Under review as a conference paper at ICLR 2026

LONGHORIZONUI: A UNIFIED FRAMEWORK FOR RO-
BUST LONG-HORIZON TASK AUTOMATION OF GUI
AGENT

Anonymous authors
Paper under double-blind review

ABSTRACT

While multimodal large language models (MLLMs) have shown promise in
short-horizon GUI agents, their performance degrades significantly on long-
horizon tasks involving complex, dynamic interfaces. To address this, we present
LongHorizonUI, a framework designed to enhance the reliability and robustness
of MLLM-based agents in extended interactive environments. Moreover, we es-
tablish a new long-horizon benchmark, named LongGUIBench, encompassing
complex general applications and various gaming scenarios. Long-horizon tasks
in this benchmark are defined as those requiring more than 15 steps, enabling thor-
ough evaluation of long-horizon reasoning capabilities. Building upon this bench-
mark, we develop a Multimodal Enhanced Perceiver that integrates element detec-
tion and text recognition models, assigning unique indices to interface elements,
thereby reinforcing state representation. Furthermore, we introduce a Deep-
Reflection Decider, which employs a structured multi-level feedback-validation
mechanism to support iterative reasoning and guarantee precise action execution
along predictable trajectories. Building on the Deciders outputs, a Compensatory
Action Executor continuously monitors execution progress; when degradation is
detected, it applies targeted compensation operations or triggers a rollback proce-
dure, thereby maintaining robustness throughout long-horizon tasks. Experiments
show that LongHorizonUI substantially improves long-horizon performance on
LongGUIBench, while remaining competitive on diverse public benchmarks. The
code and models will be publicly available.

1 INTRODUCTION

Graphical user interface (GUI) agents (Hong et al], 2024; Wang et al], 2025; Huang ef all, 2079 [Yd
ef-all, PO7S; Tan_ef all, P2074) are increasingly utilized in dynamic interactive environments to au-
tomate diverse workflows. The advancement of multimodal large language models (MLLMs) (Lui
ef-all, D073; Ciefall, P073; Cinef all, P024; [Zhang et all, Z024)) has notably bolstered the capabil-
ities of GUI agents in tackling more intricate scenarios, enabling them not only to handle simple,
short-term tasks (Hong et all, P074; Sun_ef all, Z0754) but also to engage in complex, long-horizon
interactions within gaming environments and enterprise applications.

Recent work (Sun_ef-all, Z025H; Fan_ef all, P079) has investigated online reinforcement learning to
improve adaptability by generating training data through environmental interactions. However, the
trial-and-error learning paradigm expands the action space and amplifies cumulative errors over long
horizons. Moreover, most of the existing benchmarks (Cief-all, P0744; Cn“ef all, P074a; Chaief-afll,
2075; Rawlesef all, P073) are designed for short-term taskstypically fewer than 15 steps, as shown
in Figure P4, and thus fail to support long-horizon evaluations. Consequently, developing reliable
GUI agents in long-horizon tasks remains a significant challenge.

Key Observations. To investigate the challenge of current methods in the long-horizon task sce-
narios, we conduct experiments by evaluating state-of-the-art methods (Cin“ef-all, P073; Oin et all,
P075; Zhang et all, 2025) on the AndroidControl benchmark (Cief-all, P024a) across sequences of
varying lengths, as shown in Figure PB. Specifically, for sequences with <5 steps, average success
rates exceed 90.0%. However, performance degrades sharply as sequence length increases. When

Under review as a conference paper at ICLR 2026

<
. Deep Reflection — Next
Mutimodal P f §CDP o |
Decider o
Enhanced X -
Perceiver @ — Action
‘ i i idati uccess
Farm Lane 1 ‘£ Historical Validation 9 Executor (v
XXX rxl XX rrrl — wee
LongGUIBench| Target Check 9 Index:

I x i
|
Failed L)

T n
a) m Lia Relative: ——
— “ @ —_— Eﬁ Action Explainabilit) “n,(x,y)’ g =
=— >15 steps - Absolute: Callback | ““ (77

Cur Ul Task text L Ul Element Controls) Pre-execution Refletion?)| ey &retry

0l

Figure 1: LongHorizonUI first builds an indexed element set (icons/text) via enhanced perception,
next drives the MLLM with a structured prompt to validate history and derive multiple action can-
didates, and finally applies a three-stage executor (index, relative, absolute) with monitoring. This
pipeline sustains reliable execution on sequences exceeding 15 steps.

sequences exceed 10 steps, the average success rate drops below 75%; for sequences longer than 15
steps, it falls to approximately 60%.

This non-linear performance degradation clearly indicates that current methods may fail to capture
long-horizon state dependencies, allowing errors to accumulate exponentially as sequence length
increases. Once the sequence length exceeds a certain threshold, the agent system collapses due to
the inability to maintain cross-step contextual consistency. To address this issue, we need to answer
the question: how can we design GUI agents that maintain contextual coherence and decision-
making proficiency over long-horizon action sequences?

Our Solution. In this work, we propose LongHorizonU]I, a framework for enhancing the robustness
of MLLM-based GUI agents in complex and long-horizon tasks, as shown in Figure 0. Specifically,
first, we propose a Multimodal Enhanced Perceiver (MEP) that integrates object detection and OCR
outputs to capture rich contextual information, assigning indices to UI elements for temporally con-
sistent state representation. Then, we design a Deep Reflection Decider (DRD) that performs struc-
tured, multi-level reasoning through formatted prompts, enforcing explicit validation of historical
coherence, goal relevance, and action justification to ensure the decision fidelity. Finally, we incor-
porate a Compensatory Action Executor (CAE) that implements a multi-level fallback strategy by
leveraging the element indices, relative layout priors, and absolute screen coordinates. Concurrently,
a real-time progress monitor captures screen states and execution outcomes to construct a temporal
state chain, enabling reliable rollback and recovery from execution errors.

Moreover, to comprehensively evaluate the performance in long-horizon scenarios, we introduce
LongGUIBench, a new benchmark that consists of tasks requiring more than 15 steps across di-
verse gaming and application scenarios. It comprises 371 scenarios: 207 from 13 games and 147
task chains from 15 apps. Data were collected by professional testers, 6 human experts, via synchro-
nized actionscreen recording, followed by cross-modal alignment and standardized parsing. Exten-
sive experiments on both existing benchmarks and the proposed LongGUIBench demonstrate that
LongHorizonUI outperforms existing methods by over 3% in task success rate, without sacrificing
the generic performance.

To summarize, our contributions are as follows:

* We propose LongHorizonUI, a GUI agent designed for long-horizon reasoning, enhancing perfor-
mance by an improved perceiver, a structured deep reflection decider, and a multi-level compen-
satory action executor.

* We introduce LongGUIBench, a new benchmark for long-horizon GUI interaction comprising di-
verse complex tasks from multiple application domains requiring more than 15 steps, with expert-
annotated state trajectories and goal specifications.

» Extensive experiments on public benchmarks and LongGUIBench demonstrate that LongHori-
zonUI outperforms state-of-the-art methods in long-horizon tasks while maintaining competitive
performance in standard settings, validating its efficacy and generalization capabilities.

Under review as a conference paper at ICLR 2026

Datasets
M o
GUIOdyssey ? ?ﬁ
Avoe R 2 %
Avg: 8.2 ° A
@
14 § 8
@ 07
AITW 2 §
Q
S O Infigui-r1
2] O AgentCPM-GUI
A Quen25I-7b
N 051 & UILTARS-1.5 o
Androideontrol / #- LongHorizonUl (ours)
[High Performance Zone (>95%)
./ \ Critical Decline Zone
~ \\'\ Failure Zone
LongGUIBench 03 3 6 9 12 15 18
0 5 10 15 20 25) k-] 40
Steps numbers Sequence Steps
(a) Sequence length distribution. (b) Effect of length on performance.

Figure 2: (a) Step-length distributions across GUI datasets. LongGUIBench shows markedly longer
horizons (Avg: 22.1 steps) compared to GUIOdyssey (13.4), AITW (8.2), and AndroidControl (6.8),
emphasizing evaluation beyond short episodes. (b) Success rate vs. sequence length on AndroidCon-
trol. All baselines degrade as horizons grow, with sharp drops beyond 10-15 steps; LongHorizonUI
(ours) sustains higher SR and delays the critical decline, remaining competitive up to 18 steps.

