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ABSTRACT

Synthetic image detection (SID) faces two major challenges: high computational
cost from reconstruction-based methods and insufficient generalization. To ad-
dress these issues, we propose a novel SID paradigm that leverages the ODE for-
mulation of diffusion models. Rather than reconstructing images, our method
analyzes the probability flow trajectories from data distributions to a Gaussian
prior. We show that the discrete-step distances on the Wasserstein manifold in-
herently encode reconstruction error, and that real and synthetic images diverge
most significantly in the early half of the diffusion inversion. Real images exhibit
higher curvature variance with extreme deviations, whereas synthetic ones follow
smoother, more consistent trajectories. Building on this insight, we introduce cur-
vature features of probability flow trajectories as a new discriminative signal. To
the best of our knowledge, this is the first work to exploit probability flow cur-
vature for SID. Extensive experiments demonstrate that our method generalizes
robustly to unseen models, achieves SOTA results across multiple benchmarks,
and does so with less than half the computational cost of full diffusion inversion.

1 INTRODUCTION

Continuous-time dynamic models (CTDMs) have emerged as a dominant class of generative mod-
els, evolving from energy-based and score-matching models (Hyvérinen & Dayan, [2005), through
diffusion probabilistic models (Ho et al.,2020; Nichol & Dhariwall [2021;|Song et al.| [ 2020a)), Score-
Based SDEs and Probability Flow ODEs (Song et al., 2020b;2021; |De Bortoli et al.,[2021]), to recent
Flow Matching methods (Lipman et al.| 2022} |Liu et al., 2022} |Albergo et al., 2023), achieving in-
creasingly realistic image synthesis. However, the rapid proliferation of generative architectures has
heightened concerns about the malicious use of synthetic media, motivating the need for detection
frameworks that generalize across diverse and unseen generators.

Prior forensic methods (Corvi et al., 2023b; [(Ojha et al., 2023; |Tan et al., 2024b; [Sha et al., 2023;
Liu et al.| 2024) show strong performance on GAN-generated images but often fail to generalize to
diffusion-based or newer generative models. Consequently, this work focuses on CTDMs. Among
existing approaches, methods such as [Wang et al.| (2023)); (Cazenavette et al.| (2024); |Ricker et al.
(2024); |Chu et al.| (2025)); |Guillaro et al.| (2025)) introduced reconstruction error as a discriminative
feature, yet most rely on replaying the full diffusion trajectory, without questioning whether the
reconstruction error is already implicitly encoded in the probability flow.

In this paper, we adopt a unified ODE perspective and propose a novel detection paradigm that
leverages the curvature of the probability flow velocity field as the primary discriminative feature
(Fig. [T), complemented by diagonal high-frequency components extracted via wavelet transforms.
Following [Song et al.| (2020a), a CTDM can be understood at the sample level as evolving a single
data point along a probability flow ODE, which defines a continuous velocity field and maps noise
distributions to data distributions. At the macroscopic level, this velocity field satisfies a continuity
equation, describing how the probability density evolves smoothly over time. Integrating the reverse-
time ODE then yields the instantaneous velocity at any intermediate time starting from a clean
image.

We define the integration of the probability flow ODE over a data distribution as an ODE pipeline,
which maps data distributions to a Gaussian prior. When analyzing this pipeline in the Wasserstein
manifold, the upper bound of the discrete-step distances inherently encodes the reconstruction error,



Under review as a conference paper at ICLR 2026

which can be quantified as the cumulative sum of non-optimality terms across each discrete step.
Our analysis reveals that synthetic images reside in regions of the model manifold that are easier to
represent. Consequently, during the latter half of diffusion inversion—from the Gaussian back to
the data distribution—the difference in accumulated non-optimality terms between real and synthetic
images is negligible. This indicates that the main contribution to reconstruction error arises in the
first half of the diffusion inversion. Building on this insight, we focus on extracting discriminative
information from this stage by computing curvature features of the probability flow trajectories.
Empirically, real images exhibit larger variance in curvature values and more extreme deviations,
whereas synthetic images follow smoother and more consistent trajectories.

