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Abstract

Federated learning involves jointly learning over
massively distributed partitions of data generated
on remote devices. Naively minimizing an aggre-
gate loss function in such a network may dispro-
portionately advantage or disadvantage some of
the devices. In this work, we propose q-Fair Fed-
erated Learning (q-FFL), a novel optimization
objective inspired by resource allocation strate-
gies in wireless networks that encourages a more
fair accuracy distribution across devices in feder-
ated networks. To solve q-FFL, we devise a scal-
able method, q-FedAvg, that is suited to feder-
ated networks. We validate both the improved
fairness and flexibility of q-FFL and the effi-
ciency of q-FedAvg through simulations on a
suite of federated datasets.

1. Introduction

With the growing prevalence of IoT-type devices, data is
frequently collected and processed outside of the data cen-
ter and directly on distributed devices, such as wearable
devices or mobile phones. Federated learning is a promis-
ing learning paradigm in this setting that pushes statistical
model training to the edge (McMahan et al., 2017).

The number of devices in federated networks is generally
large—ranging from hundreds to millions. While one can
naturally view federated learning as a multi-task learning
problem where each device corresponds to a task (Smith
et al., 2017), the focus is often instead to fit a single global
model over these distributed devices/tasks via some empir-
ical risk minimization objective (McMahan et al., 2017).
Naively minimizing the average loss via such an objective
may disproportionately advantage or disadvantage some of
the devices, which is exacerbated by the fact that the data
are often heterogeneous across devices both in terms of size
and distribution. In this work, we therefore ask: Can we de-
vise an efficient optimization method to encourage a more
fair distribution of the model performance across devices
in federated networks?

There has been tremendous recent interest in developing

fair methods for machine learning. However, current meth-
ods that could help to improve the fairness of the accuracy
distribution in federated networks are typically proposed
for a much smaller number of devices, and may be imprac-
tical in federated settings due to the number of involved
constraints (Cotter et al., 2018). Recent work that has been
proposed specifically for the federated setting has also only
been applied at small scales (2-3 groups/devices), and lacks
flexibility by optimizing only the performance of the single
worst device (Mohri et al., 2019).

In this work, we propose q-FFL, a novel optimization ob-
jective that addresses fairness issues in federated learning.
Inspired by work in fair resource allocation for wireless
networks, q-FFL minimizes an aggregate reweighted loss
parameterized by q such that the devices with higher loss
are given higher relative weight to encourage less vari-
ance in the accuracy distribution. In addition, we pro-
pose a lightweight and scalable distributed method, q-
FedAvg, to efficiently solve q-FFL, which carefully ac-
counts for important characteristics of the federated setting
such as communication-efficiency and low participation of
devices (Bonawitz et al., 2019; McMahan et al., 2017). We
empirically demonstrate the fairness, efficiency, and flex-
ibility of q-FFL and q-FedAvg compared with existing
baselines. On average, q-FFL is able to reduce the variance
of accuracies across devices by 45% while maintaining the
same overall average accuracy.

2. Related Work

Fairness in Machine Learning. There are several
widespread approaches in the machine learning commu-
nity to address fairness, which is typically defined as
the protection of some specific attribute(s) (e.g., (Hardt
et al., 2016)). In addition to preprocess the data (Feld-
man et al., 2015) and post-process the model (Feldman,
2015; Hardt et al., 2016), another set of works optimize
an objective under some explicit fairness constraints dur-
ing training time (Agarwal et al., 2018; Cotter et al., 2018;
Hashimoto et al., 2018; Woodworth et al., 2017; Zafar
et al., 2017; 2015). Our work also enforces fairness during
training, though we define fairness as the accuracy distribu-
tion across devices in federated learning, as opposed to the
protection of a specific attribute (Section 3). Cotter et al.
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(2018) use a notion of ‘minimum accuracy’ as one special
case of the rate constraints, which is conceptually similar
to our goal. However, it requires each device to have one
constraint, which is not practical in the federated setting. In
federated settings, Mohri et al. (2019) proposes a minimax
optimization scheme, Agnostic Federated Learning (AFL),
which optimizes for the performance of the single worst
device. This method has only been applied at small scales
(for a handful of groups). In addition, our objective is more
flexible because q may be tuned based on the amount of
fairness desired.

