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Abstract

Knowledge distillation is to transfer the knowledge of a large neural network into
a smaller one and has been shown to be effective especially when the amount of
training data is limited or the size of the student model is very small. To transfer
the knowledge, it is essential to observe the data that have been used to train the
network since its knowledge is concentrated on a narrow manifold rather than the
whole input space. However, the data are not accessible in many cases due to the
privacy or confidentiality issues in medical, industrial, and military domains. To the
best of our knowledge, there has been no approach that distills the knowledge of a
neural network when no data are observable. In this work, we propose KEGNET
(Knowledge Extraction with Generative Networks), a novel approach to extract the
knowledge of a trained deep neural network and to generate artificial data points
that replace the missing training data in knowledge distillation. Experiments show
that KEGNET outperforms all baselines for data-free knowledge distillation. We
provide the source code of our paper in https://github.com/snudatalab/KegNet.

1 Introduction

How can we distill the knowledge of a deep neural network without any observable data?

Knowledge distillation [9] is to transfer the knowledge of a large neural network or an ensemble of
neural networks into a smaller network. Given a set of trained teacher models, one feeds training
data to them and uses their predictions instead of the true labels to train the small student model. It
has been effective especially when the amount of training data is limited or the size of the student
model is very small [14, 28], because the teacher’s knowledge helps the student to learn efficiently
the hidden relationships between the target labels even with a small dataset.

However, it is essential for knowledge distillation that at least a few training examples are observable,
since the knowledge of a deep neural network does not cover the whole input space; it is focused
on a manifold px of data that the network has actually observed. The network is likely to produce
unpredictable outputs if given random inputs that are not described by px, misguiding the student
network. There are recent works for distilling a network’s knowledge by a small dataset [22] or only
metadata at each layer [23], but no approach has successfully distilled the knowledge without any
observable data. It is desirable in this case to generate artificial data by generative networks [7, 31],
but they also require a large amount of training data to estimate the true manifold px.

We propose KEGNET (Knowledge Extraction with Generative Networks), a novel architecture that
extracts the knowledge of a trained neural network for knowledge distillation without observable data.
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Figure 1: An overall structure of KEGNET. The generator creates artificial data and feed them into
the classifier and decoder. The fixed classifier produces the label distribution of each data point, and
the decoder finds its hidden representation as a low-dimensional vector.

KEGNET estimates the data manifold px by generating artificial data points, based on the conditional
distribution p(y|x) of label y which has been learned by the given neural network. The generated
examples replace the missing training data when distilling the knowledge of the given network. As a
result, the knowledge is transferred well to other networks even with no observable data.

The overall structure of KEGNET is depicted in Figure 1, which consists of two learnable networks G
and D. A trained network M is given as a teacher, and we aim to distill its knowledge to a student
network which is not included in this figure. The first learnable network is a generator G that takes a
pair of sampled variables ŷ and ẑ to create a fake data point x̂. The second network is a decoder D
which aims to extract the variable ẑ from x̂, given as an input for x̂. The variable ẑ is interpreted as a
low-dimensional representation of x̂, which contains the implicit meaning of x̂ independently from
the label ŷ. The networks G and D are updated to minimize the reconstruction errors between the
input and output variables: ŷ and ȳ, and ẑ and z̄. After the training, G is used to generate fake data
which replace the missing training data in the distillation; D is not used in this step.

Our extensive experiments in Section 5 show that KEGNET accurately extracts the knowledge of a
trained deep neural network for various types of datasets. KEGNET outperforms baseline methods
for distilling the knowledge without observable data, showing a large improvement of accuracy up to
39.6 percent points compared with the best competitors. Especially, KEGNET generates artificial
data whose patterns are clearly recognizable by extracting the knowledge of well-known classifiers
such as a residual network [8] trained with image datasets such as MNIST [21] and SVHN [25].

2 Related Work

2.1 Knowledge Distillation

Knowledge distillation [9] is a technique to transfer the knowledge of a large neural network or an
ensemble of neural networks into a small one. Given a teacher network M and a student network S,
we feed training data to M and use its predictions to train S instead of the true labels. As a result, S
is trained by soft distributions rather than one-hot vectors, learning latent relationships between the
labels that M has already learned. Knowledge distillation has been used for reducing the size of a
model or training a model with insufficient data [1, 2, 12, 14, 29].