To the best of our knowledge, this is the first work to exploit curvature features of probability flow
trajectories for synthetic image detection. Our method demonstrates strong robustness across SOTA
generative models while being trained on a single dataset. It generalizes to a wide range of unseen
models and achieves this with less than half the computational cost of full diffusion inversion. Com-
pared to prior SOTA methods, it improves ACC by +10.6% and AUCROC by +8.2% across multiple
benchmarks.

To summarize our contributions:

dx; = €g(x;, t)dy, p1(x)

* We propose a new paradigm for synthetic
image detection based on curvature features = |
of ODE-defined velocity fields.

* We characterize the optimal transport prop-
erties of the ODE pipeline and show that
synthetic images exhibit lower total kinetic P
energy, with probability flow trajectories
closer to the optimal transport path than
those of real images. )

45: = ca(ye, Dy, a()
* We demonstrate that the model inherently
represents lower-energy distributions dur-
ing reconstruction, embedding reconstruc-
tion error within the velocity-field tensors.

Figure 1: The figure shows the visualiza-
tion of the velocity field, where brighter re-
gions correspond to higher probability den-
sity. On the left are the initial distributions
* We introduce a pseudo-Gaussian curvature o g0 at time ¢ = 0 , which can be trans-
to compress the temporal dimension of cur-  formed into a Gaussian distribution by inte-
vature features, enhancing their discrimina-  grating the backward ODE.
tive effectiveness.

* We complement curvature features with
diagonal high-frequency wavelet compo-
nents, capturing fine-grained artifacts and further improving robustness and generalization.

2 RELATED WORK

Artifact Detectors. Prior works have explored diverse strategies for synthetic image detection.
CNN-based methods like Wang et al.| (2020) train a ResNet-50 on ProGAN outputs with JPEG and
blur augmentations. Frequency-based approaches, such as FrePGAN (Jeong et al., |2022) and Fre-
gNet (Tan et al.,2024a), exploit high-frequency artifacts via model-specific analysis or FFT. UniFD
(Ojha et al., 2023) decouples feature extraction and classification using a frozen CLIP encoder with
a linear classifier. NPR (Tan et al., 2024b) targets autocorrelations induced by upsampling, while
FatFormer (Liu et al.,|2024)) combines semantic contrastive learning with wavelet-based artifact ex-
traction.

Reconstruction Error. DIRE: Wang et al.| (2023) propose Diffusion Reconstruction Error (DIRE),
which differentiates real from DM-generated images by measuring reconstruction error. AEROB-
LADE: Ricker et al|(2024) utilize autoencoder reconstruction error from latent DMs for a simple,
training-free approach. Fakelnversion: (Cazenavette et al.[(2024) detect images generated by unseen
text-to-image DMs using text-conditioned inversion. [Luo et al.| (2024)) propose LaRE2, leveraging
Latent Reconstruction Error (LaRE) with an Error-Guided Feature Refinement module for more
distinct error feature extraction. B-Free (Guillaro et al., [2025) constructs an unbiased dataset and
employs a Vision Transformer to extract discriminative features.
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In this paper, we focus on and extend the second line of related work discussed above. While these
approaches are all implemented as variants of reconstruction error, we question whether performing
the entire reconstruction pipeline is truly necessary. The inversion process requires a full forward
pass of the U-Net at every denoising or noising step, resulting in substantial computational and time
overhead. Motivated by this limitation, we investigate whether certain inconsistency features can
be directly captured within a single noising pass, thereby providing effective discriminative signals
while avoiding the cost of full reconstruction.