Fairness in Resource Allocation. Fair resource alloca-
tion has been extensively studied in fields such as net-
work management (Ee & Bajcsy, 2004; Hahne, 1991; Kelly
et al., 1998; Neely et al., 2008) and wireless communica-
tions (Eryilmaz & Srikant, 2006; Nandagopal et al., 2000;
Sanjabi et al., 2014; Shi et al., 2014). In these contexts,
the problem is defined as allocating a scarce shared re-
source, e.g. communication time or power, among many
users. In these cases directly maximizing utilities such as
total throughput usually leads to unfair allocations where
some users receive poor service. Several measurements
have been proposed to balance between fairness and total
throughput. Among them, a unified framework is captured
through α-fairness (Lan et al., 2010; Mo & Walrand, 2000),
in which the emphasis on fairness can be tuned by chang-
ing a single parameter, α. If we think of the global model
as a resource to serve the users (or devices), it is natural
to ask similar questions about the fairness of the service
that devices receive and use similar tools to promote fair-
ness. Despite this, we are unaware of any work that uses
fairness criteria from resource allocation to modify training
objectives in machine learning. Inspired by the α-fairness
metric, we propose a similarly modified objective function,
q-Fair Federated Learning (q-FFL), to encourage a more
fair accuracy distribution across devices in the context of
federated training. We empirically demonstrate its benefits
in Section 4.

Federated and Distributed Optimization. Federated
learning faces fundamental challenges such as expensive
communication, variability in hardware, network connec-
tion, and power of devices, and heterogeneous local data
distribution amongst devices, making it distinct from clas-
sical distributed optimization (Recht et al., 2011; Shalev-
Shwartz & Zhang, 2013; Smith et al., 2018). In order to
reduce communication, as well as to tolerate heterogene-
ity, methods that allow for local updating and low partic-
ipation among devices have become de facto solvers for
this setting (Li et al., 2018; McMahan et al., 2017; Smith
et al., 2017). We incorporate recent advancements in this
field when designing methods to solve the q-FFL objective,
which we describe in Section 3.3.

3. Fair Federated Learning

We first formally define the classical federated learning ob-
jective and methods, and introduce our proposed notion of
fairness in Section 3.1. We then introduce q-FFL, a novel
objective that encourages a more fair accuracy distribution
across all devices (Section 3.2). Finally, in Section 3.3, we
describe q-FedAvg, an efficient distributed method we de-
velop to solve the objective in federated settings.

3.1. Preliminaries: Classical Federated Learning

Federated learning involves fitting a global model on dis-
tributed data generated on hundreds to millions of remote
devices. In particular, the goal is to minimize:

min
w
F (w) =

m∑
k=1

pkFk(w), (1)

where m is the total number of devices, pk ≥ 0, and∑
k pk = 1. The local objective Fk’s can be de-

fined by empirical risks over local data, i.e., Fk(w) =
1
nk

∑nk

jk=1 fjk(w), where nk is the number of samples
available locally. We can set pk to be nk

n , where n =∑
k nk is the total number of samples in the entire dataset.

Most prior work solves (1) by first subsampling devices
with probabilities proportional to nk at each round, and
then applying an optimizer such as Stochastic Gradient De-
scent (SGD) locally to perform updates. These local updat-
ing methods enable flexible and efficient communication
by running the optimizer for a variable number of itera-
tions locally on each device, e.g., compared to traditional
distributed (stochastic) gradient descent, which would sim-
ply calculate a subset of the gradients (Stich, 2019; Wang
& Joshi, 2018; Woodworth et al., 2018; Yu et al., 2019).
FedAvg (Algorithm 2, Appendix A) (McMahan et al.,
2017) is one of the leading methods to solve (1).

However, solving (1) in this manner can implicitly intro-
duce unfairness among different devices. For instance,
the learned model may be biased towards the devices with
higher number of data points. Formally, we define our de-
sired fairness criteria for federated learning below.

Definition 1 (Fairness of distribution). For trained models
w and w̃, we say that model w provides a more fair solu-
tion to Objective (1) than model w̃ if the variance of the
performance of model w on the m devices, {a1, . . . am}, is
smaller than the variance of the performance of model w̃ on
the m devices, i.e., Var(a1, . . . , am) ≤ Var(ã1, . . . , ãm).

In this work, we take ‘performance’ for device k, ak, to
be the testing accuracy of applying the trained model w on
the test data for device k. Our goal is to reduce the variance
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while maintaining the same (or similar) average accuracy.

