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ABSTRACT

Despite being able to capture a range of features of the data, high accuracy models
trained with supervision tend to make similar predictions. This seemingly implies
that high-performing models share similar biases regardless of training method-
ology, which would limit ensembling benefits and render low-accuracy models
as having little practical use. Against this backdrop, recent work has developed
quite different training techniques, such as large-scale contrastive learning, yielding
competitively high accuracy on generalization and robustness benchmarks. This
motivates us to revisit the assumption that models necessarily learn similar func-
tions. We conduct a large-scale empirical study of models across hyper-parameters,
architectures, frameworks, and datasets. We find that model pairs that diverge more
in training methodology display categorically different generalization behavior,
producing increasingly uncorrelated errors. We show these models specialize in
subdomains of the data, leading to higher ensemble performance: with just 2 mod-
els (each with ImageNet accuracy 7̃6.5%), we can create ensembles with 83.4%
(+7% boost). Surprisingly, we find that even significantly low-accuracy models
can be used to improve high-accuracy models. Finally, we show diverging training
methodology yield representations that capture overlapping (but not supersetting)
feature sets which, when combined, lead to increased downstream performance.

1 INTRODUCTION

Over the years, the machine learning field has developed myriad techniques for training neural
networks. In image classification, these include data augmentation, regularization, architectures,
losses, pre-training schemes, and more. Such techniques have highlighted the ability of networks to
capture diverse features of the data: textures/shapes (Geirhos et al., 2018), robust/non-robust features
(Ilyas et al., 2019), and even features that fit a random, pre-determined classifier (Hoffer et al., 2018).

Despite this representation-learning power, methods that yield high generalization performance
seem to produce networks with little behavior diversity: models make similar predictions, with
high-accuracy models rarely making mistakes that low-accuracy models predict correctly (Mania
et al., 2019). Additionally, the quality of features learned (e.g.: for downstream tasks) seems dictated
by upstream performance (Kornblith et al., 2019). Finally, training on subsets of the data yields
low-accuracy models that don’t make performant ensembles (Nixon et al., 2020). This seemingly
suggests that high-performing models share similar biases, regardless of training methodology.

Without behavior diversity, ensemble benefits are limited to reducing noise, since models make
correlated errors (Perrone & Cooper, 1992; Opitz & Maclin, 1999). Without feature diversity,
representations might not capture important features for downstream tasks, since feature reuse has
been shown to be crucial for transfer learning (Neyshabur et al., 2020). Without knowing the effect
of training methodology, one might conclude that low-accuracy models have no practical use, since
their predictions would be dominated by high-accuracy ones.

One open question is if these findings faced unavoidable selection bias, since the highest-performing
models have historically been trained with similar supervised objectives on IID datasets. Up until
recently, this hypothesis was difficult to test. That changed with the recent success of large-scale
contrastive learning, which produces competitively-high accuracy on standard generalization and
robustness benchmarks (Radford et al., 2021; Jia et al., 2021). This motivates revisiting the question:

How does training methodology affect learned representations and prediction behavior?
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To settle these questions, we conduct a systematic empirical study of 82 models, which we train or
collect, across hyper-parameters, architectures, objective functions, and datasets, including the latest
high performing models CLIP, ALIGN, SimCLR, BiT, ViT-G/14, and MPL. In addition to using
different techniques, these new models were trained on data collected very differently, allowing us to
probe the effect of both training objective, as well as pre-training data. We categorize these models
based on how their training methodologies diverge from a typical, base model and show:

1. Model pairs that diverge more in training methodology (in order: reinitializations ) hyper-
parameters ) architectures ) frameworks ) datasets) produce increasingly uncorrelated errors.

2. Ensemble performance increases as error correlation decreases, due to higher ensemble
efficiency. The most typical ImageNet model (ResNet-50, 76.5%), and its most different
counterpart (ALIGN-ZS, 75.5%) yield 83.4% accuracy when ensembled, a +7% boost.

3. Contrastively-learned models display categorically different generalization behavior, special-
izing in subdomains of the data, which explains the higher ensembling efficiency. We show
CLIP-S specializes in antropogenic images, whereas ResNet-50 excels in nature images.

4. Surprisingly, we find that low-accuracy models can be useful if they are trained differently
enough. By combining a high-accuracy model (BiT-1k, 82.9%) with only low-accuracy
models (max individual acc. 77.4%), we can create ensembles that yield as much as 86.7%.

5. Diverging training methodology yield representations that capture overlapping (but not super-
setting) feature sets which, when concatenated, lead to increased downstream performance
(91.4% on Pascal VOC, using models with max individual accuracy 90.7%).

2 RELATED WORK

Diversity in Ensembles. It is widely understood that good ensembles are made of models that are
both accurate and make independent errors (Perrone & Cooper, 1992; Opitz & Maclin, 1999; Wen
et al., 2020). Beyond improving ensemble performance, finding diverse solutions that equally well
explain the observations can help quantify model uncertainty (also known as epistemic uncertainty)
– what the model does not know because training data was not appropriate (Kendall & Gal, 2017;
Fort et al., 2019). Many works have explored ways of finding such solutions (Izmailov et al., 2018).
Boostrapping (Freund et al., 1996) (ensembling models trained on subsets of the data) was found not
to produce deep ensembles with higher accuracy than a single model trained on the entire dataset
(Nixon et al., 2020). Another work has examined the effect of augmentation-induced prediction
diversity on adversarial robustness (Liu et al., 2019). More relevant to us, Wenzel et al. (2020) and
Zaidi et al. (2021) have explored the effect of random hyper-parameters and architectures respectively,
finding best ensembles when combining diverse models, albeit still considering similar frameworks.