3 BACKGROUND

3.1 ODE-BASED PROBABILITY FLOW AND VELOCITY FIELD

Let po(z) denote the data distribution. In DDPM (Ho et al.| 2020), the forward process is formulated
as a stochastic differential equation (SDE) that gradually transforms py(z) into a standard Gaussian
distribution pp(x):

da, = f(ar, t)dt + g(t)dwr, o ~ po(2) (1)
where f : RP — RP is the drift coefficient, g(t) € R is the diffusion coefficient, and w; € R is
a standard Wiener process. By sampling 1 ~ pr(z) and solving the reverse-time SDE, one can
recover samples 2o ~ po(x):

dzy = [f(2e, 1) — 9(1)* Vo logpe(we)] dt + g(t)duw, 2)

Here, w; denotes a standard Wiener process evolving backward from 7" to 0. By setting the diffusion
coefficient in the reverse process to zero, the stochastic trajectory becomes deterministic while pre-
serving the same marginal distributions as in Eq.[2] This yields the Probability Flow ODE (PF-ODE)
(Song et al.,|2020b):

dxy = [f(xt,t) — %g(t)ZVI 1ogpt(xt)] dt 3)
Recent works (Lipman et al., 2022; [Liu et al., [2022; |Albergo et al., 2023) move beyond marginal
distribution matching and instead directly learn a velocity field % = vp(x¢,t),which models the
instantaneous velocity at each timestep to construct a continuous flow between distributions (illus-
trated in Figure 1). Under this view, the PF-ODE can be equivalently interpreted as modeling the
velocity field using a score function:

1
vg(we,t) = f(2e,t) — ig(t)zvx log pe(+) “)
From this perspective, the velocity field vy satisfies the continuity equation:
Opi(x
PUL) 49 - (wolarnst) ule) =0 ®

3.2 OPTIMAL TRANSPORT AND W-DISTANCE
According to optimal transport theory, the cost of transporting one distribution p(z) to another ¢(z)
is defined as:

C[p7 CI] = inf E(m,y)w’y [C(LC, y)] 6)

~v€Il(p,q)

where TI(p, q) denotes the set of all couplings of p(x) and g(x), and ¢(-,-) is the transport cost
function. The Wasserstein-p distance is then given by

1/p
Wp(p,q)( inf E(w,y)w[d(x,y)po )
~v€Il(p,q)

where d(x,y)is typically the Euclidean distance, and the cost is defined as its p-th power.

The Wasserstein distance provides a metric over probability distributions that preserves the under-
lying geometry of the sample space, making it particularly suitable for comparing distributions with
partially non-overlapping supports. Furthermore, under certain conditions, the probability space en-
dowed with the Wasserstein distance (i.e., the Wasserstein space) can be regarded as a Riemannian
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Figure 2: Both real and synthetic images (1,000 each) are randomly sampled from all datasets
described in Section[6] The resulting histograms are: (a) total kinetic energy computed according to
Theorem |2}, (b) image means at time 7', closely following a standard Gaussian distribution; and (c)
curvature signal <, under three different temporal compression strategies, highlighting differences
in discriminative effectiveness.

manifold. This interpretation makes it a natural choice for characterizing the continuous temporal
evolution of probability densities.

From an optimal transport viewpoint, diffusion training corresponds to gradient descent on the KL
divergence functional F|[q] = K L(q||pdata) in Wasserstein space. The neural network learns a ve-
locity field vg(z+, t) that approximates the steepest descent direction, thereby constructing minimal-
energy trajectories with smooth velocity fields. Consequently, generated samples can be seen as
natural endpoints of such geodesic-like flows.

These theoretical foundations highlight the close connection between PF-ODE formulations and
optimal transport geometry. Building on this connection, we later analyze how the energy charac-
teristics of probability flow trajectories reveal discriminative differences between real and synthetic
images.

4 TRAJECTORY ANALYSIS IN WASSERSTEIN SPACE

4.1 VELOCITY FIELD AS W5 DISTANCE ESTIMATION

We consider deterministic sampling trajectories induced by the PF-ODE corresponding to the
marginal distributions of the forward VP-SDE. In particular, for the ADM model (Dhariwal &
Nichol, [2021)), the PF-ODE takes the form:

dzy = | = §B()ae — 8(1)V. logpi(w:) | dt ®)
where the score function V. log p;(x;) is estimated via a noise prediction network eg (¢, t):
Valogpi(ze) & = iy€o (i, 1) ©)
with ((t) are time-dependent constants, 5(t) = f%logézt ando(t)? =1 — ay.

