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ABSTRACT

In the past, Retrieval-Augmented Generation (RAG) methods split text into
chunks to enable language models to handle long documents. Recent tree-based
RAG methods are able to retrieve detailed information while preserving global
context. However, with the advent of more powerful LLMs, such as Llama
3.1, which offer better comprehension and support for longer inputs, we found
that even recent tree-based RAG methods perform worse than directly feeding
the entire document into Llama 3.1, although RAG methods still hold an ad-
vantage in reducing computational costs. In this paper, we propose a new re-
trieval method, called LLM-Guided Dynamic Progress Control with Hierarchical
Weighted Graph (GARLIC), which outperforms previous state-of-the-art base-
lines, including Llama 3.1, while retaining the computational efficiency of RAG
methods. Our method introduces several improvements: (1) Rather than using
a tree structure, we construct a Hierarchical Weighted Directed Acyclic Graph
with many-to-many summarization, where the graph edges are derived from at-
tention mechanisms, and each node focuses on a single event or very few events.
(2) We introduce a novel retrieval method that leverages the attention weights of
LLMs rather than dense embedding similarity. Our method allows for searching
the graph along multiple paths and can terminate at any depth. (3) We use the LLM
to control the retrieval process, enabling it to dynamically adjust the amount and
depth of information retrieved for different queries. Experimental results show
that our method outperforms previous state-of-the-art baselines, including Llama
3.1, on two single-document and two multi-document QA datasets, while main-
taining similar computational complexity to traditional RAG methods.

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) methods (Robertson et al., [1995]; Robertson & Zaragoza,
2009; Reimers & Gurevych, 2019; |[Karpukhin et al., [2020; |Khattab & Zaharia, 2020; Tay et al.,
2022; Santhanam et al., 2022; [Lin et al.| 2023)) have been a popular approach for handling QA
tasks. Longer documents were segmented into chunks, and the most relevant chunks were retrieved
and fed into a language model to generate answers. With the advent of Large Language Models
(LLMs) (Touvron et al.l |2023aib), tree-based approaches such as RAPTOR (Sarthi et al., 2024)
and MeMWalker (Chen et all [2023a) have emerged. These models utilize LLMs to iteratively
summarize the text, constructing tree-based summaries. By integrating information from different
parts of the text, these methods facilitate the retrieval of both granular and high-level information,
thereby improving performance through a balance of detailed understanding and global context,
while managing longer documents effectively. However, as LLMs evolved, their capacity expanded,
and models such as Llama 3.1 (Dubey et al., [2024) started supporting inputs of up to 128K tokens
with enhanced comprehension capabilities. Studies like LongBench (Bai et al.,[2024b) have demon-
strated that the performance of RAG methods is often inferior to feeding the full document into
LLMs directly (Zhang et al.,|2023} Nair et al.,|2023; Newman et al.,[2023)). Our experimental results
also find that both RAPTOR and MeM Walker perform less well when compared to directly inputting
the text into Llama 3.1. Nevertheless, retrieval methods remain beneficial in reducing input lengths
and managing computational costs.

!The source code will be released upon paper acceptance.
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Figure 1: Overview of the Hierarchical Weighted Directed Acyclic Graph for summarization. Each
node contains an Information Point (IP) and has multiple parent and child nodes, i.e., multiple
successors and predecessors. Each time, the LLM is fed multiple nodes and prompted to generate
multiple IPs. The weights of edges between nodes are computed based on the attention weights
from LLM summarization. Some example IPs and chunks are shown on the right. For brevity, some
long text is omitted.

In this paper, we introduce a new method, LLM-Guided Dynamic Progress Control with
Hierarchical Weighted Graph (GARLIC), which outperforms RAG baselines and even Llama 3.1
while preserving the benefits of retrieval with lower computational costs. Our method consists of
two stages: Summary Graph Construction and Dynamic Graph Search. In the Summary Graph Con-
struction stage, we prompt an LLM to generate multiple bullet-point sentences, termed Information
Points (IPs). Each IP typically focuses on a single or very few events. IPs are initially generated
from text segments and then fed back into an LLM to recursively generate higher-level IPs. This
process forms a many-to-many graph in which each node can have multiple lower-level child nodes
and higher-level parent nodes, i.e., multiple successors and predecessors. During summarization,
the LLM attention weights between the generated IPs and the input IPs are extracted to capture
their relationships, as shown in Figure[I] The LLM consolidates and summarizes the same event
from different sources, enabling the model to efficiently identify specific events rather than scanning
through entire summary texts. The attention mechanism records which parts of the text contribute to
an IP. The resulting structure is a Hierarchical Weighted Directed Acyclic Graph (HWDAG), where
the extracted attention serves as the edge weights of the graph.