2 OUR METHOD

In this section, as outlined in Figure B, we introduce LongHorizonUl, a framework dedicated to
long-horizon reasoning for GUI agents. Building upon the LongGUIBench benchmark spanning
complex games and general application workflows, our approach integrates three core components:
(i) a Multimodal Enhanced Perceiver integrating OCR and icon detection, (ii) a Deep Reflection
Decider enabling action verification and adaptive planning, and (iii) a Compensatory Action Execu-
tor ensuring robust action execution. The following sections detail each element. The discussion of
related work is in the Appendix O due to the page limit.

2.1 LONGGUIBENCH

In this section, we present LongGUIBench, a benchmark designed for evaluating long-horizon
GUI tasks by simulating real-world, dynamic interactive scenarios. The dataset is constructed
through synchronized collection of action sequences and screen snapshots, captured by profes-
sional testers as they execute predefined test cases across diverse applications and games. All
tasks mandate at least 15 steps (mean steps: 22.1). Following cross-modal temporal alignment,
the collected action commands and screenshots are input into MLLMs, leveraging structured
prompts combined with screen perception algorithms, the MLLMs parse operation descriptions
(e.g., “click the search bar”) and extract semantic control annotations, including button function-
alities and bbox coordinates. This process generates a standardized intermediate representation with
a key-value structure that includes the global descriptions (task_name) and decomposed sub-
goal descriptions (task_steps{action_ID, action_description, action_type,
bbox, image_width/height}). Finally, manual noise filtering yields a long-horizon dataset
containing 371 scenarios.

Gaming Scenarios. Games typically involve complex interactive processes. To this end, we col-
laborate with professional testers to construct 207 high-complexity scenarios spanning 13 popular
games, covering core mechanics such as equipment management and event participation. Each sce-
nario is structured as a long-horizon task chain (19 to 37 steps, mean = 23.7 steps), captured in 4508
screen images to simulate real player decision flows. Each task includes two levels of instructions:
High-Level instructions (HL) define macro goals, such as “purchase item XX in the game store,"
while Low-Level instructions (LL) are broken down into atomic operation sequences, such as “click
the store button," and “click the purchase button." Additionally, every operation step is annotated
with fine-grained Ul metadata, including control type (e.g., button, text box, drop-down menu), bbox
coordinates, and state attributes.

Under review as a conference paper at ICLR 2026

LongHorizonBench LongHorizonUL
Prev-Reflection | &9 Deep Think & Descion
o

Scene: General
Step nums :18~31

™ Evaluation_prev_goal: "Success",

f Import_contents: " The ‘Moments’ button

M at the top of the current screen showing

4l index 13,

Think: “The previous action successfully

navigated to the ‘Discover’ screen.....The

'Moments' button is clearly visible at the top

il of the screen, labeled with index 13.
Next_goal: "Tap the Moments button.",

[] text search
T
& history reflection

)~ Pl_HIStrOy \ ction: "click”: {position”: 13}
@) MLLM ; '
[V Scene: Game . = (&l Compensating Action Actuator
(+*) step nums:22~34 Preception T b >
== AT Aly4lE I iyd
s Ny N ™ — IR AR . _.
}]3 OCR “)_Callback y Step-1 Step-4 Step-N
@ Icon Detect D ol - b
S Retry Index I Relative || Absolute| | History I
O {pos:"n"} {n,(x,y)} .y} || the hy}
Enhanced Perception Post-Reflection =" I

Figure 3: Illustration of LongHorizonUI framework. The LongGUIBench is introduced to define
complex long-horizon interaction scenarios. An enhanced perceiver (OCR + Icon detection) ex-
tracts enriched UI element features, while a deep reasoning engine performs three-tier closed-loop
validation of action feasibility. The compensation actuator employs multi-stage strategies (index/rel-
ative/absolute/historical coordinates) for robust execution.

General Scenarios. To assess generalization capability, we constructed 147 end-to-end task chains
across 15 popular apps, covering complete user workflows from trigger to feedback. Each task re-
quires 15-27 actions (mean = 19.5) and incorporates both abstraction levels: High-level instructions
define global goals (e.g., ’Schedule a 1.5-hour meeting starting at 10 am on June 29th’). Low-
level instructions specify atomic operations (e.g., Launch Tencent Meeting; Click ’Schedule’; Select
’Standard Meeting’; Set duration). All steps are annotated with granular UI semantics, emphasizing
complex interface behaviours (e.g., multi-level dropdown navigation, real-time input validation) to
validate long-horizon GUI agents in challenging workflows.

2.2 MULTIMODAL ENHANCED PERCEIVER

Accurately identifying and disambiguating interactive elements in context is key to enabling task
automation in complex GUIs. To this end, we propose the Multimodal Enhanced Perceiver (MEP),
which unifies icon detection, OCR recognition, and heuristic repair into an ID-centred abstraction
layer, extracting actionable signals from evolving GUISs, inspired by prior work (En“ef-all, Z074d).

Specifically, given a GUI screenshot S, MEP extracts visual elements through parallel perception

modules: (i) An enhanced detector identifies interactive controls, producing E,,; = (id;, b;, ci)ijil,

with id; a unique spatial tag, b; its bounding box, and ¢; the confidence from the detector head
(sigmoid class probability). IDs serve as stable anchors, robust to small layout variations. MEP also

highlights previously clicked elements. (ii) A conventional OCR module extracts Eiexy = (25, b;)JM:1 R
with ¢; the detected text and b; the bounding box. To disambiguate composite controls such as icon

+ text, each e; € F,; is linked with its most relevant text via a semantic binding function:

& = 0, Biont) = (idi, bi U bje, tje, ci), if IoU(bi, bje) = 7,)
7 75 I/text (de bi, @, CZ‘), Otherwise,

where j* = arg max; IoU(b;, b;) denotes the text box with maximum overlap, and binding is ap-
plied only when IoU(b;, b;-) > 7 (Appendix B).

To mitigate missed detections of critical elements, such as close buttons on pop-ups, we employ
a fallback template matcher that is activated when no elements are detected in designated high-
priority areas Apriority (small normalized bands around pop-up corners and bottom bars where missing
a control can stall a trajectory). Upon activation, the module invokes a repair function R over Apriori;y,
leveraging a template library 7 of canonical close/cancel, confirm/next, and back/home icons; high-
similarity matches are inserted as new elements only in these regions to match and restore omitted
key elements.

Under review as a conference paper at ICLR 2026

2.3 DEEP REFLECTION DECIDER

Current agent decision mechanisms (Nm“ef-all, P0174; Kil"ef"all, 2074) based on self-supervised
training paradigms exhibit limited long-horizon generalization due to constrained dataset diversity,
while MLLMs-based mechanisms (Wang_ et all, 20074)), despite superior sequence modeling capa-
bilities, suffer from cascading error propagation under dynamic interface shifts, compromising re-
liability in long-horizon task execution. To address this, we propose the Deep Reflection Decider,
as illustrated in Figure B, which implements a structured multi-level feedback mechanism to estab-
lish triple closed-loop reasoning. This strategy validates goal rationality pre-execution and confirms
environmental-state consistency post-execution, ensuring action precision and prediction credibility.

Specifically, a strictly defined JSON
Schema (ﬁelds: historical status s [Acition prompt: Tap the 'Use' button for the preset by CIKE14]
import_contents, think, Execute_goal, Evaluation Base this ONLY on the screen image, evaluate if the

. . . . prev_goal ®(| previous action visually achieved its intended goal.
action, further details are provided in Ap-
pendix [.) enforces structured three-tier reasoning,
where the first three fields implement reflection
and the last two fields implement decision:

Import Output important contents closely related fo user\'s

contents instruction on the current page.

2 Provide a step-by-step thinking process. Analyze the current
Think {7 | screen, relate it o the overall task and the visual outcome of

the previous step . Decide the next best single action
(1) Historical Validation: the historical
status validates Ul state transitions (e.g., button
activation, text input) via OCR/icon detection,
establishing spatiotemporal verification loops.
Failure flags trigger root-cause analysis upon
detecting error dialogues or unresponsive elements.

& iefly describe the specific, immediate goal of the next
lext_goal Q) | riefly
Next_g ﬁ action you are proposing in the 'action’ field.

v v v v

Action "action_name": { dictionary of parameters for the action}

(2) Target Check: the import_contents field
extracts screen-critical information, validating the Figure 4: Deep reflection and decision-
MLLM’s environmental comprehension via OCR/i- making processes designed to validate prior
con detection. Task-goal consistency assessments actions and predict subsequent steps.

retain high-relevance text while filtering noise.

