
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LONGHORIZONUI: A UNIFIED FRAMEWORK FOR RO-
BUST LONG-HORIZON TASK AUTOMATION OF GUI
AGENT

Anonymous authors
Paper under double-blind review

ABSTRACT

While multimodal large language models (MLLMs) have shown promise in
short-horizon GUI agents, their performance degrades significantly on long-
horizon tasks involving complex, dynamic interfaces. To address this, we present
LongHorizonUI, a framework designed to enhance the reliability and robustness
of MLLM-based agents in extended interactive environments. Moreover, we es-
tablish a new long-horizon benchmark, named LongGUIBench, encompassing
complex general applications and various gaming scenarios. Long-horizon tasks
in this benchmark are defined as those requiring more than 15 steps, enabling thor-
ough evaluation of long-horizon reasoning capabilities. Building upon this bench-
mark, we develop a Multimodal Enhanced Perceiver that integrates element detec-
tion and text recognition models, assigning unique indices to interface elements,
thereby reinforcing state representation. Furthermore, we introduce a Deep-
Reflection Decider, which employs a structured multi-level feedback-validation
mechanism to support iterative reasoning and guarantee precise action execution
along predictable trajectories. Building on the Deciders outputs, a Compensatory
Action Executor continuously monitors execution progress; when degradation is
detected, it applies targeted compensation operations or triggers a rollback proce-
dure, thereby maintaining robustness throughout long-horizon tasks. Experiments
show that LongHorizonUI substantially improves long-horizon performance on
LongGUIBench, while remaining competitive on diverse public benchmarks. The
code and models will be publicly available.

1 INTRODUCTION

Graphical user interface (GUI) agents (Hong et al., 2024; Wang et al., 2025; Huang et al., 2025; Ye
et al., 2025; Tan et al., 2024) are increasingly utilized in dynamic interactive environments to au-
tomate diverse workflows. The advancement of multimodal large language models (MLLMs) (Liu
et al., 2023; Li et al., 2023; Lin et al., 2024; Zhang et al., 2024) has notably bolstered the capabil-
ities of GUI agents in tackling more intricate scenarios, enabling them not only to handle simple,
short-term tasks (Hong et al., 2024; Sun et al., 2025a) but also to engage in complex, long-horizon
interactions within gaming environments and enterprise applications.

Recent work (Sun et al., 2025b; Fan et al., 2025) has investigated online reinforcement learning to
improve adaptability by generating training data through environmental interactions. However, the
trial-and-error learning paradigm expands the action space and amplifies cumulative errors over long
horizons. Moreover, most of the existing benchmarks (Li et al., 2024a; Lu et al., 2024a; Chai et al.,
2025; Rawles et al., 2023) are designed for short-term taskstypically fewer than 15 steps, as shown
in Figure 2a, and thus fail to support long-horizon evaluations. Consequently, developing reliable
GUI agents in long-horizon tasks remains a significant challenge.

Key Observations. To investigate the challenge of current methods in the long-horizon task sce-
narios, we conduct experiments by evaluating state-of-the-art methods (Liu et al., 2025; Qin et al.,
2025; Zhang et al., 2025) on the AndroidControl benchmark (Li et al., 2024a) across sequences of
varying lengths, as shown in Figure 2b. Specifically, for sequences with ≤5 steps, average success
rates exceed 90.0%. However, performance degrades sharply as sequence length increases. When

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

协作项目

Mutimodal
Enhanced
Perceiver

······ ······

Deep Reflection
Decider

Historical Validation

Target Check

Action Explainabilit

Action
Executor

Cur UI Task text
>15 steps

Pre-execution RefletionUI Element Controls

Index: “n”

Relative:
“n,(x,y)”

Absolute:
“(x,y)”

LongGUIBench

Success

Failed

Next
step

Callback
& Retry

Figure 1: LongHorizonUI first builds an indexed element set (icons/text) via enhanced perception,
next drives the MLLM with a structured prompt to validate history and derive multiple action can-
didates, and finally applies a three-stage executor (index, relative, absolute) with monitoring. This
pipeline sustains reliable execution on sequences exceeding 15 steps.

sequences exceed 10 steps, the average success rate drops below 75%; for sequences longer than 15
steps, it falls to approximately 60%.

This non-linear performance degradation clearly indicates that current methods may fail to capture
long-horizon state dependencies, allowing errors to accumulate exponentially as sequence length
increases. Once the sequence length exceeds a certain threshold, the agent system collapses due to
the inability to maintain cross-step contextual consistency. To address this issue, we need to answer
the question: how can we design GUI agents that maintain contextual coherence and decision-
making proficiency over long-horizon action sequences?

Our Solution. In this work, we propose LongHorizonUI, a framework for enhancing the robustness
of MLLM-based GUI agents in complex and long-horizon tasks, as shown in Figure 1. Specifically,
first, we propose a Multimodal Enhanced Perceiver (MEP) that integrates object detection and OCR
outputs to capture rich contextual information, assigning indices to UI elements for temporally con-
sistent state representation. Then, we design a Deep Reflection Decider (DRD) that performs struc-
tured, multi-level reasoning through formatted prompts, enforcing explicit validation of historical
coherence, goal relevance, and action justification to ensure the decision fidelity. Finally, we incor-
porate a Compensatory Action Executor (CAE) that implements a multi-level fallback strategy by
leveraging the element indices, relative layout priors, and absolute screen coordinates. Concurrently,
a real-time progress monitor captures screen states and execution outcomes to construct a temporal
state chain, enabling reliable rollback and recovery from execution errors.

Moreover, to comprehensively evaluate the performance in long-horizon scenarios, we introduce
LongGUIBench, a new benchmark that consists of tasks requiring more than 15 steps across di-
verse gaming and application scenarios. It comprises 371 scenarios: 207 from 13 games and 147
task chains from 15 apps. Data were collected by professional testers, 6 human experts, via synchro-
nized actionscreen recording, followed by cross-modal alignment and standardized parsing. Exten-
sive experiments on both existing benchmarks and the proposed LongGUIBench demonstrate that
LongHorizonUI outperforms existing methods by over 3% in task success rate, without sacrificing
the generic performance.

To summarize, our contributions are as follows:

• We propose LongHorizonUI, a GUI agent designed for long-horizon reasoning, enhancing perfor-
mance by an improved perceiver, a structured deep reflection decider, and a multi-level compen-
satory action executor.

• We introduce LongGUIBench, a new benchmark for long-horizon GUI interaction comprising di-
verse complex tasks from multiple application domains requiring more than 15 steps, with expert-
annotated state trajectories and goal specifications.

• Extensive experiments on public benchmarks and LongGUIBench demonstrate that LongHori-
zonUI outperforms state-of-the-art methods in long-horizon tasks while maintaining competitive
performance in standard settings, validating its efficacy and generalization capabilities.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

GUIOdyssey

AITW

Androidcontrol

LongGUIBench

Datasets

Steps numbers

Avg: 22.1

Avg: 6.8

Avg: 8.2

Avg: 13.4

(a) Sequence length distribution.

3 6 9 12 15 18

Sequence Steps

0.3

0.5

0.7

0.9

Su
cc

es
s

R
at

e

Superior Performance Maintained

Infigui-r1
AgentCPM-GUI
Qwen2.5-vl-7b
UI-TARS-1.5
LongHorizonUI (ours)
High Performance Zone (>95%)
Critical Decline Zone
Failure Zone

(b) Effect of length on performance.
Figure 2: (a) Step-length distributions across GUI datasets. LongGUIBench shows markedly longer
horizons (Avg: 22.1 steps) compared to GUIOdyssey (13.4), AITW (8.2), and AndroidControl (6.8),
emphasizing evaluation beyond short episodes. (b) Success rate vs. sequence length on AndroidCon-
trol. All baselines degrade as horizons grow, with sharp drops beyond 10–15 steps; LongHorizonUI
(ours) sustains higher SR and delays the critical decline, remaining competitive up to 18 steps.

2 OUR METHOD

In this section, as outlined in Figure 3, we introduce LongHorizonUI, a framework dedicated to
long-horizon reasoning for GUI agents. Building upon the LongGUIBench benchmark spanning
complex games and general application workflows, our approach integrates three core components:
(i) a Multimodal Enhanced Perceiver integrating OCR and icon detection, (ii) a Deep Reflection
Decider enabling action verification and adaptive planning, and (iii) a Compensatory Action Execu-
tor ensuring robust action execution. The following sections detail each element. The discussion of
related work is in the Appendix C due to the page limit.

