
Published in Transactions on Machine Learning Research (07/2024)

Overcoming Order in Autoregressive Graph Generation for
Molecule Generation

Edo Cohen-Karlik edocoh@google.com
Verily Research
Haifa, Israel

Eyal Rozenberg eyalrozenberg@google.com
Verily Research
Haifa, Israel

Daniel Freedman danielfreedman@google.com
Verily Research
Haifa, Israel

Reviewed on OpenReview: https: // openreview. net/ forum? id= BK6Gc10tRy

Abstract

Graph generation is a fundamental problem in various domains, and is of particular in-
terest in chemistry where graphs may be used to represent molecules. Recent work has
shown that molecular graph generation using recurrent neural networks (RNNs) is advan-
tageous compared to traditional generative approaches which require converting continuous
latent representations into graphs. One issue which arises when treating graph genera-
tion as sequential generation is the arbitrary order of the sequence which results from a
particular choice of graph flattening method: in the chemistry setting, molecular graphs
commonly have multiple SMILES strings corresponding to the same molecule. Inspired by
the use case of molecular graph generation, we propose using RNNs, taking into account the
non-sequential nature of graphs by adding an Orderless Regularization (OLR) term that
encourages the hidden state of the recurrent model to be invariant to different valid or-
derings present under the training distribution. We demonstrate that sequential molecular
graph generation models benefit from our proposed regularization scheme, especially when
data is scarce. Our findings contribute to the growing body of research on graph generation
and provide a valuable tool for various applications requiring the synthesis of realistic and
diverse graph structures.

1 Introduction

Graphs are powerful representations of complex relationships and structures. While graphs have many
application domains, we are particularly interested in their use in chemistry, in which setting graphs may
be used to represent molecules. A dedicated class of architectures, Graph Neural Networks (GNNs), has
been developed to handle the specific properties of graphs. Graphs are naturally versatile objects, but such
versatility comes at the cost of lack of structure and no naturally induced order. Most GNN architectures
therefore operate by applying a neural architecture at the node level followed by an aggregation step which
takes into account the local neighborhood structure of the graph. By stacking multiple such layers, a GNN
is able to perform node-level or graph-level tasks that take into account the entire structure of the graph.

The ability to generate realistic and structured graphs is essential for various applications ranging from drug
design (De Cao & Kipf, 2018; Du et al., 2022b; Honda et al., 2019; Jin et al., 2018; Madhawa et al., 2019;
Shi et al., 2020; You et al., 2018a; Zang & Wang, 2020) to program synthesis (Brockschmidt et al., 2018;
Hindle et al., 2016; Chen et al., 2021a; Allamanis et al., 2017; Hellendoorn et al., 2019; Yin & Neubig, 2017;

1

https://openreview.net/forum?id=BK6Gc10tRy

Published in Transactions on Machine Learning Research (07/2024)

Bielik et al., 2016; Dai et al., 2018). In recent years a wide variety of generative models have been developed,
including generative adversarial networks (GANs), variational autoencoders (VAEs), normalizing flows, and
diffusion models. These algorithms devise different strategies to learn continuous mappings from a latent
distribution to a space of realistic examples. Unfortunately, graphs do not admit a natural representation
in a continuous space; consequently, the discrete and unordered nature of graphs make them less amenable
to the methods mentioned above for the task of graph generation. A different type of generative model
relies on autoregressive architectures which enable processing a sequence and generating the next element;
for example, these architectures are commonly used for large language models. Generally, autoregressive
models are applicable when the generated objects admit a sequential order.

In this work we focus on sequential generation of graphs using autoregressive neural architectures. A strong
motivating factor for choosing autoregressive architectures is that we are particularly interested in molecular
graph generation; and in this context Flam-Shepherd et al. (2022) have shown that sequential generation is
favorable compared to other approaches. The specific representation we consider is depth-first search (DFS)
trajectories of graphs. The reasons for this choice of representation is twofold: (a) DFS is a natural way
of flattening graphs into sequences; (b) in the chemistry community DFS is used to convert molecules into
strings. However, an issue arises when converting graphs into sequences: there are many DFS trajectories
for a given graph. Indeed, for many graph flattening methods, there is an arbitrariness in the order of the
sequence which results (Vinyals et al., 2015; Chen et al., 2021b).

In order to alleviate the dependency on a specific trajectory, we add a regularization term dubbed Orderless
Regularization (OLR) which ensures the learnt model is invariant to different DFS orderings of the same
graph. For the sake of training with OLR, one needs to generate different DFS trajectories with a common
end-vertex which is known to be hard (Beisegel et al., 2019). While our motivation originates from the
use-case of drug discovery and molecular graph generation, we provide a general formalism of the notion of
graph-level invariance and devise an efficient algorithm to generate common end-vertex trajectories under
certain constraints. Finally, we demonstrate empirically that our regularization term is beneficial when the
amount of training data is limited by considering the use case of small molecule generation.

The reminder of the paper is structured as follows: in Section 2 we provide background and introduce the
concepts, definitions, and notations used throughout the paper. Section 3 goes into the details of OLR over
DFS trajectories. Section 4 is devoted to related work. In Section 5 we provide empirical evidence for the
effectiveness of OLR. Section 7 provides concluding remarks.

2 Background

In this section we formally define the problem of graph generation, the notations and definitions necessary
to present our proposed method. We denote matrices by bold uppercase letters, M P Rnˆm, vectors by bold
lowercase letters, v, and the ith entry of v by vi. We proceed with a general formulation of recurrent models.

2.1 Recurrent Models

Let X , H, and Y be the spaces of inputs, hidden states, and outputs, respectively. Given an input sequence
x ” px1, . . . , xnq P X n, a recurrent model consists of two functions, the state update function fu : HˆX Ñ H,

ht`1 “ fupht, xtq, (2.1)

and the output function fo : H ˆ X Ñ Y,

yt “ fopht, xtq. (2.2)

where h0 P H. We overload the notation and denote the hidden state and output of a recurrent model over
a sequence as fupxq and fopxq respectively.

The formulation presented of recurrent models is broad and able to capture RNNs as well as more complex
architectures such as Gated Recurrent Units (GRUs, (Chung et al., 2014)) and Long-Short Term Memory

2

Published in Transactions on Machine Learning Research (07/2024)

networks (LSTMs, (Hochreiter & Schmidhuber, 1997)). For example, in the case of a very simple, vanilla
RNN,1

ht`1 “ σhpAht ` Bxtq (2.3)
and

yt “ σypCht ` Dxtq (2.4)
where A, B, C, D are matrices with the appropriate dimensions and σh, σy are standard non-linearities such
as sigmoid or tanh.