3.2. The objective: q-Fair Federated Learning (q-FFL)

A natural idea to achieve fairness as defined in (1) would
be to reweight the objective—assigning higher weight to
devices with poor performance, so that the distribution of
accuracies in the network reduces in variance. Note that
this re-weighting must be done dynamically, as the perfor-
mance of the devices depends on the model being trained,
which cannot be evaluated a priori. Drawing inspiration
from α-fairness, a utility function used in fair resource al-
location in wireless networks, we propose the following ob-
jective q-FFL. For given local non-negative cost functions
Fk and parameter q > 0, we define the overall q-Fair Fed-
erated Learning (q-FFL) objective as

min
w

Fq(w) =

m∑
k=1

pk
q + 1

F q+1
k (w) (2)

Intuitively, the larger we set q, the larger relative price we
pay for devices k with high local empirical loss, Fk(w).
Here, q is a tunable parameter that depends on the amount
of fairness we wish to impose in the network. Setting q = 0
does not encourage any fairness beyond the classical fed-
erated learning objective (1). A larger q means that we
emphasize devices with higher losses (lower accuracies),
thus reducing the variance between the accuracy distribu-
tion and potentially inducing more fairness in accordance
with Definition 1.

3.3. The solver: FedAvg-style q-Fair Federated
Learning (q-FedAvg)

We first propose a fair but less efficient method q-FedSGD,
to illustrate the main techniques we use to solve the q-FFL
objective (2). We then provide a more efficient counter-
part q-FedAvg, by considering key properties of federated
algorithms such as local updating schemes.
Hyperparameter tuning: q and step-sizes. In devising
a method to solve q-FFL (2), we begin by noting that it
is important to first determine how to set q. In practice, q
can be tuned based on the desired amount of fairness. It is
therefore common to train a family of objectives for differ-
ent q values so that a practitioner can explore the trade-
off between accuracy and fairness for the application at
hand. Nevertheless, to optimize q-FFL in a scalable fash-
ion, we rely on gradient-based methods, where the step-
size inversely depends on the Lipchitz constant of the func-
tion’s gradient, which is often unknown and selected via
grid search (Ghadimi & Lan, 2013; Nesterov, 2013). As
we intend to optimize q-FFL for various values of q, the
Lipchitz constant will change as we change q—requiring

step-size tuning for all values of q. This can quickly cause
the search space to explode. To overcome this issue, we
propose estimating the local Lipchitz constant of the gradi-
ent for the family of q-FFL by using the Lipchitz constant
we infer on q = 0. This allows us to dynamically adjust
the step-size for the q-FFL objective, avoiding the manual
tuning for each q. In Lemma 2 we formalize the relation
between the Lipschitz constant, L, for q = 0 and q > 0.

Lemma 2. If the non-negative function f(·) has a Lipchitz
gradient with constant L, then for any q ≥ 0 and at any
point w,

Lq(w) = Lf(w)q + qf(w)q−1‖∇f(w)‖2 (3)

is an upper-bound for the local Lipchitz constant of the gra-
dient of 1

q+1f
q+1(·) at point w. Furthermore, the gradient

of 1
q+1f

q+1(·) at point w is fq(w)∇f(w).

See proof in Appendix B.

A first approach: q-FedSGD. In our first fair algorithm q-
FedSGD, we solve Objective (2) using mini-batch SGD on
a subset of devices at each round, and apply the above result
to each selected device to obtain local Lipchitz constants
for gradients of local functions Fk. By averaging those es-
timates, we obtain an estimate for the Lipchitz constant for
the gradient of q-FFL. Then, the step-size (inverse of this
estimate) is applied, like other gradient based algorithms;
see Algorithm 3 in Appendix A for more details.

Algorithm 1 q-FedAvg (proposed method)

1: Input: K, T , q, 1/L, η, w0, pk, k = 1, · · · ,m
2: for t = 0, · · · , T − 1 do
3: Server chooses a subset St of K devices at random

(each device k is chosen with prob. pk)
4: Server sends wt to all chosen devices
5: Each device k updating wt for E epochs of SGD

with step size η to obtain w̄t+1
k

6: Each device computes:
∆wtk = wt − w̄t+1

k ,∆t
k = F qk (wt)∆wtk

htk = qF q−1k (wt)‖∆wtk‖2 + LF qk (wt)

7: Each chosen device k sends ∆t
k and htk to the server

8: Server aggregates the computes wt+1 as:

wt+1 = wt −
∑
k∈St

∆t
k∑

k∈St
htk

9: end for

Improving communication efficiency: q-FedAvg. In
federated settings, communication-efficient schemes that
allow for local updating have become de facto solvers. We
incorporate this technique by allowing each selected device
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to run some number of local updates and then apply the up-
dates in the gradient computation of q-FFL. The details of
our method (q-FedAvg) are given in Algorithm 1. Note
that when q=0, q-FFL corresponds to the normal objective
in federated learning (Equation (1)), and q-FedAvg is also
reduced to FedAvg (McMahan et al., 2017) where no fair-
ness modification is introduced.