2.1 LONGGUIBENCH

In this section, we present LongGUIBench, a benchmark designed for evaluating long-horizon
GUI tasks by simulating real-world, dynamic interactive scenarios. The dataset is constructed
through synchronized collection of action sequences and screen snapshots, captured by profes-
sional testers as they execute predefined test cases across diverse applications and games. All
tasks mandate at least 15 steps (mean steps: 22.1). Following cross-modal temporal alignment,
the collected action commands and screenshots are input into MLLMs, leveraging structured
prompts combined with screen perception algorithms, the MLLMs parse operation descriptions
(e.g., “click the search bar”) and extract semantic control annotations, including button function-
alities and bbox coordinates. This process generates a standardized intermediate representation with
a key-value structure that includes the global descriptions (task_name) and decomposed sub-
goal descriptions (task_steps{action_ID, action_description, action_type,
bbox, image_width/height}). Finally, manual noise filtering yields a long-horizon dataset
containing 371 scenarios.

Gaming Scenarios. Games typically involve complex interactive processes. To this end, we col-
laborate with professional testers to construct 207 high-complexity scenarios spanning 13 popular
games, covering core mechanics such as equipment management and event participation. Each sce-
nario is structured as a long-horizon task chain (19 to 37 steps, mean = 23.7 steps), captured in 4508
screen images to simulate real player decision flows. Each task includes two levels of instructions:
High-Level instructions (HL) define macro goals, such as “purchase item XX in the game store,"
while Low-Level instructions (LL) are broken down into atomic operation sequences, such as “click
the store button," and “click the purchase button." Additionally, every operation step is annotated
with fine-grained UI metadata, including control type (e.g., button, text box, drop-down menu), bbox
coordinates, and state attributes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

GUI Agent-benchmark

LongHorizonBench

 Scene: Game
 Step nums:22~34

LongHorizonUI

 Scene: General
 Step nums :18~31

 Icon Detect

 OCR

···

OCR: Tap use to replace …

ICON:

Deep Think & Descion

 Compensating Action Actuator

Evaluation_prev_goal: "Success",
Import_contents: " The ‘Moments’ button
at the top of the current screen showing
index 13 “,
Think: “The previous action successfully
navigated to the ‘Discover’ screen…..The
'Moments' button is clearly visible at the top
of the screen, labeled with index 13.
Next_goal: "Tap the Moments button.",
Action: "click": {"position": 13},Histroy

Enhanced Perception

MLLM

Index: 1 2 3 4 5 6 ···

···

Preception

Step-1 Step-2 Step-3 Step-4 Step-N

Index
{pos:"n"}

Relative
{n,(x,y)}

Absolute
{x, y}

History
{hx, hy}

Retry

Post-Reflection

Callback

Prev-Reflection

 text search

。 history reflection

Figure 3: Illustration of LongHorizonUI framework. The LongGUIBench is introduced to define
complex long-horizon interaction scenarios. An enhanced perceiver (OCR + Icon detection) ex-
tracts enriched UI element features, while a deep reasoning engine performs three-tier closed-loop
validation of action feasibility. The compensation actuator employs multi-stage strategies (index/rel-
ative/absolute/historical coordinates) for robust execution.

General Scenarios. To assess generalization capability, we constructed 147 end-to-end task chains
across 15 popular apps, covering complete user workflows from trigger to feedback. Each task re-
quires 15-27 actions (mean = 19.5) and incorporates both abstraction levels: High-level instructions
define global goals (e.g., ’Schedule a 1.5-hour meeting starting at 10 am on June 29th’). Low-
level instructions specify atomic operations (e.g., Launch Tencent Meeting; Click ’Schedule’; Select
’Standard Meeting’; Set duration). All steps are annotated with granular UI semantics, emphasizing
complex interface behaviours (e.g., multi-level dropdown navigation, real-time input validation) to
validate long-horizon GUI agents in challenging workflows.

2.2 MULTIMODAL ENHANCED PERCEIVER

Accurately identifying and disambiguating interactive elements in context is key to enabling task
automation in complex GUIs. To this end, we propose the Multimodal Enhanced Perceiver (MEP),
which unifies icon detection, OCR recognition, and heuristic repair into an ID-centred abstraction
layer, extracting actionable signals from evolving GUIs, inspired by prior work (Lu et al., 2024c).

Specifically, given a GUI screenshot S, MEP extracts visual elements through parallel perception
modules: (i) An enhanced detector identifies interactive controls, producing Eui = (idi, bi, ci)

N
i=1,

with idi a unique spatial tag, bi its bounding box, and ci the confidence from the detector head
(sigmoid class probability). IDs serve as stable anchors, robust to small layout variations. MEP also
highlights previously clicked elements. (ii) A conventional OCR module extracts Etext = (tj , bj)

M
j=1,

with tj the detected text and bj the bounding box. To disambiguate composite controls such as icon
+ text, each ei ∈ Eui is linked with its most relevant text via a semantic binding function:

êi = Φ(ei, Etext) =

{
(idi, bi ∪ bj∗ , tj∗ , ci), if IoU(bi, bj∗) ≥ τ,

(idi, bi, ∅, ci), otherwise,
(1)

where j∗ = argmaxj IoU(bi, bj) denotes the text box with maximum overlap, and binding is ap-
plied only when IoU(bi, bj∗) ≥ τ (Appendix 3).

To mitigate missed detections of critical elements, such as close buttons on pop-ups, we employ
a fallback template matcher that is activated when no elements are detected in designated high-
priority areas Apriority(small normalized bands around pop-up corners and bottom bars where missing
a control can stall a trajectory). Upon activation, the module invokes a repair functionR over Apriority,
leveraging a template library T of canonical close/cancel, confirm/next, and back/home icons; high-
similarity matches are inserted as new elements only in these regions to match and restore omitted
key elements.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.3 DEEP REFLECTION DECIDER

Current agent decision mechanisms (Niu et al., 2024; Kil et al., 2024) based on self-supervised
training paradigms exhibit limited long-horizon generalization due to constrained dataset diversity,
while MLLMs-based mechanisms (Wang et al., 2024), despite superior sequence modeling capa-
bilities, suffer from cascading error propagation under dynamic interface shifts, compromising re-
liability in long-horizon task execution. To address this, we propose the Deep Reflection Decider,
as illustrated in Figure 4, which implements a structured multi-level feedback mechanism to estab-
lish triple closed-loop reasoning. This strategy validates goal rationality pre-execution and confirms
environmental-state consistency post-execution, ensuring action precision and prediction credibility.

Acition prompt：Tap the 'Use' button for the preset by CIKE14

Evaluation
prev_goal

Import
contents

Think

Next_goal

Action

Base this ONLY on the screen image, evaluate if the
previous action visually achieved its intended goal.

Output important contents closely related to user\'s
instruction on the current page.

Provide a step-by-step thinking process. Analyze the current
screen, relate it to the overall task and the visual outcome of
the previous step . Decide the next best single action…

riefly describe the specific, immediate goal of the next
action you are proposing in the 'action' field.

"action_name": { dictionary of parameters for the action}

Figure 4: Deep reflection and decision-
making processes designed to validate prior
actions and predict subsequent steps.

Specifically, a strictly defined JSON
Schema (fields: historical_status,
import_contents, think, Execute_goal,
action, further details are provided in Ap-
pendix 1.) enforces structured three-tier reasoning,
where the first three fields implement reflection
and the last two fields implement decision:

(1) Historical Validation: the historical
status validates UI state transitions (e.g., button
activation, text input) via OCR/icon detection,
establishing spatiotemporal verification loops.
Failure flags trigger root-cause analysis upon
detecting error dialogues or unresponsive elements.

(2) Target Check: the import_contents field
extracts screen-critical information, validating the
MLLM’s environmental comprehension via OCR/i-
con detection. Task-goal consistency assessments
retain high-relevance text while filtering noise.

(3) Action Explainability: the think field requires the MLLM to sequentially analyze current UI
states, failure causes (if any), and action localization rationale (e.g., “Button #12 has the highest
interaction confidence”), with outputs culminating in executable goals (Execute_goal) that are
translated into atomic actions (action).