2.2 Graph Generation

A graph is given by G “ pV, Eq where V is a set of nodes (or vertices) and E Ď V ˆ V is a set of tuples
denoting the nodes connected by an edge in the graph. Additionally, for each v P V, denote by xv P Rm

the features of node v. Similarly, euv P Rk denotes the features of the edge pu, vq P E . For example, in
a molecular graph, nodes are atoms, and their features will contain the element; and edges correspond to
bonds, and their features will contain the bond types (single, double, etc.).2 Another example is of social
networks, where nodes corresponds to users and their features to user profiles; and edges correspond to
connections between users and their features contain metadata on this connection.

The topic of designing neural networks to operate specifically on graphs is dominated by Graph Neural
Networks (GNNs) which mostly rely on a message-passing scheme to propagate information between nodes.
While these architectures are extremely successful in node level and graph level prediction, they are not
as prevalent in the context of graph generation, and many such approaches are restricted to small graphs
(though (Davies et al., 2023) is a notable exception).

Formally, the task of graph generation is usually concerned with learning to model distributions: concretely,
given a set of N graphs tGiu

N
i“1 originating from an underlying distribution p, the goal of graph generation is

to devise an algorithm that generates new graphs from the underlying distribution p. Prior work has mostly
adapted successful generative methods over a continuous space to the domain of graphs (Gómez-Bombarelli
et al., 2018; Blaschke et al., 2018; Kadurin et al., 2017; Prykhodko et al., 2019). In this work we focus on
using recurrent models which can be employed naturally to generate discrete objects. Crucially, Flam et
al. (Flam-Shepherd et al., 2022) have shown that sequential generation is favorable compared to competing
approaches in the context of molecular graph generation.

2.3 Sequential Graph Generation

When applying recurrent models for graph generation, the graph first needs to be “flattened” into a sequence.
As there is no natural order for a graph, one must artificially induce such an order; for example, the approach
taken by (You et al., 2018b) considers generation of breadth-first search (BFS) trajectories. While there
are many ways to convert a graph into a sequence, in this work we focus on depth-first search (DFS); a
strong motivation for this choice is that this is the method used to convert graph molecules into a linear
representation called SMILES strings (Weininger, 1988). By convention, the output of the DFS algorithm
is a spanning tree and we consider the induced order of the graph as the order in which the vertices were
visited during the DFS run (also known as pre-order traversal).

In what follows we formally define the concepts discussed.
Definition 2.1. Given a connected graph G “ pV, Eq with |V| “ n, we say the permutation π P Sn is a
valid ordering of G if it is possible to run DFS over G and visit the vertices in the order induced by π.
Denote the sequence corresponding to a valid ordering π of G by

spG, πq “ pvπp1q, . . . , vπpnqq. (2.5)

Denote the set of all such sequences for a given graph G by

SpGq “ tspG, πq : π is a valid ordering of Gu. (2.6)
1Note that the bias term may be encapsulated into the input processing matrices by expanding the input with an additional

dimension and assigning a fixed value of 1 on that coordinate.
2Molecular node and edge features may contain other properties as well.

3

Published in Transactions on Machine Learning Research (07/2024)

Clearly, for a non-trivial graph SpGq will contain many sequences. In this work we have a special interest in
sequences that share the same end vertex.
Definition 2.2. Let SpG, vq denote all sequences terminating at node v P V, formally,

SpG, vq “ ts P SpGq : sn “ vu (2.7)

In case there are no valid DFS trajectories terminating as a certain node v, SpG, vq “ H by definition.

In the following section we discuss the desired properties for recurrent models when used for graph generation.

3 Structure Agnostic Recurrent Models

Recurrent models are a natural choice when generating discrete objects such as text. On the other hand,
graphs are discrete objects with no naturally induced order. In Section 2 we described a mapping between
graphs and sequences; and in particular, the fact that many different sequences correspond to the same
graph. In this section we present our method that overcomes the issues described.

3.1 Generating Depth-First Search Traversals

In this work we use recurrent models to generate DFS traversals of graphs. Clearly when generating a DFS
traversal, the next node to be generated depends on the nodes generated thus far and in particular the last
generated node. An important observation is that the output of the recurrent model should be invariant
to different valid orderings corresponding to the same subgraph as long as they lead to the same node. The
following definition formalizes this notion,
Definition 3.1. We say a recurrent model is structure invariant with respect to a connected graph G if

@v P V, @s1, s2 P SpG, vq it is the case that fops1q “ fops2q. (3.1)

If the above condition is satisfied for all G „ D, we say that the recurrent model is structure invariant
with respect to a distribution D.

Figure 1 depicts a graph and two different DFS traversals sharing the same root and terminal node. A
recurrent model processing the two DFS traversals will ideally generate the same node that will be attached
to node D.

Definition 3.1 describes the structure invariance property with respect to a graph. Since recurrent models
generate the traversal sequentially, we would like this property to hold at any moment during generation,
i.e., we want to modify Definition 3.1 to take into account partial DFS traversals.
Definition 3.2. For a connected graph G, we say a connected subgraph G̃ Ď G is induced by DFS over
G if there exists a valid ordering π P Sn of G, and k ď n such that pvπp1q, . . . , vπpkqq is a valid ordering of
G̃. Denote the set of all DFS induced subgraphs over G by GDF SpGq.

At this stage, a reader might question the necessity of Definition 3.2 and why GDF SpGq differs from the set
of all connected subgraphs of G. We note that for a general connected graph GDF SpGq does not correspond
to the set of all connected subgraphs.
Proposition 3.3. For a connected graph G,

GDF SpGq ‰
␣

G̃ | G̃ Ď G and G̃ is connected
(

(3.2)

Figure 2 depicts a graph and two connected subgraphs, one which is induced by DFS and the other that
cannot be obtained by a DFS traversal.