Recent works focused on the distillation with insufficient data. Papernot et al. [28] and Kimura et al.
[15] used knowledge distillation to effectively use unlabeled data for semi-supervised learning when
a trained teacher network is given. Li et al. [22] added a 1 × 1 convolutional layer at the end of each
block of a student network and aligned the teacher and student networks by updating those layers
when only a few samples are given. Lopes et al. [23] considered the case where the data were not
observable, but metadata were given for each activation layer of the teacher network. From the given
metadata, they reconstructed the missing data and used them to train a student network.
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However, these approaches assume that at least a few labeled examples or metadata are given so that
it is able to estimate the distribution of missing data. They are not applicable to situations where no
data are accessible due to strict privacy or confidentiality. To the best of our knowledge, there has
been no approach that works well without training data in knowledge distillation, despite its large
importance in various domains that impose strict limitations for distributing the data.

2.2 Tucker Decomposition

A tensor decomposition is to represent an n-dimensional tensor as a sequence of small tensors. Tucker
decomposition [13, 30] is one of the most successful algorithms for a tensor decomposition, which
decomposes an n-dimensional tensor X ∈ RI1×I2×···×In into the following form:

X̂ = G ×1 A(1) ×2 A(2) ×3 · · · ×N A(N), (1)

where ×i is the i-mode product [16] between a tensor and a matrix, G ∈ RR1×R2×···×Rn is a core
tensor, and A(i) ∈ RIi×Ri is the i-th factor matrix.

Tucker decomposition has been used to compress various types of deep neural networks. Kim et al.
[13] and Kholiavchenko [11] compressed convolutional neural networks using Tucker-2 decomposi-
tion which decomposes convolution kernels along the first two axes (the numbers of filters and input
channels). They used the global analytic variational Bayesian matrix factorization (VBMF) [24] for
selecting the rank R, which is important to the performance of compression. Kossaifi et al. [17] used
Tucker decomposition to compress fully connected layers as well as convolutional layers.

Unlike most compression algorithms [3, 4], Tucker decomposition itself is a data-free algorithm that
requires no training data in the execution. However, a fine-tuning of the compressed networks has
been essential [11, 13] since the compression is done layerwise and the compressed layers are not
aligned with respect to the target problem. In this work, we use Tucker decomposition to initialize a
student network that requires the teacher’s knowledge to improve its performance. Our work can be
seen as using Tucker decomposition as a general compression algorithm when the target network is
given but no data are observable, and can be extended to other compression algorithms.

3 Knowledge Extraction

We are given a trained network M that predicts the label of a feature vector x as a probability vector.
However, we have no information about the data distribution px(x) that was used to train M , which
is essential to understand its functionality and to use its learned knowledge in further tasks. It is thus
desirable to estimate px(x) from M , which is the opposite of a traditional learning problem that aims
to train M based on observable px. We call this knowledge extraction.

However, it is impracticable to estimate px(x) directly since the data space R|x| is exponential with
the dimensionality of data, while we have no single observation except the trained classifier M . We
thus revert to sampling data points and modeling an empirical distribution: for a set D of sampled
points, the probability of each sampled point is 1/|D|, and the probability at any other point is zero.
We generate the set D of sampled data points by modeling a conditional probability of x given two
random vectors y and z, where y is a probability vector that represents a label, and z is our proposed
variable that represents the implicit meaning of a data point as a low-dimensional vector:

D =

{
arg max

x̂
p(x̂|ŷ, ẑ) | ŷ ∼ p̂y(y) and ẑ ∼ pz(z)

}
, (2)

where p̂y(y) is an estimation of the true label distribution py(y) which we cannot observe, and pz(z)
is our proposed distribution that is assumed to describe the property of z.

In this way, we reformulate the problem as to estimate the conditional distribution p(x|y, z) instead
of the data distribution px(x). Recall that z is a low-dimensional representation of a data point x.
The variables y and z are conditionally independent of each other given x, since they both depend on
x but have no direct interactions. Thus, the argmax in Equation (2) is rewritten as follows:

arg max
x̂

p(x̂|ŷ, ẑ) = arg max
x̂

(log p(ŷ|x̂, ẑ) + log p(x̂|ẑ)− log p(ŷ|ẑ)) (3)

= arg max
x̂

(log p(ŷ|x̂) + log p(x̂|ẑ)), (4)

3



where the first probability p(ŷ|x̂) is the direct output of M when x̂ is given as an input, which we do
not need to estimate since M is already trained. The second probability p(x̂|ẑ) represents how well ẑ
represents the property of x̂ as its low-dimensional representation.