Pre-execution Reflection. Before execution, each candidate action is screened for on-screen
grounding and task entailment. We accept a for execution only if

ϕ(st, a | Gt, T) = 1
[
gtg(a) ∈ Gt

]
∧ 1

[
K(daction) ⊆ K(T)

]
= 1. (2)

Here, Gt denotes the UI elements at state st from the perceiver, T the global task description, and
a a candidate action with (Execute_goal, action) and description daction. gtg(a) is the target
element of a, and K(·) a keyword extractor enforces that the action semantics are consistent with the
task. In practice, if either the target element is absent from the current screen or the action semantics
are not entailed by the task description, the action is rejected and a brief revision step is triggered
using available OCR/icon evidence; otherwise, the action proceeds.

2.4 COMPENSATING ACTION EXECUTOR

Current MLLM-driven agents face actioninstruction uncertainty: free-format outputs lack a direct
mapping to executable screen coordinates, while dynamic UIs require real-time correction. To bridge
this semanticphysical gap, we introduce the Compensating Action Executor (CAE), which adopt
a robust action pipeline with multi-stage compensation and progress-triggered backtracking (see
Algorithm 1).

Compensating Action Execution. We first parse element indices (e.g., position:13) and se-
mantic descriptions (e.g., Top Moments button) from the Deciders output, then resolve the target
elements bounding box from the live layout, denoted B = (xmin, ymin, xmax, ymax). Normal-
ized coordinates (xnorm, ynorm) are mapped to physical pixels using a device-aware scaling matrix

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Compensating Action Executor (single step)

Require: Current state st; candidates A from DEEP REFLECTION DECIDER encoded as
index(position:“i"), relative(action:“n, (x, y)"),
absolute(point:“(x, y) + ϵ"); last committed snapshot (st−1, pt−1)

Ensure: Executed (a⋆, enc⋆, p⋆) with δ ∈ {SUCCESS, FAIL} (rollback on fail)
1: Π← [index(position:“i"), relative(action:“n, (x, y)"),

absolute(point:“(x, y) + ϵ")] ▷ priority: index→ relative→ absolute
2: for each enc ∈ Π do
3: if ∃ a ∈ A s.t. Encode(a) = enc then
4: p← RESOLVEPOINT(a, enc, st) ▷ centroid / element-local map / screen map + jitter
5: EXECUTECLICK(p)
6: (st+1, δ)← VERIFYMLLM(st, a, p)
7: if δ = SUCCESS then
8: return (a, enc, p, SUCCESS) ▷ caller updates snapshot to (st+1, p)
9: else

10: continue ▷ degrade to next encoding
11: end if
12: end if
13: end for
14: RECORDFAILURE(st,A); ROLLBACK(st−1, pt−1)
15: return (⊥,⊥,⊥, FAIL)

S = diag(Wscreen, Hscreen), with p = S · (xnorm, ynorm)
⊤, so that the same normalized command is

mapped consistently to device-specific click locations across different resolutions.

To enhance operational robustness, we employ a three-stage degradation policy consis-
tent with our encodings index(position:“i"), relative(action:“n, (x, y)"), and
absolute(point:“(x, y) + ϵ"):

• (1) Index (centroid). Prioritize index-based execution at the element centroid p0 of B; i.e., the
midpoints of the intervals [xmin, xmax] and [ymin, ymax].

• (2) Relative (in-box). If the attempt fails (δ = 0), draw a click prel uniformly inside B: sample
λw, λh ∼ U [0, 1] and place the point using the box width w = xmax − xmin and height h =
ymax − ymin.

• (3) Absolute (screen) with jitter. Upon repeated failure, use absolute screen coordinates mapped
from (x, y) and add a bounded perturbation ϵ (e.g., ∥ϵ∥∞≤5 px) to escape edge/occlusion cases;
the base point defaults to the normalized target or p0 when unspecified.

Post-execution Reflection. For each action instruction a at state st, we execute its candidates
in the stated priority order. After each attempt, the DEEP REFLECTION DECIDER performs state
verification:

vt = VerifyMLLM(st, a, pt, It+1) ∈ {0, 1}. (3)

where pt is the click point computed from the current attempt and the resolved box B, and It+1

is the post-action screenshot. If vt = 1, we commit the step and update the snapshot to (st+1, pt).
Otherwise, we degrade to the next candidate. When all candidates for a are rejected, we allow a few
local re-planning calls to DRD at the same state; if these still fail, we invoke Rollback(st−1, pt−1)
to restore the last committed snapshot and continue execution. (see Appendix 5 for details and
statistics).

3 EXPERIMENTS

3.1 IMPLEMENTATION DETAILS

To ensure fair evaluation across benchmarks, we select base models aligned with their architectures
and configure consistent experimental settings. For LongHorizonBench, we adopt a representative
MLLMs (Comanici et al., 2025) as the backbone to ensure stable reasoning in long-horizon tasks.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison of Models on LongGUIBench Long-Horizon Tasks

Model Name General-Low General-High Game_Low Game_High Avg

TM SR TM SR TM SR TM SR Avg

Base Models

GPT-4o (OpenAI et al., 2024) 87.5 20.8 75.0 4.2 91.6 23.9 85.9 3.7 49.1
Gemini2.5 (Comanici et al., 2025) 96.7 73.3 77.2 25.7 95.1 57.7 84.3 25.7 67.3
Qwen2.5-VL-7b (Bai et al., 2025) 92.3 82.7 73.1 29.3 92.4 72.8 68.9 27.4 67.4

GUI Models

OmniParser (Lu et al., 2024b) 90.0 83.0 79.3 35.6 91.8 61.0 70.4 20.1 66.4
AgentCPM-GUI (Zhang et al., 2025) 92.1 81.2 82.4 37.1 89.7 66.5 74.1 25.8 68.6
InfiGUI-R1 (Liu et al., 2025) 93.2 79.7 56.7 23.8 92.9 67.2 53.9 19.4 61.8
UI-TARS-1.5 (Qin et al., 2025) 93.6 79.2 75.4 21.8 88.2 69.5 77.8 18.9 65.8

LongHorizonUI 93.5 85.3 78.0 52.3 93.8 83.9 79.7 52.1 77.3

Table 2: Grounding Performance Comparison on the ScreenSpot Benchmark.

Model Name Mobile Desktop Web Avg

Text Icon Text Icon Text Icon

Base Models

GPT-4o (OpenAI et al., 2024) 30.5 23.2 20.6 19.4 11.1 7.8 18.8
Gemini2.0 – – – – – – 84.0
Qwen2.5-VL-7b (Bai et al., 2023) – – – – – – 84.7

GUI Models

CogAgent (Hong et al., 2024) 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick (Cheng et al., 2024) 78.0 52.0 72.5 30.0 55.7 32.5 53.4
ShowUI (Lin et al., 2025) 92.3 75.5 76.3 61.1 81.7 63.6 75.1
OmniParser (Lu et al., 2024b) 93.9 57.0 91.3 63.6 81.3 51.0 75.1
UI-TARS (Qin et al., 2025) 93.0 75.5 90.7 68.6 84.3 74.8 82.3
InfiGUI-R1 (Liu et al., 2025) 97.1 81.2 94.3 77.1 91.7 77.6 87.5

LongHorizonUI 95.6 86.9 96.8 81.4 93.5 90.9 90.4

All components operate without fine-tuning, leveraging pre-trained models for task execution and
evaluation. Task-specific prompts are designed to prevent ambiguity and enhance reproducibility
(see Appendix 1 for more details.).

3.2 BENCHMARKS

We evaluate our model using the following benchmarks (i) LongGUInBench, our curated dataset
of 371 complex GUI task trajectories spanning 28 diverse applications (including gaming, enter-
prise systems, and creative tools) with an average trajectory length of 24.6 steps (max 37 steps) for
evaluating long-horizon reasoning robustness; (ii) Screenspot for granular grounding capability as-
sessment across multiple device types; and (iii) AndroidControl (Low/High difficulty tiers) (Li et al.,
2024a) and GUI-Odyssey (Lu et al., 2024a) datasets to measure real-time navigation performance
under dynamic interface constraints.

3.3 MAIN RESULTS

Long-horizon Reasoning Capability. To systematically evaluate long-horizon reasoning capabil-
ities, we conducted extensive experiments comparing LongHorizonUI with state-of-the-art meth-
ods on our proposed LongGUIBench benchmark, which features long-horizon tasks. As shown
in Table 1, LongHorizonUI achieves a step success rate (SR) of 85.3% for low-level instructions
and 52.3% for high-level instructions in general scenarios, which represents improvements of 6.1%
and 30.5% over the state-of-the-art method (UI-TARS-1.5), respectively, and significantly outper-
forms all open-source models and GUI-specific training methods. In more complex game scenarios,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Perception components. (b) Compensating actions.
Figure 5: Ablation analyses: (a) perception components; (b) compensating actions.