In the Dynamic Graph Search stage, we retrieve nodes from the HWDAG and feed them into the
LLM to predict answers. We introduce a method called LLM-guided Dynamic Progress Control,
which dynamically determines when to stop the search. Starting with top-level nodes, one node is
selected per iteration. The LLM evaluates if the retrieved nodes contain sufficient information to
answer a given query. The search continues until the LLM signals that enough information has been
gathered. The prompt asks: “Can this question be answered by the following documents?” followed
by the query and the text of the retrieved node. Each time a new node is retrieved, the previous
inputs are KV cached, allowing new documents to be appended without reprocessing the entire
input. Therefore, although we use LLM to decide when to stop the retrieval process, the method
does not introduce additional computational overhead. This approach effectively resolves the prior
challenge of determining how many chunks to search.

During the search, the attention between the retrieved nodes and the query is extracted, enabling it to
assess relevance based on the LLM’s knowledge. We combine this attention with the attention from
the Dynamic Graph Search stage to guide the search and retrieve the next node. We employ Greedy
Best-First Search (GBFS), a variant of Best-First Search (BFS), to traverse the graph. In contrast,
RAPTOR (Sarthi et al., 2024} and MeMWalker (Chen et al., [2023a)) utilize search methods that are
more similar to Depth-First Search (DFS). We treat the graph as an adjacency matrix, considering all
nodes connected to the retrieved node during the search, enabling the exploration of multiple paths.
On the contrary, previous methods, as shown in Figure perform a search by following a single
path from the top node to the bottom node since the number of nodes to retrieve was uncertain. Our
method, however, is more flexible, as shown in Figure[2¢] allowing for multiple paths and enabling
the search to terminate at any level. Therefore, our method can handle queries that require varying
amounts of information and information spread across different parts of the graph more effectively.

The combination of HWDAG and attention-based search enables us to introduce an alternative re-
trieval approach that solely relies on attention weights. GBFS integrates well with the HWDAG’s
structure, which consists of numerous smaller nodes, allowing the flexible retrieval of multiple IPs
in any quantity and order. GBFS equipped with Dynamic Progress Control empowers the LLM to
decide when to stop, making the retrieval process adaptable to different queries and allowing for



Under review as a conference paper at ICLR 2025

(a) Chunk-based retrieval. (b) Tree-based retrieval. (c) Our HWDAG-based retrieval.

Figure 2: Comparison of three retrieval methods. Nodes shaded in green are retrieved nodes. (a)
Chunk-based retrieval. (b) Tree-based retrieval, starting from the top node and selecting a child
node at each level until reaching the bottom node. (c) Retrieval based on a HWDAG. The node
search is flexible, allowing multiple paths from the top level, and the search can stop at any level.

termination at various points along the search paths and at different levels of detail. In experiments,
GARLIC outperforms other baselines, including Llama 3.1, without incurring additional inference
computational costs. In summary, the contributions of this paper are as follows:

* We propose a novel Dynamic Progress Control mechanism using the LLM to control the
retrieval process while employing KV caching to avoid additional time complexity.

* We propose a novel Attention-based Retrieval paradigm based exclusively on LLM atten-
tion weights using a Hierarchical Weighted Directed Acyclic Graph with many-to-many
summarization. Each node represents an Information Point (IP) focused on a single or very
few events, and the graph edges are derived from LLM attention during summarization.

* Our method surpasses previous state-of-the-art baselines, including Llama 3.1, while main-
taining the computational efficiency of retrieval methods.

2 RELATED WORK

Retrieval Traditional retrieval techniques, such as TF-IDF (Jones|, [1972) and BM25 (Robertson
et al.l 1995 [Robertson & Zaragozal, 2009), retrieve information based on word terms. Subsequently,
deep learning—based retrieval methods quickly became popular. REALM (Guu et al.| [2020) aug-
ments the language model pre-training with a latent knowledge retriever using masked language
modeling. DPR (Dense Passage Retrieval) (Karpukhin et al., 2020) encodes queries and docu-
ments as dense embeddings, with similarity computed between them. ColBERT (Khattab & Za-
harial [2020; Santhanam et al.l [2022)) produces multi-vector representations at the token level. JPR
(Joint Passage Retrieval) (Min et al., [2021) is a joint passage retrieval model with an autoregres-
sive reranker that selects a sequence of passages. DHR (Dense Hierarchical Retrieval) (Liu et al.
2021) leverages both macroscopic document-level semantics and microscopic passage-level seman-
tics. Fusion-in-Decoder (Izacard & Grave, |2021)) employs both DPR and BM25 in a knowledge
distillation manner, which does not require annotated query-document pairs. CPT-text (Neelakantan
et al.| 2022)) utilizes contrastive pre-training on unsupervised data. NCI (Wang et al., [2022) directly
generates relevant document identifiers for a given query. Atlas (Izacard et al., |[2022)) fine-tunes an
encoder-decoder model with a retriever to address knowledge-intensive tasks with minimal train-
ing examples. RETRO (Borgeaud et al., [2022} [Wang et al., [2023a)) conditions on document chunks
based on local similarity with preceding tokens. HHR (Hybrid Hierarchical Retrieval) (Arivazha-
gan et al.| [2023)) combines sparse and dense retrieval methods across both document and passage
retrieval stages. SimLM (Wang et al., [2023b)) proposes a new loss function to reduce the mismatch
between pre-training and fine-tuning input distributions. Dragon (Lin et al., 2023) uses contrastive
learning and data augmentation to train a model, achieving state-of-the-art retrieval performance
among eight baselines. Additionally, with the rise of LLMs, some research has explored the use of
LLMs as retrievers. GENREAD (Yu et al.| 2023) prompts LLMs to generate contextual documents
based on a given query. RECITE (Sun et al., 2023) retrieves relevant passages from the LLM’s
internal memory via sampling. KGP (Knowledge Graph Prompting) (Wang et al.| 2023c)) builds a
knowledge graph from multiple documents, with the LLM navigating. Recently, MeM Walker (Chen
et al., 2023a)) constructs tree-based summaries and uses LLMs to navigate through the tree. RAP-
TOR (Sarthi et al., [2024) also creates tree-based summaries with clustering and uses embedding
similarities to select the most relevant nodes at each level for retrieval. However, our approach dif-
fers from these methods. We construct a summary graph with IPs and employ attention mechanisms
and GBFS for retrieval along any path, whereas MeMWalker and RAPTOR follow a single path
from the top level to the bottom. Additionally, our method uses the LLM to dynamically determine
when to stop the search, whereas MeMWalker also uses LLM to navigate but incurs significantly
higher computational costs.
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Figure 3: Overview of Dynamic Graph Search. Each time, a node is retrieved by Greedy Best-
First Search using attention weights. The visited nodes are fed into the LLM, prompting the LLM
to determine if sufficient nodes have been gathered to answer the query. This process incurs no
additional computational cost due to KV caching. The search continues until the LLM signals that
enough relevant nodes are retrieved, at which point the final answer is generated. The process adjusts
dynamically based on the query, retrieving nodes flexibly across multiple graph paths and depths.