4. Evaluation

We first describe our experimental setup, then demonstrate
the improved fairness of the q-FFL objective by compar-
ing q-FFL with several baselines, and finally show the effi-
ciency of q-FedAvg compared with q-FedSGD.

Experiment setups. We explore both convex and non-
convex models on four federated datasets curated from
prior work in federated learning (Smith et al., 2017; Li
et al., 2018; Caldas et al., 2018). Full details of the datasets
and models are given in Appendix D. Throughout the ex-
periments, we show results on the Vehicle dataset. Similar
results on all datasets are provided in Appendix C.
Fairness of q-FFL. We verify that the proposed objective
q-FFL leads to more fair solutions (according to Defini-
tion 1) for federated data, compared with FedAvg and two
other baselines that are likely to impose fairness in feder-
ated networks.
(1) Compare with FedAvg. In Figure 1 (left), we compare
the final testing accuracy distributions of two objectives
(q=0 and a tuned value of q=5) averaged across 5 random
shuffles of Vehicle. We observe that the objective with q=5
results in more centered (i.e., fair) testing accuracy distri-
butions with lower variance. We further report the worst
and best 10% testing accuracies and the variances of accu-
racies in Table 1. We see that the average testing accuracy
remains almost unchanged with the proposed objective de-
spite significant reductions in variance. See similar results
on other datasets in Figure 2 and Table 2 in Appendix C.
(2) Compare with weighing each device equally. We com-
pare q-FFL with a heuristic that samples devices uniformly
and report testing accuracy in Figure 1 (middle). A table
with the statistics of accuracy distribution on all datasets is
given in the appendix in Table 3. While the ‘weighing each
device equally’ heuristic tends to outperform our method
in training accuracy distributions (Figure 5 and Table 7 in
Appendix D.3), our method produces more fair solutions in
terms of testing accuracies. One explanation for this is that
uniform sampling is a static method and can easily overfit
to devices with very few data points, whereas q-FFL has
better generalization properties due to its dynamic nature.
(3) Compare with weighing each device adversarially. We
further compare with AFL (Mohri et al., 2019), which
weighs each device adversarially, namely, optimizes for the
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Figure 1. Fairness of q-FFL and efficiency of q-FedAvg. Left:
Fairness of q-FFL q>0 compared with the original objective
(q=0, Equation (1)). Middle: Fairness of q-FFL q>0 compared
with the uniform sampling baseline. Right: q-FedAvg converges
faster than q-FedSGD.

Table 1. Statistics of the testing accuracy distribution for q-FFL
on Vehicle. By setting q > 0, the variance of the final accu-
racy distribution decreases, and the worst 10% accuracy increases,
while the overall accuracy remains fairly constant.

Obj. Avg. Worst 10% Best 10% Var.
q = 0 87.3% 43.0% 95.7% 291
q = 5 87.7% 69.9% 94.0% 48

performance of the device with the highest loss. This is the
only work we are aware of that aims to address fairness is-
sues in federated learning. See Appendix D.2 for details
of our AFL implementation. We also observe that q-FFL
outperforms AFL when q is set appropriately (Table 4, Ap-
pendix D). We note that q is also tunable depending on the
amount of fairness desired. Interestingly, we observe q-
FFL converges faster compared with AFL (see Figure 7 in
Appendix D.3) in terms of communication rounds.
Choosing q. A natural question is determine how q should
be tuned in the q-FFL objective. The framework is flexible
in that it allows one to choose q to tradeoff between reduced
variance of the accuracy distribution and a high average
accuracy. In particular, a reasonable approach in practice
would be to run Algorithm 1 with multiple q’s in parallel
to obtain multiple final global models, and then let each
device select amongst these based on performance on the
validation data. We show benefits of this device-specific
strategy in Table 8 in Appendix D.3.

Efficiency of q-FedAvg. Finally, we show the efficiency
of q-FedAvg by comparing Algorithm 1 with its non-
local-updating baseline q-FedSGD (Algorithm 3) with the
same objective (q > 0). At each communication round,
q-FedAvg runs one epoch of local updates on each se-
lected device, while q-FedSGD runs gradient descent using
all local training data on that device. In Figure 1 (right),
q-FedAvg converges faster than q-FedSGD in terms of
communication rounds. We note here that these two meth-
ods communicate and compute equivalent amounts at each
round. See full (and better) results on all datasets in Ap-
pendix C. Our method is also lightweight, and can be easily
integrated into existing implementations of federated learn-
ing algorithms such as TensorFlow Federated (TFF).
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A. Algorithms

We summarize the FedAvg algorithm proposed in (McMahan et al., 2017) below.