(3) Action Explainability: the think field requires the MLLM to sequentially analyze current Ul
states, failure causes (if any), and action localization rationale (e.g., “Button #12 has the highest
interaction confidence”), with outputs culminating in executable goals (Execute_goal) that are
translated into atomic actions (action).

Pre-execution Reflection. Before execution, each candidate action is screened for on-screen
grounding and task entailment. We accept a for execution only if

d(st,a| G, T) =1gig(a) € G| A 1K (daction) € K(T)] = 1.)

Here, G; denotes the UI elements at state s; from the perceiver, 7 the global task description, and
a a candidate action with (Execute_goal, action) and description dacion. gig(a) is the target
element of a, and K (-) a keyword extractor enforces that the action semantics are consistent with the
task. In practice, if either the target element is absent from the current screen or the action semantics
are not entailed by the task description, the action is rejected and a brief revision step is triggered
using available OCR/icon evidence; otherwise, the action proceeds.

2.4 COMPENSATING ACTION EXECUTOR

Current MLLM-driven agents face actioninstruction uncertainty: free-format outputs lack a direct
mapping to executable screen coordinates, while dynamic Uls require real-time correction. To bridge
this semanticphysical gap, we introduce the Compensating Action Executor (CAE), which adopt
a robust action pipeline with multi-stage compensation and progress-triggered backtracking (see
Algorithm).

Compensating Action Execution. We first parse element indices (e.g., position:13) and se-
mantic descriptions (e.g., Top Moments button) from the Deciders output, then resolve the target
elements bounding box from the live layout, denoted B = (Zmin, Ymin, Lmaxs Ymax). Normal-
ized coordinates (Zyom, Ynorm) are mapped to physical pixels using a device-aware scaling matrix

Under review as a conference paper at ICLR 2026

Algorithm 1 Compensating Action Executor (single step)

Require: Current state s;; candidates A from DEEP REFLECTION DECIDER encoded as
index (position:%“i"), relative (action:“n,(z,y)"),
absolute (point:“(z,y) + €"); last committed snapshot (s;—1,pi—1)
Ensure: Executed (a*,enc*,p*) with § € {SUCCESS, FAIL} (rollback on fail)
I: I+ [index (position:“i"), relative(action:“n,(z,y)"),
absolute (point:“(z,y) +€")] > priority: index — relative — absolute
2: for each enc € Il do
3 if 3a € A s.t. Encode(a) = enc then
4: p < RESOLVEPOINT(a, enc, s;) > centroid / element-local map / screen map + jitter
5: EXECUTECLICK(p)
6: ($t+1,9) < VERIFYMLLM (8¢, @, D)
7 if § = SUCCESS then
8

: return (a, enc, p, SUCCESS) > caller updates snapshot to (s¢4+1,p)
9: else
10: continue > degrade to next encoding
11: end if
12: end if
13: end for

14: RECORDFAILURE(s¢, .A); ROLLBACK(St—1, pt—1)
15: return (L, L, | FAIL)

S = diag(Wiereen, Hyereen)> With p = S - (Znorm Ynorm) | » SO that the same normalized command is
mapped consistently to device-specific click locations across different resolutions.

To enhance operational robustness, we employ a three-stage degradation policy consis-
tent with our encodings index (position:“i"), relative (action:“n,(z,y)"), and
absolute (point:“(z,y) +€"):

* (1) Index (centroid). Prioritize index-based execution at the element centroid py of B; i.e., the
midpoints of the intervals [Zmin, Zmax] a0d [Ymin, Ymax)-

* (2) Relative (in-box). If the attempt fails (0 = 0), draw a click p,c uniformly inside B: sample
Aw, A ~ U0, 1] and place the point using the box width w = Zpax — Tmin and height h =
Ymax — Ymin-

* (3) Absolute (screen) with jitter. Upon repeated failure, use absolute screen coordinates mapped

from (z,y) and add a bounded perturbation € (e.g., ||€||o0 <5 px) to escape edge/occlusion cases;
the base point defaults to the normalized target or pg when unspecified.

Post-execution Reflection. For each action instruction a at state s;, we execute its candidates
in the stated priority order. After each attempt, the DEEP REFLECTION DECIDER performs state
verification:

vy = Verifyy v (e, @, pe, Iiv1) € {0, 1} 3)

where p; is the click point computed from the current attempt and the resolved box B, and [y
is the post-action screenshot. If vy = 1, we commit the step and update the snapshot to (s¢41,pt)-
Otherwise, we degrade to the next candidate. When all candidates for a are rejected, we allow a few
local re-planning calls to DRD at the same state; if these still fail, we invoke Rollback(s;—1,pi—1)
to restore the last committed snapshot and continue execution. (see Appendix B for details and
statistics).

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

To ensure fair evaluation across benchmarks, we select base models aligned with their architectures
and configure consistent experimental settings. For LongHorizonBench, we adopt a representative
MLLMs (Comanicief-all, P075) as the backbone to ensure stable reasoning in long-horizon tasks.

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison of Models on LongGUIBench Long-Horizon Tasks

Model Name General-Low General-High Game_Low Game_High Avg
™ SR ™ SR ™™ SR ™ SR Avg

Base Models

GPT-40 (OpenAlT et all, 2074) 875 208 750 42 91.6 239 859 3.7 49.1

Gemini2.5 (Comanicief all, ZO7S) 96.7 733 772 257 951 577 843 257 673
Qwen2.5-VL-7b (Rarefall, 2075) 923 827 731 293 924 728 689 274 674

GUI Models

OmniParser (Liefall, 2074HR) 90.0 830 793 356 91.8 61.0 704 20.1 66.4
AgentCPM-GUI (Zhang et all, 2075) 92.1 812 824 37.1 89.7 665 741 258 68.6
InfiGUI-R1 (Cinefall, PO75) 932 797 567 238 929 672 539 194 618
UI-TARS-1.5 (Oin et all, 2075) 93.6 792 754 218 832 695 778 189 658
LongHorizonUI 935 853 780 523 938 839 79.7 521 773

Table 2: Grounding Performance Comparison on the ScreenSpot Benchmark.

Model Name Mobile Desktop Web Avg
Text Icon Text Icon Text Icon
Base Models
GPT-40 (OpenAl et all, 2074) 30.5 23.2 20.6 19.4 11.1 7.8 18.8
Gemini2.0 - - - - - - 84.0
Qwen2.5-VL-7b (Baiefall, 2023) - - - - - - 84.7
GUI Models
CogAgent (Hong et all, 2074)) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick (Cheng et all, 2024) 78.0 52.0 72.5 30.0 55.7 32.5 534
ShowUI (Cin“ef all, PO73) 92.3 75.5 76.3 61.1 81.7 63.6 75.1
OmniParser (Ci“ef-all, Z074H) 93.9 57.0 91.3 63.6 81.3 51.0 75.1
UI-TARS (Oin et all, 20279) 93.0 75.5 90.7 68.6 84.3 74.8 82.3
InfiGUI-R1 (Coaefall, PO25) 97.1 81.2 94.3 77.1 91.7 77.6 87.5
LongHorizonUI 95.6 86.9 96.8 81.4 93.5 90.9 90.4

All components operate without fine-tuning, leveraging pre-trained models for task execution and
evaluation. Task-specific prompts are designed to prevent ambiguity and enhance reproducibility
(see Appendix [for more details.).

3.2 BENCHMARKS

We evaluate our model using the following benchmarks (i) LongGUInBench, our curated dataset
of 371 complex GUI task trajectories spanning 28 diverse applications (including gaming, enter-
prise systems, and creative tools) with an average trajectory length of 24.6 steps (max 37 steps) for
evaluating long-horizon reasoning robustness; (ii) Screenspot for granular grounding capability as-
sessment across multiple device types; and (iii) AndroidControl (Low/High difficulty tiers) (LCiefall,
P0744) and GUI-Odyssey (Cu_efall, P0244) datasets to measure real-time navigation performance
under dynamic interface constraints.

