with H = [θp:, X, Y] and B = [[θq:, X, Z], [θr:, Z, Y]], where
θp:,θq:,θr: ∈ Rk are free parameters. Note that θp:,θq:,θr: can be learned from data, and decoded
by searching the closest representation of known predicates.

3 NEURAL THEOREM PROVING AT SCALE

Scaling up Inference. The model in Section 2 is capable of deductive reasoning, and the proof
paths with the highest score can provide human-readable explanations for a given prediction. However,
a significant computational bottleneck lies in the or operator.

For instance, assume a KB K, composed of |K| facts and no rules. The number of facts in a real-world
KB can be quite large—for instance, Freebase contains 637 million facts (Dong et al., 2014), while
the Google Knowledge Graph contains 18 billion facts (Nickel et al., 2016). Given a query G, in the
absence of rules, NTP reduces to solving the following optimisation problem:

ntpK
θ (G, 1) = argmax

F∈K, S 6=FAIL
Sρ with S = unifyθ(F, G, (∅, 1)) (1)

that is, it finds the fact F ∈ K in the KB K that, unified with the goal G, yields the maximum
unification score. Recall from Section 2 that the unification score between a fact F = [Fp, Fs, Fo]
and a goal G = [Gp, Gs, Go] is given by the similarity of their representations in a Euclidean space:

unifyθ(G, F, (∅, 1)) = min
{
1, k(θGp:,θFp:), k(θGs:,θFs:), k(θGo:,θFo:)

}
(2)

where k denotes a RBF kernel, and θGp:,θGs:,θGo: ∈ Rk (resp. θFp:,θFs:,θFo: ∈ Rk) denote the
embedding representation of the predicate, first and second argument of the goal G (resp. fact F).

Given a goal G, the NTPs proposed by (Rocktäschel & Riedel, 2017) will compute the unification
score in Eq. 2 between G and every fact F ∈ K in the KB. This is problematic, since computing
the similarity between the representations of the goal G and every fact F ∈ K is computationally
prohibitive—the number of comparisons is O(|K|n), where n is the number of goals and sub-goals
in the proving process. However, ntpK

θ (G, d) only returns the single largest proof score, implying
that every lower scoring proof is discarded during both inference and training.

One of the core contributions in this paper is to exactly compute ntpK
θ (G,m) by only considering a

subset of proof scores that contains the largest one. Specifically, we make the following observation:
given a goal G, if we know the most similar fact F ∈ K in embedding space as measured by unifyθ ,
the number of comparisons needed for computing the final proof score ntpK

θ (G, 1) is reduced from
O(|K|) to O(1). The same reasoning can be extended to rules as well.

We argue that, given G, we can restrict the search of the closest fact F ∈ K to a Euclidean local
neighbourhood of size n of G, NK(G) ⊆ K such that |NK(G)| = n, defined as follows: 1

NK(G) = k-argmin
F∈K

‖θF: − θG:‖2 (3)

Then, the matching fact F will be very likely to be contained across the n most similar facts:

ntpK
θ (G, 1) ≈ argmax

S=unifyθ(F,G,(∅,1))
F∈NK(G), S 6=FAIL

Sρ (4)

where the size of the neighbourhood is much lower than the size of the whole KB, i.e., |NK(G)| � |K|.
The same idea can be extended from facts to rules, by selecting only the rules H :– B ∈ K such that
their head H is closer to the goal. However, finding the exact neighbourhood of a point in a Euclidean
space is very costly, due to the curse of dimensionality (Indyk & Motwani, 1998). Experiments
showed that methods for identifying the exact neighbourhood can rarely outperform brute-force linear
scan methods when dimensionality is high (Weber et al., 1998).

A practical solution consists in Approximate Nearest Neighbour Search (ANNS) algorithms, which
focus on finding an approximate solution to the k-nearest neighbour search problem outlined in Eq. 3

1We approximate the neighbourhood with respect to the minimum of component distances with the neigh-
bourhood with respect to a distance of concatenated representations.
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on high dimensional data. Several families of ANNS algorithms exist, such as Locally-Sensitive
Hashing (Andoni et al., 2015), Product Quantisation (Jégou et al., 2011; Johnson et al., 2017), and
Proximity Graphs (Malkov et al., 2014).

In this work, we use Hierarchical Navigable Small World (HNSW) (Malkov & Yashunin, 2016), a
graph-based incremental ANNS structure which can offer significantly better logarithmic complexity
scaling during neighbourhood search than other approaches (Li et al., 2016). Specifically, given a
subset of the KB P ⊆ K—for instance, containing all facts in K—we construct a HNSW graph for all
elements in P , which has a O(|P| log |P|) time complexity. Then, given a goal G, the HNSW graph
is used for identifying its neighbourhood NP(G) within P , which has a O(log |P|) time complexity.
In our implementation, we construct the HNSW graph-based indexing structure when instantiating
the model and, during training, we update the index every b batches.

Specifically, in our implementation, we generate a partitioning P ∈ 2K of the KB K, where each
element in P groups all facts and rules in K sharing the same signature. Then, we redefine the or
operator as follows:

orK
θ (G, d, S) = [S′ | S′ ∈ andK

θ (B, d,unifyθ(H, G, S)), H :– B ∈ NP(G),P ∈ P] (5)

where, instead of trying to unify a goal or sub-goal G with all facts and rule heads in the KB, we
constrain the unification with ANNS to only facts and rule heads in its local neighbourhood NK(G).

Improving Rule Learning via Attention. Although NTPs can be used for learning interpretable
rules from data, the solution proposed by Rocktäschel & Riedel (2017) can be quite data-inefficient,
as the number of parameters associated to a rule can be quite large. For instance, assume the rule
H :– B, with H = [θp:, X, Y] and B = [[θq:, X, Z], [θr:, Z, Y]] discussed in Section 2, where
θp:,θq:,θr: ∈ Rk. Such a rule introduces 3k parameters in the model, and it may be computationally
inefficient to learn each of the embedding vectors.