Long-Context Language Models Recent long-context language models have focused on over-
coming the limitations of context window size, primarily through positional interpolation to extend
long-context capabilities by training on full-length texts. |Chen et al.| (2023b)) used positional inter-
polation on RoPE (Rotary Position Embedding) (Su et al., [2023) to extend context length. [Ding
et al.[(2024)) proposed LongRoPE which performs direct extrapolation by rescaling RoPE with var-
ied interpolation across RoPE dimensions at different token positions. |Peng et al.| (2024) and |[Fu
et al.| (2024)) fine-tuned models on longer inputs and extended RoPE for longer contexts. LongLoRA
(Chen et al.| |2024) shifts sparse attention on LoRA (Hu et al.| 2022) to extend model capacity for
longer inputs. LongAlign (Bai et al.,[2024a)) constructs a long-context dataset, adopting packing and
sorted batching strategies. PoSE (Zhu et al.| [2024) manipulates position indices by skipping bias
terms in each chunk. SkipAlign (Wu et al., 2024} synthesizes long-range dependencies from the as-
pect of position indices. |Liu et al.| (2024)) showed that performance can degrade significantly when
the position of relevant information is altered. Infini-Transformer (Munkhdalai et al.| 2024) handles
infinitely long inputs using compressive memory, masked local attention, and long-term attention
mechanisms. Our method is complementary to these approaches. The LLMs used in these methods
could serve as the base model in our approach to further reduce computational demands. Our focus
is on utilizing LLMs effectively rather than improving the LLMs, and our method is compatible with
these long-context LLMs.

3 METHODOLOGY

Our method consists of two main steps: Summary Graph Construction and Dynamic Graph Search.
During Summary Graph Construction, as depicted in Figure[I} we iteratively construct an HWDAG
from the documents, where the nodes represent IPs. In Dynamic Graph Search, as illustrated in Fig-
ure[3] given a query, we dynamically retrieve the IPs from the constructed HWDAG by performing
a search guided by an LLM. Once enough nodes are retrieved, the LLM generates the final answer
based on them. Summary Graph Construction is independent of the query, while Dynamic Graph
Search is query-dependent.
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3.1 SUMMARY GRAPH CONSTRUCTION

This step generates a HWDAG, defined as G = (V, £), where V represents the collection of nodes,
and & represents the collection of edges. Each node v} € V contains the text and is in level I. The
subset of nodes at level [ is denoted by V; C V. Each edge e; ; € & represents a scalar value
indicating the relatedness between node v; and node v;. Since G is a directed graph, e; ; # e; ;. By
default, if there is no relationship between nodes v; and v;, then e; ;,e;; = 0.

The text content is initially split into chunks of 300 tokens, which serve as the first-level nodes V.
For each level, we iteratively summarize nodes from V; by batching them and feeding them into the
LLM to obtain the higher-level nodes V; 1, as illustrated in Figure[I} Specifically, we select nodes
for each batch by sequentially choosing them until the total text content length exceeds a threshold
ns. This threshold n, includes both the prompt and the generated summary. These nodes are then
input into the LLM. The prompt instructs the LLM to generate summaries in bullet-point format,
with each point referred to as an Information Point (IP). The LLM prompt used for summarization
is shown in Tabled]in Appendix [A.1] and a graph example is shown in Appendix [D]

In previous retrieval methods, whether using chunks or summaries, multiple events are often con-
tained in a single text chunk, requiring the retrieval of the entire chunk even if only one event is
relevant (Karpukhin et al.,|2020; Lin et al.|[2023}; |Chen et al., 2023a; [Sarthi et al.,2024). In contrast,
each IP corresponding to each node in our method describes a single event and reduces the smallest
retrievable unit from a chunk to an IP.