However, estimating the distribution p(x|z) requires knowing px(x) in advance, which we cannot
observe due to the absence of accessible data. Thus, we rewrite Equation (4) as Equation (5) and then
approximate it as Equation (6) ignoring the data probability px(x):

arg max
x̂

p(x̂|ŷ, ẑ) = arg max
x̂

(log p(ŷ|x̂) + log p(ẑ|x̂) + log p(x̂)− log p(ẑ)) (5)

≈ arg max
x̂

(log p(ŷ|x̂) + log p(ẑ|x̂)). (6)

The difference is that now we estimate the likelihood p(ẑ|x̂) of the variable ẑ given x̂ instead of the
posterior p(x̂|ẑ). Equation (6) is our final target of estimation for extracting the knowledge of the
given model M . We introduce in the next section how to model these conditional distributions by
deep neural networks and how to design an objective function which we aim to minimize.

4 Proposed Method

KEGNET (Knowledge Extraction with Generative Networks) is our novel architecture to distill the
knowledge of a neural network without using training data, by extracting its knowledge as a set of
artificial data points of Equation (2). KEGNET uses two kinds of deep neural networks to model the
conditional distributions in Equation (6). The first is a generator G which takes ŷ and ẑ as inputs and
returns a data point with the maximum conditional likelihood p(x̂|ŷ, ẑ). The second is a decoder D
which takes a data point x̂ as an input and returns its low-dimensional representation z̄.

The overall structure of KEGNET is depicted in Figure 1. The generator G is our main component
that estimates the empirical distribution by sampling a data point x̂ several times. Given a sampled
class vector ŷ as an input, G is trained to produce data points that M is likely to classify as ŷ. This
makes G learn different properties of different classes based on M , but leads it to generate similar
data points for each class. To address this problem, we train G also to minimize the reconstruction
error between ẑ and z̄, forcing G to embed the information of ẑ in the generated data x̂ so that D can
successfully recover it. Thus, data points of the same class should be different from each other when
given different input variables ẑ. The reconstruction errors are computed for ŷ and ẑ, respectively,
and then added to the final objective function. We also introduce a diversity loss to further increase
the data diversity in each batch so that the generated data cover a larger region in the data space.

4.1 Objective Function

We formulate the conditional probabilities of Equation (6) as loss terms to train both the generator G
and decoder D, and combine them as a single objective function:

l(B) =
∑

(ŷ,ẑ)∈B

(
lcls(ŷ, ẑ) + αldec(ŷ, ẑ)

)
+ βldiv(B), (7)

which consists of three different loss functions lcls, ldec, and ldiv. B is a batch of sampled variables
{(ŷ, ẑ) | ŷ ∼ p̂y(y), ẑ ∼ pz(z)}, and α and β are two nonnegative hyperparameters that adjust the
balance between the loss terms. Each batch is created by sampling ŷ and ẑ randomly several times
from the distributions p̂y and pz which are determined also as hyperparameters. In our experiments,
we set p̂y to the categorical distribution that produces one-hot vectors as ŷ, and pz to the multivariate
Gaussian distribution that produces standard normal vectors.

The classifier loss lcls in Equation (8) represents the distance between the input label ŷ given to G and
the output M(G(ŷ, ẑ)) returned from M as the cross-entropy between two probability distributions.
Note that ŷ is not a scalar label but a probability vector of length |S| where S is the set of classes.
Minimizing lcls forces the generated data to follow a manifold that M is able to classify well. The
learned manifold may be different from px, but is suited for extracting the knowledge of M .

lcls(ŷ, ẑ) = −
∑

i∈S ŷi logM(G(ŷ, ẑ))i (8)

The decoder loss ldec in Equation (9) represents the distance between the input variable ẑ given to
G and the output D(G(ŷ, ẑ)) returned from D. We use the Euclidean distance instead of the cross
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entropy since z is not a probability distribution. If we optimize G only for lcls, it is likely to produce
similar data points for each class with little diversity. ldec prevents such a problem by forcing G to
include the information of ẑ along with ŷ in the generated data.

ldec(ŷ, ẑ) = ‖ẑ −D(G(ŷ, ẑ))‖22. (9)