Model Behavior Similarity. These attempts were hindered as many high-performing techniques
seem to produce similar prediction behavior. Mania et al. (2019) demonstrates, via “dominance
probabilities”, that high-accuracy models rarely make mistakes that low-accuracy models predict
correctly. This indicates that, within the models studied, high-accuracy models “dominate” the
predictions of low-accuracy ones. Recht et al. (2019) shows that out-of-distribution robustness seems
correlated with in-distribution performance. Relatedly, Kornblith et al. (2019) shows that upstream
and downstream performance are very correlated. These jointly indicate that high-accuracy models
learn strictly better representations, diminishing the importance of low-accuracy solutions (even if
they are diverse). Finally, Fort et al. (2019) shows that subspace-sampling methods for ensembling
generate solutions that, while different in weight space, remain similar in function space, which gives
rise to an insufficiently diverse set of predictions.

Contrastive-Learning Models; Different Large-Scale Datasets. This model behavior similarity
might be explained by the fact that the training techniques that yield high performance on image
classification tasks have been relatively similar, mostly relying on supervised learning on ImageNet,
optionally pre-training on a dataset with similar distribution. Recently, various works have demon-
strated the effectiveness of learning from large-scale data using contrastive learning (Radford et al.,
2021; Jia et al., 2021). They report impressive results on out-of-distribution benchmarks, and have
been shown to have higher dominance probabilities (Andreassen et al., 2021). These represent some
of the first models to deviate from standard supervised training (or finetuning) on downstream data,
while still yielding competitive accuracy. They add to the set of high-performing training techniques,
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which include data augmentation (Cubuk et al., 2018; 2020), regularization (Srivastava et al., 2014;
Szegedy et al., 2016; Ghiasi et al., 2018), architectures (Tan & Le, 2019; Dosovitskiy et al., 2020; Hu
et al., 2018; Iandola et al., 2014; Li et al., 2019; Szegedy et al., 2016; Simonyan & Zisserman, 2014;
Sandler et al., 2018), losses (Chen et al., 2020; Radford et al., 2021; Jia et al., 2021), pre-training
schemes (Kolesnikov et al., 2020; Pham et al., 2021), and provide the motivation for revisiting the
question of whether training methodology can yield different model behavior.

3 METHOD

3.1 MODEL CATEGORIZATION

In order to evaluate the performance of learned representations as a function of training methodology,
we define the following categories, which classify model pairs based on their training differences:

1. Reinits: identical models, just different in reinitialization.

2. Hyper-parameters: models of the same architecture trained with different hyper parameters
(e.g.: weight decay, learning rate, initialization scheme, etc).

3. Architectures: models with different architectures, but still trained within the same frame-
work and dataset (e.g.: ResNet and ViT, both with ImageNet supervision).

4. Frameworks: models trained with different optimization objectives, but on same dataset
(e.g.: ResNet and SimCLR, respectively supervised and contrastive learning on ImageNet).

5. Datasets: models trained on large-scale data (e.g.: CLIP or BiT – trained on WIT or JFT).

In some sense, model categories can be supersets of one another: when we change a model archi-
tecture, we may also change the hyper-parameters used to train such architecture, to make sure that
they are optimal for training this new setting. Unless stated otherwise, all ensembles are comprised
of a fixed base model, and another model belonging to one of the categories above. This way, each
category is defined relative to the base model: model pairs in a given category will vary because
Model 2 is different than the base model along that axis. The result is that as we navigate along
model categories (Reinit → ... → Dataset), we will naturally be measuring the effect of increasingly
dissimilar training methodology. See Appendix Table 1 for details.

3.2 MODEL SELECTION

We collect representations and predictions for 82 models, across the many categories above. We
fix ResNet-50, trained with RandAugment, as our base model. ResNet is a good candidate for a
base model since it is one of the most typical ImageNet classification models, and the de-facto
standard baseline for this task. In total, we train/collect models in the categories: 1) Reinit; 2) Hyper-
parameters (51): varying dropout, dropblock, learning rate, and weight decay, sometimes jointly;
3) Architectures (17): including EfficientNet, ViT, DenseNet, VGG; 4) Framework (2): including
SimCLR, and models trained with distillation; and 5) Dataset (12): including CLIP, ALIGN, BiT,
and more, trained on WIT (Radford et al., 2021), the ALIGN dataset, JFT (Sun et al., 2017), etc. We
additionally collect high-performing models MPL, ALIGN (L-BFGS), ViT-G/14, BiT-1k, CLIP-L,
EfficientNet-B3 for some of our analyses. These are some of the latest, highest-performing models
for ImageNet classification.

We found it necessary to calibrate all models using temperature scaling (Roelofs et al., 2020; Guo
et al., 2017) to maximize ensemble performance. Finally, unless stated otherwise, we only use models
in the same narrow accuracy range (74-78% accuracy on ImageNet), which guarantees that the effects
observed are indeed a function of diverging training methodology, and not of any given model being
intrinsically more performant than another. A complete list of models can be found in the Appendix.

3.3 ENSEMBLING

In our paper, we use ensembling as a tool for understanding: as such, our goal is not to find methods to
ensemble the highest accuracy models and reach state-of-the-art. Instead, we wish to use ensembling
to probe whether/when training methodology yields uncorrelated (and therefore useful) predictions.
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Figure 1: As training methodology diverges (Reinit → Dataset), errors become uncorrelated.
Left: ’Observed error inconsistency’ is the fraction of examples where only one model in the pair
makes a correct prediction. Higher error inconsistency indicates the model errors are uncorrelated.
Right: As models are trained with increasingly different methodologies, their error inconsistency
grows, providing an opportunity for converting these examples into correct ensemble predictions.

4 RESULTS

In order to understand whether model similarity reported in literature varies as a function of training
methodology, we evaluate error correlation by measuring the number of test-set examples where
one model predicts the correct class, and the other predicts an incorrect class. We call this Error
Inconsistency, as it complements the error consistency measure, defined in Geirhos et al. (2020).

We choose error inconsistency to measure error correlation because it allows us to connect the
ensemble prediction diversity (which we are interested in quantifying) directly into performance.
That is, when errors are consistent (i.e.: both models make a correct prediction, or both models
make an incorrect prediction), this agreement directly translates into higher/lower accuracy after
ensembling. When errors are inconsistent (i.e.: when one model is correct and another is incorrect),
the ensemble prediction will be determined by the models’ confidences. If a model is sufficiently
confident, its prediction will “win” the ensembling procedure. If this model’s prediction was correct,
we say that this prediction was “converted” into a correct ensemble prediction.