Algorithm 2 Federated Averaging (McMahan et al., 2017) (FedAvg)

Input: K, T , η, E, w0, N , pk, k = 1, · · · , N
for t = 0, · · · , T − 1 do

Server chooses a subset St of K devices at random (each device k is chosen with probability pk)
Server sends wt to all chosen devices
Each device k updates wt for E epochs of SGD on Fk with step-size η to obtain wt+1

k

Each chosen device k sends wt+1
k back to the server

Server aggregates the w’s as wt+1 = 1
K

∑
k∈St

wt+1
k

end for

We summarize our proposed method q-FedSGD below.

Algorithm 3 q-FedSGD

1: Input: K, T , q, 1/L, w0, pk, k = 1, · · · ,m
2: for t = 0, · · · , T − 1 do
3: Server chooses a subset St of K devices at random (each device k is chosen with prob. pk)
4: Server sends wt to all chosen devices
5: Each device computes:

∆t
k = F qk (wt)∇Fk(wt)

htk = qF q−1k (wt)‖∇Fk(wt)‖2 + LF qk (wt)

6: Each chosen device k sends ∆t
k and htk to the server

7: Server aggregates the computes wt+1 as:

wt+1 = wt −
∑
k∈St

∆t
k∑

k∈St
htk

8: end for

B. Proof for Lemma 2

Proof. At any point w, we can compute ∇2f(w)

∇2f(w) = qfq−1(w)∇f(w)∇T f(w)︸ ︷︷ ︸
�‖∇f(w)‖2×I

+fq(w)∇2f(w)︸ ︷︷ ︸
�L×I

. (4)

As a result, ‖∇2f(w)‖2 ≤ Lq(w) = Lf(w)q + qf(w)q−1‖∇f(w)‖2.

C. Full Results

Fairness of q-FFL. We demonstrate the improved fairness of q-FFL on all the four datasets in Figure 2 and Table 2.

Comparison with uniform sampling. We compare q-FFL with uniform sampling schemes and report testing accuracy
on all datasets in Figure 3. A table with the final accuracies and variances is given in Table 3. While the ‘weighing each
device equally’ heuristic tends to outperform our method in training accuracy distributions (Figure 5 and Table 7), our
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Figure 2. q-FFL leads to fairer test accuracy distributions. With q > 0, the distributions shift towards the center as low accuracies
increase at the cost of decreasing high accuracies on some devices. Setting q=0 corresponds to the original objective (Equation (1)). The
selected q values for q > 0 on the four datasets, as well as distribution statistics, are shown in Table 2.

Table 2. Statistics of the testing accuracy distribution for q-FFL. By setting q > 0, the accuracy of the worst 10% devices is increased
at the cost of possibly decreasing the accuracy of the best 10% devices. While the average accuracy remains similar, the variance of the
final accuracy distribution decreases.

Dataset Objective Average Worst 10% Best 10% Variance

Synthetic q = 0 80.8% ± .9% 18.8% ± 5.0% 100.0% ± 0.0% 724 ± 72

q = 1 79.0% ± 1.2% 31.1% ± 1.8% 100.0% ± 0.0% 472 ± 14

Vehicle q = 0 87.3% ± .5% 43.0% ± 1.0% 95.7% ± 1.0% 291 ± 18

q = 5 87.7% ± .7% 69.9% ± .6% 94.0% ± .9% 48 ± 5

Sent140 q = 0 65.1% ± 4.8% 15.9% ± 4.9% 100.0% ± 0.0% 697 ± 132

q = 1 66.5% ± .2% 23.0% ± 1.4% 100.0% ± 0.0% 509 ± 30

Shakespeare q = 0 51.1% ± .3% 39.7% ± 2.8% 72.9% ± 6.7% 82 ± 41

q = .001 52.1% ± .3% 42.1% ± 2.1% 69.0% ± 4.4% 54 ± 27

Figure 3. q-FFL (q > 0) compared with uniform sampling. In terms of testing accuracy, our objective produces more fair solutions than
uniform sampling. Distribution statistics are provided in Table 3.

Table 3. More statistics indicating the resulting fairness of q-FFL compared with the uniform sampling baseline. Again, we observe that
the testing accuracy of the worst 10% devices tends to increase, and the variance of the final testing accuracies is smaller.