The attention from a higher-level node vf“ to a lower-level node vé— is averaged across all tokens and

layers to produce a scalar value e; ;, which serves as the edge value from node v; to node v;, where

> ; €i,j = 1. The value of e; ; represents how much information the higher-level node vé“ extracts

4

from the lower-level node vé. For example, in Figure node vy directs to nodes {v; }7_;, with edge

values {eg ;}7_,, and Z?:l eg,; = 1. Detailed computation can be found in Appendix

3.2 DYNAMIC GRAPH SEARCH

This section explains the process of retrieving nodes from the graph G. An overview of dynamic
graph search is illustrated in Figure[3] The process consists of two steps: Dynamic Progress Control,
discussed in Section[3.2.1] and Graph Search in Section[3.2.2]

3.2.1 DyYNAMIC PROGRESS CONTROL

This subsection describes the dynamic control of the search process. Initially, a visited set, denoted
as S C V, which is initialized with the top-level nodes of V), is fed into the LLM. We use a two-turn
prompt system. In the first turn, the LLM is prompted to determine whether the current set of visited
nodes S is sufficient to answer the query. The prompt asks the LLM, “Can this question be answered
by the following information?”, followed by the query and visited nodes S. The complete prompt is
shown in Table[5]in Appendix including an example from NarrativeQA (Ko&isky et al, 2018]).
If the response is “No”, the search continues, and the next node is retrieved. The details of the search
process will be introduced in Section The newly retrieved node is then appended to the end
of the visited set S, and the LLM is queried again. This process repeats until the LLM responds
with “Yes”. Throughout the search, all previous inputs, including the prompt, query, and visited
nodes S, are cached using KV caching, as illustrated in Figure [3| Additional details can be found
in Appendix [C] This ensures that no additional computational resources are required. Some LLMs
may insert special tokens between the prompt and response, but these tokens are minimal, and the
additional computation is negligible. Once the LLM responds with “Yes”, the second turn of the
prompt will ask the LLM to answer the query. At this point, the final answer is obtained.

This approach allows the LLM to dynamically determine the number of nodes needed for retrieval
based on the query. Different queries may require varying amounts and types of content. For ex-
ample, a query that requires only high-level information can be answered with just a few high-level
nodes, whereas a query spanning multiple detailed aspects of the document may require the retrieval
of both high- and low-level nodes. Previous methods typically had a fixed length of retrieved con-
tent, which could lead to either too much or too little information being retrieved for certain queries.

Similar to the concept of early stopping patience, we introduce a stop patience p. With this approach,
the search stops after the LLM responds “Yes” p times. We observed that increasing p can even
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further improve performance, though this creates a trade-off between performance gains and com-
putational cost. Performance improvements tend to plateau when p > 5, while the computational
cost continues to increase. See Section [4.3] for more details.

3.2.2 GRAPH SEARCH

This section describes the process of searching the graph G = (V,€). Beyond the embedding
similarity used in dense retrieval, as described in (Sarthi et al.,[2024), we introduce another approach
by leveraging the attention mechanisms of the LLM.

First, we define the adjacency matrix as E € R"**", where E; ; = e;; and n, represents the
number of nodes in V. Each time, the visited nodes S C V are fed into the LLM using the prompt
shown in Table[5] The attention weight between the visited node v; and the query ¢ is extracted and
averaged across tokens and layers, denoted as a;, which represents the attention that node v; gives
to the query ¢. Given that the query precedes the visited nodes in the prompt, nodes that appear
later in the sequence may distribute some of their attention to earlier nodes. We observe that nodes
positioned later in the sequence tend to have lower attention scores. To address this issue, we apply
an empirical normalization to a; by multiplying of the corresponding position v;, with ¢ occupying
the first position. For example, in Figure 3| the extracted attention a15 is multiplied by 3, as a5 is
in the third position. We found this adjustment yields good experimental results. After obtaining all
attention values on all nodes, we construct a vector a € R"*, where a; = a;, and the remaining
elements are set to 0, i.e., a; = 0 for v; ¢S.

Once the adjacency matrix E € R™ " and the query attention vector @ € R™ are computed, the
score vector z € R™ is calculated as follows: z = ETa, where z represents the score for each
node, indicating how likely it is to be retrieved. Further details on the computation process can be
found in Section[B.2] The intuition behind this is that, if a node, i.e., an IP, is strongly correlated with
the query, the details about this node will be more helpful for answering the query. E represents
the relationships between nodes, while a highlights which of the currently visited nodes is more
relevant. Through matrix multiplication, we can identify nodes that are related to the current query
but are not yet part of the visited set S. Nodes that are more closely related to the query ¢, will
have their related successor nodes assigned higher scores. If a retrieved node is not relevant to the
query, it will receive a low score in z, thus preventing the search from continuing through that node.
When sufficient relevant details are retrieved, Dynamic Progress Control will stop the search to avoid
retrieving unnecessary details. We use EJTZ for the calculation of z, which represents the attention
received by v; from v;, because the goal is to calculate candidate scores for each node, focusing on
the nodes that are the focus of attention. If multiple nodes are highly related to ¢ and also connected
to a successor, that successor node will receive a higher score, as it accumulates scores from multiple
predecessors. For example, in Figure 3] v3 will receive scores from both vy and v1o. We normalize
z and the query-node embedding similarity so that the sum of their elements equals 1, and then we
add the embedding similarity to z as the final score. The node v ¢ S that is not yet in the visited set
and has the highest score is selected as the next node to retrieve.