4.1 AS TRAINING METHODOLOGY DIVERGES, ERRORS BECOME MORE UNCORRELATED

In Fig. 1 we see that, as we compare increasingly different training methodologies (“Reinit” → ... →
“Dataset”), error inconsistency increases – the number of examples where only one model makes a
correct prediction. This indicates that as training methodology diverges, model predictions become
dissimilar and, as a result, errors become uncorrelated. As the framework and dataset categories can
be orthogonal, we note that models with the most error inconsistency tend to modify both.

This also represents an opportunity for these uncorrelated mistakes to be converted into a correct
prediction, when we ensemble the models. Such an opportunity will be beneficial if the conversion
rate of these examples is higher than the decrease in number of examples where both models made
correct predictions. As we will see in the following section, this indeed happens.

4.2 AS UNCORRELATED ERRORS INCREASE, SO DOES ENSEMBLE EFFICIENCY

In order to assess whether these increased uncorrelated errors can be beneficial, we measure how
models in the various categories ensemble. That is, we ensemble our base model with models of the
various categories, and measure the ensemble’s accuracy, relative to its member models.

Per Fig. 2, as uncorrelated errors increase, so does ensemble performance (left). Additionally, because
we restrict our models to ones within the narrow accuracy range 74-78%, we guarantee that this
relative improvement translates into absolute improvement (center), and is not due to any individual
ensemble member being intrinsically better than another. Relative to our base model ResNet-50
(76.5% on ImageNet), the most differently-trained model ALIGN-ZeroShot (75.5%) yields 83.4%
top-1 accuracy when ensembled, a boost of nearly 7% accuracy.
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Figure 2: As uncorrelated errors increase, so does ensemble performance (left, center), and so
does ensemble efficiency (right). Left: Error inconsistency is linearly correlated with the ensemble
performance improvement, relative to the mean accuracy of the models in the ensemble. Stars
represent averages over models in each category (w/ error bars). Center: Because we limited our
analysis to models in the same 74-78% accuracy range, the increase in relative accuracy translates
into absolute accuracy boost, with best performing ensembles comprising of models whose training
methodologies are most different. Right: Surprisingly, the conversion rate – the rate at which these
examples are converted into correct predictions by the ensemble – also increases. This indicates that
the benefits of combining divergently-trained models go beyond increasing the number of examples
that can become correct predictions, to also increasing how efficiently these examples do become
correct predictions.

Taken together, these results mean that combining models with diverse training methodologies can
yield performance improvements that offset the decrease in examples where both models are correct.
To explain this relative boost, we also measure the conversion rate of each ensemble – the rate at
which inconsistent errors are converted into correct ensemble predictions. Surprisingly, this rate also
increases as training methods diverge (Fig. 2, right). This means that different training methods not
only yield more opportunities for ensemble benefits, but also more efficient ensembles.

4.3 DISSIMILAR TRAINING METHODOLOGIES CREATE SPECIALIZED MODELS

To understand how diverging training setups create efficient ensembles, we measure the specialization
of ensemble member models. We first note that, for a model’s prediction to “win” the ensembling
process, it only needs to be sufficiently more confident than the other model’s prediction. This means
that we can measure specialization by the relative confidence of two models. We do this by measuring
the angle distance θ in the confidence-confidence plot (see Fig. 3, top left). When θ is high, Model 1
is more confident (relative to Model 2), and vice-versa.

In Fig. 3, we use θ to understand the specialization of different models categories. To simplify our
analysis, we compare three different ensembles, from the categories Reinit (Model 2: ResNet-50),
Architecture (EfficientNet-B3), and Dataset (CLIP-S), as they are representative of the spread of
error correlation. When we plot a histogram of examples as a function of θ, we find that: 1) As
observed in Fig. 1, when training methods diverge, the models make mistakes in different sets of
examples 2) As training methods diverge, Model 1 tends to be more confident in examples where
only Model 1 is correct, and vice-versa for Model 2. This effect is most striking when we look at the
Dataset category, where Model 2 (CLIP-S) is significantly more confident than Model 1 (ResNet-50)
in examples where only CLIP-S predicts correctly, and vice-versa. This is in contrast with Reinit,
where models don’t seem to be significantly more confident than each other at all.

These results show: as training methodology diverges, model specialize to different data subdomains.

4.4 MODEL SPECIALIZATION DEPENDS ON TRAINING METHODOLOGY

Next, we want to investigate what kind of data each model category specializes to. In Fig. 4, we plot
the same data as Fig. 3, but we divide the examples along their ImageNet class IDs. This allows us to
inspect whether a given model is more/less specialized in a given class.

As before, we find that, while models in the Architecture category demonstrate higher specialization
(Model 1 tends to be more confident in examples where it is correct, and vice versa for Model 2),
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Figure 3: Differently-trained models specialize: We plot histograms of examples where at least one
ensemble produced error inconsistency, as a function of specialization measure θ, the angle distance
in the confidence-confidence plot (upper left). As we saw in Fig. 1, when model training setups
diverge (Reinit → Arch → Dataset), the fraction of consistent errors decreases (upper center & right),
in favor of more error inconsistency (lower center & right). This added error inconsistency comes
with specialization of the models in an ensemble: when only Model 1 makes a correct prediction, it
is often more confident (lower right), and vice-versa for Model 2 (lower center). Faint dotted lines
indicate values of θ for which a model’s top-1 prediction is likely to prevail at ensemble time.
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Figure 4: Specialization type depends on training setup: When models differ in dataset (right
plot), not only is specialization highest (see Fig. 3), but also this specialization happens in different
classes – CLIP is better at anthropogenic classes (cids 500-900) than ResNet-50, which is better at
nature classes (cids 0-300; Right detail). When models differ in their architecture (Center plot), they
are more specialized than reinitializations (Left plot), but such specialization does not correlate with
specific classes.