Dataset Objective Average Worst 10% Best 10% Variance

Synthetic uniform 82.2% ± 1.1% 30.0% ± .4% 100.0% ± 0.0% 525 ± 47

q = 1 79.0% ± 1.2% 31.1% ± 1.8% 100.0% ± 0.0% 472 ± 14

Vehicle uniform 86.8% ± .3% 45.4% ± .3% 95.4% ± .7% 267 ± 7

q = 5 87.7% ± 0.7% 69.9% ± .6% 94.0% ± .9% 48 ± 5

Sent140 uniform 66.6% ± 2.6% 21.1% ± 1.9% 100.0% ± 0.0% 560 ± 19

q = 1 66.5% ± .2% 23.0 % ± 1.4% 100.0% ± 0.0% 509 ± 30

Shakespeare uniform 50.9% ± .4% 41.0% ± 3.7% 70.6% ± 5.4% 71 ± 38

q = .001 52.1% ± .3% 42.1% ± 2.1% 69.0% ± 4.4% 54 ± 27
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Table 4. Our objective compared with baseline of weighing devices adversarially. q-FFL (q > 0) outperforms AFL on devices with
lowest testing accuracy. The tunable parameter q controls how much fairness we would like to achieve. Each accuracy is averaged
across 5 runs with different random initializations.

Adult Fashion MNIST
Objectives average Dr. non-Dr. average shirt pullover T-shirt
q-FFL, q=0 83.2% ± .1% 69.9% ± .4% 83.3% ± .1% 78.8% ± .2% 66.0% ± .7% 84.5% ± .8% 85.9% ± .7%

AFL 82.5% ± .5% 73.0% ± 2.2% 82.6% ± .5% 77.8% ± 1.2% 71.4% ± 4.2% 81.0% ± 3.6% 82.1% ± 3.9%

q-FFL, q1>0 82.6% ± .1% 74.1% ± .6% 82.7% ± .1% 77.8% ± .2% 74.2% ± .3% 78.9% ± .4% 80.4% ± .6%

q-FFL, q2>q1 82.3% ± .1% 74.4% ± .9% 82.4% ± .1% 77.1% ± .4% 74.7% ± .9% 77.9% ± .4% 78.7% ± .6%
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Figure 4. Fix an objective (i.e., using the same q) for each dataset, q-FedAvg (Algorithm 1) compared with q-FedSGD (Algorithm 3).
We can see that our method adopting local updating schemes converges faster in terms of communication rounds on most datasets.

method produces more fair solutions in terms of testing accuracies. One explanation for this is that uniform sampling
is a static method and can easily overfit to devices with very few data points, whereas q-FFL has better generalization
properties due to its dynamic nature.

Comparison with weighing each device adversarially. We show the results of comparing q-FFL with AFL on the
two datasets in Table 4. q-FFL outperforms AFL in terms of increasing the lowest accuracies. In addition, q-FFL is more
flexible as the parameter q enables the trade-off between increasing the worst accuracies and decreasing the best accuracies.

Efficiency of q-FedAvg. In Figure 4, we show that on most datasets, q-FedAvg converges faster than q-FedSGD in
terms of communication rounds due to its local updating scheme. We note here that number of rounds is a reasonable
metric for comparison between these methods as they process the same amount of data and perform equivalent amount of
communication at each round. Our method is also lightweight, and can be easily integrated into existing implementations
of federated learning algorithms such as TensorFlow Federated (TFF).

D. Experimental Details

D.1. Datasets and Models

We provide full details on the datasets and models used in our experiments. The statistics of four federated datasets are
summarized in Table 5. We report total number of devices, total number of samples, and mean and deviation in the sizes
of total data points on each device. Additional details on the datasets and models are described below.

• Synthetic: We follow a similar set up as that in (Shamir et al., 2014) and impose additional heterogeneity. The
model is y = argmax(softmax(Wx + b)), x ∈ R60,W ∈ R10×60, b ∈ R10, and the goal is to learn a global W and
b. Samples (Xk, Yk) and local models on each device k satisfies Wk ∼ N (uk, 1), bk ∼ N (uk, 1), uk ∼ N (0, 1);
xk ∼ N (vk,Σ), where the covariance matrix Σ is diagonal with Σj,j = j−1.2. Each element in vk is drawn from
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N (Bk, 1), Bk ∼ N(0, 1). There are 100 devices in total and the number of samples on each devices follows a power
law.

• Vehicle1: We use the same Vehicle Sensor (Vehicle) dataset as (Smith et al., 2017), modelling each sensor as a device.
Each sample has a 100-dimension feature and a binary label indicating whether this sample is on an AAV-type or DW-
type vehicle. We train a linear SVM. We tune the hyperparameters in SVM and report the best configuration.