LongHorizonUI reaches a low-level instruction SR of 83.9% and a high-level instruction SR of
52.1%, which maintains a clear lead across all compared methods. These results validate the pro-
posed LongHorizonUI’s significant advantage in modeling long-horizon dependencies.

Grounding Capability. Table 2 compares our LongHorizonUI framework with mainstream meth-
ods on the ScreenSpot dataset, including base models and SOTA GUI agents. LongHorizonUI
demonstrates consistent superiority across device subsets (mobile, desktop, web), achieving 90.4%
average task success rate, surpassing all open-source models and outperforming the previous SOTA
GUI framework (UI-TARS) by 2.9%. These results validate LongHorizonUIs robust grounding ca-
pability across diverse devices and scenarios.

Navigation Capability. To rigorously evaluate the navigation capabilities of our method, we
benchmarked LongHorizonUI against state-of-the-art approaches on AndroidControl (Li et al.,
2024a) and GUI-Odyssey (Lu et al., 2024a). As shown in Table 3, LongHorizonUI achieves sig-
nificant improvements in SR over both zero-shot models and GUI-specialized baselines. Compared
to Qwen2.5-VL-7B , our method elevates SR by 6.4% on AndroidControl-High and 6.1% on GUI-
Odyssey. Moreover, LongHorizonUI attains an average SR gain of 2.3% over the strong GUI-R1-7B
baseline. These results demonstrate that LongHorizonUI not only significantly enhances planning
robustness for long-horizon tasks but also retains fundamental interaction capabilities for short se-
quences.

Table 3: Performance comparison on AndroidControl and GUI-Odyssey benchmarks

Model Type Model Name AndroidControl-Low AndroidControl-High GUI-Odyssey Avg

TM SR TM SR TM SR

Base Models
GPT-4o 74.3 28.4 63.1 21.2 37.5 5.4 38.3
Qwen2.5-VL-3B 62.0 59.3 47.8 38.9 37.4 26.7 45.4
Qwen2.5-VL-7B 83.4 62.5 68.7 47.1 55.6 34.4 58.6

GUI model

OS-Atlas-4B 64.6 40.6 49.0 22.8 49.6 20.3 41.1
Os-Atlas-7B 73.0 50.9 57.4 29.8 60.4 27.0 49.8
GUI-R1-3B 83.7 64.4 58.0 46.6 54.8 41.3 58.1
GUI-R1-7B 85.2 66.5 71.6 51.7 65.5 38.8 63.2

Ours LongHorizonUI 87.5 68.9 73.4 54.2 68.3 40.5 65.5

3.4 ABLATION STUDY

Effectiveness of Perception Components. Figure 5a reports an ablation study that isolates each
perception module. Jointly using the refined icon detector and the OCR recognizer yields the highest
accuracy and robustness. Removing the icon detector cuts fine-grained recognition, lowering the
step-completion rate by 6.1%. Disabling OCR causes the same 2.3% drop and leads to frequent
errors on icon-text composite widgets. Turning off the adaptive grid prevents the detector from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The user opens the "Honor of Kings" application, selects the "Animist" hero in Solo Practice mode, changes its skin to "Duke
Lepus," and switches the skill to "Sprint," then closes the background apps.

Step2: "click": {"position": 14} Step8:"click": {"position": 19}

Step3: "click": {"position": 40} Step6:"click": {"position": 6} Step9:"click": {"position": 36}

Step1: "click":
{"position": 19} Step4: "click": {"position": 21}

Step7: "click": {"position": 15}

Oppo app Solo Practice mode Changes hero’s skin Switches the skill Closing process

Step5: "click": {"position": 26}

Recent

Step24: "click":
{"position": 58}...Step23:"press key": {“recent”}

Figure 6: Case visualization of LongHorizonUI in a gaming scenario.

scaling to different screen resolutions, so microscopic elements on high-resolution displays are often
missed. Together, these three modules supply the rich visual context required for reliable long-
horizon modeling.

Effectiveness of Compensatory Actions. Figure 5b visually compares the different action modes,
indexing instructions and step lengths, showing that indexing alone delivers an 81.4% task-
completion rate, outperforming all other action modes. Adding compensatory actions on top of
indexing gives further gains by 1.2% (relative coordinates), 2.5% (absolute coordinates), and 3.9%
(historical coordinates). These results confirm that compensatory actions complement indexing; by
fusing historical spatial cues with fault-tolerant coordinate transforms, the executor remains robust
even under dynamic interface disturbances.

3.5 CASE VISUALIZATION

As illustrated in Figure 6, the LongHorizonUI agent executes a fully automated operation sequence
in the Honor of Kings scenario. Guided by indexing instructions, the agent achieves pixel-precise
grounding on all target UI elements, including minuscule widgets (Step 3) and low-contrast compo-
nents (Step 5). Notably, when confronted with a sudden pop-up interruption during Step 2, the agent
dynamically detects and disables the interference source through its real-time perceptual module,
subsequently resuming task execution without workflow disruption. This end-to-end workflow spans
multi-step operations from application launch, skill switching, to background process management,
demonstrating LongHorizonUIs capability to maintain cross-step operational precision and dynamic
disturbance robustness in complex task chains.

4 CONCLUSION

Summary. In this work, we present LongHorizonUI, an innovative framework for long-horizon
GUI tasks, featuring a multimodal enhanced perceptron for precise capture of UI element states, a
three-tier closed-loop reasoning engine for action verification/prediction, and an innovative multi-
level compensator ensuring action execution validity. Demonstrating superior performance on Long-
GUIBench (15-step tasks) and public benchmarks, it establishes a new paradigm for reliable long-
horizon GUI tasks.

Limitations & Future Work. Despite achieving state-of-the-art performance without introduc-
ing notable overhead relative to prior agents, LongHorizonUI still inherits the latency of MLLM-
dependent pipelines. Next, we will focus on model-level efficiencydistillation, quantization, and
context-aware prompt compression.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS CHECKLIST

1. Code of Ethics Acknowledgement

1.1. All authors have read and will adhere to the ICLR Code of Ethics; acknowledgement was made
during submission (yes/no) yes

1.2. This paper includes an Ethics Statement at the end of the main text, before references (if appli-
cable) (yes/no) yes

2. Human Subjects and IRB/Consent

2.1. Research involves human subjects or user studies (yes/no) NA

If yes, address the following:

2.2. IRB/ethics board approval (or equivalent) is obtained and documented (yes/NA) NA

2.3. Informed consent procedures are described; compensation and inclusion of minors are
disclosed (yes/NA) NA

3. Data, Privacy, and Security

3.1. All datasets used are cited with licenses and access conditions; non-public data are described
with justification (yes/partial/no) yes

3.2. Personally identifiable information (PII) was removed, anonymized, or processed under com-
pliant safeguards (yes/NA) yes

3.3. Data collection respects terms of service and legal/compliance requirements (e.g., copyright,
web scraping policies) (yes/partial/no) yes

3.4. Security-sensitive artifacts or vulnerabilities are responsibly handled (e.g., redactions, coordi-
nated disclosure) (yes/NA) NA

4. Bias, Fairness, and Potential Harm

4.1. Known risks of harmful or dual-use applications are discussed with mitigation strategies (yes/-
partial/no) yes

4.2. Bias/fairness concerns (subgroup performance, demographic or domain skews) are analyzed or
acknowledged (yes/partial/no) partial

4.3. Limitations, open risks, and appropriate use/disallowed use are stated (yes/no) yes

5. Conflicts of Interest and Sponsorship

5.1. All funding sources, compute donations, and in-kind support are disclosed (yes/no) yes

5.2. Potential conflicts of interest (employment, consulting, equity) are disclosed (yes/NA) NA

6. Research Integrity

6.1. All results are reported faithfully; negative findings or failure cases are included when relevant
(yes/partial/no) yes

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

6.2. Figures/tables are accurately labeled; data provenance and documentation are maintained (yes/-
partial/no) yes

Note: The Ethics Statement is optional but recommended; it does not count toward the page limit and should
not exceed one page.