We propose using an attention mechanism (Bahdanau et al., 2015) for attending over known predicates
for defining the predicate embeddings θp:,θq:,θr:. Let R be the set of known predicates, and let
R ∈ R|R|×k be a matrix representing the embeddings for the predicates inR. We define the θp: as:

θp: = softmax(ap:)
ᵀR (6)

where ap: ∈ R|R| is a set of trainable attention weights associated with the predicate p. This sensibly
improves the parameter efficiency of the model in cases where the number of known predicates is
low, i.e. |R| � k, by introducing c|R| parameters for each rule rather than ck, where c is the number
of trainable predicate embeddings in the rule.

4 JOINTLY REASONING ON KNOWLEDGE BASES AND TEXT

In this section, we show we can use NaNTPs for jointly reasoning over KBs and natural language
corpora. In the following, we assume that our KB K is composed by facts, rules, and mentions. A fact
is composed by a predicate symbol and a sequence of arguments, e.g. [locationOf, LONDON, UK].
On the other hand, a mention is a textual pattern between two co-occurring entities in the
KB (Gabrilovich et al., 2013; Toutanova et al., 2015), such as “LONDON is located in the UK”.

We represent mentions jointly with facts and rules in K by considering each textual sur-
face pattern linking two entities as a new predicate, and embedding it in a d-dimensional
space by means of an end-to-end differentiable reading component. For instance, the sen-
tence “United Kingdom borders with Ireland” is translated into the following mention in K:
[[[arg1],borders,with,[arg2]], UK, IRELAND] by first identifying sentences or paragraphs
containing KB entities, and then considering the textual surface pattern connecting such entities as an
extra relation type.

While predicates in R are encoded by a look-up operation to a predicate embedding matrix R ∈
R|R|×k, textual surface patterns are encoded by an encodeθ module. The signature of encodeθ is
V∗ → Rk, where V is the vocabulary of words and symbols occurring in textual surface patterns: it
takes a sequence of tokens, and maps it to a k-dimensional embedding space.

More formally, given a textual surface pattern t ∈ V∗—for instance, t =
[[arg1],borders,with,[arg2]]—the encodeθ module first encodes each token w
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in t by means of a token embedding matrix V ∈ R|V|×k′ , resulting in a pattern matrix Wt ∈ R|t|×k′ .
Then, the module produces a textual surface pattern embedding vector θt: ∈ Rk from Wt by means
of an end-to-end differentiable encoder. In this paper, we use a simple encodeθ module that
computes the average of the token embedding vectors composing a textual surface pattern:

encodeθ(t ∈ V∗) =
1

|t|
∑
w∈t

Vw· ∈ Rk

Albeit the encoder encode can be implemented by using other differentiable architectures, such
as Recurrent Neural Networks (RNNs), we opted for a simple averaging model, for the sake of
simplicity and efficiency, knowing that such a model performs on par or better than more complex
models, thanks to a lower tendency to overfit to training data (White et al., 2015; Arora et al., 2017).

5 RELATED WORK

A significant corpus of literature aims at addressing the limitations of neural architectures in terms
of generalisation and reasoning abilities. A line of research consists of enriching neural network
architectures with a differentiable external memory (Sukhbaatar et al., 2015; Graves et al., 2014;
Joulin & Mikolov, 2015; Grefenstette et al., 2015; Kaiser & Sutskever, 2016; Miller et al., 2016;
Graves et al., 2016). The underlying idea is that a neural network can learn to represent and manipulate
complex data structures, thus disentangling the algorithmic part of the process from the representation
of the inputs.

Another way of improving the generalisation and extrapolation abilities of neural networks consists
of designing architectures capable of learning general, reusable programs—atomic primitives that
can be reused across a variety of environments and tasks (Reed & de Freitas, 2016; Neelakantan
et al., 2016; Parisotto et al., 2016). By doing so, it becomes also possible to train such models from
enriched supervision signals, such as from program traces rather than simple input-output pairs.

Yet another line of work is differentiable interpreters—program interpreters where declarative or
procedural knowledge, e.g., a sorting program, is compiled into a neural network architecture (Bošnjak
et al., 2017; Gaunt et al., 2016; Rocktäschel & Riedel, 2017; Evans & Grefenstette, 2018)—NTPs
fall in this category. This family of models allows imposing strong inductive biases on the models by
partially defining the program structure used for constructing the network, e.g., in terms of instruction
sets or rules. A major problem with differentiable interpreters, however, is their computational
complexity, that so far deemed them unusable except for smaller-scale learning problems.

This work is also related to Rae et al. (2016), which use an approximate nearest neighbour data
structure for sparsifying read operations in memory networks. Furthermore, Riedel et al. (2013)
pioneered the idea of jointly embedding KB facts and textual mentions in a shared embedding space,
by considering mentions as additional relations in a KB factorisation setting. This idea was later
extended to more elaborate mention encoders by McCallum et al. (2017b). Our work is also related
to path encoding models (Das et al., 2016) and random walk approaches (Lao et al., 2011; Gardner
et al., 2014), which both lack rule induction mechanisms. Lastly, our work is related to Yang et al.
(2017) which is a scalable rule induction approach for knowledge base completion, but has not been
applied to textual surface patterns.

6 EXPERIMENTS

6.1 DATASETS AND EVALUATION PROTOCOLS

We report the results of experiments on benchmark datasets — Countries (Bouchard et al., 2015),
Nations, UMLS, and Kinship (Kemp et al., 2006) — following the same evaluation protocols as
Rocktäschel & Riedel (2017). Furthermore, since our scalability improvements described in Section 3
allow us to experiment on significantly larger datasets, we also report results on the WN18 (Bordes
et al., 2013), WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova et al., 2015) datasets—
whose characteristics are outlined in Table 5. For evaluating our natural language reading component
proposed in Section 4, we use FB15k-237.E (Toutanova et al., 2015)—the FB15k-237 dataset
augmented with a set of textual mentions for all entity pairs derived from ClueWeb12 with Freebase
entity mention annotations Gabrilovich et al. (2013)—and a set of manually generated mentions
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Table 1: Link prediction results for WN18, WN18RR, and FB15k-237.E. Results for DistMult,
ComplEx, ConvE, NeuralLP, and MINERVA are from Dettmers et al. (2018); Das et al. (2017). For
the sake of comparison, we also trained ComplEx and DistMult with embedding size d = 100 and
for 100 epochs, as NaNTP.