• Sent140: It is a collection of tweets from Sentiment140 (Go et al., 2009) (Sent140). The task is text sentiment analysis
which we model as a binary classification problem. The model takes as input a 25-word sequence, embeds each word
into a 300-dimensional space using pretrained Glove (Pennington et al., 2014), and outputs a binary label after two
LSTM layers and one densely-connected layer.

• Shakespeare: This dataset is built from The Complete Works of William Shakespeare (McMahan et al., 2017; William
Shakespeare. The Complete Works of William Shakespeare). Each speaking role in the plays is associated with a device.
We subsample 31 speaking roles to train a deep model for next character prediction. The model takes as input an 80-
character sequence, embeds each character into a learnt 8-dimensional space, and outputs one character after two LSTM
layers and one densely-connected layer.

Table 5. Statistics of Real Federated Datasets

Dataset Devices Samples Samples/device

mean stdev
Synthetic 100 12,697 127 73
Vehicle 23 43,695 1,899 349
Sent140 1,101 58,170 53 32
Shakespeare 31 116,214 3,749 6,912

D.2. Implementation Details

D.2.1. MACHINES

We simulate the federated setting (1 server and K devices) on a server with 2 Intel R© Xeon R© E5-2650 v4 CPUs and 8
NVidia R© 1080Ti GPUs.

D.2.2. SOFTWARES

We implement all code in TensorFlow (Abadi et al., 2016) Version 1.10.1.

D.2.3. IMPLEMENTATION AND COMPARISON WITH AFL.

We implement a non-stochastic version of AFL where all devices are selected and updated each round and do a grid search
on the AFL hyperparameters, γw and γλ. In order to draw a fair comparison, we modify Algorithm 1 by sampling all
devices and letting each of them run gradient descent at each round. We use the same public datasets (Adult and Fashion
MNIST) as in (Mohri et al., 2019).

D.2.4. HYPERPARAMETERS

We randomly split data on each local device into 80% training set, 10% testing set, and 10% validation set. We tune q from
{0.001, 0.01, 0.1, 1, 2, 5, 10, 15} on the validation set and report accuracy distributions on the testing set. For each dataset,

1http://www.ecs.umass.edu/˜mduarte/Software.html

http://www.ecs.umass.edu/~mduarte/Software.html
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Table 6. Average testing accuracy under q-FFL objectives. We show that the resulting solutions of q=0 and q¿0 objectives have approx-
imately the same accuracies both with respect to all data points and with respect to all devices.

Dataset Objective Accuracy w.r.t. Data Points Accuracy w.r.t. Devices

Synthetic q = 0 80.8% ± .9% 77.3% ± .6%

q = 1 79.0% ± 1.2% 76.3% ± 1.7%

Vehicle q = 0 87.3% ± .5% 85.6% ± .4%

q = 5 87.7% ± .7% 86.5% ± .7%

Sent140 q = 0 65.1% ± 4.8% 64.6% ± 4.5%

q = 1 66.5% ± .2% 66.2% ± .2%

Shakespeare q = 0 51.1% ± .3% 61.4% ± 2.7%

q = .001 52.1% ± .3% 60.0% ± .5%

Figure 5. q-FFL (q > 0) compared with uniform sampling in training accuracy. We see that in most cases uniform sampling has higher
(and more fair) training accuracies due to the fact that it is overfitting to devices with few samples.

we repeat this process for five randomly selected train/test/validation splits, and report the mean and standard deviation
across these five runs where applicable. For Synthetic, Vehicle, Sent140, and Shakespeare, optimal2 q values are 1, 5, 1,
and 0.001 respectively. We randomly sample 10 devices each round. We tune the learning rate on FedAvg and use the
same learning rate for all experiments of that dataset. The learning rates for Synthetic, Vehicle, Sent140, and Shakespeare
are 0.1, 0.01, 0.03, and 0.8 respectively. When running AFL methods, we search for a best γw and γλ such that AFL
achieves the highest testing accuracy on the device with the highest loss within a fixed number of rounds. For Adult, we
use γw = 0.1 and γλ = 0.1; for Fashion MNIST, we use γw = 0.001 and γλ = 0.01. We use the same γw as step sizes
for q-FedAvg on Adult and Fashion MNIST. In Table 4, q1 = 0.01, q2 = 2 for q-FFL on Adult and q1 = 5, q2 = 15 for
q-FFL on Fashion MNIST. The number of local epochs is fixed to 1 whenever we do local updates.