Solving Eq. [ from 0 to 7" as an ODE pipeline, defines what we refer to as an ODE pipeline, which
transports an initial distribution into an approximate Gaussian. As shown in Fig. 2(b), at terminal
time 7', both real and synthetic images are mapped close to a standard Gaussian. In the following,
we use the term ODE pipeline with the default assumption that all trajectories are derived from the
same CTDMs.
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Theorem 1. For an ODE pipeline applied to xo ~ po, the Wasserstein distance between two inter-
mediate marginals is bounded by the mean kinetic energy at time t:

Walpe, pesae] < Aty Eap, 0o (e, )2

Theorem 2. Over the full pipeline from 0 to T, the cumulative one-step Wy distances are bounded
by the total kinetic energy Apmodel:

T6t
S Wipipesad <0t [ Bany Jua(on )| ds
+ 0

Tot
Amodel = / EafN;DS HUQ (x& S)||2d8
0

(Proofs are provided in Appendix [A. I

Theorems|I|and 2] formally characterize the transformation of marginals on the Wasserstein manifold
under an ODE pipeline: Theorem |1 establishes a one-step bound, while Theorem [2| provides a
cumulative bound that implicitly captures diffusion reconstruction error.

Previous work (Wang et al.|[2023; Ricker et al.|
2024; Cazenavette et al., 2024} |Luo et al., 2024

o w ®
Chu et al.l [2025) has shown that synthetic im- i
ages yield lower reconstruction error. By The- 2" g0
orem 2} this corresponds to velocity fields with 2" g0
smaller kinetic energy. Thus, synthetic trajec-
tories tend to be straighter than those of real e

images. To verify, we sample 1,000 real and o ra—

1,000 synthetic images (datasets in Sec. [6) and from0tT, Y E, fromTt00,y E,
compute their total kinetic energy. As shown o o
in Fig. [(a), real images exhibit significantly Figure 3: The data sampling is the same as in Fig.
larger energy, though the distributions overlap The left panel corresponds to the ﬁ?St half of
considerably, which motivates us to seek more the diffusion reconstruction, and the right panel
effective statistical measures. corresponds to the second half.

(a)

ty

Do

To address error accumulation, we define the
non-optimality term E} at each step as (more details in Appendix [A.2)):

By = Aty B 0o (e, )2 = Walpr, pes o] (10)

namely, the difference between the step-wise upper bound and the true optimal transport.

Data sampling follows Fig. 2] Fig.[3|reports the cumulative non-optimality across forward and re-
verse diffusion. Interestingly, although the ODE pipeline is theoretically bijective, real-image trajec-
tories tend to collapse into lower-energy regions upon reconstruction, effectively yielding mappings
po — N(0,I) — qo for real images, and g9 — N(0,I) — qo for synthetic ones. As a result,
synthetic images consistently achieve smaller reconstruction errors, suggesting that they lie on man-
ifold regions more easily represented by the model. Crucially, this also resolves our initial concern:
the latter half of the trajectory, N/ (0,I) — qo, contributes little discriminative information and can
be discarded, offering substantial savings in U-Net computation.

4.2 ODE TAYLOR EXPANSION AND CURVATURE SURROGATE

Following the time reparameterization of Dockhorn et al.| (2022)), Eq. B]becomes:
d.ft = 69(l't,t)d’}/t (11)

where y; = 4/ 1;?$ , Ty = x4/ 1 + 72 and eg (x4, t) = —0(t)V log py ()

From the previous analysis, synthetic images tend to exhibit smoother velocity fields. This motivates
curvature-based descriptors of trajectory flatness. The geometric curvature is defined as:

_N1ED = @0 - el

R(7) =

leol? (12
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Figure 4: Proposed method. The model consists of two pipelines: one extracts second-order curva-
ture features, and the other extracts zeroth-order diagonal high-frequency features. For the second-
order features, we perform temporal dimensionality reduction using the proposed pseudo-Gaussian
curvature. The two ResNet-50 backbones share the final projection layer to align features from both
pipelines.