With the notion of DFS induced subgraphs in hand, we now present the following definition of total structure
invariance:

4

Published in Transactions on Machine Learning Research (07/2024)

A

B C D

E F

1

2

3 4

5 6

A

B C D

E F

1

3

5 4

2 6

Figure 1: Illustration of two DFS traversals of the same graph starting from node A and terminating
at node D, blue lines denote traversal order. (Left) traversal resulting in the sequence ApBEF qpCqD.
(Right) traversal resulting in the sequence ApCqpBFEqD. The parentheses denote the opening and closing
of branches when traversing the tree; with this syntax it is possible to reconstruct the tree from such
sequences. Note that multiple sequences correspond to the same tree, a fact that lies at the heart of this
work.

A

B C D

GFE

A

B C D

GFE

1

2

3

4

5

Figure 2: Illustration of the same graph with two connected subgraphs: (Left) subgraph which is not induced
by DFS. (Right) subgraph induced by DFS, arrows depict a traversal resulting in the sequence BApCF qD.

Definition 3.4. We say a recurrent model is totally structure invariant with respect to a connected
graph G, if

@G̃ P GDF SpGq, @v P VpG̃q, @s1, s2 P SpG̃, vq it is the case that fops1q “ fops2q. (3.3)

If the above condition is satisfied for all G „ D, we say that the recurrent model is totally structure
invariant with respect to a distribution D.

5

Published in Transactions on Machine Learning Research (07/2024)

Note that per Definition2.2, the condition vacuously holds for non terminal nodes.

In the next section we discuss how to train recurrent models which are totally structure invariant with respect
to a given training distribution over graphs.

3.2 Regularizing Towards Total Structure Invariance

Motivated by the observation discussed in Section 3.1, we propose training recurrent models that are to-
tally structure invariant with respect to the underlying distribution over graphs. It would be appealing to
characterize the class of all totally structure invariant functions and optimize over those. Unfortunately, it
is difficult to attain a crisp characterization of structure invariance as this property depends on the training
distribution.

Instead, we propose encouraging total structure invariance via regularization. Specifically, we would like to
minimize the following auxiliary loss,

EG„DEG̃„GDF SpGqEvPVpG̃qEs1,s2PSpG̃,vq

”

pfops1q ´ fops2qq
2
ı

(3.4)

which we refer to as Orderless Regularization (OLR). Examining Equation 3.4, we note that sampling from
GDF SpGq is easily done by randomly selecting a root node and running DFS with stochastic decision making.
On the other hand, given G̃ and v, sampling from SpG̃, vq is hard and has been shown to be NP-complete
(Beisegel et al., 2019).

3.3 Sampling Trajectories with Common End Vertex

The problem of generating all DFS trajectories that terminate at the same vertex is hard and there are no
known efficient algorithms for this task. In order to overcome this obstacle we apply a heuristic for computing
such trajectories. We highlight that our proposed scheme is not equivalent to a uniform sampling over all
possible trajectories; however, in Section 5 we show that the resulting regularization scheme is effective
empirically.

Next, we formally show that for practical graphs there exists efficient algorithms to generate such trajectories.
Definition 3.5. Let G “ pV, Eq be an arbitrary graph. G is said to be k-edge-connected if the subgraph
G1 “ pV, EzẼq is connected for all Ẽ Ď E such that |Ẽ | ă k and DẼ s.t. |Ẽ | “ k and G1 is not connected.
Proposition 3.6. There is an efficient algorithm to find distinct DFS trajectories with common end vertex
for any k-edge connected graph for k ď 2.

We note that in many real world tasks, graph are rarely k-edge connected for k ą 2. For example, in the
ZINC molecular dataset, more than 99.5% of molecular graphs are 1-edge connected.

Proof Sketch. Find a min-cut: by the definition of 1-edge-connected graphs the min-cut includes a single
crossing edge pu, vq. By removing pu, vq the graph is partitioned into two connected components, G1 and G2
containing u and v respectively. Run a DFS on G1 with u as the root vertex to result in pu1, . . . , ukq, and
similarly for G2 to result in pv1, . . . , vmq (where v1 “ v and u1 “ u).3 We can now construct a DFS traversal
on G by ‘gluing’ together the sequences as,

pv1, u1, . . . , uk, v2, . . . , vmq (3.5)

We can run another (stochastic) DFS on G1 from u to obtain
`

uπ̃p1q, . . . , uπ̃pkq

˘

where π P Sk and π̃p1q “ 1.
We can construct a second DFS sequence as in Equation 3.5,

pv1, uπ̃p1q, . . . , uπ̃pkq, v2, . . . , vmq (3.6)

We have created two valid DFS sequences that both terminate at vm.
3k and m denote the size of partitions and satisfy k ` m “ |V|.

6

Published in Transactions on Machine Learning Research (07/2024)

See Appendix A for the full details and the case of 2-edge connected graphs. Note that our method for
generating distinct DFS trajectories is not exhaustive and there may be additional trajectories not detected
via the algorithm induced by the proof sketch.

4 Related Work

In this section we discuss several relevant topics to graph generation. For a comprehensive review on graph
generation see (Guo & Zhao, 2022; Zhu et al., 2022).

One Shot Generation Classic generative architectures (e.g. Variational autoencoders (VAEs) (Kingma
& Welling, 2013), Generative adversarial networks (GANs) (Goodfellow et al., 2020), etc.) work by learning
a continuous mapping from a latent distribution to generate new examples with similar properties to the
training distribution. These models usually incorporate a neural architecture that maps directly from the
latent space to the domain of the training data (e.g. images) and therefore the output space must be
predetermined. These properties pose a challenge when applied to the domain of graphs, as the latter are
discrete objects with variable size and no naturally induced order. In order to circumvent these caveats,
prior work (Assouel et al., 2018; De Cao & Kipf, 2018; Du et al., 2022a; Fan & Huang, 2019; Flam-Shepherd
et al., 2020; Guo et al., 2020; Honda et al., 2019; Ma et al., 2018; Madhawa et al., 2019; Shi et al., 2020;
Simonovsky & Komodakis, 2018; Zou & Lerman, 2019) has used a one-shot generation strategy. That is, the
output space is limited by design to a specific representation of graphs (i.e. adjacency matrix or adjacency
list) of specific size and the output is generated in a single forward pass. While the one-shot strategy has
its merits, there are a few significant drawbacks such as the inability to generate graphs with arbitrary large
number of nodes.