4 EXPERIMENTS

4.1 SETUP

Dataset We use two single-document QA and two multi-document QA datasets from LongBench
(Bai et al.,2024b): NarrativeQA (Kocisky et al.,|2018)) is a single-doc QA dataset containing 1,567
stories, including full texts of books and movie transcripts. Qasper (Dasigi et al.,|2021)) is a single-
doc QA dataset with 1,585 papers, designed to seek information present in the papers. HotpotQA
(Yang et al.| [2018)) is a multi-doc QA dataset that contains 112,779 examples, focusing on multi-hop
QA. MuSiQue (Trivedi et al., [2022)) is a multi-doc QA dataset with 24,814 examples featuring 2-4
hop questions and six reasoning types. See Appendix [E] for more statistics.

Metrics We use F1, ROUGE-L (Lin} |2004), and BLEU-4 (Papineni et al., 2002) as evaluation
metrics. The final scores are computed using the evaluation source code from LongBench (Bai
et al., |2024b) and Hugging Face Evaluateﬂ Additionally, we measure the average TFLOPs (Tera
Floating Point Operations) during search and inference for each query.

Zhttps://github.com/huggingface/evaluate
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Baseline We employ both traditional and recent baselines: BM25 (Robertson et al., {1995 Robert-
son & Zaragoza, [2009) is a bag-of-words based retrieval method that ranks documents based on the
query terms appearing in them. SBERT (Reimers & Gurevychl 2019) is a dense retrieval method
that employs dense embeddings obtained through the encoder model. Dragon (Lin et al., [2023)
is a dense retrieval method that uses contrastive learning and data augmentation to train a model,
achieving state-of-the-art retrieval performance among eight baselines. LongLLMLingua (Jiang
et al.l 2024)) introduces question-aware compression based on LLMLingua (Jiang et al.l 2023), a
prompt compression method. MeMWalker (Chen et al.l 2023a)) processes context into a tree of
summary nodes and navigates the tree to search for relevant information guided by the LLM, to
handle long-text QA tasks within a limited input window. RAPTOR (Sarthi et al., 2024)) constructs
a tree by recursively embedding, clustering, and summarizing chunks of text for retrieval. RAPTOR
has two variants: “tree traversal” (RAPTOR-TT) and “collapsed tree” (RAPTOR-CT). Llama3.1-
8B (Dubey et al., [2024) is the 8B version of Llama3.1, which expands the context window to 128K
tokens, allowing documents from the four datasets, except for some from NarrativeQA, to be directly
fed into the model.

For all baselines and GARLIC, we use Llama3.1-8B (Dubey et al.|[2024) as the LLM for both sum-
marization and inference. For MeMWalker, since the source code was not released, we implemented
it according to the paper using Llama3.1. For LongLLMLingua, which was originally proposed to
use a smaller model to compress prompts for GPT-3.5, we used the published model Phi-2-2.7B, as
provided by LongL.LMLingua, to compress the text before inputting it into Llama3.1-8B. For other
models, we ran their source code using Llama3.1-8B. For all inferences, we did not use Chain-of-
Thought (CoT). We use SBERT (Reimers & Gurevych,|[2019) as the retrieval model in GARLIC. In
the experiments, we set the stop patience p = 1 by default and the length threshold n,; to 8K. Across
all datasets and steps of our method, including graph construction and search, the input window is
capped by n, and can be processed using an NVIDIA A100 80G GPU. A summary graph example
is illustrated in Appendix [D}

4.2 MAIN RESULTS

The main results are shown in Table [T} Here, TFLOPs refers to the query-dependent inference. For
MeMWalker, RAPTOR, and GARLIC, summarization TFLOPs are not included as summarization
is query-independent. For BM25, SBERT, and Dragon, in addition to top-5, we also add a top-X
set to match the TFLOPs of GARLIC for a fair comparison. Specifically, we used Top-7, Top-14,
Top-4, and Top-7 for NarrativeQA, Qasper, HotpotQA, and MuSiQue, respectively. A similar top-X
applies to RAPTOR-CT, with Top-20, Top-42, Top-12, and Top-22, respectively. It is worth noting
that our Dynamic Progress Control can determine the appropriate number of chunks or nodes to
retrieve in a single pass, whereas these methods require extensive hyperparameter searches to find
the optimal number. For Llama3.1-8B on NarrativeQA, we used 8 A100 80G GPUs, with CPU
offloading, to handle the dataset. However, we could only process an input window of 100K tokens
with these resources, resulting in 22.3% of documents being truncated. For LongLLMLingua, since
the compression is query-dependent, we included the compression TFLOPs.