WN18 WN18RR FB15k-237.E
Hits Hits Hits

MRR @10 @3 @1 MRR @10 @3 @1 MRR @10 @3 @1

DistMult (Yang et al., 2015) 0.822 0.936 0.914 0.728 0.430 0.490 0.440 0.390 0.241 0.419 0.263 0.155
ComplEx (Trouillon et al., 2016) 0.941 0.947 0.936 0.936 0.440 0.510 0.460 0.410 0.247 0.428 0.275 0.158
ConvE (Dettmers et al., 2018) 0.943 0.956 0.946 0.935 0.430 0.520 0.440 0.400 0.325 0.501 0.356 0.237
NeuralLP (Das et al., 2017) — — — — 0.463 0.657 0.468 0.376 0.227 0.348 0.248 0.166
MINERVA (Das et al., 2017) — — — — 0.448 0.513 0.456 0.413 0.293 0.456 0.329 0.217

DistMult (emb. size d = 100) 0.782 0.931 0.910 0.658 0.411 0.463 0.423 0.382 0.214 0.402 0.240 0.127
ComplEx (emb. size d = 100) 0.923 0.948 0.941 0.904 0.420 0.469 0.431 0.395 0.206 0.373 0.222 0.126

NaNTP 0.539 0.832 0.703 0.349 0.137 0.250 0.148 0.083 0.197 0.330 0.209 0.131
NaNTP+Text 0.198 0.335 0.210 0.131
NaNTP+Text+Attention 0.769 0.937 0.884 0.649 0.398 0.432 0.402 0.377 0.176 0.310 0.185 0.110

Table 2: Explanations, in terms of rules and supporting facts, for the queries in the validation set of
WN18 and WN18RR provided by NaNTPs by looking at the proof paths yielding the largest proof
scores.

Query Score Sρ Proofs / Explanations

W
N

18

part_of(CONGO.N.03, AFRICA.N.01)
0.995 part_of(X, Y) :– has_part(Y, X)

has_part(AFRICA.N.01, CONGO.N.03)

0.787 part_of(X, Y) :– instance_hyponym(Y, X)
instance_hyponym(AFRICAN_COUNTRY.N.01, CONGO.N.03)

hyponym(EXTINGUISH.V.04, DECOUPLE.V.03) 0.987 hyponym(X, Y) :– hypernym(Y, X)
hypernym(DECOUPLE.V.03, EXTINGUISH.V.04)

0.920 hypernym(SNUFF_OUT.V.01, EXTINGUISH.V.04)

part_of(PITUITARY.N.01, DIENCEPHALON.N.01) 0.995 has_part(DIENCEPHALON.N.01, PITUITARY.N.01)

has_part(TEXAS.N.01, ODESSA.N.02) 0.961 has_part(X, Y) :– part_of(Y, X)
part_of(ODESSA.N.02, TEXAS.N.01)

hyponym(SKELETAL_MUSCLE, ARTICULAR_MUSCLE) 0.987 hypernym(ARTICULAR_MUSCLE, SKELETAL_MUSCLE)

deriv_related_form(REWRITE, REWRITING) 0.809 deriv_related_form(X, Y) :– hypernym(Y, X)
hypernym(REVISE, REWRITE)

W
N

18
R

R also_see(TRUE.A.01, FAITHFUL.A.01) 0.962 also_see(X, Y) :– also_see(Y, X)
also_see(FAITHFUL.A.01, TRUE.A.01)

0.590 also_see(CONSTANT.A.02, FAITHFUL.A.01)

also_see(GOOD.A.03, VIRTUOUS.A.01) 0.962 also_see(VIRTUOUS.A.01, GOOD.A.03)
0.702 also_see(RIGHTEOUS.A.01, VIRTUOUS.A.01)

instance_hypernym(CHAPLIN, FILM_MAKER) 0.812 instance_hypernym(CHAPLIN, COMEDIAN)

for Countries. Results are reported in terms of Area Under the Precision-Recall Curve (Davis &
Goadrich, 2006) (AUC-PR), Mean Reciprocal Rank (MRR), and HITS@m (Bordes et al., 2013). All
datasets are described in detail in Appendix B.

Baselines. We compare NaNTPs with NTPs on benchmark datasets, and with DistMult (Yang et al.,
2015) and ComplEx (Trouillon et al., 2016), two state-of-the-art Neural Link Predictors used for
identifying missing facts in potentially very large KBs, on WordNet and FreeBase. For computing
likelihoods of facts, DistMult and ComplEx embed each entity and relation type in a d-dimensional
embedding space and use a differentiable scoring function based on the embeddings corresponding
to the entity and relation of a fact. Embedding representations and scoring function parameters are
learned jointly by minimising a KB reconstruction error.

Note that, while the complexity of scoring a triple in DistMult and ComplEx is O(1)—they only
need the embeddings of the symbols within a fact for computing the ranking score—instead in our
model, it is O(log |K|). For such a reason, instead of performing a full hyperparameter search, we
fix some of the hyperparameters—i.e.we fix the embedding size d = 100, and train them for 100
epochs—and report results using these hyperparameters for NaNTPs.

For the sake of comparison, we also train ComplEx and DistMult while fixing d = 100 and the
number of training epochs to 100, similarly to NaNTPs.
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Figure 2: Given the Countries dataset, we replaced a varying number of training triples with mentions
(see Appendix B.1.2 for details) and integrated the mentions using two different strategies: by
encoding the mentions using the encoder introduced in Section 4 (Facts and Mentions) and by simply
adding them to the KB (Facts).Experiments were conducted with the attention mechanism proposed
in Section 3 (right) and the standard rule-learning procedure (left), each with 10 different random
seeds. We can see that, on each of the datasets, using the encoder yields consistently better AUC-PR
values than simply adding the mentions to the KB.
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Figure 3: Run-time and memory performance of NaNTP in comparison with NTP. Run-time speedup
calculated as the ratio of examples per second of NaNTP and NTP. Memory efficiency calculated as
a ratio of the memory use of NTP and NaNTP. Dashed line denotes equal performance – above it
(green) NaNTP performs better, below it (red) performs worse.