this specialization does not seem to correlate with specific classes. In contrast, not only do models
of the Dataset category display more specialization, but this specialization seems to be correlated
with groups of classes. In particular, CLIP-S seems to specialize to anthropogenic images, whereas
ResNet-50 seems to specialize to nature images. We suspect this phenomena is a result of CLIP-S
being trained on a dataset that was collected independently, and much differently than the one used to
train our base model, ResNet-50.
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Figure 5: Lower-accuracy models can benefit high-accuracy ensembles: Left: Starting with 4
high-accuracy models (colored markers; CLIP-L, ALIGN, BiT-1k, EfficientNet-B3), we greedily
select the best lower accuracy models (each with max individual accuracy 77.9%, indicated in the
legend) to ensemble, and plot the ensemble’s accuracy. Colors indicate which high-accuracy model
the ensemble begins with, shapes indicate which models are added. By adding only lower-accuracy
models to a high-accuracy one, we are able to create ensembles that reach as high as 86.7%. This
shows that lower-accuracy models can be made useful, if they are diverse enough. Right: In each
case, the best first model to add is one that complements the base model’s training methodology.

4.5 DIFFERENT ENOUGH LOWER-ACCURACY MODELS CAN IMPROVE ACCURACY

In classic machine learning, a common way to create high-performing ensembles is to create special-
ized models with bootstrapping (Freund et al., 1996), where models are trained on subsets of the data
and subsequently ensembled. In deep learning, bootstrapping has not been found to work well, since
training on IID subsets of the data (with similar methodology) does not seem to yield ensembles that
perform better than an individual model trained on the entire dataset (Nixon et al., 2020). This seems
to indicate that lower-accuracy models would have little practical benefit for performance.

In order to investigate this, and encouraged by the finding that differently-trained models can be
experts in subdomains of the data, we ask whether lower-accuracy models can be beneficial. After all,
some of the models in the Dataset category were trained on much larger-scale datasets (JFT, WIT),
which are collected independently.

To do this, we first combine our base model, ResNet-50 (76.2%), with a lower-accuracy model
trained very differently, CLIP-S-ZeroShot (63.3%, “Dataset” category), and observe a performance
boost (77.7%). To push this idea further, we combine a high-accuracy model (BiT-1k, 82.85%)
with only lower-accuracy models (max individual accuracy 77.44%), by greedily selecting ensemble
members that maximize accuracy. With this procedure, we can create ensembles that yield as much
as 86.66%. In Fig. 5, we repeat this procedure for 3 additional high-accuracy models and find that
lower-accuracy models can consistently improve the accuracy of high-accuracy models. Importantly,
the low-accuracy models need to be different enough in their training methodology (in terms of
Sec. 3.1 categories): for a given high-accuracy model, the most beneficial lower-accuracy model to
ensemble is one trained with a different loss and/or dataset, often both. See table in Fig. 5 for details.

This result calls into question the idea that the information learned by high accuracy models is a strict
superset of those learned by low accuracy models, which we explore further in sections below.

4.6 SPECIALIZATION COMES FROM OVERLAPPING (BUT NOT SUPERSETTING)
REPRESENTATIONS

In order to explain why differently-trained models specialize, we posit that training methodology
changes the features learned by individual models. In this view, models trained differently would
have an overlapping (but not supersetting) set of features which, when combined, provide more
information for classification than any individual model’s representation could.

We test this directly by concatenating the features of our base model (ResNet-50) with those of the
models above (ResNet-50, EfficientNet-B0 and CLIP-S), and linearly evaluating these combined
features on ImageNet classification. More specifically, we first randomly select features from the
base model and each other model at inversely proportional rates. For example, we concatenate 25%
of ResNet-50 features with 75% of CLIP-S features, yielding a final embedding that is at most the
same dimensionality of the ResNet-50 features. This guarantees that any performance boost is not
due to a higher number of dimensions being available, but by the quality of the features represented.
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Figure 6: Specialization comes from overlapping (not supersetting) representations. When we
combine the representations of two models at different rates (Left, 25/75 using 25% of the ResNet
embedding and 75% of the other model’s embedding), we find that: 1) despite being smaller number
of dimensions, the concatenated embeddings (Center, e.g.: 50/50) yield higher LBFGS accuracy than
the complete embedding of any of the two models (100/0 or 0/100). This indicates that each model
has learned overlapping, but not supersetting, features, which when combined maximize performance.
2) when we combine embeddings of models that are more differently-trained (Center, “Reinit” →
“Dataset”), we find bigger gains, indicating that divergent training induces the learning of different
features. When we compress the concatenated representations using a diversity heuristic, we find that
differently-trained embeddings are also more efficiently compressible, reaching higher accuracies
with fewer dimensions (Right, see text for details). See Appendix for L-BFGS implementation details.

In Fig. 6 (center), we see that the best performance is obtained when features are combined. Addi-
tionally, we find that combining features yields higher performance as training methodology diverges,
with the best performing combination being ResNet-50 + CLIP-S. Concurrent work similarly finds
that different training objectives yield different final-layer feature embeddings (Grigg et al., 2021).
This seems to confirm the idea that the methods used to train networks can generate diverse features,
which capture information that neither embedding alone has captured.

To push this further, we ask how efficiently these representations capture important features of the
data. To test this, we first compute the covariance of each dimension of embeddings from both models
(e.g.: ResNet-50 and CLIP-S). This gives us a ranking of highest to lowest covariance dimensions,
which we use as a measure of diversity. We then select features in order of most diverse to least
diverse, and linearly evaluate them on ImageNet classification.

Fig. 6 (right) shows how divergently-trained models yield more diverse (and therefore more com-
pressible) features. We tested multiples of 256 features, and found that Reinit models needed 2304
features on average to achieve 76% accuracy. In constrast, Hyperparameter models required 2057,
Architecture 1392, and Dataset only required 512 features.