Sequential Generation The idea of using autoregressive models for graph generation is not new and there
have been several works in this vein. GraphRNN (You et al., 2018b) proposes generating BFS trajectories in
order to limit the number of possible orderings per graph. Other works take a different approach of generating
edges in an autoregressive manner (Bacciu et al., 2020; Goyal et al., 2020). Additional approaches include
MolecularRNN (Popova et al., 2019) which incorporates a reinforcement learning environment to generate
nodes and edges sequentially. Yet another approach includes sequentially generating subgraph structures
(Jin et al., 2018; Liao et al., 2019; Podda et al., 2020). Another recent work (Bu et al., 2023) treats the
induced order as a problem of dimensionality reduction and attempts to learn mappings from graphs to
sequences. In this work we argue that the most effective inductive bias for the use of autoregressive models
to generate graphs is to be invariant to different orderings possible under the training distribution.

Molecule Generation One of the most prominent uses of graph generation, which is used for evaluation
in this work, is that of molecule generation. Molecular generation is applicable to the development of syn-
thetic materials, drug development and more. Molecules are 3D objects which are naturally represented as
point clouds4 with corresponding geometric approaches (Garcia Satorras et al., 2021; Simm et al., 2020a;b;
Hoogeboom et al., 2022) which utilize inherent symmetries in the architectures employed. While 3D repre-
sentations are richer and carry significant information that does not transfer to 1D and 2D representations,
they are costly to obtain and therefore the corresponding amount of data is limited as compared to 1D and
2D representations, which are ubiquitous. Another aspect of molecule generation is when the generation is
conditioned to satisfy certain properties. For example, (Skalic et al., 2019; Zhang et al., 2022; Rozenberg
& Freedman, 2023) generate molecules that are conditioned to bind to specific ligand structures, (Kang &
Cho, 2018; Zang & Wang, 2020) generate molecules that fulfill certain chemical properties. In this work we
consider the task of de-novo generation (Arús-Pous et al., 2019; Lim et al., 2018; Pogány et al., 2018; Tong
et al., 2021) where the objective is to generate molecules with similar properties to those in the training
data.

Permutation Invariant Recurrent Models Another relevant topic is the use of autoregressive models
for problems over sets which, like graphs, lack a natural order. There have been many works focusing on

4In a point-cloud representation of a molecule each point represents an atom and bonds are implicit from the distances
between atoms.

7

Published in Transactions on Machine Learning Research (07/2024)

Table 1: Wiener Index results for training with and without OLR. We report Mean Absolute Error (MAE)
and accuracy (computed by rounding the output to the nearest integer). For both metrics considered,
training with OLR dramatically improves performance.

MAE (Ó) Accuracy (Ò)
Vanilla 2.24 (0.12) 0.18 (0.02)
OLR 1.32 (0.10) 0.28 (0.04)

problems over sets. The most prominent of these is DeepSets (Zaheer et al., 2017) which applies a deep
neural network on each element of the set and then aggregates the result with a permutation invariant
operator (e.g. sum or max), finally applying another deep neural network on the aggregated result. There
have also been autoregressive works designed for sets: Murphy et al. (2018) use RNNs on different per-
mutations and output the average. While this requires n! orderings for a set of size n, the authors have
presented several approximation techniques and justified them empirically. Cohen-Karlik et al. (2020) have
shown that while DeepSets are universal, some permutation invariant functions require unbounded width
to implement successfully and have proposed using RNNs with a regularization term which enforces per-
mutation invariance. In this work we extend the concepts introduced in previous works into the realm of
drug design and sequential graph generation, where a desired property of models is to hold invariance for
certain permutations as induced by the data distribution. In the work of Cohen-Karlik et al. (2020) the
regularization is geared towards fully permutation invariant models; that is, their work may be viewed as a
specific case of graph-aware regularization where the data is represented by fully connected graphs. In this
work we generalize these concepts and formalize the problem for graphs with more general structures. As
a result, the straightforward regularization term proposed in (Cohen-Karlik et al., 2020) cannot be used,
and a more sophisticated regularization scheme is required. Specifically, using the lens of DFS trajectories
of graph, we suggest regularizing over valid sequences and devise an efficient approximation for generating
such sequences.

5 Experiments

5.1 Wiener Index

In order to gauge the effectiveness of OLR, we conducted a straightforward experiment designed to predict
the Wiener index of graphs. The Wiener index is a topological metric for molecules, involving the summation
of distances between all pairs of vertices within a given graph. These graphs are symbolically represented as
strings, using parentheses as exemplified in Figure 1.5 We employed a Long Short-Term Memory (LSTM)
model with a hidden width of 100, trained as a regression task. During training, we used graphs containing
10 nodes and a training set consisting of 50 examples; our aim was to determine the effectiveness of OLR
in the case when data is extremely scarce. The network was trained until convergence with perfect training
accuracy and evaluated on a test set consisting of 200 data points. We report the average mean absolute
error and accuracy as computed by rounding the networks output. As can be seen in Table 1, using OLR
improves results significantly.

To further investigate the effect of training with OLR, we visualize the embeddings of the hidden state when
the inputs are different representations drawn from two different graphs. A desired property is that different
representations of the same graph are clustered together; we show that this phenomenon does indeed occur,
as illustrated in Figure 3. This experiment demonstrates that the training with OLR results in models
that are significantly more invariant to different orderings of the same graph, a desired property for models
trained for the task of graph generation.

5As the Wiener index of a graph does not involve node features, we omit the node labeling from the representation which
yields a string of only opening and closing parentheses.

8

Published in Transactions on Machine Learning Research (07/2024)

Figure 3: t-SNE visualizations of hidden states when training with and without OLR. Data is generated as
different representations of two graphs (i.e. different DFS trajectories of the same graph), the first with a
Wiener index of 34, and the second with 38. (Left) training with OLR yields hidden states that are clearly
clustered into two groups. (Right) training without regularization, there is no apparent separation in the
embedding space between the two groups.

5.2 De Novo Molecule Generation

A prominent application of graph generation is that of molecule design. Graph generation tasks range from
de novo generation where the objective is to generate molecules with similar properties to a given dataset,
to conditional generation for which the task is to generate a graph given a second graph with specific
characteristics, i.e. a ligand that binds to a specific target. Our empirical evaluation focuses on the former.
We evaluate our proposed regularization method on the MOSES benchmark (Polykovskiy et al., 2020) and
compare to relevant baselines. Our implementation is based on the work of CharRNN which use three layers
of the LSTM architecture each with hidden dimension of 600 (for complete details refer to (Segler et al.,
2018)). We find a consistent improvement when adding OLR to the objective of autoregressive models.