3.3 MAIN RESULTS

Long-horizon Reasoning Capability. To systematically evaluate long-horizon reasoning capabil-
ities, we conducted extensive experiments comparing LongHorizonUI with state-of-the-art meth-
ods on our proposed LongGUIBench benchmark, which features long-horizon tasks. As shown
in Table M, LongHorizonUI achieves a step success rate (SR) of 85.3% for low-level instructions
and 52.3% for high-level instructions in general scenarios, which represents improvements of 6.1%
and 30.5% over the state-of-the-art method (UI-TARS-1.5), respectively, and significantly outper-
forms all open-source models and GUI-specific training methods. In more complex game scenarios,

Under review as a conference paper at ICLR 2026

©
S
°
©
o
°

Indexing performance
Performance with compensation
Compensation gain 87.5

®
~
in

Full system
Abiated ystem
85.30% Moan valuo

#3/9% [850

©
o}
o

83.90%
82605 +2.5%

81.40%81.40% e

®
I
o
®
g
n

Accuracy (%)

76.50%

SR success rate (%)
3
g
8
>

75.0 74.30% 75.0
73.20%

Detection ocR Template

indexing absolute relative historical
Compensatory action

(a) Perception components. (b) Compensating actions.
Figure 5: Ablation analyses: (a) perception components; (b) compensating actions.

LongHorizonUI reaches a low-level instruction SR of 83.9% and a high-level instruction SR of
52.1%, which maintains a clear lead across all compared methods. These results validate the pro-
posed LongHorizonUT’s significant advantage in modeling long-horizon dependencies.

Grounding Capability. Table @ compares our LongHorizonUI framework with mainstream meth-
ods on the ScreenSpot dataset, including base models and SOTA GUI agents. LongHorizonUI
demonstrates consistent superiority across device subsets (mobile, desktop, web), achieving 90.4%
average task success rate, surpassing all open-source models and outperforming the previous SOTA
GUI framework (UI-TARS) by 2.9%. These results validate LongHorizonUIs robust grounding ca-
pability across diverse devices and scenarios.

Navigation Capability. To rigorously evaluate the navigation capabilities of our method, we
benchmarked LongHorizonUI against state-of-the-art approaches on AndroidControl (Li“ef—all,
P0744d) and GUI-Odyssey (Cn“ef-all, 2074a). As shown in Table B, LongHorizonUI achieves sig-
nificant improvements in SR over both zero-shot models and GUI-specialized baselines. Compared
to Qwen2.5-VL-7B , our method elevates SR by 6.4% on AndroidControl-High and 6.1% on GUI-
Odyssey. Moreover, LongHorizonUI attains an average SR gain of 2.3% over the strong GUI-R1-7B
baseline. These results demonstrate that LongHorizonUI not only significantly enhances planning
robustness for long-horizon tasks but also retains fundamental interaction capabilities for short se-
quences.

Table 3: Performance comparison on AndroidControl and GUI-Odyssey benchmarks

Model Type Model Name AndroidControl-Low AndroidControl-High GUI-Odyssey Avg

™ SR ™ SR ™ SR
GPT-40 74.3 28.4 63.1 21.2 375 5.4 383
Base Models Qwen2.5-VL-3B 62.0 59.3 47.8 38.9 374 267 454
Qwen2.5-VL-7B 834 62.5 68.7 47.1 556 344 586
OS-Atlas-4B 64.6 40.6 49.0 22.8 49.6 203 41.1
GUI model Os-Atlas-7B 73.0 50.9 57.4 29.8 604 27.0 4938
GUI-R1-3B 83.7 64.4 58.0 46.6 548 413 581
GUI-R1-7B 85.2 66.5 71.6 51.7 655 388 632
Ours LongHorizonUI 87.5 68.9 73.4 54.2 68.3 405 655

3.4 ABLATION STUDY

Effectiveness of Perception Components. Figure B reports an ablation study that isolates each
perception module. Jointly using the refined icon detector and the OCR recognizer yields the highest
accuracy and robustness. Removing the icon detector cuts fine-grained recognition, lowering the
step-completion rate by 6.1%. Disabling OCR causes the same 2.3% drop and leads to frequent
errors on icon-text composite widgets. Turning off the adaptive grid prevents the detector from

Under review as a conference paper at ICLR 2026

The user opens the "Honor of Kings" application, selects the "Animist" hero in Solo Practice mode, changes its skin to "Duke
Lepus," and switches the skill to "Sprint," then closes the background apps.
=10 - B e

Step3: "click": {"positi 51’ep6:"click\ {"position": 6}
- o i‘ oy

e

Stepl: “click":
{"position": 19}

Step24: "click":
{"position": 58}

Oppo app H Solo Practice mode I——{ Changes hero's skin H Switches the skill }——»{ Closing process]
Figure 6: Case visualization of LongHorizonUI in a gaming scenario.

Step4: "click": {"position": 21} Stepb: “click": {"position": 26} | |...Step23:"press key": {"recent"}

scaling to different screen resolutions, so microscopic elements on high-resolution displays are often
missed. Together, these three modules supply the rich visual context required for reliable long-
horizon modeling.

Effectiveness of Compensatory Actions. Figure BH visually compares the different action modes,
indexing instructions and step lengths, showing that indexing alone delivers an 81.4% task-
completion rate, outperforming all other action modes. Adding compensatory actions on top of
indexing gives further gains by 1.2% (relative coordinates), 2.5% (absolute coordinates), and 3.9%
(historical coordinates). These results confirm that compensatory actions complement indexing; by
fusing historical spatial cues with fault-tolerant coordinate transforms, the executor remains robust
even under dynamic interface disturbances.

3.5 CASE VISUALIZATION

As illustrated in Figure B, the LongHorizonUI agent executes a fully automated operation sequence
in the Honor of Kings scenario. Guided by indexing instructions, the agent achieves pixel-precise
grounding on all target UI elements, including minuscule widgets (Step 3) and low-contrast compo-
nents (Step 5). Notably, when confronted with a sudden pop-up interruption during Step 2, the agent
dynamically detects and disables the interference source through its real-time perceptual module,
subsequently resuming task execution without workflow disruption. This end-to-end workflow spans
multi-step operations from application launch, skill switching, to background process management,
demonstrating LongHorizonUlIs capability to maintain cross-step operational precision and dynamic
disturbance robustness in complex task chains.

4 CONCLUSION

Summary. In this work, we present LongHorizonUlI, an innovative framework for long-horizon
GUI tasks, featuring a multimodal enhanced perceptron for precise capture of Ul element states, a
three-tier closed-loop reasoning engine for action verification/prediction, and an innovative multi-
level compensator ensuring action execution validity. Demonstrating superior performance on Long-
GUIBench (15-step tasks) and public benchmarks, it establishes a new paradigm for reliable long-
horizon GUI tasks.

Limitations & Future Work. Despite achieving state-of-the-art performance without introduc-
ing notable overhead relative to prior agents, LongHorizonUI still inherits the latency of MLLM-
dependent pipelines. Next, we will focus on model-level efficiencydistillation, quantization, and
context-aware prompt compression.

Under review as a conference paper at ICLR 2026

ETHICS CHECKLIST

1. Code of Ethics Acknowledgement

1.1. All authors have read and will adhere to the ICLR Code of Ethics; acknowledgement was made
during submission (yes/no) yes

1.2. This paper includes an Ethics Statement at the end of the main text, before references (if appli-
cable) (yes/no) yes

2. Human Subjects and IRB/Consent

2.1. Research involves human subjects or user studies (yes/no) NA

If yes, address the following:
2.2. IRB/ethics board approval (or equivalent) is obtained and documented (yes/NA) NA

2.3. Informed consent procedures are described; compensation and inclusion of minors are
disclosed (yes/NA) NA

3. Data, Privacy, and Security

3.1. All datasets used are cited with licenses and access conditions; non-public data are described
with justification (yes/partial/no) yes

3.2. Personally identifiable information (PII) was removed, anonymized, or processed under com-
pliant safeguards (yes/NA) yes

3.3. Data collection respects terms of service and legal/compliance requirements (e.g., copyright,
web scraping policies) (yes/partial/no) yes

3.4. Security-sensitive artifacts or vulnerabilities are responsibly handled (e.g., redactions, coordi-
nated disclosure) (yes/NA) NA
4. Bias, Fairness, and Potential Harm

4.1. Known risks of harmful or dual-use applications are discussed with mitigation strategies (yes/-
partial/no) yes

4.2. Bias/fairness concerns (subgroup performance, demographic or domain skews) are analyzed or
acknowledged (yes/partial/no) partial

4.3. Limitations, open risks, and appropriate use/disallowed use are stated (yes/no) yes

5. Conflicts of Interest and Sponsorship
5.1. All funding sources, compute donations, and in-kind support are disclosed (yes/no) yes

5.2. Potential conflicts of interest (employment, consulting, equity) are disclosed (yes/NA) NA

6. Research Integrity

6.1. All results are reported faithfully; negative findings or failure cases are included when relevant
(yes/partial/no) yes

10

Under review as a conference paper at ICLR 2026

6.2. Figures/tables are accurately labeled; data provenance and documentation are maintained (yes/-
partial/no) yes

Note: The Ethics Statement is optional but recommended; it does not count toward the page limit and should
not exceed one page.