4.7 DOWNSTREAM TASK PERFORMANCE

With the knowledge that diverse training leads to diverse feature embeddings, we ask whether
these can transfer better to downstream tasks. In order to maximize performance, we pick three
of the highest accuracy models on ImageNet, that are also representative of very diverse training
setups. Meta-Pseudo Labels (MPL) was the previous SOTA on ImageNet, reporting 90.24% top-1
accuracy (Pham et al., 2021). It is trained with a teacher network that generate pseudo labels on
unlabeled data to teach a student network, whose performance on the labeled set is then used to adapt
the teacher. It is trained on the JFT-300M dataset. ViT-G/14 is the current SOTA, with 90.45% top-1
accuracy (Zhai et al., 2021), when measured with EMA (Polyak & Juditsky, 1992). We obtained our
image embeddings without the use of EMA, so we find effective accuracy of 88.93% It is trained
supervisedly, on JFT-3B, a larger version of the JFT-300M dataset. Finally, CLIP-S is a constrastive
learning model trained on the WIT dataset, yielding 75.7% top-1 accuracy (with L-BFGS linear
evaluation of its features on ImageNet) (Radford et al., 2021). Despite being a lower accuracy model,
as we will see, it is a useful model.

In order to test the downstream generalization ability of these models’ learned representations, we
linearly evaluate them on Pascal VOC (Everingham et al., 2010) using the same evaluation method as
Kornblith et al. (2019). Pascal VOC is a multi-label image classification benchmark, with 20 diverse
classes ranging from vehicles, animals, household objects and people. This diversity of scenes make
it an interesting downstream task to study. Performance on this benchmark is measured by 11-point
mAP Everingham et al. (2010).
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Figure 7: Diverse training methodologies yield the best downstream performance. Left: The
highest-accuracy ImageNet model (MPL) is not the best-performing on Pascal VOC. Center: CLIP-S
is the model with the most prediction diversity, among the models analyzed. Right: Combining
models that are most diverse seems to yield the biggest boost when performing stacked generalization
on a downstream task (i.e.: training a linear layer on top of 2 models’ concatenated embeddings).

In Fig.7 we find that, surprisingly, the highest performing model on ImageNet (MPL) is not the best
performing model on VOC. We also see that the contrastive model CLIP-S deviates from the linear
trend described in Kornblith et al. (2019). This is surprising since this linear trend was previously
reported with really high correlation. Indeed, when compared with the other models, CLIP-S yields
the most prediction diversity on ImageNet. We additionally test how the combined features perform
by concatenating them pairwise and performing linear evaluation on top of these feature combinations
– known as Stacked Generalization (Wolpert, 1992). The highest performing model combinations (on
VOC) are ones which combine differently trained models. Further, the best combinations do not even
include MPL, which indicates that diversity can be better indicator of downstream performance than
any single model’s accuracy.

We posit that the reason diversely-trained model combinations yield highest performance on this
downstream task is due to the diversity of features learned, which provide higher coverage of features
captured that explain the data. This allows for better feature reuse, which is crucial for transfer
learning (Neyshabur et al., 2020).

5 CONCLUSION
We have shown that diverse training methodologies, in particular, training with diverse optimization
objectives on different large-scale datasets, can produce models that generate uncorrelated errors.
These models ensemble more efficiently, attaining higher ensembling accuracy, since their different
training setups allows them to specialize to different subdomains of the data. Due to this specialization,
different-enough models can be useful for achieving high accuracies, even if they display low
accuracies individually. Finally, we have also shown that they learn overlapping (but not supersetting)
features, and that combining their embeddings can boost downstream performance.

The importance of behavior diversity has been highlighted in different fields. In signal processing,
sensor fusion – the combination of signals from multiple sensors into a more accurate estimation
– relies on these sensors making independent errors. In deep reinforcement learning, it has been
hypothesized that maximizing the coverage of possible behaviors of an agent may help it acquire
the skills that are useful (Eysenbach et al., 2018). In image classification, the model is our agent, its
predictions the behavior, and ensembling our sensor fusion.

Our work demonstrates that this diversity of features is possible, and highlights a key question: why
didn’t SGD learn it? Perhaps there exists an objective that can produce a single best/supersetting
representation but, as we’ve shown, none of our existing training methodologies have found it.

If we look closely, our results may also provide clues for why this is the case. To find models
with categorically different generalization behavior, we had to train them with objectives that do
not directly maximize the classification accuracy we are ultimately interested in. In our collective
search for novelty, we have stumbled upon the decade-old finding that some problems are best solved
by methods that ignore the objective, since “the objective function does not necessarily reward the
stepping stones in the search space that ultimately lead to the objective” (Lehman and Stanley, 2008).

Together, our results provide encouragement for machine learning practitioners to continue creating
methodologies to train high-performing models, including new frameworks & datasets, in order to
expand the types of features our models learn, behaviors they exhibit, and novel ways to train them.
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A APPENDIX

A.1 CONCURRENT WORK

Many concurrent and recent papers have found related conclusions to ours. Here, we highlight a
few of them. Abnar et al. (2021) found that when training on the same objective, as we increase
the upstream accuracy, the performance of downstream tasks saturates. This is in line with our
results in Sec. 4.7, that optimizing for a single objective might not capture diverse enough features
for downstream performance. D’Amour et al. (2020) show that, as a result of underspecification in
training, models are treated as equivalent based on their training domain performance, but can behave
very differently in deployment domains.

Additionally, other recent work also finds that optimizing for diversity is beneficial: Roy et al. (2022)
found that using a diverse ensemble (mixing losses and datasets) improves OOD performance in
dermatology tasks. Sinha et al. (2020) explicitly optimizes for diversity of predictions using an
adversarial loss, leading to improved OOD performance.

A.2 MODEL CATEGORIZATION

In some sense, model categories are supersets of one another: when we change a model architecture,
we also change the hyper-parameters used to train such architecture, to make sure that they are
optimal for training this new setting. In a similar fashion, when we change the training framework
(supervised to contrastive), not only do we change hyper parameters, but the architecture also changes
to best suit the new learning framework. Finally, when we change dataset scales (e.g.: ImageNet →
WIT), we use the framework, architecture, and hyper parameters that allow the best performance
possible on the new dataset.