6.2 SCALABILITY EXPERIMENTS

Evaluation Performance Comparison In order to verify the correctness of our approximation, we
compare the evaluation performance of NaNTP and NTP on the set of benchmark datasets presented
in Rocktäschel & Riedel (2017). Results, presented in Table 3 show that NaNTP achieves on par or
better results than NTP, consistently through benchmark datasets. Please note that results reported in
Rocktäschel & Riedel (2017) were calculated with an incorrect ranking function, which caused them
to report artificially better ranking results.2

Run-Time Performance comparison To assess the run-time gains of NaNTP, we compare it to
NTP with respect to time and memory performance during training. In our experiments, we vary
the n of the ANNS approximation to assess the computational demands by increasing n. First, we
compare the average number of examples (queries) per second by running 10 training batches with a
maximum batch to fit the memory of NVIDIA GeForce GTX 1080 Ti, for all models. Second, we

2In their implementation, if several facts have the same score, the ranking function assigns them the same
(best) rank, which artificially inflated their results.
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Table 3: Comparison of NaNTPs and NTPs on benchmark datasets. Double asterisk (**) denotes the
performance of NTP reevaluated with the correct evaluation function (see the note in Section 6.2).
Results for DistMult, ComplEx, ConvE, NeuralLP, and MINERVA are from Das et al. (2017).

Datasets Metrics

Models

NTP** NaNTP ComplEx NeuralLP MINERVA
k=1 k=2 k=5

Countries
S1

AUC-PR
90.83 ± 15.4 99.20 ± 1.19 97.34 ± 3.86 96.37 ± 4.23 99.37 ± 0.4 100.0 ± 0.0 100.0 ± 0.0

S2 87.40 ± 11.7 93.48 ± 3.29 88.48 ± 5.87 83.56 ± 7.78 87.95 ± 2.8 75.1 ± 0.3 92.36 ± 2.41
S3 56.68 ± 17.6 85.24 ± 5.83 82.18 ± 9.11 72.68 ± 13.4 48.44 ± 6.3 92.2 ± 0.2 95.10 ± 1.20

Kinship

MRR 0.35 0.51 ± 0.04 0.66 ± 0.03 0.67 ± 0.02 0.838 0.619 0.720
HITS@1 0.24 0.37 ± 0.04 0.51 ± 0.04 0.52 ± 0.02 0.754 0.475 0.605
HITS@3 0.37 0.57 ± 0.05 0.78 ± 0.03 0.78 ± 0.02 0.910 0.707 0.812
HITS@10 0.57 0.82 ± 0.04 0.94 ± 0.02 0.95 ± 0.00 0.980 0.912 0.924

Nations

MRR 0.61 0.66 ± 0.03 0.59 ± 0.02 0.54 ± 0.05 — — —
HITS@1 0.45 0.51 ± 0.05 0.41 ± 0.03 0.36 ± 0.07 — — —
HITS@3 0.73 0.77 ± 0.03 0.71 ± 0.02 0.65 ± 0.06 — — —
HITS@10 0.87 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 — — —

UMLS

MRR 0.80 0.63 ± 0.04 0.80 ± 0.02 0.80 ± 0.02 0.894 0.778 0.825
HITS@1 0.70 0.49 ± 0.05 0.68 ± 0.02 0.68 ± 0.03 0.823 0.643 0.728
HITS@3 0.88 0.73 ± 0.04 0.91 ± 0.01 0.90 ± 0.02 0.962 0.869 0.900
HITS@10 0.95 0.89 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.995 0.962 0.968

compare the maximum memory usage of both models on a CPU, over 10 training batches with same
batch sizes. The comparison is done on a CPU to ensure that we include the size of the ANNS index
in NaNTP measures and as a fail-safe, in case the model does not fit on the GPU memory.

The results, presented in Figure 3, demonstrate that, compared to NTP, NaNTP is considerably more
time and memory efficiency. In particular, we observe that NaNTP yields significant speedups of
an order of magnitude for smaller datasets (Countries S1 and S2), and more than two orders of
magnitude for larger datasets (Kinship and Nations). Interestingly, with the increased size of the
dataset, NaNTP consistently achieves higher speedups, when compared to NTP. Similarly, NaNTP
is more memory efficient, with savings bigger than an order of magnitude, making them readily
applicable to larger datasets, even when augmented with textual surface forms.

6.3 RESULTS ON COUNTRIES, UMLS, AND NATIONS

Experiments with Generated Mentions. For evaluating different strategies of integrating textual
surface patterns, in the form of mentions, in NTPs, we proceeded as follows. We replaced a varying
number of training set triples from each of the Countries S1-3 datasets with human-generated textual
mentions. For instance, the fact neighbourOf(UK, IRELAND) may be replaced by the mention
“UK is neighbouring with IRELAND”.

Then, we evaluate two ways of integrating textual mentions in NaNTPs, either by i) adding them as
facts to the KB, or by ii) parsing the mention by means of an encoder, as described in Section 4. The
results, presented in Fig. 2, testify that the proposed encoding module yields consistent improvements
of the ranking accuracy in comparison to simply adding the mentions as facts to the KB. This is
particularly obvious in cases where the number of held-out facts is higher, implying that the added
mentions can replace a large missing number of original facts in the KB.

Explanations Involving Mentions. NaNTPs are extremely efficient at learning rules in-
volving both logic atoms and textual mentions. For instance, by analysing the
learned models and their explanations, we can see that NaNTPs learn patterns such as:

neighborOf(X, Y) :– neighborOf(Y, X)

neighborOf(X, Y) :– “E1 was a neighbor of E2”(Y, X)

neighborOf(X, Y) :– “E1 is a neighboring state to E2”(Y, X)

locatedIn(X, Y) :– “E1 was a neighboring state to E2”(X, Z), “E1 was located in E2”(Z, Y)

locatedIn(X, Y) :– “E1 can be found in E2”(X, Z), “E1 is located in E2”(Z, Y)

where E1 and E2 denote the position of the entities in the text surface patterns, and leverage them
during their reasoning process, providing human-readable explanations for a given prediction.
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6.4 RESULTS ON WORDNET AND FREEBASE

Link prediction results are summarised in Table 1, while Table 2 shows a sample of explanations for
the facts in the validation set of WN18 and WN18RR provided by NaNTPs by analysing the proof
paths associated with the largest proof scores. We can see that NaNTPs is capable of learning rules,
such as has_part(X, Y) :– part_of(Y, X), and hyponym(X, Y) :– hypernym(Y, X).