However, the diversity of generated data points may still be insufficient even though D forces G to
include the information of ẑ in x̂. In such a case, the empirical distribution estimated by G covers
only a small manifold in the large data space, extracting only partial knowledge of M . The diversity
loss ldiv is introduced to address the problem and further increase the diversity of generated data.
Given a distance function d between two data points, the diversity loss ldiv is defined as follows:

ldiv(B) = exp
(
−
∑

(ŷ1,ẑ1)∈B
∑

(ŷ2,ẑ2)∈B ‖ẑ1 − ẑ2‖
2
2 · d(G(ŷ1, ẑ1), G(ŷ2, ẑ2))

)
. (10)

It increases the pairwise distance between sampled data points in each batch B, multiplied with the
distance between ẑ1 and ẑ2. This gives more weights to the pairs of data points whose input variables
are more distant by multiplying the distance of noise variables as a scalar weight. The exponential
function makes ldiv produce a positive value as a loss to be minimized. We set d to the Manhattan
distance function d(x1, x2) = ‖x1 − x2‖1 in our experiments.

4.2 Relations to Other Structures

Autoencoders The overall structure of KEGNET can be understood as an autoencoder that tries to
reconstruct two variables y and z at the same time. It is specifically an overcomplete autoencoder
which learns a larger embedding vector than the target variables, since x is a learned representation
and y and z are target variables by this interpretation. It is typically difficult to train an overcomplete
autoencoder because it can recover the target variable in the representation and make a zero recon-
struction error. However in our case, the trained classifier M prevents such a problem because it acts
as a strong regularizer over the generated representations by classifying their labels based on its fixed
knowledge. Thus, G needs to be trained carefully so that the generated representations fit as correct
inputs to M , while containing the information of both y and z.

Generative adversarial networks KEGNET is similar to generated adversarial networks (GAN)
[7] in that a generator creates fake data to estimate the true distribution, and the generated data are
fed into another network to be evaluated. The structure of G is also motivated by DCGAN [31] and
ACGAN [26] for generating image datasets. However, the main difference from GAN-based models
is that we have no observable data and thus we cannot train a discriminator which separates fake data
from the real ones. We instead rely on the trained classifier M and guide G indirectly toward the true
distribution. The decoder D in KEGNET can be understood as an adversarial model that hinders G
from converging to a naive solution, but it is not a direct counterpart of G. Thus, KEGNET can be
understood as a novel architecture designed for the case where no observable data are available.

4.3 Knowledge Distillation

To distill the knowledge of M , we use the trained generator G to create artificial data and feed them
into both the teacher M and student S. We apply the following two ideas to make S explore a large
space and to maximize its generalization performance. First, we use a set G of multiple generators
instead of a single network. Since each generator is initialized randomly, each of the generators learns
a data manifold that is different from those of the others. The number of generators is not limited
because they do not require observable training data. Second, we set p̂y to the elementwise uniform
distribution which generates unnormalized probability vectors: ŷi ∼ U(0, 1) for each i. This gives an
uncertain evidence to G and forces it to generate data points which are not classified easily by M ,
making M produce soft distributions in which its knowledge is embedded well.

As a result, our loss function ldis to train S by knowledge distillation is given as follows:

ldis(ŷ, ẑ) =
∑
G∈G

CE(M(G(ŷ, ẑ)), S(G(ŷ, ẑ))), (11)

where CE denotes the cross entropy. Previous works for knowledge distillation use a temperature [9]
to increase the entropy of predictions from M so that S can learn hidden relationships between the
classes more easily. We do not use the temperature since the predictions of M are soft already due to
our second idea of using the elementwise uniform distribution as p̂y .
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Table 1: Detailed information of datasets.
Dataset Features Labels Training Valid. Test Properties
Shuttle 8 7 38,062 5,438 14,500 Unstructured
PenDigits 16 10 6,557 937 3,498 Unstructured
Letter 16 26 14,000 2,000 4,000 Unstructured

MNIST 1× 28× 28 10 55,000 5,000 10,000 Grayscale images
Fashion MNIST 1× 28× 28 10 55,000 5,000 10,000 Grayscale images
SVHN 3× 32× 32 10 68,257 5,000 26,032 RGB images

Table 2: Classification accuracy of KEGNET and the baseline methods on the unstructured datasets.
We report the compression ratios of student models along with the accuracy of Tucker.