We approximate curvature via a second-order truncated Taylor method (TTM):

_ _ 1 2 d69
xtn+1 = xtn + hnee(l‘tn7tn) + ihn T (13)
Pyt (mtn,7tn)
with step size h,, = Yp+1 — Yn, The second-order term
deg(xe,t) Bee(mt,t)% + Oeg (z4,t) dt
dye - Oz dye ot dye
B 1 Oeq(x4,t) v Oeg(mg,t) Ocg(z¢,t) dt
= 7t eo(T,t) 1+i/,? o Tt T T d (14)

involves two Jacobian-vector products (JVPs) %f:’t)e(g (z4,1), %ﬂff”t)xt, requiring additional

backward passes and thus heavy computation.

To balance accuracy and efficiency, we adopt the correction term %hf%‘i as a surrogate curvature

signal, and approximate it via finite differences:

1p2deg o, _ Arfat’yiAel; .
This surrogate captures the dominant acceleration while avoiding costly JVPs, and empirically pre-
serves trajectory characteristics (details in Appendix [A.T.3).

Figure [2Jc) shows histograms of #;. To enhance discriminability, we compare several temporal
compression strategies, including sum, mean, and pseudo-Gaussian aggregation, each evaluated
under both L1 and L2 norms. The results demonstrate that the pseudo-Gaussian curvature with
the L1 norm exhibits the least distributional overlap between real and synthetic images, thereby
providing the strongest discriminative power (more details in Appendix [A3). This motivates us to
adopt Kpseudo as the primary curvature descriptor in our subsequent analysis. Analogous to Gaussian
curvature as the product of principal curvatures, we define a pseudo-Gaussian curvature Kpseudo as
the product of the maximal and minimal trajectory curvatures observed along time:

= 7)) in (7 1
Kpseudo (tg%(m)> (tg%gg](mt)) (16)

5 METHOD

As shown in Figure[] our full framework consists of two pipelines. Pipeline 1 is employed to extract
curvature features. Since curvature is a second-order quantity and highly sensitive to variations in
the input, we additionally use Pipeline 2 to extract zero-order information as an auxiliary signal.
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5.1 PIPELINE 1: CURVATURE FEATURE EXTRACTION.

Given a clean image o, we apply the ODE pipeline with a first-order Euler approximation to obtain
intermediate states x;. The corresponding first-order TTM from Eq. [I3|reduces to:

Ty, =Ty, + hpeg(xy,, 1) (17)

At each time step, curvature features are computed using Eq. [I5]and subsequently compressed along
the temporal axis via the pseudo-Gaussian formulation in Eq.[16] yielding the pseudo-Gaussian cur-
vature Kpseudo- Although the L1 norm of kpscudo already provides sufficient discriminative power
for classification, to capture more comprehensive and fine-grained characteristics, we parameterize
these features using a convolutional neural network. Therefore, kpgcud0 1s fed into a ResNet-50
backbone, which encodes the tensor into a compact curvature feature vector.

5.2 PIPELINE 2: IMAGE-BASED REPRESENTATION EXTRACTION.

Previous work (Corvi et al., [2023a; [Tan et al.l 2024a; |Chu et al.| 2025 |Guillaro et al., [2025) has
shown that synthetic images often contain frequency-domain artifacts. Based on these observations,
we select the diagonal high-frequency components from the wavelet transform as zero-order infor-
mation to complement the curvature-based features. Specifically, we employ a one-level discrete
wavelet transform (DWT) using the Biorthogonal 1.3 (“biorl.3”) basis with symmetric boundary

extension. The DWT decomposes &z € REXC>XHXW into:
H W
}/—ZGRBXCX7X7’ (18)
H W
(v, v vy c REXO 7 (19)
2)

where Yy is the low-frequency approximation and { Yh(l), Yh( , Yh(3)} are the horizontal (LH), ver-

tical (HL), and diagonal (HH) detail subbands, respectively.