The performance of BM25, SBERT, and Dragon was relatively similar, with Dragon showing an
advantage on NarrativeQA. Comparing the top-5 and top- X results, we found that for Llama3.1-8B,
retrieving more chunks generally leads to better results. Longl.LMLingua achieves better results
than Llama3.1-8B on HotpotQA, possibly because it reorders documents to place the most rele-
vant content upfront, mitigating the lost-in-the-middle effect (Liu et al., 2024). However, for other
datasets, the deletion of sentences and tokens in LongLLMLingua negatively impacts its perfor-
mance. Given the small size difference between Phi-2 and Llama3.1-8B, the compression TFLOPs
take up a significant portion of the overall computation. This may not reflect the intended use
cases of LonglL.LMLingua, making efficiency comparisons challenging. MeMWalker did not per-
form well and lagged behind traditional retrieval methods. MeMWalker was initially designed to
overcome the input length limitations for LLMs, but it struggles to navigate large trees effectively.
It requires the LLM to generate correct responses and formats at every node, and when the tree
becomes too large, navigation is prone to failure. This likely contributed to its poor performance
on NarrativeQA. Additionally, its high computational complexity arises from the need to invoke
the LLM at every node. RAPTOR outperformed other retrieval methods at lower TFLOPs. Its
summarization is able to extract key information from the document, which improves performance
and reduces TFLOPs. RAPTOR-TT is constrained by its fixed retrieval path, which sequentially
retrieves nodes from the top level to the bottom. While RAPTOR-CT top-X achieves higher per-
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Table 1: F1 (%), ROUGE-L (%), BLEU-4 (%), and TFLOPs of baselines and GARLIC on Nar-
rativeQA, Qasper, HotpotQA, and MuSiQue. TFLOPs are calculated during query-dependent in-
ference. “Ratio” represents the ratio of the baselines’ TFLOPs to GARLIC’s TFLOPs. Top-X of
BM25, SBERT, and Dragon denotes Top-7, Top-14, Top-4, and Top-7 for NarrativeQA, Qasper,
HotpotQA, and MuSiQue, respectively, where the numbers are selected to ensure the baselines have
similar TFLOPs to GARLIC for a performance comparison at the same TFLOPs. A similar top-X
applies to RAPTOR-CT, with Top-20, Top-42, Top-12, and Top-22, respectively.

Method NarrativeQA Qasper

F1 ROUGE-L BLEU-4 TFLOPs Ratio F1 ROUGE-L BLEU-4 TFLOPs Ratio
BM25 top-5 52.7 51.8 13.4 26.7 0.86x  41.0 39.6 21.0 26.3 0.39x
SBERT top-5 36.5 35.8 6.6 26.8 0.86x  44.4 424 23.9 26.0 0.39x
Dragon top-5 53.8 52.9 13.6 26.9 0.87x 43.0 414 22.8 24.5 0.36x
RAPTOR-TT 40.6 39.8 7.8 20.3 0.65x  42.1 40.1 17.2 17.7 0.26x
RAPTOR-CT 48.6 47.8 11.8 17.9 0.58x  44.6 42.7 19.5 16.6 0.25x
LongLLMLingua 50.5 49.5 10.1 1789.4 57.72x 432 43.0 21.0 159.7 2.39x
MeMWalker 11.2 9.8 2.6 353.8 11.41x  39.0 36.8 17.4 1239 1.85x
BM25 top-X 53.7 529 14.0 375 1.21x  47.0 45.1 22.8 69.3 1.04x
SBERT top-X 39.5 38.8 7.3 37.5 1.21x  46.6 44.5 233 68.9 1.03x
Dragon top-X 55.1 54.2 13.6 375 1.21x 469 44.8 22.1 67.0 1.00x
RAPTOR-CT top-X  52.0 51.2 11.8 35.1 1.13x 46.9 44.7 20.8 67.3 1.01x
Llama3.1-8B 53.7 52.6 10.4 3361.9 108.45x  49.4 47.6 26.9 92.5 1.38x
GARLIC 61.1 60.2 18.6 31.0 1.00x  49.7 479 27.0 66.9 1.00x
Method HotpotQA MuSiQue