Model Approach Shuttle Pendigits Letter
MLP Original 99.83% 96.56% 95.63%
MLP Tucker (T) 75.49% (8.17×) 26.44% (8.07×) 31.40% (4.13×)

MLP T+Uniform 93.83 ± 0.13% 80.21 ± 0.98% 62.50 ± 0.90%
MLP T+Gaussian 94.00 ± 0.06% 78.22 ± 1.74% 76.80 ± 1.84%
MLP T+KEGNET 94.21 ± 0.03% 82.62 ± 1.05% 77.73 ± 0.33%

5 Experiments

We evaluate KEGNET on two kinds of networks and datasets: multilayer perceptrons on unstructured
datasets from the UCI Machine Learning Repository2, and convolutional neural networks on MNIST
[21], Fashion MNIST [33], and SVHN [25]. The datasets are summarized as Table 1.

We compare KEGNET with baseline approaches for distilling the knowledge of a neural network
without using observable data. The simplest approach is to use Tucker decomposition alone, but the
resulting student is not optimized for the target problem because its objective is only to minimize
the reconstruction error. The second approach is to fine-tune the student after Tucker decomposition
using artificial data derived from a sampling distribution. If the distribution is largely different from
the true distribution, this approach may even decrease the performance of the student from the first
approach. We use the Gaussian distribution N (0, 1) and uniform distribution U(−1, 1).

In each setting, we train five generators with different random seeds as G and combine the generated
data from all generators. We also train five student networks and report the average and standard
deviation of classification accuracy for quantitative evaluation. We initialize the compressed weights
of student networks by running the singular value decomposition on the original weights and update
them by Tucker decomposition to minimize the reconstruction errors [18]. We also use the hidden
variable ẑ of length 10 in all settings, which is much smaller than the data vectors. We use a decoder
network of the same structure in all settings: a multilayer perceptron of n hidden layers with the ELU
activation [5] and batch normalization. n is chosen by the data complexity: n = 1 in MNIST, n = 2
in the unstructured datasets, and n = 3 in Fashion MNIST and SVHN.

5.1 Unstructured Datasets

We use unstructured datasets in the UCI Machine Learning Repository, for which previous works
[6, 27] have established reliable standards of performances. We select three datasets which have at
least three classes and ten thousand instances. We divide each dataset into training, validation, and
test sets with the 7:1:2 ratios if the explicit training and test sets are not given. Otherwise, we divide
the given training data into new training and validation sets.

We use a multilayer perceptron (MLP) as a classifier M , which has been used in [27] and contains
ten hidden layers with the ELU activation function and dropout [32] of probability 0.15. We create
student networks by applying Tucker decomposition to all dense layers: the target rank is 5 in Shuttle
and 10 in the others. We use an MLP as a generator G of two hidden layers with the ELU activation

2http://persoal.citius.usc.es/manuel.fernandez.delgado/papers/jmlr/
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Table 3: Classification accuracy of KEGNET and the baselines on the image datasets. We report the
compression ratios of student models along with the accuracy of Tucker. We use three variants of
students for each dataset with different compression ratios.

Dataset Model Approach Student 1 Student 2 Student 3

MNIST LeNet5 Original 98.90% 98.90% 98.90%
MNIST LeNet5 Tucker (T) 85.18% (3.62×) 67.35% (4.10×) 50.01% (4.49×)

MNIST LeNet5 T+Uniform 95.48 ± 0.11% 88.27 ± 0.07% 69.89 ± 0.28%
MNIST LeNet5 T+Gaussian 95.45 ± 0.15% 87.70 ± 0.12% 71.76 ± 0.18%
MNIST LeNet5 T+KEGNET 96.32 ± 0.05% 90.89 ± 0.11% 89.94 ± 0.08%

SVHN ResNet14 Original 93.23% 93.23% 93.23%
SVHN ResNet14 Tucker (T) 19.31% (1.44×) 11.02% (1.65×) 11.07% (3.36×)

SVHN ResNet14 T+Uniform 33.08 ± 1.47% 63.08 ± 1.77% 23.83 ± 1.86%
SVHN ResNet14 T+Gaussian 26.58 ± 1.61% 60.22 ± 4.17% 21.49 ± 2.96%
SVHN ResNet14 T+KEGNET 69.89 ± 1.24% 87.26 ± 0.46% 63.40 ± 1.80%

Fashion ResNet14 Original 92.50% 92.50% 92.50%
Fashion ResNet14 Tucker (T) 65.09% (1.40×) 75.80% (1.58×) 46.55% (2.90×)

Fashion ResNet14 T+Uniform < 65.09% < 75.80% < 46.55%
Fashion ResNet14 T+Gaussian < 65.09% < 75.80% < 46.55%
Fashion ResNet14 T+KEGNET 85.23 ± 1.36% 87.80 ± 0.31% 79.95 ± 1.36%

and batch normalization. We also apply the non-learnable batch normalization after the output layer
to restrict the output space to the standard normal distribution: the parameters γ and β [10] are fixed
as 0 and 1, respectively. This is natural since most neural networks take standardized inputs.