We select the diagonal detail coefficients Yh(s), which capture edge and texture variations along
oblique orientations. To align this feature map with the original spatial resolution, we upsample via
bilinear interpolation:

7® = Interp (Y,f?’% A, W]) (20)

The resulting output f’h(?’) , now spatially aligned with the original image, are then encoded by a
ResNet-50 to produce hidden representations.

5.3 PROJECTION AND CLASSIFICATION.

In both pipelines, the final fully connected layers of the ResNet-50 networks project their outputs
into a shared 512-dimensional subspace, aligning curvature-based and frequency-domain features.
These two 512-d vectors are concatenated and passed to the final classification layer. Notably, the
diagonal high-frequency band (HH subband) is particularly sensitive to oblique variations and irreg-
ular details, capturing fine-grained, directionally structured textures that standard convolutions often
overlook. By integrating these complementary modalities, our framework assesses how frequency-
domain artifacts correlate with less-flat ODE trajectories, enabling cross-validation of cues and sub-
stantially improving robustness and generalization.

6 EXPERIMENTS

Datasets. We follow the same evaluation setup as FakeInversion (Cazenavette et al.,[2024) for eval-
uation data. Some synthetic images, such as those from Imagen (Saharia et al., [2022)), Midjourney
(mid, [2022), and DALL-E 3, are obtained via Hugging Face using KPI. Additionally, we generate
thousands of high-fidelity images using open-source text-to-image models based on COCO (Lin
et al.l [2014) prompts. All settings are kept consistent with those in Fakelnversion. The evalu-
ation datasets includes fake images from Kandinsky 2 (Arseniy Shakhmatov & Dimitrov, [2023)),
Kandinsky 3 (Vladimir Arkhipkin & Dimitrov, 2023)), PixArt (Chen et al.l [2023), SDXL-DPO
(Wallace et al.} 2024), SDXL (Podell et al., |2023)), SegMoE (Harish Prabhala Yatharth Guptal |2024)),



Under review as a conference paper at ICLR 2026

Eval Set | CNNDet DMDet UFD Fakelnv. B-Free | ours | TPR@5%FPR

DALLE 2 0.624/0.680 0.618/0.672 0.700/0.776 0.678/0.747 0.906/0.969 | 0.851/0.953 0.762
DALLE 3 0.659/0.716 0.461/0.415 0.473/0.480 0.698/0.759 0.912/0.972 | 0.860/0.961 0.759
Midjourney v5/6 0.595/0.630 0.485/0.484 0.558/0.592 0.606/0.664 0.946/0.988 | 0.965/0.993 0.966
Imagen 0.674/0.714 0.521/0.573 0.538/0.575 0.720/0.807 0.908/0.970 | 0.960 / 0.991 0.983
Kandinsky 2 0.574/0.600 0.483/0.478 0.541/0.562 0.652/0.699 0.778/0.860 | 0.950/0.995 0.979
Kandinsky 3 0.609/0.659 0.588/0.614 0.600/0.637 0.684/0.743 0.801/0.884 | 0.948/0.991 0.980
PixArt-a 0.591/0.627 0.523/0.580 0.606/0.647 0.669/0.730 0.830/0.911 | 0.974/0.997 0.982
Playground 2.5 0.553/0.582 0.502/0.517 0.562/0.587 0.591/0.625 0.796/0.879 | 0.863/0.899 0.810
SDXL-DPO 0.761/0.843 0.515/0.563 0.647/0.702 0.801/0.881 0.647/0.759 | 0.843/0.957 0.776
SDXL 0.735/0.814 0.549/0.568 0.620/0.663 0.737/0.807 0.651/0.776 | 0.867 / 0.962 0.798
Seg-MOE 0.625/0.663 0.480/0.476 0.586/0.620 0.664/0.713 0.705/0.777 | 0.963 / 0.995 0.978
SSD-1B 0.665/0.726  0.583/0.556 0.585/0.628 0.724/0.794 0.833/0.919 | 0.967 / 0.996 0.984
Stable-Cascade 0.652/0.705 0.539/0.565 0.633/0.682 0.694/0.749 0.824/0.906 | 0.963/0.996 0.981
Segmind Vega 0.676/0.742  0.564/0.540 0.587/0.623 0.733/0.811 0.819/0.901 | 0.937/0.983 0.965
Wiirstchen 2 0.580/0.610 0.640/0.675 0.640/0.697 0.658/0.705 0.807/0.890 | 0.871/0.916 0.877
ADM 0.582/0.740 0.697/0.746 0.682/0.779 0.676/0.700 0.725/0.843 | 0.998 / 1.000 0.999
Glide 0.580/0.732 0.784/0.857 0.640/0.685 0.749/0.786 0.700/0.739 | 0.982/0.998 0.990
VQDM 0.552/0.671 0.528/0.520 0.840/0.876 0.648/0.681 0.885/0.928 | 0.945/0.995 0.976
FLUX 0.498/0.540 0.512/0.603 0.599/0.637 0.651/0.656 0.862/0.900 | 0.963/0.996 0.983
Stable Diffusion 1.4 | 0.502/0.558 0.599/0.702 0.651/0.663 0.597/0.612 0.997/1.000 | 0.999 /1.000 0.999
Stable Diffusion 1.5 | 0.512/0.603 0.585/0.653 0.647/0.684 0.639/0.675 0.995/0.997 | 0.999/1.000 0.999
Stable Diffusion 3 | 0.506/0.570 0.590/0.644 0.613/0.638 0.600/0.646 0.996/0.997 | 0.998/0.999 0.999