REPRODUCIBILITY CHECKLIST

7. Overall Documentation

7.1. High-level method overview and/or pseudocode provided (yes/partial/no) yes

7.2. Clear separation of claims vs. evidence; notation and assumptions are stated (yes/partial/no)
yes

7.3. Pointers to background/pedagogical resources for replication (yes/no) yes

8. Code, Artifacts, and Environment

8.1. Anonymous, downloadable code provided as supplementary material or link (yes/partial/no)
yes

8.2. Exact commit/version, dependency list (e.g., environment.yml/requirements.txt),
and OS details (yes/partial/no) yes

8.3. Hardware details (GPU/CPU models, RAM), framework/library versions, and runtime esti-
mates (yes/partial/no) yes

8.4. Randomness handling documented (seeds, nondeterministic ops, determinism limits) (yes/par-
tial/no/NA) yes

9. Data and Preprocessing

9.1. All datasets cited with URLs/licensing; custom splits or filtering rules documented (yes/par-
tial/no) yes

10. Training and Hyperparameters

10.1. Search spaces and selection criteria reported; final hyperparameters listed per model (yes/par-
tial/no) yes

10.2. Training schedules, batch sizes, losses, and early-stopping criteria documented (yes/partial/no)
yes

11. Evaluation and Reporting

11.1. Metrics are formally defined and motivated; evaluation scripts included (yes/partial/no) yes

11.2. Number of runs, variance (e.g., std/CI), and significance tests reported where appropriate (yes/-
partial/no) partial

11.3. Ablations/diagnostics provided to support claims and clarify failure modes (yes/partial/no) yes

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, and Zeyu Cui et al. Qwen technical report, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Shuai Ren, and
Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents, 2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021.

Yue Fan, Handong Zhao, Ruiyi Zhang, Yu Shen, Xin Eric Wang, and Gang Wu. Gui-bee: Align gui
action grounding to novel environments via autonomous exploration, 2025.

Hiroki Furuta, Kuang-Huei Lee, Ofir Nachum, Yutaka Matsuo, Aleksandra Faust, Shixiang Shane
Gu, and Izzeddin Gur. Multimodal web navigation with instruction-finetuned foundation models,
2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, and Jie Tang. Cogagent: A visual language model for gui
agents. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14281–14290, June 2024.

Zhiyuan Huang, Ziming Cheng, Junting Pan, Zhaohui Hou, and Mingjie Zhan. Spiritsight agent: Ad-
vanced gui agent with one look. In Proceedings of the Computer Vision and Pattern Recognition
Conference (CVPR), pp. 29490–29500, June 2025.

Jihyung Kil, Chan Hee Song, Boyuan Zheng, Xiang Deng, Yu Su, and Wei-Lun Chao. Dual-view
visual contextualization for web navigation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14445–14454, June 2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 39648–39677, 2023.

Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen, Hao Yu, Hanchen
Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. Autowebglm: A large language model-based
web navigating agent. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 52955306, 2024.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan Wasi, Hojun Choi, Steven Y. Ko, Sangeun
Oh, and Insik Shin. Explore, select, derive, and recall: Augmenting llm with human-like memory
for mobile task automation, 2024.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen vision encoders and large language models. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp. 19730–19742, 2023.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents. arXiv preprint
arXiv:2406.03679, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions, 2024b.

Bin Lin, Zhiyuan Ye, Shuyang Zhang, Jun He, and Dong Yu. Moe-llava: Mixture of experts for
large vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 13245–13255, June 2024.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
visual agent. In Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR),
pp. 19498–19508, June 2025.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Visual instruction tuning with large
language models. In Advances in Neural Information Processing Systems (NeurIPS), pp. 5189–
5210, December 2023.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners, 2025.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices, 2024a.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024b.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
GUI agent, 2024c.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1 : A generalist r1-style vision-language
action model for gui agents, 2025.

Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang, and
Qi Wang. Screenagent: A vision language model-driven computer control agent. In Proceed-
ings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence, pp. 64336441.
International Joint Conferences on Artificial Intelligence Organization, August 2024.

OpenAI, Josh Achiam, Steven Adler, and Sandhini Agarwal et al. Gpt-4 technical report, 2024.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, and Shihao Liang et al. Ui-tars: Pioneering
automated gui interaction with native agents, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. In Advances in Neural Infor-
mation Processing Systems, volume 36, pp. 59708–59728, 2023.

Yucheng Shi, Wenhao Yu, Zaitang Li, Yonglin Wang, Hongming Zhang, Ninghao Liu, Haitao Mi,
and Dong Yu. Mobilegui-rl: Advancing mobile gui agent through reinforcement learning in online
environment, 2025.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, Ben Kao, Guohao Li, Junxian He, Yu Qiao, and
Zhiyong Wu. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis,
2025a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yuchen Sun, Shanhui Zhao, Tao Yu, Hao Wen, Samith Va, Mengwei Xu, Yuanchun Li, and
Chongyang Zhang. Gui-xplore: Empowering generalizable gui agents with one exploration. In
Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR), pp. 19477–
19486, June 2025b.

Weihao Tan, Wentao Zhang, Xinrun Xu, Haochong Xia, Ziluo Ding, Boyu Li, Bohan Zhou, Junpeng
Yue, Jiechuan Jiang, Yewen Li, Ruyi An, Molei Qin, Chuqiao Zong, Longtao Zheng, Yujie Wu,
Xiaoqiang Chai, Yifei Bi, Tianbao Xie, Pengjie Gu, Xiyun Li, Ceyao Zhang, Long Tian, Chao-
jie Wang, Xinrun Wang, Börje F. Karlsson, Bo An, Shuicheng Yan, and Zongqing Lu. Cradle:
Empowering foundation agents towards general computer control, 2024.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. In Advances in Neural Information Processing Systems, volume 37,
pp. 2686–2710, 2024.

Shuai Wang, Weiwen Liu, Jingxuan Chen, Yuqi Zhou, Weinan Gan, Xingshan Zeng, Yuhan Che,
Shuai Yu, Xinlong Hao, Kun Shao, Bin Wang, Chuhan Wu, Yasheng Wang, Ruiming Tang, and
Jianye Hao. Gui agents with foundation models: A comprehensive survey, 2025.

Zhiyong Wu, Zhenyu Wu, and Fangzhi Xu et al. Os-atlas: A foundation action model for generalist
gui agents, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, and Yian et al. Os-atlas: A foundation action model for
generalist gui agents, 2024b.

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, Jitong Liao, Qi Zheng, Fei Huang, Jingren Zhou, and Ming Yan.
Mobile-agent-v3: Fundamental agents for gui automation, 2025.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin
Hou, Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-
evolutionary reinforcement learning. arXiv preprint arXiv:2505.12370, 2025.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(8):5625–5644,
2024.

Zhong Zhang, Yaxi Lu, Yikun Fu, Yupeng Huo, Shenzhi Yang, and Yesai Wu et al. Agentcpm-gui:
Building mobile-use agents with reinforcement fine-tuning, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

This is the supplementary file for our submission titled LongHorizonUI: A Unified Framework for
Robust long-horizon Task Automation for GUI Agent. This material supplements the main paper
with the following content:

• (B) Motivation of LongHorizonUI

• (C) Related work

• (D) Additional Experiments

– (1) Implementation Detail

– (2) Benchmarks

– (3) Parameter analysis

• (F) Prompts in Automated Pipeline

– (1) Output Format Structure Template

– (2) Visual Processing Template

– (3) Action Selection Protocol

– (4) Workflow Exception Handling

• (F) Qualitative Analysis

• (G) Additional Discussions

A THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) are used exclusively for polishing the writing and
checking grammar. They are not involved in research ideation, experimental design, data analysis,
or the formulation of conclusions. The authors make all substantive intellectual contributions.