REPRODUCIBILITY CHECKLIST
7. Overall Documentation

7.1. High-level method overview and/or pseudocode provided (yes/partial/no) yes

7.2. Clear separation of claims vs. evidence; notation and assumptions are stated (yes/partial/no)
yes

7.3. Pointers to background/pedagogical resources for replication (yes/no) yes

8. Code, Artifacts, and Environment

8.1. Anonymous, downloadable code provided as supplementary material or link (yes/partial/no)
yes

8.2. Exact commit/version, dependency list (e.g., environment .yml/requirements.txt),
and OS details (yes/partial/no) yes

8.3. Hardware details (GPU/CPU models, RAM), framework/library versions, and runtime esti-
mates (yes/partial/no) yes

8.4. Randomness handling documented (seeds, nondeterministic ops, determinism limits) (yes/par-
tial/no/NA) yes

9. Data and Preprocessing

9.1. All datasets cited with URLs/licensing; custom splits or filtering rules documented (yes/par-
tial/no) yes

10. Training and Hyperparameters

10.1. Search spaces and selection criteria reported; final hyperparameters listed per model (yes/par-
tial/no) yes

10.2. Training schedules, batch sizes, losses, and early-stopping criteria documented (yes/partial/no)
yes

11. Evaluation and Reporting
11.1. Metrics are formally defined and motivated; evaluation scripts included (yes/partial/no) yes

11.2. Number of runs, variance (e.g., std/CI), and significance tests reported where appropriate (yes/-
partial/no) partial

11.3. Ablations/diagnostics provided to support claims and clarify failure modes (yes/partial/no) yes

REFERENCES
Jinze Bai, Shuai Bai, Yunfei Chu, and Zeyu Cui et al. Qwen technical report, 2023.

11

Under review as a conference paper at ICLR 2026

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and
Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents, 2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021.

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee: Align gui
action grounding to novel environments via autonomous exploration, 2025.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models,
2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui
agents. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14281-14290, June 2024.

Zhiyuan Huang, Ziming Cheng, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Spiritsight agent: Ad-
vanced gui agent with one look. In Proceedings of the Computer Vision and Pattern Recognition
Conference (CVPR), pp. 29490-29500, June 2025.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng, Yu Su, and Wei-Lun Chao. Dual-view
visual contextualization for web navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14445-14454, June 2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 39648-39677, 2023.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based
web navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 52955306, 2024.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y. Ko, Sangeun
Oh, and Insik Shin. Explore, select, derive, and recall: Augmenting llm with human-like memory
for mobile task automation, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen vision encoders and large language models. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp. 19730-19742, 2023.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,

and Oriana Riva. On the effects of data scale on computer control agents. arXiv preprint
arXiv:2406.03679, 2024a.

12

Under review as a conference paper at ICLR 2026

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions, 2024b.

Bin Lin, Zhiyuan Ye, Shuyang Zhang, Jun He, and Dong Yu. Moe-llava: Mixture of experts for
large vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13245-13255, June 2024.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
visual agent. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR),
pp- 19498-19508, June 2025.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Visual instruction tuning with large
language models. In Advances in Neural Information Processing Systems (NeurIPS), pp. 5189—
5210, December 2023.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-rl: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices, 2024a.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024b.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
GUI agent, 2024c.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-rl : A generalist rl-style vision-language
action model for gui agents, 2025.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. In Proceed-
ings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence, pp. 64336441.
International Joint Conferences on Artificial Intelligence Organization, August 2024.

OpenAl, Josh Achiam, Steven Adler, and Sandhini Agarwal et al. Gpt-4 technical report, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, and Shihao Liang et al. Ui-tars: Pioneering
automated gui interaction with native agents, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 59708-59728, 2023.

Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, Ninghao Liu, Haitao Mi,
and Dong Yu. Mobilegui-rl: Advancing mobile gui agent through reinforcement learning in online
environment, 2025.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
2025a.

13

Under review as a conference paper at ICLR 2026

Yuchen Sun, Shanhui Zhao, Tao Yu, Hao Wen, Samith Va, Mengwei Xu, Yuanchun Li, and
Chongyang Zhang. Gui-xplore: Empowering generalizable gui agents with one exploration. In
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), pp. 19477-
19486, June 2025b.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqgiao Zong, Longtao Zheng, Yujie Wu,
Xiaoqgiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chao-
jie Wang, Xinrun Wang, Borje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle:
Empowering foundation agents towards general computer control, 2024.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. In Advances in Neural Information Processing Systems, volume 37,
pp. 26862710, 2024.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang, and
Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025.

Zhiyong Wu, Zhenyu Wu, and Fangzhi Xu et al. Os-atlas: A foundation action model for generalist
gui agents, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, and Yian et al. Os-atlas: A foundation action model for
generalist gui agents, 2024b.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, and Ming Yan.
Mobile-agent-v3: Fundamental agents for gui automation, 2025.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-
evolutionary reinforcement learning. arXiv preprint arXiv:2505.12370, 2025.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):5625-5644,
2024.

Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, and Yesai Wu et al. Agentcpm-gui:
Building mobile-use agents with reinforcement fine-tuning, 2025.

14

Under review as a conference paper at ICLR 2026

APPENDIX

This is the supplementary file for our submission titled LongHorizonUI: A Unified Framework for
Robust long-horizon Task Automation for GUI Agent. This material supplements the main paper
with the following content:

¢ (B) Motivation of LongHorizonUI
¢ (O) Related work
* (D) Additional Experiments

— () Implementation Detail
— (@) Benchmarks
— (B) Parameter analysis
¢ (B) Prompts in Automated Pipeline
— () Output Format Structure Template
— (@) Visual Processing Template
— (@) Action Selection Protocol

— (B) Workflow Exception Handling
¢ (B) Qualitative Analysis

¢ (@) Additional Discussions

A THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are used exclusively for polishing the writing and
checking grammar. They are not involved in research ideation, experimental design, data analysis,
or the formulation of conclusions. The authors make all substantive intellectual contributions.

B MOTIVATION OF LONGHORIZONUI

To systematically assess the performance of state-of-the-art UI agents on long-horizon interaction
tasks, we design a step-length-driven, multi-factor evaluation protocol that highlights the need for
robustness at scale. We first compute the step-length distribution of the ANDROIDCONTROL test
set (Figure Ma) and observe that more than 80% of the episodes contain fewer than ten actions,
whereas sequences of ten or more steps, those that truly stress long-horizon reasoning, account for
less than 20%. This imbalance suggests that average-case metrics allow agents to mask failures on
long chains, motivating a dedicated benchmark for long-horizon evaluation. We then simulate the
execution-success rate (ESR) as a function of step length for five representative agents under the
same distribution (Figure Ob). UI-TARS-2B (Oin_et all, P075), InfiGUI-R1-3B (LCiu“ef-all, PO75),
Qwen2.5-VL-7B (Baiefall, P025), and AgentCPM (Zhang et al], 2029) all exhibit a cliff-like drop
after the ten-step threshold (ESR 50-70%), whereas LONGHORIZONUI remains nearly flat and sus-
tains roughly 75% ESR between 16 and 24 steps. These results confirm that conventional agents
accumulate uncorrected errors on long chains, while the multimodal perception, reflective planning,
and compensatory execution modules in LONGHORIZONUI markedly curb performance degrada-
tion. Finally, aggregating the mean ESR for sequences of ten or more steps (Figure [c) shows that
LoNGHORIZONUI achieves 73.8%, outperforming the strongest baseline, AGENTCPM, by approx-
imately five percentage points, further substantiating its long-horizon robustness.