Average ‘ 0.605/0.669 0.561/0.591 0.616/0.656 0.676/0.727 0.833/0.899 ‘ 0.939/0.981 ‘ 0.933

Table 1: ACC / AUCROC comparisons with SOTA methods and TPR@5%FPR of our detection.
All detectors trained on SD+LAION, except for B-Free, which is trained on its own debiased dataset.

SSD-1B (Gupta et al.l 2024), Stable-Cascade (Pablo Pernias & Aubrevillel 2023)), Segmind-Vega
(Gupta et al., 2024), Wiirstchen 2 (Pablo Pernias & Aubrevillel |2023), ADM (Dhariwal & Nichol,
2021)), GLIDE (Nichol et al.,2021)), VQDM (Gu et al., [2022), FLUX (Labs.,2024])), Stable Diffusion
1.4, 1.5 and 3 (Rombach et al., 2022)).

Metrics. We report detection ACC,

AUC-ROC as the primary metrics,  NFEs | trained on Average
and additionally provide TPR at 5% | SD+LAION ProGAN +LSUN ADM + LAION
FPR as a supplementary measure. 5 | 0876/0912  0.885/0.928 0.890/0.933  0.883/0.924
10 | 0939/0981  0.894/0.946 0.927/0971  0.920/0.966
. ) 15 | 0934/0979  0.892/0.945 0.922/0969  0.916/0.964
Baselines. ~We use recent meth 20 | 0919/095  0.874/0919 0.897/0.959  0.897/0.945
ods with publicly available code 50 | 0910/0948  0.875/0.923 0.898/0.959  0.894/0.943

and pretrained weights as our base-
lines. DMDet (Corvi et al., 2023b) is  Table 2: Ablation results ACC / AUCROC on different dif-
a state-of-the-art RGB-only method. fusion steps and different training dataset.

UniFD (Ojha et al.,[2023) decoupling

feature learning from classification.

Their framework employs a frozen CLIP encoder (Radford et al., [2021) to extract domain-agnostic
embeddings. Fakelnversion (Cazenavette et al., |2024) uses text embeddings encoded by CLIP to
guide the diffusion-based reconstruction. It builds detection features by combining the reconstruc-
tion error, noise map, and the original image. While it achieves strong performance, it incurs high
computational cost due to the use of CLIP, BLIP, and U-Net components. B-Free (Guillaro et al.,
2025)) constructs an unbiased dataset and employs a Vision Transformer to extract discriminative
features. For further implementation details of our model, please refer to Appendix