D.3. Additional Experiments

Average testing accuracy with respect to devices. We have shown that q-FFL leads to more fair accuracy distributions
while maintaining approximately the same testing accuracies in Section 4. Note that we report average testing accuracy
with respect to all data points in Table 1 and 2. We observe similar results on average accuracy with respect to all devices
between q = 0 and q > 0 objectives, as shown in Table 6.

Efficiency of q-FFL compared with AFL. One added benefit of q-FFL is that it leads to faster convergence than AFL
even when we use non-local-updating methods for both objectives. In Figure 7, we show that when fixing the final testing
accuracy for the single worst device, q-FFL converges faster than AFL. As the number of devices increases (from Fashion
MNIST to Vehicle), the performance gap between AFL and q-FFL becomes larger because AFL introduces larger variance.

2By optimal we mean the setting where the variance of accuracy decreases the most, while keeping the overall average accuracy
unchanged.
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Table 7. More statistics showing that uniform sampling outperforms q-FFL in terms of training accuracies. We observe that uniform
sampling could result in more fair training accuracy distributions with smaller variance in most cases.

Dataset Objective Average Worst 10% Best 10% Variance

Synthetic uniform 83.5% ± .2% 42.6% ± 1.4% 100.0% ± 0.0% 366 ± 17

q = 1 78.9% ± .2% 41.8% ± 1.0% 96.8% ± .5% 292 ± 11

Vehicle uniform 87.3% ± .3% 46.6% ± .8% 94.8% ± .5% 261 ± 10

q = 5 87.8% ± .5% 71.3% ± 2.2% 93.1% ± 1.4% 122 ± 12

Sent140 uniform 69.1% ± .5% 42.2% ± 1.1% 91.0% ± 1.3% 188 ± 19

q = 1 68.2% ± .6% 46.0 % ± .3% 88.8% ± .8% 143 ± 4

Shakespeare uniform 57.7% ± 1.5% 54.1% ± 1.7% 72.4% ± 3.2% 32 ± 7

q = .001 66.7% ± 1.2% 48.0% ± .4% 71.2% ± 1.9% 56 ± 9

Figure 6. The convergence speed of q-FFL compared with FedAvg. We plot the distance to the highest accuracy achieved versus
communication rounds. Although q-FFL with q > 0 is a more difficult optimization problem, for the q values we choose that could lead
to more fair results, the convergence speed is comparable to that of q = 0.

Choosing q. We solve q-FFL with q ∈ {0, 0.001, 0.01, 0.1, 1, 2, 5, 10} in parallel. After training, each device selects the
best resulting model based on the validation data and tests the performance of the model using testing set. We report the
results in terms of testing accuracy in Table 8. Using this strategy, accuracy variance is reduced and average accuracy is
increased. However, this will induce more local computation and additional communication load in each round. But this
does not increase the number of communication rounds.

Convergence speed of q-FFL. In Section 4, we show that our solver q-FedAvg using local updating schemes converges
significantly faster than q-FedSGD. A natural question one might ask is: will the q-FFL (q > 0) objective slows the
convergence compared with FedAvg? We empirically investigate this on real datasets. We use q-FedAvg to solve q-FFL,
and compare it with FedAvg. As demonstrated in Figure 6, the q values we are choosing that result in more fair solutions
do not significantly slowdown convergence.

Table 8. Effects of running q-FFL with several q’s in parallel. Multiple global models (corresponding to different q’s) are maintained
independently during the training process. While this adds additional local computation and more communication load per round, the
device-specific strategy has the added benefit of increasing the accuracies of devices with worst 10% accuracies and devices with best
10% accuracies simultaneously.

Dataset Objective Average Worst 10% Best 10% Variance

Vehicle
q=0 87.3% ± .5% 43.0% ± 1.0% 95.7% ± 1.0% 291 ± 18

q=5 87.7% ± .7% 69.9% ± .6% 94.0% ± .9% 48 ± 5

multiple q’s 88.5% ± .3% 70.0% ± 2.0% 95.8% ± .6% 52 ± 7

Shakespeare
q=0 51.1% ± .3% 39.7% ± 2.8% 72.9% ± 6.7% 82 ± 41

q=.001 52.1% ± .3% 42.1% ± 2.1% 69.0% ± 4.4% 54 ± 27

multiple q’s 52.0 ± 1.5% % 41.0% ± 4.3% 72.0% ± 4.8% 72 ± 32



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Fair Resource Allocation in Federated Learning

Figure 7. q-FFL is more efficient than AFL. With the worst device achieving the same final testing accuracy, q-FFL converges faster than
AFL. From Fashion MNIST to Vehicle, as the number of devices increases, the performance gap is larger. We run full gradient descent
at each round for both methods.