The data curated by (Polykovskiy et al., 2020) is refined from the ZINC dataset (Sterling & Irwin, 2015)
which contains approximately 4.6M molecules. The authors filter the data based on molecular weights,
number of rotational bonds, lipophilicity, etc. to result in a total of 2M molecules. The authors provide
partitions of the data into train, test and scaffold test to allow fair evaluation.6

Computing Trajectories OLR works by feeding two different trajectories that terminate at the same
node. While this calculation is feasible to perform during the forward pass it introduces a computational
bottleneck. In order to circumvent this issue we employ the following calculations offline. For each molecule
we first index all min-cuts and randomly select one. We then generate multiple (10) traversals terminating
at the same node as described in Section 3.3 and write the sequences into a file along with the original
molecule from which the trajectories are derived from. When loading the data, two trajectories are selected
at random and used as inputs to the OLR objective described in Section 3.2.

Data Filtering Our offline computation of trajectories in Section 5.2 requires that there are min-cuts
that induce sufficient number of different DFS traversals terminating at the same node. While 99.9% of
the molecules in MOSES have at least two such trajectories, we filter the data to remain with molecules

6The scaffold of a molecule is the structure induced by its ring systems along with the connectivity pattern between these
systems. The scaffold test partition contains molecules with structures that did not appear in the train and test partitions.
The scaffold test allows for the evaluation of how well the model can generate previously unobserved scaffolds.

9

Published in Transactions on Machine Learning Research (07/2024)

Table 2: Generation results at validity threshold of 0.8 for LSTM and GRU architectures. Leading result
highlighted in bold for each metric. Rank Average is the average position of each method over all metrics
considered. As can be seen, OLR outperforms the baselines considered for both architectures. Refer to the
text for further details.

LSTM GRU
Metric Canonical Rand. OLR + Rand. Canonical Rand. OLR + Rand.
Unique@1K (Ò) 0.8930 1.0 1.0 0.805 1.0 1.0
Unique@10K (Ò) 0.6182 0.9975 0.9981 0.5314 0.9965 0.9967
FCD/Test (Ó) 1.1208 0.8568 0.7784 1.2616 0.9602 0.9752
SNN/Test (Ò) 0.5599 0.4967 0.4936 0.5718 0.4948 0.4978
Frag/Test (Ò) 0.9953 0.9947 0.9958 0.9945 0.9940 0.9961
Scaf/Test (Ò) 0.6370 0.8246 0.8220 0.5857 0.8252 0.8159
FCD/TestSF (Ó) 1.8318 1.4236 1.3089 1.921 1.7269 1.7022
SNN/TestSF (Ò) 0.5234 0.4795 0.4769 0.5352 0.4755 0.4785
Frag/TestSF (Ò) 0.9920 0.9919 0.9926 0.9911 0.9908 0.9932
Scaf/TestSF (Ò) 0.0245 0.1185 0.0931 0.0250 0.1028 0.1123
IntDiv (Ò) 0.8527 0.8508 0.8537 0.8499 0.8535 0.8531
IntDiv2 (Ò) 0.8457 0.8449 0.8479 0.8424 0.8475 0.8471
Filters (Ò) 0.9889 0.9705 0.9702 0.9908 0.9678 0.9702
Novelty (Ò) 0.8969 0.9797 0.9809 0.8787 0.9787 0.9748
Rank Average 2.28 2.07 1.57 2.42 1.92 1.57

which have at least 10 different trajectories satisfying the criteria defined. After filtering we are left with
approximately 500K molecules for training, and 55K for test and scaffold test partitions. We note that
in following sections we show our method is most effective when training data is scarce and therefore the
filtering process does not limit the applicability of our proposed regularization scheme.

Results Our results for training with OLR compared to other baselines trained on the same data are
shown in Table 2. The most relevant baselines is CharRNN (Segler et al., 2018) which is an autoregressive
model trained on Canonical SMILES. We further compare to a randomized version of CharRNN inspired
by the finding of (Arús-Pous et al., 2019) which show that augmenting the data by using randomly gener-
ated SMILES representations of the same molecule improves performance. We also attempted to compare
our method to other non-autoregressive models such as those based on Variational Autoencoders (VAEs)
(Blaschke et al., 2018; Gómez-Bombarelli et al., 2018; Kadurin et al., 2017); however, we found that the
models did not produce valid molecules when trained with 1000 examples, so we do not report these results.
We use the metrics defined by the MOSES benchmark (Polykovskiy et al., 2020); see Appendix B for a
thorough description of these metrics.

In order to demonstrate the effectiveness of OLR we use 1000 randomly sampled data points from the
training set and evaluate over the entire test set. When training with small amounts of data there is a trade-
off between the validity of the generated molecules and the uniqueness and other metrics. Our evaluation
considers the best performing models for each method providing the validity of the generated molecules
exceeds 80%.

Results are depicted in Table 2. As can be seen, adding randomized variants of the molecules outperforms
the original work of (Segler et al., 2018) which train an RNN as a language model using only canonical
SMILES. Furthermore, adding the OLR objective exceeds the performance of randomized SMILES. In order
to clearly depict the performance difference, we calculate the rank of each method on each metric considered.
The average rank of each method is added as the last row of Table 2.

10

Published in Transactions on Machine Learning Research (07/2024)

6 Discussion

Graph generation poses unique challenges due to the discrete and unordered nature of graphs, which differ
from continuous data typically handled by generative models. While various generative approaches such
as GANs, VAEs, and autoregressive models have been successful in other domains, their application to
graph generation requires careful consideration of the inherent structural complexities. Our work focuses
on sequential graph generation using autoregressive architectures, motivated particularly by applications in
molecular graph generation.

The choice of depth-first search (DFS) trajectories as the representation for graph sequences offers a struc-
tured approach aligned with the nature of graph exploration and has relevance in chemical informatics where
molecules are often represented as SMILES sequences. However, the multitude of possible DFS trajectories
for a given graph poses a challenge when devising a regularization scheme to ensure model invariance.

The introduction of Orderless Regularization (OLR) addresses this challenge by promoting model robustness
against different DFS orderings of the same sub-graph. By incorporating OLR into the training process,
we mitigate the dependency on specific DFS trajectories and enhance the generalization capabilities of
the autoregressive model. This regularization term proves particularly beneficial in scenarios with limited
training data, as demonstrated empirically in our study on small molecule generation.