Interestingly, it is also able to find an alternative, non-trivial explanations for a given fact, based on the
similarity between entity representations. For instance, it can explain that CONGO is part of AFRICA
by leveraging the similarity between AFRICA and AFRICAN_ COUNTRY, and the fact that the latter
is a hyponym of CONGO. It is also able to explain that CHAPLIN is a FILM_MAKER by leveraging
the prior knowledge that CHAPLIN is a COMEDIAN, and the similarity between FILM_MAKER and
COMEDIAN.

6.5 THE EFFECT OF ATTENTION

We analysed the effect of using attention for rule learning, introduced in Section 3, on NaNTP’s
accuracy, on both the benchmark datasets—outlined in Table 6—and WordNet—outlined in Table 7.

Table 6 shows that using attention in NaNTP for learning rule representations yields higher average
ranking accuracy and lower variance on Countries S1-3 and Kinship, while yielding comparable
results to not using attention on Nations and UMLS. This is consistent with the observation in Fig. 2,
where NaNTPs with attention yield better performance on Countries S1-3.

Results in Table 7 show the results of ablations on two large datasets derived from WordNet, namely
WN18 and WN18RR. For these two datasets, attention for learning rules greatly increases the ranking
accuracy. For instance Hits@10 increases from 83.2% to 93.7% in the case of WN18, and from
25% to 43.2% in the case of WN18RR. Please note that state-of-the-art Neural Link Predictors such
as ComplEx (Trouillon et al., 2016) still yield an Hits@10 lower than 95% on WN18: this shows
that WN18 yields results on par with other classes of models, while providing explanations for each
prediction (as shown in Section 6.4). Note that Neural Link Predictors are a class of model that was
investigated for more than a decade now (Paccanaro & Hinton, 2001; Bordes et al., 2013).

Similarly, MRR increases from 0.539 to 0.769 in the case of WN18, and from 0.137 to 0.398 in the
case of WN18RR. An explanation for this phenomenon is that using attention drastically reduces
the number of parameters required to learn each of the rule predicates from 100 to 18 in the case of
WN18, and to 11 in the case of WN18RR, introducing an inductive bias that reveals being extremely
beneficial in terms of ranking accuracy. We can also note that, for FB15k-237, attention did not
improve the ranking accuracy. An explanation is that this dataset is very high relational (237 relation
types), and using attention actually increased the number of parameters to be learned.

7 CONCLUSION

NTPs combine the strengths of rule-based and neural models but, so far, they were unable to reason
over large KBs, and therefore over natural language.

In this paper, we proposed NaNTPs that utilise ANNS and attention as a solution to scaling issues
of NTP. By efficiently considering only the subset of proof paths associated with the highest proof
scores during the construction of a dynamic computation graph, NaNTPs yield drastic speedups and
memory efficiency, while yielding the same or a better predictive accuracy than NTPs. This enables
application of NaNTPs to mixed KB and natural language data by embedding logic atoms and textual
mentions in a joint embedding space.

Albeit results are still slightly lower than those yielded by state-of-the-art Neural Link Predictors on
large datasets, NaNTPs is interpretable and is able to provide explanations of its reasoning at scale.
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A NEURAL THEOREM PROVING

In NTPs, the neural network structure is built recursively, and its construction is defined in terms
of modules similarly to dynamic neural module networks (Andreas et al., 2016). Given a goal, a
KB, and a current proof state as inputs, each module produces a list of new proof states, i.e., neural
networks representing partial proof success scores and variable substitutions. In the following we
briefly overview the modules constituting NTPs.

A.1 UNIFICATION MODULE

In backward chaining, unification between two logic atoms is used for checking whether they can
represent the same structure. In discrete unification, non-variable symbols are checked for equality,
and the proof fails if two symbols differ. Rather than comparing symbols, NTPs compare their
embedding representations by means of an end-to-end differentiable similarity function, such as a
RBF kernel. This allows matching different symbols with similar semantics, such as relations like
locatedIn and situatedIn.

Unification is carried out by the unify operator, which updates a substitution set S, and creates a
neural network for comparing the vector representations of non-variable symbols in two sequences of
terms. The signature of unify is L × L× S → S , where L is the domain of lists of terms: it takes
two atoms, represented as lists of terms, and an upstream proof state, and returns a new proof state S′.

More formally, let H and G denote two lists of terms, each denoting a logical atom, such as
[p, A, B] and [q, X, Y] for respectively denoting the atoms p(A, B) and q(X, Y). Given a proof state
S = (Sψ, Sρ), where Sψ and Sρ respectively denote a substitution set and a proof score, unification
is computed as follows:

1. unifyθ([ ], [ ], S) = S

2. unifyθ([ ], G, S) = FAIL

3. unifyθ(H, [ ], S) = FAIL

4. unifyθ(h :: H, g :: G, S) = unifyθ(H, G, S′)

with S′ = (S′ψ, S
′
ρ) where:

S′ψ =Sψ ∪

{ {h/g} if h ∈ V
{g/h} if g ∈ V, h 6∈ V
∅ otherwise

}
, S′ρ =min

(
Sρ,

{
k (θh:,θg:) if h 6∈ V, g 6∈ V
1 otherwise

})

Here, S′ refers to the new proof state, V refers to the set of variable symbols, h/g is a substitution
from the variable symbol h to the symbol g, and θg: denotes the embedding look-up of the
non-variable symbol with index g.