A.3 MODEL LIST PER CATEGORY

In Table 1, we list all models we used in our main analysis, Figs. 1, 2, 3, 4, 6, along with their
training methodologies, calibration temperatures, individual ImageNet accuracy, error inconsistency
(relative to our base model ResNet-50), and ensemble accuracy (with our base model ResNet-50).
We selected these models by controlling for their individual accuracy, which helps guarantee our
analysis concerns training methodology, not any individual model being inherently better.

In table 2, we list the high-accuracy models used in Figs. 5 and 7. These models are higher accuracy,
and provide a stronger base for ensembling.

Table 3 lists low accuracy models, but which are trained with very different methodologies (relative to
the typical model). They are therefore still useful (as we show), and were used in Sec. 4.5 and Fig. 5.

Finally, Table 4 lists other models that we trained and analyzed, but which did not reach our target
accuracy range 74-78%, so were not included in the main paper analysis.

A.4 ADDITIONAL ERROR ANALYSIS

In Fig. 8, we reproduce Fig. 1 (left), and additionally show how the number of examples where both
models predict correct (center), as well as examples where both models predict incorrectly (right),
both decrease. The added prediction diversity that comes with ensembling models trained differently
will only be beneficial if the ensemble can efficiently convert the examples on the left, to compensate
for the decreased number of examples in the center.

A.5 L-BFGS DETAILS

In order to train the linear classifiers, we use L-BFGS in the same setup/implementation described
in Kornblith et al. (2019). We train the linear heads on top of the pre-logit representations without
augmentation. We find it useful to normalize each representation before any operations (concatenation,
subsampling, etc). In the first part of Section 4.6, the portions of each representation are picked
randomly (e.g.: random 25% dimensions of ResNet, and random 75% dimensions of CLIP), and then
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Model Citation Method Prediction
Head Type

Calibration
Temp

ImageNet
Acc

Error
Inconsistency

(w/ ResNet-50)
Category Ensemble Acc

(w/ ResNet-50)

ResNet-50 He et al. (2016) Sup. / IN Trained 1.10 76.20% 0.0850 REINIT 77.31%
ResNet-101x0.5 Sup. / IN Trained 1.00 74.27% 0.0972 HPARAM 76.73%
ResNet-50 (Dropout 0.1) Srivastava et al. (2014) Sup. / IN Trained 1.10 76.90% 0.0853 HPARAM 77.23%
ResNet-50 (Dropout 0.2) Sup. / IN Trained 1.10 75.85% 0.0883 HPARAM 77.27%
ResNet-50 (Dropout 0.3) Sup. / IN Trained 1.10 75.43% 0.0910 HPARAM 77.12%
ResNet-50 (Dropout 0.4) Sup. / IN Trained 1.10 75.37% 0.0928 HPARAM 77.12%
ResNet-50 (Dropout 0.5) Sup. / IN Trained 1.10 75.03% 0.0965 HPARAM 77.06%
ResNet-50 (Dropout 0.6) Sup. / IN Trained 1.10 74.72% 0.1006 HPARAM 77.01%
ResNet-50 (Dropout 0.7) Sup. / IN Trained 1.10 74.48% 0.1058 HPARAM 76.89%
ResNet-50 (Label Smoothing 0.1) Szegedy et al. (2016) Sup. / IN Trained 0.90 76.22% 0.0877 HPARAM 77.30%
ResNet-50 (Label Smoothing 0.2) Sup. / IN Trained 0.80 76.24% 0.0911 HPARAM 77.44%
ResNet-50 (Label Smoothing 0.3) Sup. / IN Trained 0.80 75.74% 0.0969 HPARAM 77.26%
ResNet-50 (Label Smoothing 0.4) Sup. / IN Trained 0.70 75.70% 0.0996 HPARAM 77.31%
ResNet-50 (Label Smoothing 0.5) Sup. / IN Trained 0.70 75.51% 0.1030 HPARAM 77.26%
ResNet-50 (Label Smoothing 0.6) Sup. / IN Trained 0.70 75.03% 0.1063 HPARAM 77.00%
ResNet-50 (Label Smoothing 0.7) Sup. / IN Trained 0.70 74.54% 0.1071 HPARAM 76.80%
ResNet-50 (Label Smoothing 0.8) Sup. / IN Trained 0.80 74.28% 0.1130 HPARAM 76.98%
ResNet-50 (DropBlock 34, 0.9) Ghiasi et al. (2018) Sup. / IN Trained 1.00 74.98% 0.0891 HPARAM 76.84%
ResNet-50 (DropBlock 1234, 0.9) Sup. / IN Trained 1.00 74.87% 0.0895 HPARAM 76.72%
ResNet-50 (Learning Rate 0.05) Sup. / IN Trained 1.10 75.56% 0.0871 HPARAM 77.10%
ResNet-50 (Learning Rate 0.2) Sup. / IN Trained 1.10 76.07% 0.0858 HPARAM 77.35%
ResNet-50 (Weight Decay 0.00001) Krogh & Hertz (1992) Sup. / IN Trained 1.20 74.13% 0.1027 HPARAM 76.70%
ResNet-50 (Weight Decay 0.00005) Sup. / IN Trained 1.10 75.87% 0.0866 HPARAM 77.23%
ResNet-50 (Weight Decay 0.0002) Sup. / IN Trained 1.10 75.79% 0.0865 HPARAM 77.16%
ResNet-50 (LR 0.05, WD 0.0002) Sup. / IN Trained 1.10 75.58% 0.0856 HPARAM 77.08%
ResNet-50 (LR 0.2, WD 0.00005) Sup. / IN Trained 1.10 76.36% 0.0864 HPARAM 77.49%
ResNet-50 (LR 1.0, WD 0.00001) Sup. / IN Trained 1.20 75.71% 0.1011 HPARAM 77.53%
EfficientNet-B0 Tan & Le (2019) Sup. / IN Trained 0.90 76.88% 0.1136 ARCH 78.65%
SK-ResNet-34 Li et al. (2019) Sup. / IN Trained 0.90 76.91% 0.1099 ARCH 78.52%
MobileNet-V2 Sandler et al. (2018) Sup. / IN Trained 0.90 77.29% 0.1033 ARCH 78.48%
VGG19 BatchNorm Simonyan & Zisserman (2014) Sup. / IN Trained 1.10 74.22% 0.1232 ARCH 77.45%
Legacy-SEResNet-34 Hu et al. (2018) Sup. / IN Trained 1.10 74.81% 0.1206 ARCH 77.70%
Legacy-SEResNet-50 Hu et al. (2018) Sup. / IN Trained 0.90 77.64% 0.1144 ARCH 79.11%
SEResNeXt-26d Hu et al. (2018) Sup. / IN Trained 0.90 77.60% 0.1187 ARCH 79.25%
DenseNet-Blur-121d Iandola et al. (2014) Sup. / IN Trained 0.90 76.58% 0.1082 ARCH 78.22%
DenseNet-121 Iandola et al. (2014) Sup. / IN Trained 0.80 75.57% 0.1076 ARCH 77.70%
Inception-V3 Szegedy et al. (2016) Sup. / IN Trained 1.00 77.44% 0.1270 ARCH 79.49%
TF-Inception-V3 Szegedy et al. (2016) Sup. / IN Trained 1.00 77.86% 0.1259 ARCH 79.65%
Adv Inception-V3 Kurakin et al. (2018) Sup. / IN Trained 1.00 77.58% 0.1252 ARCH 79.41%
HRNet-W18-Small Wang et al. (2020) Sup. / IN Trained 1.00 75.13% 0.1143 ARCH 77.78%
DPN-68 Chen et al. (2017) Sup. / IN Trained 1.20 76.31% 0.1141 ARCH 78.44%
DLA-60 Yu et al. (2018) Sup. / IN Trained 1.10 77.02% 0.1064 ARCH 78.35%
ESE-VoVNet Lee & Park (2020) Sup. / IN Trained 0.80 76.80% 0.1159 ARCH 78.62%
ViT-B/16 Dosovitskiy et al. (2020) Sup. / IN Trained 1.70 74.55% 0.1472 ARCH 78.85%
SimCLR Chen et al. (2020) Cont. / IN Fine Tuned 1.00 75.60% 0.1277 FWORK 78.35%
ViT-DeiT-Tiny Touvron et al. (2021) Sup. / IN Distilled 1.00 74.50% 0.1247 FWORK 77.93%
ViT-S/16 Dosovitskiy et al. (2020) Sup. / IN-21k Trained 0.90 77.86% 0.1249 DATASET 79.73%
ALIGN-ZS Jia et al. (2021) Cont. / ALIGN Zero Shot 0.30 75.50% 0.2295 DATASET 83.42%
CLIP-S Radford et al. (2021) Cont. / WIT L-BFGS 0.90 75.67% 0.1687 DATASET 80.42%
CLIP-L-ZS Radford et al. (2021) Cont. / WIT Zero Shot 1.10 76.57% 0.2140 DATASET 83.22%