Table 2 compares the classification accuracy of student networks trained by KEGNET and the baseline
approaches on the unstructured datasets. All three approaches show large improvements of accuracy
over Tucker, which applies Tucker decomposition without fine-tuning. This implies that even simple
distributions are helpful to improve the performance of student networks when no training data are
observable. Nevertheless, KEGNET shows the highest accuracy in all datasets.

5.2 Image Datasets

We use two well-known classifiers on the image datasets: LeNet5 [20] for MNIST and ResNet with
14 layers (referred to as ResNet14) [8] for Fashion MNIST and SVHN. We initialize the student
networks by compressing the weight tensors using Tucker-2 decomposition [13] with VBMF [24];
we compress only the convolutional layers except the dense layers as [13]. Since the classifiers are
convolutional neural networks that are optimized for image datasets, we use a generator that is similar
to that of ACGAN [26], which consists of two fully connected layers followed by three transposed
convolutional layers with the batch normalization after each layer.

5.2.1 Quantitative Analysis

We evaluate KEGNET by training three different student networks for each classifier. For LeNet5, we
compress the last convolutional layer in Student 1 and the last two convolutional layers in Student 2.
We then increase the compression ratio of Student 2 by decreasing the projection rank in Student 3.
For ResNet14, we compress the last residual block which consists of two convolutional layers. We
compress each of the convolutional layers in Students 1 and 2 and the both layers in Student 3.

Table 3 shows the classification accuracy of student networks trained by KEGNET and the baseline
approaches. In MNIST where the dataset and classifier are both simple, the Uniform and Gaussian
baselines also achieve high accuracy which is up to 21.8%p higher than that of Tucker. However,
their accuracy gain becomes much lower in SVHN, and the accuracy becomes even lower than that
of Tucker in Fashion MNIST, meaning that fine-tuning after Tucker decomposition is not helpful at
all. This shows that simple random distributions fail with complex datasets whose manifolds are
far from trivial distributions. We do not report their exact accuracy in Fashion because they keep
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(d) Latent space walking from 0 to 5 in SVHN.

Figure 2: Artificial images generated by five generators of KEGNET for MNIST and SVHN. We fix
the noise variable z to a zero vector in (a) and (b), while we average multiple images with random z
in (c) and (d). The digits are blurry but recognizable especially when averaged by z.

decreasing as we continue the training. On the other hand, KEGNET outperforms all baselines by
learning successfully the data distributions from the given classifiers in all datasets.

5.2.2 Qualitative Analysis

We also analyze qualitatively the extracted data for the image datasets. Figure 2 visualizes artificial
images for MNIST and SVHN, which were generated by the five generators in G. The images seem
noisy but contain digits which are clearly recognizable, even though the generators do not have any
information about the true datasets. KEGNET generates more clear images in SVHN than in MNIST,
because the digits in SVHN have more distinct patterns than in the hand-written digits. The digits
are more clear when averaged from multiple hidden variables, implying that images with different
hidden variables are diverse but share a common feature that the classifier is able to capture. We also
visualize images with soft evidence in Figure 2d by changing smoothly the input label from 0 to 5. It
is shown that the generators create digits following the strength of evidence for each class.

6 Conclusion

We propose KEGNET (Knowledge Extraction with Generative Networks), a novel architecture that
extracts the knowledge of a trained neural network without any observable data. KEGNET learns the
conditional distribution of data points by training the generator and decoder networks, and estimates
the manifold of missing data as a set of artificial data points. Our experiments show that KEGNET is
able to reconstruct unobservable data that were used to train a deep neural network, especially for
image datasets that have distinct and complex manifolds, and improves the performance of data-free
knowledge distillation. Future works include extending KEGNET to knowledge distillation between
neural networks of different structures, such as LeNet5 and ResNet14, or to more complex datasets
such as CIFAR-10/100 [19] that may require a careful design of new generator networks.
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