For example, given two atoms H = [locatedIn, LONDON, UK] and G = [situatedIn, X, Y],
the result of unifyθ(H, G, (∅, 1)) with S = (∅, 1) will be a new substitution set S′ = (S′ψ, S

′
ρ)

where S′ψ = {X/LONDON, Y/UK} and S′ρ = min (1, k (θlocatedIn:,θsituatedIn:))

A.2 OR MODULE

Given a goal G, the or module unifies G with all facts and rules in a KB: for each rule H :– B ∈ K,
after unifying G with the head H, it also attempts to prove the atoms in the body H by invoking the
and module. The signature of or is L × N× S → SN , where L is the domain of goal atoms, the
second argument specifies the maximum proof depth, and N denotes the number of possible output
proof states. This operator is implemented as follows:

orK
θ (G, d, S) = [S′ | S′ ∈ andK

θ (B, d,unifyθ(H, G, S)), H :– B ∈ K] (7)

where H :– B denotes a rule in a given KB K with a head atom H and a list of body atoms B.

For example, given a goal G = [situatedIn, Q, UK] and a rule H :– B with H =
[locatedIn, X, Y] and B = [[locatedIn, X, Z], [locatedIn, Z, Y]], the model would in-
stantiate an and sub-module as follows:

orK
θ (G, d, S) = [S′|S′ ∈ andK

θ (B, d, ({X/Q, Y/UK}, Ŝρ)), . . .]
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by first unifying the goal G with the head of the rule H, and then proving the sub-goals in the body of
the rule by using and.

A.3 AND MODULE

The and module recursively tries to prove a list of sub-goals, by invoking the or module. Its
signature is L × N × S → SN , where L is the domain of lists of atoms, and N is the number of
possible output proof states for a list of atoms with a known structure and a provided KB. This
module is implemented as:

1. andK
θ (_, _,FAIL) = andK

θ (_, 0, _) = FAIL 2. andK
θ ([ ], _, S) = S

3. andK
θ (G : G, d, S) = [S′′ | S′′ ∈ andK

θ (G, d, S′), S′ ∈ orK
θ (substitute(G, Sψ), d− 1, S)]

where substitute is an auxiliary function that applies substitutions to variables in an atom whenever
possible. Line 3 defines the recursion—the first sub-goal is proven by instantiating an or module
after substitutions are applied, and every resulting proof state is used for proving the remaining
sub-goals by instantiating an and module.

A.4 PROOF AGGREGATION

Finally, NTPs define the overall success score of proving a goal G using a KB K with parameters θ
as:

ntpK
θ (G, d) = argmax

S ∈ orK
θ (G,d,(∅,1))

S 6=FAIL

Sρ

where d is a predefined maximum proof depth, and the initial proof state is set to (∅, 1), denoting an
empty substitution set and a proof success score of 1.

A.5 TRAINING

The model is then trained using a Leave-One-Out cross-entropy loss—by removing one fact from
the KB, and predicting its score. Since this procedure only generates positive examples, negative
examples are generated by corrupting positive examples, by randomly changing the entities (Nickel
et al., 2016). We refer to Rocktäschel & Riedel (2017) for more information on the training procedure.

A.6 RULE LEARNING

NTPs can be used for learning interpretable rules from data, getting a deeper understanding of
the domain. For example, consider the rule H :– B, with H = [grandfatherOf, X, Y] and
B = [[fatherOf, X, Z], [parentOf, Z, Y]]. Rocktäschel & Riedel (2017) show that it is possible
to learn this rule from data by specifying a rule template H :– B, with H = [θp:, X, Y] and B =
[[θq:, X, Z], [θr:, Z, Y]], where θp:,θq:,θr: ∈ Rk. The parameters θp:,θq:,θr: can be learned from
data, and decoded by searching the closest representation of known predicates.

B DATASETS

We run experiments on the following datasets—also outlined in Table 5—and report results in
terms of Area Under the Precision-Recall Curve (Davis & Goadrich, 2006) (AUC-PR), MRR, and
HITS@m (Bordes et al., 2013).

B.1 COUNTRIES, UMLS, NATIONS

B.1.1 COUNTRIES

Countries is a dataset introduced by Bouchard et al. (2015) for testing reasoning capabilities of neural
link prediction models. It consists of 244 countries, 5 regions (e.g. EUROPE), 23 sub-regions (e.g.
WESTERN EUROPE, NORTH AMERICA), and 1158 facts about the neighbourhood of countries, and
the location of countries and sub-regions. As in Rocktäschel & Riedel (2017), we randomly split
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Predicate Name Mentions

locatedIn(a, b)

a is located in b, a is situated in b, a is placed in b, a is positioned in b, a is sited in b, a
is currently in b, a can be found in b, a is still in b, a is localized in b, a is present in b,
a is contained in b, a is found in b, a was located in b, a was situated in b, a was placed
in b, a was positioned in b, a was sited in b, a was currently in b, a used to be found in
b, a was still in b, a was localized in b, a was present in b, a was contained in b, a was
found in b

neighborOf(a, b)

a is adjacent to b, a borders with b, a is butted against b, a neighbours b, a is a
neighbor of b, a is a neighboring country of b, a is a neighboring state to b, a was
adjacent to b, a borders b, a was butted against b, a neighbours with b, a was a
neighbor of b, a was a neighboring country of b, a was a neighboring state to b

Table 4: Mentions used for replacing a varying number of training triples in the Countries S1, S2,
and S3 datasets.

countries into a training set of 204 countries (train), a development set of 20 countries (validation),
and a test set of 20 countries (test), such that every validation and test country has at least one
neighbour in the training set. Subsequently, three different task datasets are created, namely S1, S2,
and S3. For all tasks, the goal is to predict locatedIn(c, r) for every test country c and all five
regions r, but the access to training atoms in the KB varies.

S1: All ground atoms locatedIn(c, r), where c is a test country and r is a region, are
removed from the KB. Since information about the sub-region of test countries is
still contained in the KB, this task can be solved by using the transitivity rule
locatedIn(X, Y) :– locatedIn(X, Z),locatedIn(Z, Y).