6.1 MAIN RESULTS

Table[T]presents a comprehensive comparison across a broad range of recent generative models. Our
method consistently achieves superior performance on nearly all benchmark datasets, with an aver-
age ACC/AUCROC of 0.939 / 0.981, substantially outperforming SOTA baselines (B-Free: 0.833
/ 0.899). For instance, on high-fidelity diffusion models such as ADM, Glide, and Stable Diffu-
sion 1.4/1.5/3, our framework reaches near-perfect detection (ACC 0.998 to 0.999, AUCROC 0.998
to 1.000), while baseline methods show noticeable gaps (e.g., B-Free ACC 0.700 to 0.997). This
demonstrates the efficiency of our approach in capturing the distinctive generative characteristics of
a wide spectrum of diffusion models, including text-to-image systems such as Midjourney v5/6 and
Imagen. Unlike conventional methods that rely on model-specific features or complex reconstruc-
tion pipelines, our framework generalizes well without requiring text prompts or additional large
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models. By leveraging curvature-based features derived from the velocity field of the underlying
differential equations, together with high-frequency components extracted via wavelet transforms,
our approach effectively detects subtle inconsistencies introduced during generation.

Additionally, Table [T|reports the true positive rate (TPR) at a fixed false positive rate (FPR), which
is particularly informative for practical deployment (set to 5% in this study). Our TPR values are
consistently high across all datasets, with an average of 0.933. Although some models show slight
variations (e.g., Playground 2.5: TPR 0.810), the overall performance remains balanced, highlight-
ing the robustness of the proposed framework.

Ablations. We studied the effects of dataset se-
lection and diffusion steps on model performance. Input image Ours XRAI SOTA XRAI
As shown in Table 2] SD+LAION achieves the best 4§
training results. Although ProGAN+LSUN lags be- S m
hind in comparison, it still outperforms the base- ?ﬂgi
line methods. While GAN-based models can be \Qt‘b“
interpreted as diffusion processes along the tempo- Sy ]
ral dimension from a gradient flow perspective (Y1
et al.l [2023), their stronger model-specific charac-
teristics may compromise generalization. Regarding
the number of function evaluations (NFEs), 10 and
15 steps yield the best results, showing nearly iden-
tical performance. With 5 steps, performance drops
noticeably, likely because the selected ODE pipeline
does not support one-step generation, resulting in
significant error when NFEs fall below 10. Beyond
20 steps, performance fluctuations are minor, and the
additional computational cost from more diffusion
steps is not justified.

Interpretability.  Figure [ visualizes the most Real

salient regions identified by our model. In synthetic

images, areas with inconsistent lighting, incorrect Figure 5: Saliency Analysis. The green
perspective, or structural anomalies receive the high- ~ boxes highlight the most salient regions iden-
est saliency, whereas real images display abundant tified by our model. We visualize these
evidence supporting authenticity. This dual ability T€g10ns using the post-hoc explainability
underpins the model’s balanced detection and indi- method. XRAI (K.api‘shnikov et al._, 2019).
cates potential for localized anomaly detection and Areas in synthetic images with incorrect
artifact correction. In contrast, the baseline B-Free lighting or perspective exhibit the highest
emphasizes global weighted aggregation rather than saliency in our model.

specific generative artifacts, and its performance de-

pends heavily on large-scale training (360k images: 51k real, 309k fake) with ViT backbones. Our
model, by comparison, achieves strong results using only 80k images (40k real, 40k fake).

7 CONCLUSIONS

We present a novel framework for synthetic image detection that moves beyond traditional
reconstruction-based approaches by leveraging curvature features derived from the velocity field
of diffusion models. By formalizing reconstruction error in the optimal transport framework, we
identify that synthetic images follow lower-energy trajectories closer to the optimal transport path,
and embed this insight into pseudo-Gaussian curvature features. These curvature features, combined
with high-frequency components extracted via discrete wavelet transforms as a zeroth-order com-
plement, enable the model to capture subtle generative artifacts with high discriminative power. Our
approach not only improves generalization across diverse diffusion models but also reduces com-
putational overhead compared to full reconstruction pipelines. We hope that this work will inspire
further research in multimedia forensics and foster progress in the community.
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