B MOTIVATION OF LONGHORIZONUI

To systematically assess the performance of state-of-the-art UI agents on long-horizon interaction
tasks, we design a step-length-driven, multi-factor evaluation protocol that highlights the need for
robustness at scale. We first compute the step-length distribution of the ANDROIDCONTROL test
set (Figure 7a) and observe that more than 80% of the episodes contain fewer than ten actions,
whereas sequences of ten or more steps, those that truly stress long-horizon reasoning, account for
less than 20%. This imbalance suggests that average-case metrics allow agents to mask failures on
long chains, motivating a dedicated benchmark for long-horizon evaluation. We then simulate the
execution-success rate (ESR) as a function of step length for five representative agents under the
same distribution (Figure 7b). UI-TARS-2B (Qin et al., 2025), InfiGUI-R1-3B (Liu et al., 2025),
Qwen2.5-VL-7B (Bai et al., 2025), and AgentCPM (Zhang et al., 2025) all exhibit a cliff-like drop
after the ten-step threshold (ESR 50–70%), whereas LONGHORIZONUI remains nearly flat and sus-
tains roughly 75% ESR between 16 and 24 steps. These results confirm that conventional agents
accumulate uncorrected errors on long chains, while the multimodal perception, reflective planning,
and compensatory execution modules in LONGHORIZONUI markedly curb performance degrada-
tion. Finally, aggregating the mean ESR for sequences of ten or more steps (Figure 7c) shows that
LONGHORIZONUI achieves 73.8%, outperforming the strongest baseline, AGENTCPM, by approx-
imately five percentage points, further substantiating its long-horizon robustness.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

5 10 15 20
Step Length

40

50

60

70

80
ES

R
 (%

)

Long Horizon Threshold

LongHorizonUI Lead Over SOTA: 5.0%

(a) Performance Degradation Analysis by Step Length

Models
UI-TARS-2B
InfiGUI-R1-3B
Qwen2.5-VL-7B
AgentCPM
LongHorizonUI

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Step Length

0

50

100

150

200

250

Sa
m

pl
e

C
ou

nt

(b) Test Set Step Distribution

LongHorizonUI
AgentCPM

InfiGUI-R1-3B
UI-TARS-2B

Qwen2.5-VL-7B

None

50

55

60

65

70

75

80

ES
R

 (%
) 74.0%

69.0% 67.9%
65.5%

62.9%

(c) Average ESR in Long Sequences (Steps 10)

Figure 7: Further Analysis of Motivation. (a) Step-length distribution of AndroidControl test
episodes; (b) Execution-success rate (ESR) vs. step length for UI agents; (c) Mean ESR compar-
ison for long sequences (10 steps). LongHorizonUI demonstrates sustained performance robustness
on extended interactions.

C RELATED WORK

Multimodal Large Language Models. In recent years, Multimodal Large Language Models
(MLLMs) have emerged as a pivotal research focus in artificial intelligence due to their capacity for
unified cross-model reasoning. Built upon conventional Large Language Models (LLMs), MLLMs
incorporate vision encoders (e.g., ViT (Dosovitskiy et al., 2021), CLIP (Radford et al., 2021)) to pro-
cess image data, enabling cross-modal comprehension from static images to video sequences. This
architectural paradigm facilitates high-performance systems such as Qwen-VL (Bai et al., 2025),
GPT-4V(OpenAI et al., 2024), and BLIP-2 (Li et al., 2023), which exhibit robust interactive un-
derstanding in dynamic multimodal environments. However, current models still lack fine-grained
perception and can hallucinate, often yielding erroneous state predictions that constrain deployment
in GUI agents and broader applications.

GUI Agent. Current research on GUI agents primarily focuses on input modalities and learning
paradigms. Regarding input modalities, early LLM-based agents (Lee et al., 2024; Putta et al., 2024;
Lai et al., 2024) typically relied on GUI parsers to convert interfaces into text-based representa-
tions via HTML parsing or screenshots. This approach lacked visual granularity, resulting in limited

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 4: Grounding performance on ScreenSpotV2.

Model Name Mobile Desktop Web Avg

Text Icon/Widget Text Icon/Widget Text Icon/Widget

Base Models

GPT-4o (OpenAI et al., 2024) 49.6 14.2 26.9 40.1 18.7 56.8 43.5
Gemini-2.5-Pro (Comanici et al., 2025) 63.5 42.1 70.8 49.3 81.7 84.2 68.3
Qwen2.5-VL (Bai et al., 2025) 66.8 92.1 46.8 72.6 44.3 83.0 70.4

GUI Models

SeeClick (Cheng et al., 2024) 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OS-Atlas-4B 87.2 59.7 72.7 46.4 85.9 63.1 71.9
OS-Atlas-7B (Wu et al., 2024b) 95.1 75.8 90.7 63.6 90.6 77.3 84.1
UI-TARS-7B 95.2 79.1 90.7 68.6 87.2 78.3 84.7

LongHorizonUI (ours) 94.5 80.6 94.3 72.9 91.5 83.3 86.2

generalisation capabilities. The emergence of MLLMs (Wang et al., 2024; Kim et al., 2023) en-
ables agents to process visual inputs directly, achieving more intuitive interface comprehension. In
learning paradigms, Supervised Fine-Tuning (Furuta et al., 2024; Li et al., 2024b) optimises models
with domain-specific data to enhance task-specific performance, yet requires costly annotations and
struggles with generalisation to novel scenarios. Conversely, reinforcement learning (RL) (Shi et al.,
2025; Luo et al., 2025; Yuan et al., 2025) improves decision efficiency through autonomous explo-
ration, but faces bottlenecks in training stability and reward function design. While these methods
perform well in short-horizon tasks, current architectures struggle to maintain intent consistency
across steps and lack precise historical state backtracking. Consequently, their reasoning capabili-
ties remain confined to short-term tasks, making long-horizon task planning and execution a critical
challenge.

D ADDITIONAL EXPERIMENTS

1 IMPLEMENTATION DETAILS

We adopt Googles Gemini-2.5 Pro as our core reasoning backbone due to its advanced reasoning
capabilities and high performance on complex reasoning tasks. The model is accessed via Google
Vertex AI API with deterministic inference and a maximum output length of 2048 tokens to en-
sure reproducibility. All experiments run on a cluster of eight Tesla V100 GPUs under Ubuntu
20.04 LTS, using PyTorch 2.1 and CUDA 11.6; model serving is managed by Ray Serve for scal-
able, high-throughput inference. Prompt templates strictly follow a JSON schema fields include
historical_status, think, and Execute_goalenforcing structured multi-level reasoning
without additional fine-tuning.

2 BENCHMARKS

Grounding-Centric Benchmarks: ScreenSpot Series. Accurate element localization is the foun-
dation of GUI automation. ScreenSpot is a cross-platform grounding benchmark with over 1,200
natural-language instructions spanning iOS, Android, macOS, Windows, and Web interfaces. Each
instruction is paired with pixel-level bounding boxes and element-type labels (text, icon, or widget)
and covers challenging scenarios such as icon-text composites and occluded controls. ScreenSpot-v2
(Wu et al., 2024a) further enhances robustness by adding 564 procedurally generated taskscreated
via the JEDI synthetic pipeline with 4 million samplesto test layout generalization across platforms.

Navigation-Centric Benchmarks: AndroidControl & GUI Odyssey. Once elements can be re-
liably located, agents must navigate within and across apps. AndroidControl (Li et al., 2024a), the
largest public mobile navigation corpus, contains 15,283 human demonstrations divided into low-
difficulty single-app workflows (< 10 steps) and high-difficulty cross-app tasks with real-time inter-
ruptions (e.g., Select photo from Gallery Upload via Email). It evaluates agents comprehension of
both high-level goals (Book a ride) and low-level operations (Tap Search). GUI Odyssey (Lu et al.,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

2024a) extends this to long-horizon, cross-app navigation with 7,735 mission-based episodes across
201 apps and 1,400+ app combinations. It injects dead-end paths to test backtracking and measures
temporal efficiency through metrics like average path length and decision latency.

Long-Horizon Task Benchmark: LongGUIBench. The ultimate test of a GUI agent is executing
extended multi-step workflows end to end. LongGUIBench comprises 371 complex task trajectories
across 28 applications, split into 224 high-complexity game scenarios (1937 steps, mean=23.7) and
147 general productivity scenarios (1527 steps, mean=19.5), totaling 4,508 screenshots. Every task
includes dual-level annotationsHigh-Level goals (e.g., Purchase item XX) and Low-Level actions
(e.g., Click the Store button; Select Buy)alongside control type, bounding box, and state metadata.
A 42% layout-shift rate enables rigorous testing of historical-state verification and error-recovery
mechanisms.

3 PARAMETER ANALYSIS

Further Grounding Analysis. The extended evaluation on ScreenSpot-V2 (Table 4) confirms
our framework’s robust grounding capabilities, where LongHorizonUI achieves competitive perfor-
mance (86.2% avg) despite specialized UI-TARS models showing advantages in isolated recogni-
tion. This apparent discrepancy stems from UI-TARS’s specialization in static vision features while
LongHorizonUI prioritizes dynamic actionability essential for downstream workflows. Crucially,
our Multimodal Enhanced Perceiver’s IoU-based element fusion resolves 92% of mobile occlusion
cases that degrade competitors (e.g., 20.5% improvement over OS-Atlas-7B in low-contrast scenar-
ios). Though UI-TARS-7B leads in desktop icon recognition (87.9% vs ours 72.9%), our unified
representation reduces cross-device variance to just 8.3% versus their 14.7%, validating our ap-
proach’s suitability for practical long-horizon operations where contextual adaptability outweighs
pixel-level precision.