15

Under review as a conference paper at ICLR 2026

(a) Performance Degradation Analysis by Step Length

i
}
(]
80 ,/ e i
> ® .\'/. o :
I~
\E_:__s<.>‘. o .’::\i O O O g O OO @O O g O~
I —n— <
o——o\.\./i\._._."‘r‘:‘.‘.\.) ><. . .
/.—.—.——. | _e '.'1. *:’ \.\. @O
()
R * No—o—* N\ 0—e. N\ O~
X ! LongHorizonUI Lead Over SO
~ 60 i — r
% | Y Ne—
w i
}
i
50 Models ! _
—o= UI-TARS-2B : Long Horizon Threshold
—e= InfiGUI-R1-3B i
—e— Qwen2.5-VL-7B i
40 == AgentCPM |
==®= LongHorizonUlI !
5 10 15 20
Step Length
b) Test Set Step Distribution gg) Average ESR in Long Sequences (Steps 210

250

75
200

— 74.0%
150 X
% 65 69.0% 67.9%
100 W 65.5%
62.9%
I I 55
. | [T o

12345678 9101112131415161718192021222324] on 438 :z\a 18
Step Length g\"o“lo Me“@ el VTRR® n'z5\“‘

Sample Count
o

a
o

Figure 7: Further Analysis of Motivation. (a) Step-length distribution of Andrdeontrol test
episodes; (b) Execution-success rate (ESR) vs. step length for UI agents; (c) Mean ESR compar-
ison for long sequences (10 steps). LongHorizonUI demonstrates sustained performance robustness
on extended interactions.

C RELATED WORK

Multimodal Large Language Models. In recent years, Multimodal Large Language Models
(MLLMs) have emerged as a pivotal research focus in artificial intelligence due to their capacity for
unified cross-model reasoning. Built upon conventional Large Language Models (LLMs), MLLMs
incorporate vision encoders (e.g., ViT (Dosovitskiy et all, 2021), CLIP (Radtord ef all, P(071)) to pro-
cess image data, enabling cross-modal comprehension from static images to video sequences. This
architectural paradigm facilitates high-performance systems such as Qwen-VL (Bai“ef-all, D073),
GPT-4V(OpenAl et all, 20724), and BLIP-2 (Cief-all, 20073), which exhibit robust interactive un-
derstanding in dynamic multimodal environments. However, current models still lack fine-grained
perception and can hallucinate, often yielding erroneous state predictions that constrain deployment
in GUI agents and broader applications.

GUI Agent. Current research on GUI agents primarily focuses on input modalities and learning
paradigms. Regarding input modalities, early LLM-based agents (Lee_ef-all, 2074; Puffaefall, 2124,
Cai“ef all, 2074)) typically relied on GUI parsers to convert interfaces into text-based representa-
tions via HTML parsing or screenshots. This approach lacked visual granularity, resulting in limited

16

Under review as a conference paper at ICLR 2026

Table 4: Grounding performance on ScreenSpotV2.
Model Name Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

Base Models

GPT-40 (OpenAl et all, 2074) 49.6 14.2 26.9 40.1 18.7 56.8 43.5
Gemini-2.5-Pro (Comanicief all, PDO75) 63.5 42.1 70.8 493 81.7 84.2 68.3
Qwen2.5-VL (Baiefall, 2075) 66.8 92.1 46.8 72.6 443 83.0 70.4
GUI Models

SeeClick (Cheng et all, 2024) 78.4 50.7 70.1 29.3 55.2 32.5 55.1
0OS-Atlas-4B 87.2 59.7 72.7 46.4 85.9 63.1 71.9
OS-Atlas-7B (Wief-all, 2(074R) 95.1 75.8 90.7 63.6 90.6 71.3 84.1
UI-TARS-7B 95.2 79.1 90.7 68.6 87.2 78.3 84.7
LongHorizonUI (ours) 94.5 80.6 94.3 72.9 91.5 83.3 86.2

generalisation capabilities. The emergence of MLLMs (Wang_ et al], 2074; Kim_efall, 2023) en-
ables agents to process visual inputs directly, achieving more intuitive interface comprehension. In
learning paradigms, Supervised Fine-Tuning (Fumfa ef-all, P074; Ciefall, 2024R) optimises models
with domain-specific data to enhance task-specific performance, yet requires costly annotations and
struggles with generalisation to novel scenarios. Conversely, reinforcement learning (RL) (Shiefall,
PO75; Cuoef-all, 2075, [Ynan-ef all, 2029) improves decision efficiency through autonomous explo-
ration, but faces bottlenecks in training stability and reward function design. While these methods
perform well in short-horizon tasks, current architectures struggle to maintain intent consistency
across steps and lack precise historical state backtracking. Consequently, their reasoning capabili-
ties remain confined to short-term tasks, making long-horizon task planning and execution a critical
challenge.

D ADDITIONAL EXPERIMENTS

1 IMPLEMENTATION DETAILS

We adopt Googles Gemini-2.5 Pro as our core reasoning backbone due to its advanced reasoning
capabilities and high performance on complex reasoning tasks. The model is accessed via Google
Vertex Al API with deterministic inference and a maximum output length of 2048 tokens to en-
sure reproducibility. All experiments run on a cluster of eight Tesla V100 GPUs under Ubuntu
20.04 LTS, using PyTorch 2.1 and CUDA 11.6; model serving is managed by Ray Serve for scal-
able, high-throughput inference. Prompt templates strictly follow a JSON schema fields include
historical_status, think, and Execute_goalenforcing structured multi-level reasoning
without additional fine-tuning.

2 BENCHMARKS

Grounding-Centric Benchmarks: ScreenSpot Series. Accurate element localization is the foun-
dation of GUI automation. ScreenSpot is a cross-platform grounding benchmark with over 1,200
natural-language instructions spanning iOS, Android, macOS, Windows, and Web interfaces. Each
instruction is paired with pixel-level bounding boxes and element-type labels (text, icon, or widget)
and covers challenging scenarios such as icon-text composites and occluded controls. ScreenSpot-v2
(Wni“efall, P(0744) further enhances robustness by adding 564 procedurally generated taskscreated
via the JEDI synthetic pipeline with 4 million samplesto test layout generalization across platforms.

Navigation-Centric Benchmarks: AndroidControl & GUI Odyssey. Once elements can be re-
liably located, agents must navigate within and across apps. AndroidControl (Cief-all, P0743), the
largest public mobile navigation corpus, contains 15,283 human demonstrations divided into low-
difficulty single-app workflows (< 10 steps) and high-difficulty cross-app tasks with real-time inter-
ruptions (e.g., Select photo from Gallery Upload via Email). It evaluates agents comprehension of
both high-level goals (Book a ride) and low-level operations (Tap Search). GUI Odyssey (Lief-all,

17

Under review as a conference paper at ICLR 2026

P0744) extends this to long-horizon, cross-app navigation with 7,735 mission-based episodes across
201 apps and 1,400+ app combinations. It injects dead-end paths to test backtracking and measures
temporal efficiency through metrics like average path length and decision latency.

Long-Horizon Task Benchmark: LongGUIBench. The ultimate test of a GUI agent is executing
extended multi-step workflows end to end. LongGUIBench comprises 371 complex task trajectories
across 28 applications, split into 224 high-complexity game scenarios (1937 steps, mean=23.7) and
147 general productivity scenarios (1527 steps, mean=19.5), totaling 4,508 screenshots. Every task
includes dual-level annotationsHigh-Level goals (e.g., Purchase item XX) and Low-Level actions
(e.g., Click the Store button; Select Buy)alongside control type, bounding box, and state metadata.
A 42% layout-shift rate enables rigorous testing of historical-state verification and error-recovery
mechanisms.

3 PARAMETER ANALYSIS

Further Grounding Analysis. The extended evaluation on ScreenSpot-V2 (Table B) confirms
our framework’s robust grounding capabilities, where LongHorizonUI achieves competitive perfor-
mance (86.2% avg) despite specialized UI-TARS models showing advantages in isolated recogni-
tion. This apparent discrepancy stems from UI-TARS’s specialization in static vision features while
LongHorizonUI prioritizes dynamic actionability essential for downstream workflows. Crucially,
our Multimodal Enhanced Perceiver’s IoU-based element fusion resolves 92% of mobile occlusion
cases that degrade competitors (e.g., 20.5% improvement over OS-Atlas-7B in low-contrast scenar-
i0s). Though UI-TARS-7B leads in desktop icon recognition (87.9% vs ours 72.9%), our unified
representation reduces cross-device variance to just 8.3% versus their 14.7%, validating our ap-
proach’s suitability for practical long-horizon operations where contextual adaptability outweighs
pixel-level precision.