F1 ROUGE-L BLEU-4 TFLOPs Ratio F1 ROUGE-L BLEU-4 TFLOPs Ratio
BM25 top-5 40.8 40.9 7.7 229 1.43x 287 28.7 5.1 26.3 0.85x
SBERT top-5 40.9 40.8 8.0 22.6 141x 307 30.8 6.3 26.1 0.84x
Dragon top-5 39.7 39.6 6.9 233 1.46x  28.5 28.4 54 28.1 0.91x
RAPTOR-TT 38.6 38.5 6.7 8.4 0.53x 293 29.3 4.7 12.6 0.41x
RAPTOR-CT 40.9 40.4 7.2 15.3 0.96x  31.5 31.5 55 16.1 0.52x
LongLLMLingua 434 43.5 8.1 43.6 2.73x 345 34.4 5.6 78.9 2.55x
MeMWalker 39.7 38.9 13.9 934 5.84x  24.0 235 9.9 175.7 5.69x
BM25 top-X 40.7 40.8 7.7 20.0 1.25x 31.8 31.7 5.6 35.6 1.15x
SBERT top-X 40.8 40.7 7.5 19.6 1.23x 325 325 6.4 35.6 1.15x
Dragon top-X 39.2 39.1 6.7 20.6 1.29x  30.2 30.1 6.0 38.0 1.23x
RAPTOR-CT top-X  40.7 40.7 7.2 17.9 1.12x 354 352 7.2 322 1.04x
Llama3.1-8B 41.3 41.2 6.3 23.7 1.48x 35.8 35.7 5.6 40.6 1.31x
GARLIC 43.5 43.5 7.2 16.0 1.00x 369 36.8 5.7 30.9 1.00x

formance by using more nodes, it still underperforms compared to our method at similar TFLOPs,
demonstrating that its tree-based summarization is not as efficient as ours. Llama3.1-8B’s excelled
on most datasets except NarrativeQA, where input truncation likely affected its performance. For
particularly long inputs in NarrativeQA, Llama3.1-8B reached 3361.9 TFLOPs due to an average
token length of 794,457, suggesting that directly feeding very long texts into an LLM may not be
the optimal choice.

Our method outperformed all baselines and Llama3.1-8B across all four datasets. Even with the
same TFLOPs, our results were better than those of BM25, SBERT, and Dragon. Compared to
LongLLMLingua, our method achieved better performance with lower TFLOPs, although the dif-
fering application scenarios limit direct comparison. Compared to MeMWalker and Llama3.1-8B,
our method achieved higher performance at a lower computational cost. Similarly, our method out-
performed RAPTOR while omitting the clustering step, as our retrieval process stops only after
gathering sufficient nodes. Overall, our method demonstrates both performance advantages and low
computational complexity. Its superiority over Llama3.1-8B can be attributed to the effective sum-
marization of document key points through IPs, and the utilization of attention to enhance search
effectiveness, combined with Dynamic Progress Control to ensure adequate information collection.

4.3 DYNAMIC SEARCH STOP STUDY

Following the concept of early stop patience, the stop patience p in this paper refers to the number
of times the LLM responds “Yes” before the search stops, as introduced in Section[3.2.1] In Table[l}
we set the stop patience p = 1. In this section, we investigate how the stop patience p influences
both performance and efficiency.

As shown in Figure ] increasing p can further improve performance beyond the results in Table [T}
but at the cost of increased computational resources. It can be observed that with our method and
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Llama3.1, retrieving more nodes allows the model to provide more accurate answers. When p < 5,
the F1 score increases rapidly, indicating that, on average, there are still up to 5 nodes containing
useful information that have not yet been retrieved. However, when p > 5, the improvement in
the F1 score slows, and the TFLOPs curve begins to exceed the F1 increase, suggesting that the
additional retrieved nodes do not contribute significantly to the model’s performance, thus reducing
the cost-effectiveness of further computation. The slowdown in performance improvement as p
increases also validates the LLM’s ability to stop the search, as few additional nodes are beneficial
once the search stops. By adjusting p, GARLIC can balance between effectiveness and efficiency.
Due to the presence of Dynamic Progress Control, there is a lower bound for this adjustment range,
specifically when p = 1, and across all four datasets, performance increases more rapidly when
p < 5. In contrast, previous methods required adjusting the number of chunks to retrieve based
on different data distributions or even individual queries, resulting in higher hyper-parameter search
costs.

NarrativeQA Qasper HotpotQA MuSiQue
P .

TFLOPs

12 3 4 5 6 7 8 1.2 3 4 5 6 7 8 12 3 4 5 6 7 8 1.2 3 4 5 6 7 8

———F1 —=TFLOPs ——F1 e==TFLOPS ——F1 ——TFLOPS ——F1 ——TFLOPs

Figure 4: The F1 (%) and TFLOPs of GARLIC on NarrativeQA, Qasper, HotpotQA, and MuSiQue
with different stop patience values p. The horizontal axis represents stop patience p. The left vertical
axis shows the F1 (%) corresponding to the blue line, and the right vertical axis shows TFLOPs
corresponding to the red line. As p increases from 1 to 8, both F1 and TFLOPs increase, but the
increase in F1 slows when p > 5, while TFLOPs continue to rise.

4.4 ABLATION STUDY

In this section, we study how each component contributes to performance, as shown in Table[2] and
describe them below.

Table 2: Ablation study of the four components of GARLIC with F1 (%), ROUGE-L (%), and
BLEU-4 (%) on NarrativeQA, Qasper, HotpotQA, and MuSiQue.