The computational aspect of generating DFS trajectories with a common end-vertex, a prerequisite for
training with OLR, presents a notable challenge. However, our devised algorithm efficiently tackles this
challenge under specified constraints, facilitating effective training with OLR.

While our approach shows promise in small molecule generation, its generalizability to larger and more
complex graphs warrants further investigation. Scalability issues may arise with increasingly heterogeneous
graphs, necessitating advancements in algorithmic techniques or adaptations of OLR. Additionally, the de-
pendence on specific constraints for generating DFS trajectories highlights a potential limitation, prompting
exploration of alternative regularization techniques or extensions of OLR to handle diverse graph structures.

An avenue for future research involves investigating the suitability of OLR for diverse autoregressive archi-
tectures, including Transformers. Adapting OLR to Transformer-based models necessitates adjustments due
to the absence of a hidden state, which serves as the foundation for enforcing invariance in recurrent archi-
tectures. Furthermore, Transformers are permutation invariant architectures by design. A straightforward
approach to encorporate OLR in Transformers would be to add positional encodings to the sequences and
enforce invariance by penalizing the gap in the output of the model over different sequences representing
the same graph. To test the applicability of OLR for Transformers, we repeat the Wiener index experiment
(Section 5.1) with the recurrent architecture replaced by a Transformer. We find that regularization does not
yield an improvement in results for an architecture with a comparable number of parameters: the accuracy
is 0.12 compared to 0.28 achieved by an LSTM with OLR. One explanation for the gap in performance is the
fact that regularization is performed on partial sequences which admit only certain positional embeddings
and the model cannot extrapolate the desired behaviour to positional embeddings corresponding to unseen
string orders.

These results indicates that Transformers require a different approach to adequately regularize towards
structure invariance. A possible method for biasing Transformers towards graph invariance would be to
design positional encodings that are aware of the structure of the graph, an approach which may have
connections to Attention GNNs (Velivckovic et al., 2017; Zhang et al., 2018; Lee et al., 2018). Consequently,
the extent to which Transformer models can leverage the advantages of OLR or other regularization methods
remains uncertain and is a promising direction for future work.

7 Conclusions

In this work we highlight the innate gap that every autoregressive model for graph generation must mitigate
- the induced order on graphs. We propose a different approach to previous works by introducing a novel
regularization scheme that encourages learning hypotheses that are invariant to different DFS orderings. We
demonstrate empirically that our proposed method improves performance for autoregressive models and is

11

Published in Transactions on Machine Learning Research (07/2024)

especially effective when the available datasets are small, as is the case in many real world problems. We
believe that our approach can contribute to the applicability of autoregressive models such (e.g. State-space
models) for graph generation and that similar ideas may be incorporated in various generation strategies
beyond the scope of this work.

References
Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs with

graphs. arXiv preprint arXiv:1711.00740, 2017.

Josep Arús-Pous, Simon Viet Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian Tyrchan,
Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. Randomized smiles strings improve the quality
of molecular generative models. Journal of cheminformatics, 11(1):1–13, 2019.

Rim Assouel, Mohamed Ahmed, Marwin H Segler, Amir Saffari, and Yoshua Bengio. Defactor: Differentiable
edge factorization-based probabilistic graph generation. arXiv preprint arXiv:1811.09766, 2018.

Davide Bacciu, Alessio Micheli, and Marco Podda. Edge-based sequential graph generation with recurrent
neural networks. Neurocomputing, 416:177–189, 2020.

Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaz Krnc, Nevena Pivac, Robert Scheffler, and Martin
Strehler. On the end-vertex problem of graph searches. Discrete Mathematics & Theoretical Computer
Science, 21, 2019.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks. Journal of
medicinal chemistry, 39(15):2887–2893, 1996.

Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: probabilistic model for code. In International
conference on machine learning, pp. 2933–2942. PMLR, 2016.

Thomas Blaschke, Marcus Olivecrona, Ola Engkvist, Jürgen Bajorath, and Hongming Chen. Application of
generative autoencoder in de novo molecular design. Molecular informatics, 37(1-2):1700123, 2018.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polozov. Generative code
modeling with graphs. arXiv preprint arXiv:1805.08490, 2018.

Jie Bu, Kazi Sajeed Mehrab, and Anuj Karpatne. Let there be order: Rethinking ordering in autoregressive
graph generation. arXiv preprint arXiv:2305.15562, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code.(2021). arXiv preprint arXiv:2107.03374, 2021a.

Xiaohui Chen, Xu Han, Jiajing Hu, Francisco JR Ruiz, and Liping Liu. Order matters: Probabilistic
modeling of node sequence for graph generation. arXiv preprint arXiv:2106.06189, 2021b.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Edo Cohen-Karlik, Avichai Ben David, and Amir Globerson. Regularizing towards permutation invariance
in recurrent models. Advances in Neural Information Processing Systems, 33:18364–18374, 2020.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational autoencoder
for structured data. arXiv preprint arXiv:1802.08786, 2018.

Alex O Davies, Nirav S Ajmeri, et al. Hierarchical gnns for large graph generation. arXiv preprint
arXiv:2306.11412, 2023.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs. arXiv
preprint arXiv:1805.11973, 2018.

12

Published in Transactions on Machine Learning Research (07/2024)

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling and
using’drug-like’chemical fragment spaces. ChemMedChem: Chemistry Enabling Drug Discovery, 3(10):
1503–1507, 2008.

Yuanqi Du, Xiaojie Guo, Hengning Cao, Yanfang Ye, and Liang Zhao. Disentangled spatiotemporal graph
generative models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
6541–6549, 2022a.

Yuanqi Du, Xiaojie Guo, Amarda Shehu, and Liang Zhao. Interpretable molecular graph generation via
monotonic constraints. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM),
pp. 73–81. SIAM, 2022b.

Shuangfei Fan and Bert Huang. Labeled graph generative adversarial networks. arXiv preprint
arXiv:1906.03220, 2019.

Daniel Flam-Shepherd, Tony Wu, and Alan Aspuru-Guzik. Graph deconvolutional generation. arXiv preprint
arXiv:2002.07087, 2020.

Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. Language models can learn complex molecular
distributions. Nature Communications, 13(1):3293, 2022.

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n) equivariant
normalizing flows. Advances in Neural Information Processing Systems, 34:4181–4192, 2021.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato, Benjamín
Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams,
and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the ACM, 63(11):
139–144, 2020.

Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. Graphgen: a scalable approach to domain-agnostic
labeled graph generation. In Proceedings of The Web Conference 2020, pp. 1253–1263, 2020.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2022.

Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye. Interpretable deep graph
generation with node-edge co-disentanglement. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1697–1707, 2020.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global relational
models of source code. In International conference on learning representations, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural infor-
mation processing systems, 30, 2017.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. On the naturalness of
software. Communications of the ACM, 59(5):122–131, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,
1997.

Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki Nakanishi, and Kenta Oono. Graph residual flow
for molecular graph generation. arXiv preprint arXiv:1909.13521, 2019.

13

Published in Transactions on Machine Learning Research (07/2024)

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for
molecule generation in 3d. In International conference on machine learning, pp. 8867–8887. PMLR, 2022.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for molecular
graph generation. In International conference on machine learning, pp. 2323–2332. PMLR, 2018.

Artur Kadurin, Alexander Aliper, Andrey Kazennov, Polina Mamoshina, Quentin Vanhaelen, Kuzma
Khrabrov, and Alex Zhavoronkov. The cornucopia of meaningful leads: Applying deep adversarial au-
toencoders for new molecule development in oncology. Oncotarget, 8(7):10883, 2017.

Seokho Kang and Kyunghyun Cho. Conditional molecular design with deep generative models. Journal of
chemical information and modeling, 59(1):43–52, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Greg Landrum. Rdkit: Open-source cheminformatics. 2006. Google Scholar, 2006.

John Boaz Lee, Ryan Rossi, and Xiangnan Kong. Graph classification using structural attention. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 1666–1674, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel Urtasun, and
Richard Zemel. Efficient graph generation with graph recurrent attention networks. Advances in neural
information processing systems, 32, 2019.

Jaechang Lim, Seongok Ryu, Jin Woo Kim, and Woo Youn Kim. Molecular generative model based on
conditional variational autoencoder for de novo molecular design. Journal of cheminformatics, 10(1):1–9,
2018.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via regularizing
variational autoencoders. Advances in Neural Information Processing Systems, 31, 2018.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible flow
model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Andreas Mayr, Günter Klambauer, Thomas Unterthiner, Marvin Steijaert, Jörg K Wegner, Hugo Ceulemans,
Djork-Arné Clevert, and Sepp Hochreiter. Large-scale comparison of machine learning methods for drug
target prediction on chembl. Chemical science, 9(24):5441–5451, 2018.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling: Learning
deep permutation-invariant functions for variable-size inputs. arXiv preprint arXiv:1811.01900, 2018.

Marco Podda, Davide Bacciu, and Alessio Micheli. A deep generative model for fragment-based molecule
generation. In International Conference on Artificial Intelligence and Statistics, pp. 2240–2250. PMLR,
2020.

Peter Pogány, Navot Arad, Sam Genway, and Stephen D Pickett. De novo molecule design by translating
from reduced graphs to smiles. Journal of chemical information and modeling, 59(3):1136–1146, 2018.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai Tatanov,
Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark Veselov, et al. Molec-
ular sets (moses): a benchmarking platform for molecular generation models. Frontiers in pharmacology,
11:565644, 2020.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating realistic
molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Oleksii Prykhodko, Simon Viet Johansson, Panagiotis-Christos Kotsias, Josep Arús-Pous, Esben Jannik
Bjerrum, Ola Engkvist, and Hongming Chen. A de novo molecular generation method using latent vector
based generative adversarial network. Journal of Cheminformatics, 11(1):1–13, 2019.

14

Published in Transactions on Machine Learning Research (07/2024)

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical information and
modeling, 50(5):742–754, 2010.

Eyal Rozenberg and Daniel Freedman. Semi-equivariant conditional normalizing flows, with applications to
target-aware molecule generation. Machine Learning: Science and Technology, 4(3):035037, 2023.

Marwin HS Segler, Thierry Kogej, Christian Tyrchan, and Mark P Waller. Generating focused molecule
libraries for drug discovery with recurrent neural networks. ACS central science, 4(1):120–131, 2018.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a flow-based
autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382, 2020.

Gregor Simm, Robert Pinsler, and José Miguel Hernández-Lobato. Reinforcement learning for molecular
design guided by quantum mechanics. In International Conference on Machine Learning, pp. 8959–8969.
PMLR, 2020a.

Gregor NC Simm, Robert Pinsler, Gábor Csányi, and José Miguel Hernández-Lobato. Symmetry-aware
actor-critic for 3d molecular design. arXiv preprint arXiv:2011.12747, 2020b.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using variational
autoencoders. In Artificial Neural Networks and Machine Learning–ICANN 2018: 27th International
Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018, Proceedings, Part I 27, pp.
412–422. Springer, 2018.

Miha Skalic, Davide Sabbadin, Boris Sattarov, Simone Sciabola, and Gianni De Fabritiis. From target to
drug: generative modeling for the multimodal structure-based ligand design. Molecular pharmaceutics, 16
(10):4282–4291, 2019.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical information
and modeling, 55(11):2324–2337, 2015.

Xiaochu Tong, Xiaohong Liu, Xiaoqin Tan, Xutong Li, Jiaxin Jiang, Zhaoping Xiong, Tingyang Xu, Hualiang
Jiang, Nan Qiao, and Mingyue Zheng. Generative models for de novo drug design. Journal of Medicinal
Chemistry, 64(19):14011–14027, 2021.

Leonid Nisonovich Vaserstein. Markov processes over denumerable products of spaces, describing large
systems of automata. Problemy Peredachi Informatsii, 5(3):64–72, 1969.

Petar Velivckovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06391, 2015.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodology and
encoding rules. Journal of chemical information and computer sciences, 28(1):31–36, 1988.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation. arXiv
preprint arXiv:1704.01696, 2017.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy network
for goal-directed molecular graph generation. Advances in neural information processing systems, 31,
2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In International conference on machine learning, pp. 5708–5717.
PMLR, 2018b.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexan-
der J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

15

Published in Transactions on Machine Learning Research (07/2024)

Figure 4: Proof illustration - S has a cycle and two different trajectories starting from u and ending with
w (urw and uwprq. Concatenating with the trajectory from z to v we obtain two different DFS trajectories
with a shared suffix.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In Pro-
ceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
617–626, 2020.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated attention
networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294, 2018.