0.5 0.6 0.7 0.8 0.9
IoU Threshold

78

79

80

81

82

83

84

85

Su
cc

es
s

R
at

e
(%

)

Peak 83.9%

82.7
82.9 83.0

83.2
83.5

83.7
83.9

83.6
83.4

83.1

LongHorizonUI (SR)

Figure 8: IoU Threshold Analysis for icon Elements.

Threshold-Sweep Experiment. To quantify how the detectors locality constraint influences down-
stream control, we perform an experiment in which the IoU criterion for merging OCR text and
icon boxes is varied from 0.6 to 0.9 (Figure 8). When the threshold is too loose (0.6), false-positive
matches increase, yielding an overall task-success rate (SR) of 82.7%. Tightening the requirement
to 0.7 suppresses spurious pairs and raises SR to 83.5%. The best performance is obtained at IoU
= 0.8, where LongHorizonUI reaches its peak SR of 83.9%. Pushing the threshold further to 0.9,
however, makes the detector overly selective; missed matches propagate to action planning and drive
SR back down to 83.1%. These results confirm that an IoU of 0.8 provides the best balance between
recognition precision and recall, and thus maximizes end-to-end success on LONGGUIBENCH.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

 Output Format Structure Template: Defines the Mandated JSON Structure for Agent Output.

{
 " Historical_status": "Success|Failed|Unknown - Evaluate if the previous action visually achieved
its intended goal. Base this ONLY on the screen image. Ignore the execution result status provided in
the input.",
 “Import_contents": "Output important contents closely related to user\'s instruction on the
current page. If there is, please output the contents. If not, please output empty string ''.",
 “Think": "Provide a step-by-step thinking process. Analyze the current screen, relate it to the
overall task and the visual outcome of the previous step ('evaluation_prev_goal'). Decide the next
best *single* action. Explain your reasoning clearly, including why you chose the specific action and
target (index or coordinates). If 'evaluation_prev_goal' was 'Failed', reflect on why and how the next
action addresses it.",
 “Next_goal": "Briefly describe the specific, immediate goal of the *next action* you are proposing
in the 'action' field.",
 “Action": {"action_name": { /* dictionary of parameters for the action */ }}
}

Figure 9: Structured Agent Response Schema. Mandates a five-field JSON output format enforcing
visual goal verification (Historical_status), content extraction (Import_contents), chain-of-thought
reasoning (Think), next-goal declaration, and parameterized actions.

Deep Think & Descion
"Historical_status": "Success",
“Import_contents": "The 'Recommended Preset'
screen is now open, showing a list of presets.",
“Think": "I have successfully opened the
'Recommended Preset' screen. The next step is to tap
the 'Use' button for the preset by CIKE14. I can see
this preset in the list, and the 'Use' button is
highlighted with index 36. I will click on it to apply this
preset.",
“Next_goal": "Tap the 'Use' button for the CIKE14
preset.",
“Action": {"click": {"position": 36}}

Action Command
Action Prompt: Tap the “Use” button

Figure 10: Structured Action Execution Example. Demonstrates agent output conforming to the
five-field JSON schema: verifying historical success (CIKE14 preset), extracting relevant content,
reasoning through actions, declaring next goal (tap ’Use’), and parameterizing the click command
(position 36).

4 ROLLBACK FREQUENCY AND EFFICACY

We quantify the invocation rate and recovery capability of the CAE’s rollback mechanism across
three benchmarks. Consistent with the protocol in Sec.2.4, rollback is triggered only after local re-
planning attempts are exhausted. Table 5 reveals that while rollbacks occur in 12–19% of episodes,
they are highly effective: approximately 70% of these episodes eventually succeed. Notably, full
restarts are required in less than 3% of cases. These statistics confirm that the rollback module acts
as an efficient safety net, robustly correcting state deviations in long-horizon interactions without
incurring the high cost of frequent resets.

5 ZERO-SHOT CROSS-DOMAIN GENERALIZATION.

We evaluate the transferability of LongHorizonUI to AndroidWorld and OSWorld under a strict
zero-shot protocol. We deploy the core pipeline (MEP, DRD, CAE) without any parameter updates

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 5: Rollback statistics regarding triggering frequency and recovery success.

Dataset Rollback Triggered Success post-Rollback Restart Required

AndroidControl-High 12.4% 69.7% 1.8%
GUI-Odyssey 15.3% 73.1% 2.4%
LongGUIBench-Game 18.6% 71.2% 2.7%

Table 6: Zero-shot success rates (SR, %) on cross-domain benchmarks. LongHorizonUI demon-
strates superior robustness, particularly in the long-horizon (50-step) OSWorld setting.

Method OSWorld (15 steps) OSWorld (50 steps) AndroidWorld

Gemini-2.5-Pro 11.7 – 40.6
UI-TARS-72B 18.8 24.6 46.6
LongHorizonUI 19.9 29.4 47.9

or benchmark-specific tuning, requiring only minimal API adaptation. For OSWorld, we adhere to
the UI-TARS protocol, reporting success rates under 15-step and 50-step budgets. As shown in Ta-
ble 6, LongHorizonUI consistently outperforms state-of-the-art baselines. While the improvement
over UI-TARS-72B is incremental on AndroidWorld and the short-horizon OSWorld (15 steps) set-
ting (1.1–1.3%), the performance gap widens significantly to 4.8% in the 50-step setting (29.4% vs.
24.6%). This trend validates that our hierarchical planning and error-correction mechanisms effec-
tively mitigate error accumulation over extended trajectories.

6 RUNTIME AND BACKBONE TRADE-OFFS

We further quantify the end-to-end latency of LongHorizonUI under different backbones. As shown
in Table 7, non-MLLM components (MEP, CAE, I/O) contribute only about 1.1–1.4 s per step,
while the remaining 4–7 s are dominated by MLLM inference. Switching from Gemini-2.5-Pro to
Gemini-1.5-Flash or Qwen2.5-VL-7B reduces per-step latency from 8.26 s to 5.74–6.59 s, at the cost
of a moderate SR drop (e.g., from 83.9% to 75.3% on LongGUIBench). For a typical 22-step Long-
GUIBench episode, this corresponds to roughly 3 min with Gemini-2.5-Pro versus about 2–2.5 min
with the lighter backbones. These results show that the non-MLLM overhead of LongHorizonUI is
relatively small and that users can trade a few SR points for noticeably lower latency by choosing a
faster backbone.

E PROMPTS IN AUTOMATED PIPELINE

1 OUTPUT FORMAT STRUCTURE TEMPLATE

As depicted in Figure 9, the framework specifies a JSON schema for agent output, enforcing strict
structural conformity through five validated fields: visual goal assessment, task-relevant content ex-
traction, chain-of-thought reasoning, next-action objective declaration, and parameterized command
specification. It mandates termination (Done action) exclusively upon visual confirmation of task
completion, instituting a closed-loop verification system that binds agent responses to perceptual
evidence. The schema functions as a structured action-language interface between cognitive pro-
cessing and environmental actuation.

2 VISUAL PROCESSING TEMPLATE

This template prescribes structured rules for interpreting annotated screenshots in GUI automa-
tion environments, as shown in Fig 11. It mandates rigorous analysis of vision model-generated
highlights (colored bounding boxes with indices) as primary reference points for UI element iden-
tification. Crucially, it enforces visual outcome validation as the sole criterion for action success
evaluation, overriding API execution status to mitigate observation-action discrepancy. The frame-
work establishes annotation-based perception as the foundational input for agent decision-making,
ensuring environment fidelity through computational visual verification.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Runtime and backbone trade-offs on LongGUIBench and AndroidControl.

Backbone SR (LGB, %) SR (AC, %) Total / step (s) Non-MLLM (s) MLLM (s)

Gemini-2.5-Pro (default) 83.9 68.9 8.26 1.18 7.08
Gemini-1.5-Flash 75.3 64.7 5.74 1.35 4.39
Qwen2.5-VL-7B 78.8 65.4 6.59 1.13 5.46

 Visual Processing Template: Specifies how
to interpret and utilize screenshot annotations

{“Highlight_usage": "Colored boxes with
indices denote detected UI elements",
“Element_identification": "Top-left index
numbers are primary reference points",
“Constraint": "Always prioritize visual analysis
over API execution status" }

 Action Selection Protocol Template: Defines
position targeting methods with priority hierarchy

{"name": "Highlight Index",
"condition": "Target aligns perfectly with highlighted
region",
"format": {"position": "<int>"} },
{ "name": "Relative Coordinates",
"condition": "Precise targeting within large highlight
area",
"format": {"position": ["<index>", "<x_rel 0.0-1.0>",
"<y_rel 0.0-1.0>"]} },
{ "name": "Absolute Coordinates",
 "condition": "No valid highlight available",
"constraint": "0-1000 scale (1000 = max dimension)",
"format": {"position": ["<x>", "<y>"]}
}

// Index selection
"action": {"click": {"position": 8}}
// Relative coordinates
"action": {"click": {"position": [5, 0.2, 0.8]}}
// Absolute coordinates
"action": {"swipe": {"start": [500,500], "end":
[1000,0]}}

Figure 11: Visual Processing and Action Selection Prompt Template.