S2: In addition to S1, all ground atoms locatedIn(c, s) are removed where c is
a test country and s is a sub-region. The location of countries in the
test set needs to be inferred from the location of its neighbouring countries:
locatedIn(X, Y) :– neighborOf(X, Z),locatedIn(Z, Y). This task is more diffi-
cult than S1, as neighbouring countries might not be in the same region, so the rule above
will not always hold.

S3: In addition to S2, also all ground atoms locatedIn(c, r) are removed where r is a region and
c is a country from the training set training that has a country from the validation or test sets
as a neighbour. The location of test countries can for instance be inferred using the rule
locatedIn(X, Y) :– neighborOf(X, Z),neighborOf(Z, W),locatedIn(W, Y).

B.1.2 COUNTRIES WITH MENTIONS

We generated a set of variants of Countries S1, S2, and S3, by randomly replacing a varying number
of training set triples with mentions. The employed mentions are outlined in Table 4.

B.1.3 NATIONS AND UMLS

Furthermore, we consider the Nations, and the Unified Medical Language System (UMLS)
datasets (Kok & Domingos, 2007). UMLS contains 49 predicates, 135 constants and 6529 true
facts, while Nations contains 56 binary predicates, 111 unary predicates, 14 constants and 2565 true
facts. We follow the protocol used by Rocktäschel & Riedel (2017) and split every dataset into
training, development, and test facts, with a 80%/10%/10% ratio. For evaluation, we take a test fact
and corrupt its first and second argument in all possible ways such that the corrupted fact is not in the
original KB. Subsequently, we predict a ranking of the test fact and its corruptions to calculate MRR
and HITS@m.

Note that neither Countries nor UMLS and Nations have mentions. For such a reason, for each of
these datasets, we generated one equivalent mention—using a natural language sentence rather than a
predicate name—and replaced a varying amount of training set triples with equivalent mentions.
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Table 5: Dataset statistics.

Dataset Name #Rel. #Entities #Train #Validation #Test #Mentions
FB15k-237.E (Toutanova et al., 2015) 237 27,395 272,115 17,535 20,466 3,978,014
WN18 (Bordes et al., 2013) 18 40,943 141,442 5,000 5,000 —
WN18RR (Dettmers et al., 2018) 11 40,943 86,835 3,034 3,134 —

B.2 WORDNET

WN18 (Bordes et al., 2013) is a subset of WordNet (Miller, 1995), a lexical KB for the English
language, where entities correspond to word senses and relationships define lexical relations between
them. We also consider WN18RR (Dettmers et al., 2018), a dataset derived from WN18 where
predicting missing links is sensibly harder.

B.3 FREEBASE

For evaluating the impact of also using mentions, we use the FB15k-237.E dataset (Toutanova &
Chen, 2015; Toutanova et al., 2015), a subset of FB15k (Bordes et al., 2013) that excludes redundant
relations and direct training links for held-out triples, with the goal of making the task more realistic.
Textual relations for FB15k-237.E are extracted from 200 million sentences in the ClueWeb12 corpus,
coupled with Freebase mention annotations (Gabrilovich et al., 2013), and include textual links of all
co-occurring entities from the KB set. After pruning 3, there are 2.7 million unique textual relations
that are added to the KB. The number of relations and triples in the training, validation, and test
portions of the data are given in Table 5. In particular, FB15k-237.E denotes the FB15k-237 dataset
augmented with textual relations proposed by Toutanova et al. (2015).

B.4 WORDNET AND FREEBASE STATISTICS

In order to grasp the magnitude of WN18, WN18RR and FB15k-237.E datasets, we provide their
basic statistics in Table 5.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDIES

The effect of attention over rules to this framework is quantised by two ablation studies, on benchmark
datasets, in Table 6, and on the large datasets, in Table 7 shows attention achieving higher or on-par
performance with NaNTP without attention. Table 6, however, reports that NaNTP with attention
significantly outperforms NaNTP without it on WordNet datasets.

C.2 ANNS VS. EXACT NNS VS. RANDOM SELECTION

In order to analyse the impact of using ANNS as a choice of heuristic, we ran additional experiments
on the baseline datasets. In particular, we compared ANNS to exact nearest neighbours search, since
ANNS models may not return the exact nearest neighbours. We also compared ANNS to random
neighbour selection, for analysing the behaviour of the model with random neighbourhood choices.

Results are outlined in Table 8: they show that the random neighbour, as expected, yield sensibly
worse ranking results in comparison with ANNS.

A surprising exception is Nations, where ranking results were apparently higher in comparison with
UMLS and Kinship: a possible explanation is that Nations only contains 14 entities, so the random
neighbourhood can sometimes correspond to the exact neighbourhood.

3The full set of 37 million textual patterns connecting the entity pairs of interest was pruned based on the
count of patterns and their tri-grams, and their precision in indicating that entity pairs have KB relations.
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Table 6: Ablation of attention over relations on NaNTPs, on benchmark datasets.

Datasets Metrics

NaNTP
Standard Attention

k=1 k=2 k=5 k=1 k=2 k=5

Countries
S1

AUC-PR
94.93 ± 7.58 96.58 ± 4.41 94.01 ± 3.6 99.20 ± 1.19 97.34 ± 3.86 96.37 ± 4.23

S2 90.27 ± 4.53 81.27 ± 14.44 76.9 ± 14.66 93.48 ± 3.29 88.48 ± 5.87 83.56 ± 7.78
S3 84.16 ± 8.31 85.69 ± 9.56 80.9 ± 10.12 85.24 ± 5.83 82.18 ± 9.11 72.68 ± 13.4

Kinship

MRR 0.56 ± 0.03 0.61 ± 0.04 0.57 ± 0.05 0.51 ± 0.04 0.66 ± 0.03 0.67 ± 0.02
HITS@1 0.41 ± 0.03 0.45 ± 0.05 0.41 ± 0.05 0.37 ± 0.04 0.51 ± 0.04 0.52 ± 0.02
HITS@3 0.64 ± 0.03 0.72 ± 0.04 0.67 ± 0.05 0.57 ± 0.05 0.78 ± 0.03 0.78 ± 0.02