Zaixi Zhang, Yaosen Min, Shuxin Zheng, and Qi Liu. Molecule generation for target protein binding with
structural motifs. In The Eleventh International Conference on Learning Representations, 2022.

Yanqiao Zhu, Yuanqi Du, Yinkai Wang, Yichen Xu, Jieyu Zhang, Qiang Liu, and Shu Wu. A survey on
deep graph generation: Methods and applications. arXiv preprint arXiv:2203.06714, 2022.

Dongmian Zou and Gilad Lerman. Encoding robust representation for graph generation. In 2019 Interna-
tional Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE, 2019.

A Missing Proofs

In this section we show how to construct distinct DFS trajectories with common end vertex for a 2´edge
connected graph conditioned that the graph is not a cycle.

Proof. From our assumption that the graph is not a cycle, there exists at least two nodes with degree ě 3.
Denote by C “ pS, T q a minimal cut of size 2 (such a cut exists from our assumption that the graph is
2-connected). Denote the edges of the minimal cut by e1 “ pu, vq and e2 “ pw, zq such that u, w P S and
v, z P T . Next, we claim that at least one of the partitions contains a cycle, otherwise there is a path
connecting S and T since there are nodes in the graph which have a degree of 3 in the original graph with a
path between them. Assume with out loss of generality that S is the partition with a cycle, therefore there
are at least 2 different traversals of S that start with u and end with w. There is also a trajectory between
z and v. Putting together, there are at least 2 trajectories of the entire graph with a common suffix which
is the traversal of T . Figure 4 illustrates the proof concept.

B Metric Details

In this section we provide details for the metrics reported in Table 2.

16

Published in Transactions on Machine Learning Research (07/2024)

A few of the similarity measures (SNN and IntDiv) are based on the Tanimoto coefficient. In order to
compute the Tanimoto coefficient, the molecules are mapped to a vector of fingerprints where each bit in
the vector represents the presence (or absence) of a specific fragment.7 For molecules A, B, denote their
fingerprints by mA and mB respectively, the Tanimoto coefficient is then calculated as the Jaccard index of
the two vectors,

JpmA, mBq “
|mA X mB |

|mA Y mB |
“

|mA X mB |

|mA| ` |mB | ´ |mA X mB |
. (B.1)

We denote the Tanimoto coefficient of molecules A, B by T pA, Bq.

Unique@K report the fraction of uniquely generated valid SMILES strings amongst the K molecules
generated (validity is determined by the RDKit library). We generate 30, 000 molecules for each model and
report for K “ 1, 000 and K “ 10, 000. High uniqueness values ensure the models do not collapse into
repeatedly producing the same set of molecules.

Fréchet ChemNet Distance (FCD) is a metric for evaluating generative models in the chemical context,
the method is based on the well established Fréchet Inception Distance (FID) metric used to evaluate the
performance of generative models in computer vision (Heusel et al., 2017).

Fréchet distance measure the Wasserstein-2 distance (Vaserstein, 1969) from the distributions induced by
taking the activations of the last layer of a relevant deep neural net. In the case of FCD, molecule activations
are probed from ChemNet (Mayr et al., 2018). Given a set of generated molecules, denote by G the set of
vectors as obtained by the activations of ChemNet, one can calculate the mean and covariance µG and ΣG.
Similarly, denote µR and ΣR the mean and covariance of the set of molecules in the reference set, the FCD
is calculated as follows,

FCDpG, Rq “ }µG ´ µR}2 ` Tr
´

ΣG ` ΣR ´ 2pΣGΣRq1{2
¯

. (B.2)

where TrpMq denotes the trace of the matrix M . Low FCD values indicate that the generated molecules
distribute similarly to the reference set.

Similarity to Nearest Neighbor (SNN) is the average of the Tanimoto coefficient of the generated
molecule set denoted by G and their respective nearest neighbor in a reference set of molecules denote by
R. High SNN indicates the generated molecules have similar structures to those in the reference set. This
metric is in the range of r0, 1s.

Fragment similarity (Frag) is a fragment similarity measure based on the BRICS fragments (Degen
et al., 2008). Denote the set of BRICS fingerprints vectors of the generated molecules by G and similarly R
for the reference molecules. The fragment similarity is defined as the cosine similarity of the sum vectors,

FragpG, Rq “ cosine

˜

ÿ

gPG

g,
ÿ

rPR

r

¸

(B.3)

The Frag measure is in the range of r0, 1s, values closer to 1 indicate that the generated and reference
molecule set have a similar distribution of BRICS fragment.

Scaffold similarity (Scaff) is similar to the fragment similarity, instead of the BRICS fragment, Scaff is
based on mapping molecules to their Bemis–Murcko scaffolds (Bemis & Murcko, 1996).8 The measure also
has a range of r0, 1s, values closer to 1 indicate that the generated molecule set has a similar distribution of
scaffold to the reference set.

7The molecular fingerprints are obtained from RDKit (Landrum, 2006) and are based on the extended-connectivity finger-
prints (Rogers & Hahn, 2010).

8Bemis–Murcko scaffold is the ring structure of a molecule along with the bonds connecting the rings, i.e. the molecule
without the side chains.

17

Published in Transactions on Machine Learning Research (07/2024)

Internal diversity (IntDiv) is a mesure of the chemical diversity within a generated set of molecules G.
This metric indicates

IntDivp “ 1 ´

˜

1
|G|2

ÿ

A,BPG

T pA, Bqp

¸1{p

(B.4)

We report the internal diversity for p “ 1, 2. This measure is in the range r0, 1s. Low values indicate a lack
of diversity in the generated molecules, i.e. that the model outputs molecules with similar fingerprints.

Filters is the fraction of generated molecules that pass a certain filtering that has been applied to the
training data. The metric is in the range of r0, 1s, high values indicate that the model has learnt to generate
molecules which avoid the structures omitted by the filtering process.

Novelty is the fraction of generated molecules that does not appear in the training set. This measure is
in the range of r0, 1s and is an indication of the whether the model overfits the training data.

18

	Introduction
	Background
	Recurrent Models
	Graph Generation
	Sequential Graph Generation

	Structure Agnostic Recurrent Models
	Generating Depth-First Search Traversals
	Regularizing Towards Total Structure Invariance
	Sampling Trajectories with Common End Vertex

	Related Work
	Experiments
	Wiener Index
	De Novo Molecule Generation

	Discussion
	Conclusions
	Missing Proofs
	Metric Details