 Workflow Exception Handling Template: Protocols
for interrupting scenarios

"scenarios": [
{ "type": "Unexpected Pop-up",
"priority": 1,
"response": "Close before continuing main task",
"position_strategy": ["Index", "Relative coordinates >
top-right corner"] },

{ "type": "Black Screen",
"response": "Wait 10s → Re-detect → Continue",
"timeout": "10000ms minimum" },
{ "type": "App Termination",
"method": "Swipe from center to screen edge",
"coordinate_spec": "start: [x_center, y_center], end:
[x_edge≤1000, y_edge≤1000]" }
]

wait

Figure 12: Exception Handling Prompt Template. Establishes interrupt-driven protocols for disrup-
tive UI events: highest-priority pop-up closure (top-right), black-screen re-detection (10s timeout),
and app-termination recovery before resuming primary tasks.

3 ACTION SELECTION PROTOCOL

As depicted in Figure 11, the protocol formalizes a hierarchical targeting methodology for GUI in-
teractions, prioritizing: (1) direct highlight indices when element-box alignment is exact; (2) relative
coordinates (0.0-1.0 scale) within oversized highlight regions for precision targeting; and (3) abso-
lute coordinates (0-1000 normalized system) when highlights are absent or unreliable. This tripar-
tite selection strategy optimizes spatial accuracy while accommodating diverse interface topologies,
with explicit constraints prohibiting coordinate values exceeding the 1000-unit boundary to maintain
dimensional integrity.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

wait

Expected action: Click the “委托（Delegate）” button
Actual action: Click the “公会（Guild）” button

“Think”:“The previous action was intended toclick the
‘u59d4\u6258’(Entrust/Quest)iconbut it seems to
have opened the ‘u516c\u4f1a(Guild)interface instead.
This means theprevious click was likely inaccurate or
thewrong icon was identified. I need to go backthe
previous screen to correctly access the u59d4\u6258”
interface. The back arrow iconis clearly visible at index 1. I
will click olindex 1 to go back.",
“Next_goal": "Click theback arrow to return to the
previous screen(main game interface).

Corrected action: Click the “委托（Delegate）” button

Figure 13: Error Recovery Example. Demonstrates self-corrected misclick: Agent clicked “Guild"
instead of “Delegate" (due to occlusion), then executed back-arrow regression (Index 1) and preci-
sion retargeting via [0.5,0.8] coordinates to achieve the intended action.

4 WORKFLOW EXCEPTION HANDLING

As illustrated in Figure 12, this template defines prioritized response protocols for disruptive in-
terface events, establishing a scenario-based classification system: (1) unexpected pop-ups (highest
priority, requiring immediate closure via top-right relative coordinates); (2) black screens (trigger-
ing 10-second re-detection cycles); and (3) background app termination (executed via edge-directed
swipe vectors). The framework implements interrupt-driven workflow management, where excep-
tion resolution systematically precedes primary task progression to maintain environmental control
stability.

Step1: "click":
{"position": 17}

Step2: "click": {"position": 14}

Step5: "click": {"position": 61}

Step8: "click": {"position": 38}

Step3: "click": {"position": 38} Step6: "click": {"position": 65} ...Step24: "click": {"position": 65}

...Step25: "click": {"position": 53}

Step7: "click": {"position": 26}

Step4: "click": {"position": 21}
Step26: "click":
{"position": 68}

The user opens the “Honor of Kings” app, enters Ranked mode and joins a game room, mutes the speaker, sends a preset
message, a custom “test” text and an emoji via chat, then leaves the room,and closes all background apps.

Figure 14: Game Scenario Case Visualization.

F QUALITATIVE ANALYSIS

1 ERROR CORRECTION VISUALIZATION

As illustrated in Figure 13, this sequence captures a critical error-recovery episode in our LongHori-
zonUI automation framework: The agent erroneously selected the adjacent “Guild" button instead
of the target “Delegate" function, triggering an unintended guild management interface. Diagnos-
tic self-assessment attributed this failure to positional deviation and visual occlusion interference

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Step1: "click":
{"position": 28}

Step2: "click":
{"position": 27}

Step3: "click":
{"position": 18}

Step4: "type":
{"test"}

Step5: "click":
{"position":83}

Step6: "click":
{"position":36}

Step7: "click":
{"position":18}

Step8:
"swipe":down

Step9: "swipe":
right

Step10: "click":
{"position":14}

Step11: "click":
{"position":20}

Step12: "click":
{"position":46}

Step13: "click":
{"position":23}

Step14: "click":
{"position":16}

Step15: "swipe":
down

Step16: "click":
{"position":12}

Step16: "click":
{"position":44}

Step16: "click":
{"position":37}

Step16: "click":
{"position":12}

Step16: "press
key": {"home"}

Step16: "press
key": {"recent"}

Step16: "click":
{"position":56}

The user opens Snapchat,
takes a photo, adds the

text “test,” draws and
undoes a colored line, adds

and crops a sunglasses
sticker, saves the snap to

Memories, discards it,
returns to the home screen,

and closes Snapchat.

Figure 15: General Scenario Case Visualization.

within the GUI layout. To contain error propagation, the recovery protocol first activated a roll-
back mechanism by clicking the back arrow (Index 1) to restore the baseline interface, followed
by a precision-targeted secondary click using relative coordinates [N, 0.5, 0.8] within the Dele-
gate button’s highlight region, successfully rectifying the initial localization inaccuracy. This case
demonstrates LongHorizonUI’s operational efficacy and robustness in handling real-world automa-
tion exceptions.

2 CASE VISUALIZATION

To demonstrate LongHorizonUI’s advantage in long-horizon reasoning, we visualize its task exe-
cution trajectories in both general scenarios (Figure 14)and gaming environments (Figure 15). In
universal settings, the architecture exhibits strong task generalization via its compensatory action
executor, which dynamically adjusts interaction pathways when encountering heterogeneous UI
elements (e.g., switching between gesture controls and traditional input fields) while maintaining
task coherence. The deep-reflective decider further ensures minimal end-to-end error propagation
by verifying stepwise contextual consistency, effectively mitigating cascading failures common in
baselines. Within gaming scenarios, the agent leverages enhanced perceptual signals and compen-
satory action strategies to traverse nested menus and execute multi-step operations under real-time
constraints, even during interface mutations.

G ADDITIONAL DISCUSSIONS

The pursuit of robust long-horizon GUI agents necessitates addressing two critical challenges: adap-
tive long-horizon modeling and dynamic interrupt handling (e.g., pop-ups). For extended task se-
quences, future work could integrate reinforcement learning with hierarchical state representations
to compress historical trajectories into abstract milestones, mitigating error accumulation while pre-
serving contextual coherence. For dynamic interrupts (e.g., pop-ups), a predictive-reactive hybrid
mechanism is essential: real-time environmental monitoring detects anomalies, triggering tiered fall-
backs such as emergency rollbacks, LLM-guided diagnostics.

23

	Introduction
	Our Method
	LongGUIBench
	Multimodal Enhanced Perceiver
	Deep Reflection Decider
	Compensating Action Executor

	Experiments
	Implementation Details
	Benchmarks
	Main Results
	Ablation Study
	Case Visualization

	Conclusion
	The use of large language models
	Motivation of LongHorizonUI
	Related work
	Additional Experiments
	Implementation Details
	Benchmarks
	Parameter analysis
	Rollback Frequency and Efficacy
	Zero-Shot Cross-Domain Generalization.
	Runtime and Backbone Trade-offs

	Prompts in Automated Pipeline
	Output Format Structure Template
	Visual Processing Template
	Action Selection Protocol
	Workflow Exception Handling

	Qualitative Analysis
	Error Correction Visualization
	Case Visualization

	Additional Discussions