HITS@10 0.87 ± 0.02 0.92 ± 0.02 0.88 ± 0.03 0.82 ± 0.04 0.94 ± 0.02 0.95 ± 0.00

Nations

MRR 0.63 ± 0.04 0.65 ± 0.03 0.60 ± 0.05 0.66 ± 0.03 0.59 ± 0.02 0.54 ± 0.05
HITS@1 0.46 ± 0.05 0.48 ± 0.03 0.42 ± 0.07 0.51 ± 0.05 0.41 ± 0.03 0.36 ± 0.07
HITS@3 0.74 ± 0.04 0.76 ± 0.03 0.72 ± 0.04 0.77 ± 0.03 0.71 ± 0.02 0.65 ± 0.06

HITS@10 0.99 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 0.99 ± 0.00 0.98 ± 0.01 0.98 ± 0.01

UMLS

MRR 0.57 ± 0.04 0.81 ± 0.01 0.80 ± 0.02 0.63 ± 0.04 0.80 ± 0.02 0.80 ± 0.02
HITS@1 0.42 ± 0.04 0.68 ± 0.01 0.68 ± 0.03 0.49 ± 0.05 0.68 ± 0.02 0.68 ± 0.03
HITS@3 0.66 ± 0.04 0.92 ± 0.01 0.91 ± 0.01 0.73 ± 0.04 0.91 ± 0.01 0.90 ± 0.02

HITS@10 0.85 ± 0.03 0.98 ± 0.00 0.98 ± 0.01 0.89 ± 0.02 0.98 ± 0.01 0.97 ± 0.01

Table 7: Ablation of attention over relations on NaNTPs, on WN18, WN18RR and FB15k-237.E

WN18 WN18RR FB15k-237.E
Hits Hits Hits

MRR @10 @3 @1 MRR @10 @3 @1 MRR @10 @3 @1

DistMult (Yang et al., 2015) 0.822 0.936 0.914 0.728 0.430 0.490 0.440 0.390 0.241 0.419 0.263 0.155
ComplEx (Trouillon et al., 2016) 0.941 0.947 0.936 0.936 0.440 0.510 0.460 0.410 0.247 0.428 0.275 0.158
ConvE (Dettmers et al., 2018) 0.943 0.520 0.440 0.400 0.430 0.520 0.440 0.400 0.325 0.501 0.356 0.237

DistMult (d = 100) 0.782 0.931 0.910 0.658 0.411 0.463 0.423 0.382 0.214 0.402 0.240 0.127
ComplEx (d = 100) 0.923 0.948 0.941 0.904 0.420 0.469 0.431 0.395 0.206 0.373 0.222 0.126

NaNTP 0.539 0.832 0.703 0.349 0.137 0.250 0.148 0.083 0.197 0.330 0.209 0.131
NaNTP+Text 0.198 0.335 0.210 0.131
NaNTP+Tex+Attention 0.769 0.937 0.884 0.649 0.398 0.432 0.402 0.377 0.176 0.310 0.185 0.110

We can also observe that ANNS, yield very close ranking results in comparison with Exact NNS, but
orders of magnitude faster. This implies that, compared to a costly Exact NNS, ANNS is an optimal
choice for a heuristic, since it greatly decreases the computational complexity of the method.

Please note that experiments with Exact NNS were extremely computationally demanding and, for
such a reason, we limited the neighbourhood size k to k = 1.

Table 8: Performance of NaNTPs with attention (Attention) and without it (Standard) when using the
random nearest neighbour, ANNS and exact NNS for k = 1, on benchmark datasets.

Datasets Metrics

NaNTP
Random ANNS Exact NNS

Standard Attention Standard Attention Standard Attention

Countries
S1

AUC-PR
40.54 ± 4.85 42.88 ± 3.5 94.93 ± 7.58 99.20 ± 1.19 96.65 ± 3.01 98.14 ± 3.31

S2 36.02 ± 5.56 39.32 ± 4.21 90.27 ± 4.53 93.48 ± 3.29 92.72 ± 4.47 91.25 ± 2.18
S3 28.73 ± 2.82 38.46 ± 5.81 84.16 ± 8.31 85.24 ± 5.83 85.68 ± 5.46 89.12 ± 9.17

Kinship

MRR 0.05 ± 0.00 0.06 ± 0.00 0.56 ± 0.03 0.51 ± 0.04 0.58 ± 0.02 0.52 ± 0.04
HITS@1 0.01 ± 0.00 0.01 ± 0.00 0.41 ± 0.03 0.37 ± 0.04 0.43 ± 0.02 0.38 ± 0.04
HITS@3 0.03 ± 0.00 0.03 ± 0.00 0.64 ± 0.03 0.57 ± 0.05 0.66 ± 0.03 0.58 ± 0.05
HITS@10 0.11 ± 0.00 0.11 ± 0.01 0.87 ± 0.02 0.82 ± 0.04 0.89 ± 0.02 0.81 ± 0.05

Nations

MRR 0.42 ± 0.01 0.42 ± 0.01 0.63 ± 0.04 0.66 ± 0.03 0.70 ± 0.04 0.63 ± 0.02
HITS@1 0.19 ± 0.02 0.19 ± 0.02 0.46 ± 0.05 0.51 ± 0.05 0.56 ± 0.05 0.46 ± 0.03
HITS@3 0.54 ± 0.02 0.54 ± 0.01 0.74 ± 0.04 0.77 ± 0.03 0.81 ± 0.03 0.74 ± 0.02
HITS@10 0.96 ± 0.01 0.96 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.01

UMLS

MRR 0.13 ± 0.00 0.14 ± 0.01 0.57 ± 0.04 0.63 ± 0.04 0.59 ± 0.05 0.61 ± 0.05
HITS@1 0.05 ± 0.00 0.06 ± 0.01 0.42 ± 0.04 0.49 ± 0.05 0.43 ± 0.05 0.46 ± 0.06
HITS@3 0.12 ± 0.01 0.13 ± 0.01 0.66 ± 0.04 0.73 ± 0.04 0.68 ± 0.05 0.70 ± 0.05
HITS@10 0.27 ± 0.01 0.28 ± 0.01 0.85 ± 0.03 0.89 ± 0.02 0.88 ± 0.03 0.86 ± 0.04
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