85

84

o]
@

[«
]

Peak 83.9%

Success Rate (%)
fe-]

®
o

79

=@ LongHorizonU! (SR)

78
0.5 0.6 0.7 0.8 0.9

loU Threshold

Figure 8: IoU Threshold Analysis for icon Elements.

Threshold-Sweep Experiment. To quantify how the detectors locality constraint influences down-
stream control, we perform an experiment in which the IoU criterion for merging OCR text and
icon boxes is varied from 0.6 to 0.9 (Figure B). When the threshold is too loose (0.6), false-positive
matches increase, yielding an overall task-success rate (SR) of 82.7%. Tightening the requirement
to 0.7 suppresses spurious pairs and raises SR to 83.5%. The best performance is obtained at IoU
= 0.8, where LongHorizonUI reaches its peak SR of 83.9%. Pushing the threshold further to 0.9,
however, makes the detector overly selective; missed matches propagate to action planning and drive
SR back down to 83.1%. These results confirm that an IoU of 0.8 provides the best balance between
recognition precision and recall, and thus maximizes end-to-end success on LONGGUIBENCH.

18

Under review as a conference paper at ICLR 2026

Output Format Structure Template: Defines the Mandated JSON Structure for Agent Output.

7 <
{
" Historical_status": "Success | Failed | Unknown - Evaluate if the previous action visually achieved
its intended goal. Base this ONLY on the screen image. Ignore the execution result status provided in

the input.”,

“Import_contents": "Output important contents closely related to user\'s instruction on the
current page. If there is, please output the contents. If not, please output empty string ".",

“Think": "Provide a step-by-step thinking process. Analyze the current screen, relate it to the
overall task and the visual outcome of the previous step (‘evaluation_prev_goal'). Decide the next
best *single* action. Explain your reasoning clearly, including why you chose the specific action and
target (index or coordinates). If 'evaluation_prev_goal' was 'Failed', reflect on why and how the next
action addresses it.",

“Next_goal": "Briefly describe the specific, immediate goal of the *next action* you are proposing
in the 'action’ field.",

“Action": {"action_name": { /* dictionary of parameters for the action */ }}

}

(& J
Figure 9: Structured Agent Response Schema. Mandates a five-field JSON output format enforcing
visual goal verification (Historical_status), content extraction (Import_contents), chain-of-thought
reasoning (Think), next-goal declaration, and parameterized actions.

Action Command

Action Prompt: Tap the “Use” button

Deep Think & Descion
"Historical_status": "Success",
“Import_contents": "The 'Recommended Preset'
screen is now open, showing a list of presets.",
“Think": "I have successfully opened the
'Recommended Preset' screen. The next step is to tap
the 'Use’ button for the preset by CIKE14. | can see
this preset in the list, and the 'Use' button is
highlighted with index 36. | will click on it to apply this
preset.",
“Next_goal": "Tap the 'Use' button for the CIKE14
preset.",
“Action": {"click": {"position": 36}}

Figure 10: Structured Action Execution Example. Demonstrates agent output conforming to the
five-field JSON schema: verifying historical success (CIKE14 preset), extracting relevant content,
reasoning through actions, declaring next goal (tap 'Use’), and parameterizing the click command
(position 36).

4 ROLLBACK FREQUENCY AND EFFICACY

We quantify the invocation rate and recovery capability of the CAE’s rollback mechanism across
three benchmarks. Consistent with the protocol in Sec.2.4, rollback is triggered only after local re-
planning attempts are exhausted. Table H reveals that while rollbacks occur in 12—-19% of episodes,
they are highly effective: approximately 70% of these episodes eventually succeed. Notably, full
restarts are required in less than 3% of cases. These statistics confirm that the rollback module acts
as an efficient safety net, robustly correcting state deviations in long-horizon interactions without
incurring the high cost of frequent resets.

5 ZERO-SHOT CROSS-DOMAIN GENERALIZATION.

We evaluate the transferability of LongHorizonUI to AndroidWorld and OSWorld under a strict
zero-shot protocol. We deploy the core pipeline (MEP, DRD, CAE) without any parameter updates

19

Under review as a conference paper at ICLR 2026

Table 5: Rollback statistics regarding triggering frequency and recovery success.

Dataset Rollback Triggered Success post-Rollback Restart Required
AndroidControl-High 12.4% 69.7% 1.8%
GUI-Odyssey 15.3% 73.1% 2.4%
LongGUIBench-Game 18.6% 71.2% 2.7%

Table 6: Zero-shot success rates (SR, %) on cross-domain benchmarks. LongHorizonUI demon-
strates superior robustness, particularly in the long-horizon (50-step) OSWorld setting.

Method OSWorld (15 steps) OSWorld (50 steps) AndroidWorld
Gemini-2.5-Pro 11.7 - 40.6
UI-TARS-72B 18.8 24.6 46.6
LongHorizonUI 19.9 294 47.9

or benchmark-specific tuning, requiring only minimal API adaptation. For OSWorld, we adhere to
the UI-TARS protocol, reporting success rates under 15-step and 50-step budgets. As shown in Ta-
ble B, LongHorizonUI consistently outperforms state-of-the-art baselines. While the improvement
over UI-TARS-72B is incremental on AndroidWorld and the short-horizon OSWorld (15 steps) set-
ting (1.1-1.3%), the performance gap widens significantly to 4.8% in the 50-step setting (29.4% vs.
24.6%). This trend validates that our hierarchical planning and error-correction mechanisms effec-
tively mitigate error accumulation over extended trajectories.

6 RUNTIME AND BACKBONE TRADE-OFFS

We further quantify the end-to-end latency of LongHorizonUI under different backbones. As shown
in Table @, non-MLLM components (MEP, CAE, I/O) contribute only about 1.1-1.4s per step,
while the remaining 4-7 s are dominated by MLLM inference. Switching from Gemini-2.5-Pro to
Gemini-1.5-Flash or Qwen2.5-VL-7B reduces per-step latency from 8.26 s to 5.74—6.59 s, at the cost
of a moderate SR drop (e.g., from 83.9% to 75.3% on LongGUIBench). For a typical 22-step Long-
GUIBench episode, this corresponds to roughly 3 min with Gemini-2.5-Pro versus about 2-2.5 min
with the lighter backbones. These results show that the non-MLLM overhead of LongHorizonUI is
relatively small and that users can trade a few SR points for noticeably lower latency by choosing a
faster backbone.

E PROMPTS IN AUTOMATED PIPELINE

1 OUTPUT FORMAT STRUCTURE TEMPLATE

As depicted in Figure B, the framework specifies a JSON schema for agent output, enforcing strict
structural conformity through five validated fields: visual goal assessment, task-relevant content ex-
traction, chain-of-thought reasoning, next-action objective declaration, and parameterized command
specification. It mandates termination (Done action) exclusively upon visual confirmation of task
completion, instituting a closed-loop verification system that binds agent responses to perceptual
evidence. The schema functions as a structured action-language interface between cognitive pro-
cessing and environmental actuation.

2 VISUAL PROCESSING TEMPLATE

This template prescribes structured rules for interpreting annotated screenshots in GUI automa-
tion environments, as shown in Fig [. It mandates rigorous analysis of vision model-generated
highlights (colored bounding boxes with indices) as primary reference points for Ul element iden-
tification. Crucially, it enforces visual outcome validation as the sole criterion for action success
evaluation, overriding API execution status to mitigate observation-action discrepancy. The frame-
work establishes annotation-based perception as the foundational input for agent decision-making,
ensuring environment fidelity through computational visual verification.

20

Under review as a conference paper at ICLR 2026

Table 7: Runtime and backbone trade-offs on LongGUIBench and AndroidControl.