Table 1: Models Used. These models are all within the 74-78% accuracy range, of which we base
our main results. "Sup." indicates supervised learning, "Cont." constrastive learning. "IN" indicates
ImageNet.

Model Citation Method Prediction
Head Type

Calibration
Temp

ImageNet
Acc

Error
Inconsistency

(w/ ResNet-50)
Category Ensemble Acc

(w/ ResNet-50)

EfficientNet-B3 Tan & Le (2019) Sup. / IN Trained 0.90 80.89% 0.1147 ARCH 80.98%
ALIGN Jia et al. (2021) Constrastive / ALIGN Dataset L-BFGS 1.00 84.71% 0.1684 DATASET 85.50%
ViT-H/14 Dosovitskiy et al. (2020) Sup. / JFT Trained 1.10 88.31% 0.1646 DATASET 87.48%
ViT-G/14 Zhai et al. (2021) Sup. / JFT Trained 1.40 88.93% 0.1801 DATASET 88.40%
MPL Pham et al. (2021) Pseudo-Label / JFT Trained 0.90 90.24% 0.1741 DATASET 88.97%
CLIP-L Radford et al. (2021) Contrastive / WIT L-BFGS 1.00 85.04% 0.1638 DATASET 85.36%
BiT-1k Kolesnikov et al. (2020) Sup. / JFT Fine Tuned 1.20 82.85% 0.1593 DATASET 84.28%

Table 2: High Accuracy Models. These models are all above the 80% accuracy. "Sup." indicates
supervised learning, "Cont." constrastive learning. "IN" indicates ImageNet.

Model Citation Method Prediction
Head Type

Calibration
Temp

ImageNet
Acc

Error
Inconsistency

(w/ ResNet-50)
Category Ensemble Acc

(w/ ResNet-50)

CLIP-S-ZS Radford et al. (2021) Cont. / WIT Zero Shot 0.01 63.25% 0.2675 DATASET 78.01%
BiT-JFT Kolesnikov et al. (2020) Sup. / JFT Class Mapping 0.02 65.63% 0.2744 DATASET 77.93%

Table 3: Low Accuracy Models. These models are all below the 74% target accuracy, but they are
trained with very different methodologies (relative to typical models), so we include them in a few
analyses, as indicated in main text. "Sup." indicates supervised learning, "Cont." constrastive learning.
"Class Mapping" indicates that the model’s original JFT class vector was used, and a mapping of
JFT-to-ImageNet classes was used to obtain the final prediction logits.
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Model Method Prediction
Head Type

ImageNet
Acc Category

ResNet-101 Sup. / IN Trained 78.42% HPARAM
ResNet-50x2 Sup. / IN Trained 78.70% HPARAM
ResNet-50 (Dropout 0.8) Sup. / IN Trained 73.68% HPARAM
ResNet-50 (Dropout 0.9) Sup. / IN Trained 72.48% HPARAM
ResNet-50 (Label Smoothing 0.9) Sup. / IN Trained 72.63% HPARAM
ResNet-50 (DropBlock 34, 0.1) Sup. / IN Trained 29.88% HPARAM
ResNet-50 (DropBlock 34, 0.2) Sup. / IN Trained 50.17% HPARAM
ResNet-50 (DropBlock 34, 0.3) Sup. / IN Trained 58.01% HPARAM
ResNet-50 (DropBlock 34, 0.4) Sup. / IN Trained 62.50% HPARAM
ResNet-50 (DropBlock 34, 0.5) Sup. / IN Trained 66.19% HPARAM
ResNet-50 (DropBlock 34, 0.6) Sup. / IN Trained 68.73% HPARAM
ResNet-50 (DropBlock 34, 0.7) Sup. / IN Trained 70.95% HPARAM
ResNet-50 (DropBlock 34, 0.8) Sup. / IN Trained 73.33% HPARAM
ResNet-50 (DropBlock 1234, 0.1) Sup. / IN Trained 27.19% HPARAM
ResNet-50 (DropBlock 1234, 0.2) Sup. / IN Trained 47.27% HPARAM
ResNet-50 (DropBlock 1234, 0.3) Sup. / IN Trained 55.59% HPARAM
ResNet-50 (DropBlock 1234, 0.4) Sup. / IN Trained 60.63% HPARAM
ResNet-50 (DropBlock 1234, 0.5) Sup. / IN Trained 64.57% HPARAM
ResNet-50 (DropBlock 1234, 0.6) Sup. / IN Trained 67.68% HPARAM
ResNet-50 (DropBlock 1234, 0.7) Sup. / IN Trained 70.35% HPARAM
ResNet-50 (DropBlock 1234, 0.8) Sup. / IN Trained 72.73% HPARAM
ResNet-50 (Learning Rate 0.01) Sup. / IN Trained 69.88% HPARAM
ResNet-50 (Learning Rate 1.0) Sup. / IN Trained 73.53% HPARAM
ResNet-50 (Weight Decay 0.001) Sup. / IN Trained 72.06% HPARAM
ResNet-50 (LR 0.01, WD 0.001) Sup. / IN Trained 73.90% HPARAM

Table 4: Other Models. These hyper-parameter sweeps were trained, but did not fit our target 74-78%
accuracy range, so we did not use them in our main analyses. "Sup." indicates supervised learning,
"IN" indicates ImageNet.

concatenated. In the second part, the two representations are first concatenated then dimensions are
selected based on the diversity criteria.
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Figure 8: As training methodology diverges, errors become uncorrelated. The number of test
examples where only one model predicts correctly increases (Left, same as "Error Inconsistency" in
Fig. 1). Similarly, the number of examples where both models predict correctly (Center) and neither
model predicts correctly (Right) decreases. For the most diverse training methodology ("Dataset",
purple), we find more examples with inconsistent errors (left) than examples where both models
predict correctly (right). This means that for an ensemble to perform better than another, it needs to
resolve these inconsistent errors efficiently, to compensate for the decrease in the examples in the
center plot.
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Figure 9: Justification for θ. The white dotted lines represent the thresholds where an example’s
ensemble prediction will correspond to the higher-confidence-model’s top-1 prediction. Theta
measures distances in a way that aligns with these thresholds, allowing us to visualize the number of
correctly-classified examples at a glance (by looking at the number of examples to the right/left of
the dotted lines in Fig 3). Because y-x does not align with this threshold, it’s harder to visualize the
effect of specialization on performance, as can be seen by the histograms.
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Figure 10: Conversion rate of examples where "neither model" is correct individually. We find
that, as training methodology diverges, the conversion rate of these examples increases: Reinit (94
converted out of 7154 examples), Architecture (190 / 6246), Dataset (355 / 5192). This is consistent
with our finding that different training methodologies create more efficient ensembles. We note that
despite the higher conversion rate, a bigger effect on performance is in the decrease of examples
where neither is correct (7154 -> 6246 -> 5192).

17



Published as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Weighted Average Parameter

(Simple Interpolation)

0.76

0.77

0.78

0.79

0.80

En
se

m
bl

e 
Ac

cu
ra

cy REINIT
ARCH
DATA

0.0 0.2 0.4 0.6 0.8 1.0
Weighted Average Parameter
(Class-aware Interpolation)

0.74

0.76

0.78

0.80

En
se

m
bl

e 
Ac

cu
ra

cy REINIT
ARCH
DATA

Figure 11: Interpolating between ensemble members. Left: We interpolate between the two
models in the ensemble using a single parameter, and find that the optimal interpolating parameter
seems to be at or near 0.5 (i.e.: it’s just as good to simply average the logits with equal weight).
We suspect this is because the calibration performed on the models before ensembling guarantees
that the confidences are appropriately scaled already. Right: In order to further investigate whether
specialization can yield better-weighted ensembles, we also perform a class-aware interpolation,
where t=0 means nature classes get their logits from ResNet (and human classes get their logits from
the other model), and vice versa for t=1. We find that for the ResNet+CLIP ensemble, t < 0.5 is
optimal, which is consistenct with our finding of ResNet/CLIP specialization. We note however that
the boost is marginal (80.424% -> 80.452%, less than 15 images).
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Figure 12: Specialization of CLIP-S and SimCLR. We find that these two models seem to also
specialize in a way that is aligned with anthropogenic/nature classes (cids 500-900, and 0-300
respectively). We suspect the distribution of CLIP’s pre-training dataset has a huge effect in making
this happen. We also stress that these two models are still in very distinct categories: when comparing
against each other (and not against our base model), we must note that they are different in reinit,
architecture, params, and dataset, even if framework is kept the same.
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Figure 13: CKA vs Error Consistency. Here, CKA is measured between the two pre-logit
representations of ResNet, and each of the models ResNet, CLIP-S-ZS, SimCLR, EfficientNet,
ViT-B/16 and DenseNet-121. CKA and Error Consistency are not well correlated, likely due to CKA
being sensitive to the geometry of representations.
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