Backbone SR (LGB, %) SR (AC, %) Total/step(s) Non-MLLM (s) MLLM (s)
Gemini-2.5-Pro (default) 83.9 68.9 8.26 1.18 7.08
Gemini-1.5-Flash 75.3 64.7 5.74 1.35 4.39
Qwen2.5-VL-7B 78.8 65.4 6.59 1.13 5.46

p
Visual Processing Template: Specifies how

to interpret and utilize screenshot annotations
\

2z

p
Action Selection Protocol Template: Defines

position targeting methods with priority hierarchy
\

AL

{“Highlight_usage": "Colored boxes with
indices denote detected UI elements",
“Element_identification": "Top-left index
numbers are primary reference points",
“Constraint": "Always prioritize visual analysis
over API execution status" }

// Index selection

>
"name": "Highlight Index",

"condition": "Target aligns perfectly with highlighted
region",
"format": {"position": "<int>"} },

"name": "Relative Coordinates",
"condition": "Precise targeting within large highlight
area",
"format": {"position": ["<index>", "<x_rel 0.0-1.0>",

"<y rel 0.0-1.0>"]} },

"name": "Absolute Coordinates",
"condition": "No valid highlight available",
"constraint": "0-1000 scale (1000 = max dimension)",
"format": {"position": ["<x>", "<y>"]}

"action": {"click": {"position": 8}}

// Relative coordinates

"action": {"click": {"position": [5, 0.2, 0.8]}}
// Absolute coordinates

"action": {"swipe": {"start": [500,500], "end":
[1000,07} }

4

\
Figure 11: Visual Processing and Action Selection Prompt Template.

p
Workflow Exception Handling Template: Protocols
for interrupting scenarios

iy

JOU YI'S URYU ISHIDA
IN NOW AVAILABLE!

I\

>
"scenarios": [

{ "type": "Unexpected Pop-up",

"priority": 1,

"response": "Close before continuing main task",
"position_strategy": ["Index", "Relative coordinates >
top-right corner"] },

{ "type": "Black Screen",
"response": "Wait 10s — Re-detect — Continue",
"timeout": "10000ms minimum" },

{ "type": "App Termination",

"method": "Swipe from center to screen edge",
"coordinate spec": "start: [x_center, y_center], end:
[x_edge<1000, y_edge<1000]" }

]

Figure 12: Exception Handling Prompt Template. Establishes interrupt-driven protocols for disrup-
tive Ul events: highest-priority pop-up closure (top-right), black-screen re-detection (10s timeout),
and app-termination recovery before resuming primary tasks.

3 ACTION SELECTION PROTOCOL

As depicted in Figure [, the protocol formalizes a hierarchical targeting methodology for GUI in-
teractions, prioritizing: (1) direct highlight indices when element-box alignment is exact; (2) relative
coordinates (0.0-1.0 scale) within oversized highlight regions for precision targeting; and (3) abso-
lute coordinates (0-1000 normalized system) when highlights are absent or unreliable. This tripar-
tite selection strategy optimizes spatial accuracy while accommodating diverse interface topologies,
with explicit constraints prohibiting coordinate values exceeding the 1000-unit boundary to maintain
dimensional integrity.

21

Under review as a conference paper at ICLR 2026

Expected action: Click the “Z=4E (Delegate) ” button
Actual action: Click the “/A% (Guild) ” button
“Think” : “The previous action was intended toclick the
'u59d4\u6258' (Entrust/Quest)iconbut it seems to
have opened the ‘u516c\u4fla(Guild)interface instead.
This means theprevious click was likely inaccurate or
thewrong icon was identified. | need to go backthe
previous screen to correctly access the u59d4\u6258"
interface. The back arrow iconis clearly visible at index 1. |
will click olindex 1 to go back.",
“Next_goal": "Click theback arrow to return to the
previous screen(main game interface).

Corrected action: Click the “Z=3E (Delegate) ” button

o

Figure 13: Error Recovery Example. Demonstrates self-corrected misclick: Agent clicked “Guild"
instead of “Delegate" (due to occlusion), then executed back-arrow regression (Index 1) and preci-
sion retargeting via [0.5,0.8] coordinates to achieve the intended action.

4 WORKFLOW EXCEPTION HANDLING

As illustrated in Figure [, this template defines prioritized response protocols for disruptive in-
terface events, establishing a scenario-based classification system: (1) unexpected pop-ups (highest
priority, requiring immediate closure via top-right relative coordinates); (2) black screens (trigger-
ing 10-second re-detection cycles); and (3) background app termination (executed via edge-directed
swipe vectors). The framework implements interrupt-driven workflow management, where excep-
tion resolution systematically precedes primary task progression to maintain environmental control
stability.

The user opens the “Honor of Kings” app, enters Ranked mode and joins a game room, mutes the speaker, sends a preset
message, a custom “test” text and an emoji via chat, then leaves the room,and closes all background apps.

B T

ick": {"position": 65}

Stepl: "click": o v = - Step26: "click":
{"position": 17} : tclick": (" e [Step5: "click": {"position": 61} H5tep25: "click": {"position: 53} {"position": 68}

Figure 14: Game Scenario Case Visualization.

F QUALITATIVE ANALYSIS

1 ERROR CORRECTION VISUALIZATION

As illustrated in Figure [[3, this sequence captures a critical error-recovery episode in our LongHori-
zonUI automation framework: The agent erroneously selected the adjacent “Guild" button instead
of the target “Delegate"” function, triggering an unintended guild management interface. Diagnos-
tic self-assessment attributed this failure to positional deviation and visual occlusion interference

22

Under review as a conference paper at ICLR 2026

The user opens Snapchaf,
takes a photo, adds the
text “test,” draws and
undoes a colored line, adds
and crops a sunglasses
sticker, saves the snap to
Memories, discards it,
returns to the home screen,

and closes Snapchat. e p5: "cli Stepb: "click™
posi p £ i {"position":36}

Stepl0: "]
{"position":14}

B B Stepl6: "click": res: ‘S 2 Stepl6: "click":
{"position" .| {"position":12} / g T{" " {"position":56}

Figure 15: General Scenarlo Case Visualization.

Stepl5: "swipe":
down

within the GUI layout. To contain error propagation, the recovery protocol first activated a roll-
back mechanism by clicking the back arrow (Index 1) to restore the baseline interface, followed
by a precision-targeted secondary click using relative coordinates [N, 0.5, 0.8] within the Dele-
gate button’s highlight region, successfully rectifying the initial localization inaccuracy. This case
demonstrates LongHorizonUI’s operational efficacy and robustness in handling real-world automa-
tion exceptions.

2 CASE VISUALIZATION

To demonstrate LongHorizonUI’s advantage in long-horizon reasoning, we visualize its task exe-
cution trajectories in both general scenarios (Figure Id)and gaming environments (Figure). In
universal settings, the architecture exhibits strong task generalization via its compensatory action
executor, which dynamically adjusts interaction pathways when encountering heterogeneous Ul
elements (e.g., switching between gesture controls and traditional input fields) while maintaining
task coherence. The deep-reflective decider further ensures minimal end-to-end error propagation
by verifying stepwise contextual consistency, effectively mitigating cascading failures common in
baselines. Within gaming scenarios, the agent leverages enhanced perceptual signals and compen-
satory action strategies to traverse nested menus and execute multi-step operations under real-time
constraints, even during interface mutations.

G ADDITIONAL DISCUSSIONS

The pursuit of robust long-horizon GUI agents necessitates addressing two critical challenges: adap-
tive long-horizon modeling and dynamic interrupt handling (e.g., pop-ups). For extended task se-
quences, future work could integrate reinforcement learning with hierarchical state representations
to compress historical trajectories into abstract milestones, mitigating error accumulation while pre-
serving contextual coherence. For dynamic interrupts (e.g., pop-ups), a predictive-reactive hybrid
mechanism is essential: real-time environmental monitoring detects anomalies, triggering tiered fall-
backs such as emergency rollbacks, LLM-guided diagnostics.

23

	Introduction
	Our Method
	LongGUIBench
	Multimodal Enhanced Perceiver
	Deep Reflection Decider
	Compensating Action Executor

	Experiments
	Implementation Details
	Benchmarks
	Main Results
	Ablation Study
	Case Visualization

	Conclusion
	The use of large language models
	Motivation of LongHorizonUI
	Related work
	Additional Experiments
	Implementation Details
	Benchmarks
	Parameter analysis
	Rollback Frequency and Efficacy
	Zero-Shot Cross-Domain Generalization.
	Runtime and Backbone Trade-offs

	Prompts in Automated Pipeline
	Output Format Structure Template
	Visual Processing Template
	Action Selection Protocol
	Workflow Exception Handling

	Qualitative Analysis
	Error Correction Visualization
	Case Visualization

	Additional Discussions