Method NarrativeQA Qasper HotpotQA MuSiQue
F1 ROUGE-L BLEU-4 F1 ROUGE-L BLEU4 F1 ROUGE-L BLEU-4 F1 ROUGE-L BLEU-4
GARLIC 61.1 60.2 18.6 49.7 479 27.0 435 434 7.2 36.9 36.9 5.7
w/o Graph-based Summary 514 50.8 9.2 473 455 23.8 409 40.7 6.4 323 323 4.1
w/o Dynamic Progress Control 53.5 52.9 16.0 37.7 36.4 20.8 39.4 39.3 59 27.0 27.1 34
w/o Attention Search 53.0 524 18.3 46.9 455 253 419 41.7 6.8 33.1 329 5.1
w/o Embedding Similarity Search  59.5 58.7 17.6 48.0 46.2 235 429 42.8 6.6 359 35.8 5.0

w/o Graph-based Summary: We drop the graph-based summary and instead follow a tree-based
manner, as illustrated in Figure[2b] by iteratively summarizing nodes and conducting the search with
it. All datasets show a decline in performance, especially for NarrativeQA. For more complex and
longer inputs, IPs help organize information more effectively.

w/o Dynamic Progress Control: We measured the average number of nodes used across the four
datasets with GARLIC, which were 48, 36, 17, and 30 for NarrativeQA, Qasper, HotpotQA, and
MusSiQue, respectively. Instead of using the LLM to dynamically decide when to stop the search,
we employ a fixed number of nodes based on these averages. The search stops after retrieving this
predefined number of nodes. For documents with many top-level nodes, the initial number of visited
nodes S is limited to the preset value divided by the number of levels, ensuring sufficient room to
search. The most relevant top-level nodes are selected using embedding similarity, similar to RAP-
TOR (Sarthi et al.l 2024). We retain the same search mechanism using attention and embedding
similarity, so unselected top-level nodes can still be retrieved via embedding similarity. Without
Dynamic Progress Control, performance dropped across all datasets, even though the average num-
ber of nodes retrieved remained unchanged. Some queries retrieve unnecessary information, while
others still lack the required information, leading to decreased performance. GARLIC dynamically
adjusts the amount of information retrieved for each query, ensuring a proper amount is retrieved.
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w/o Attention Search: We remove the use of attention and rely solely on embedding similarity for
node search, similar to RAPTOR (Sarthi et al., 2024). Performance dropped across all datasets, with
the most significant drop occurring in NarrativeQA, indicating that attention scores are particularly
effective in retrieving hierarchical information from long texts.

w/o Embedding Similarity Search: We exclude embedding similarity from the final score z, rely-
ing entirely on attention weights to compute retrieval scores. While performance decreased slightly,
it was not a major drop. The score for NarrativeQA was not significantly affected, indicating that
while embedding similarity is beneficial, attention-based search plays a more critical role.

4.5 EFFICIENCY ANALYSIS

Table [T]lists the TFLOPs for search and inference for each query. In this section, we provide a closer
analysis of efficiency. Table [3| shows the graph construction TFLOPs per document as GARLIC
graph construction and the graph search TFLOPs per query as GARLIC graph search. GARLIC
graph construction + graph search shows the average TFLOPs per query when each document
contains 2, 4, or 8 queries.

Table 3: TFLOPs for graph construction and graph search. GARLIC graph construction + graph
search shows the average TFLOPs per query when each document contains 2, 4, or 8 queries.

NarrativeQA  Qasper  HotpotQA MuSiQue

Method TFLOPs ~ TFLOPs TFLOPs TFLOPs
Llama3.1-8B 3361.9 92.5 23.6 40.6
GARLIC graph construction 2042.8 136.6 40.2 66.7
GARLIC graph search 31.0 66.9 16.0 30.9
GARLIC graph construction + graph search

2 queries per document 1052.4 135.2 36.1 64.3

4 queries per document 541.7 101.1 26.1 47.6

8 queries per document 286.4 84.0 21.0 39.2

If each document has only one query, the TFLOPs of our method exceed those of Llama3.1 on
Qasper, HotpotQA, and MuSiQue. During graph construction, the entire document is processed
by the GARLIC, along with the additional summary generation. However, Llama3.1 uses more
TFLOPs on NarrativeQA than GARLIC as the complexity of the Transformer (Vaswani et al.|[2017)
increases quadratically with input length for very long inputs. Even though the total amount of
text processed by our method is longer, Llama3.1 processes the entire input at once, whereas our
method processes the document in chunks, resulting in lower TFLOPs. As the number of queries
per document increases, the TFLOPs for graph construction are amortized, reducing the average
TFLOPs per query. When each document has more than 8 queries, our method achieves lower
average TFLOPs per query, even when accounting for the summary.

Additionally, GARLIC is able to use an input window of 8K, allowing it to run on an NVIDIA A100
80G GPU. In contrast, we had to use 8 A100 80G GPUs, even with CPU offloading, to run Llama3.1
on NarrativeQA with an input window of 100K tokens. This limits the practical application of
Llama3.1 in real-world scenarios, whereas our method can easily run on a single GPU.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new retrieval method, called GARLIC, which constructs a Hierarchi-
cal Weighted Directed Acyclic Graph with many-to-many summarization. Each node represents an
Information Point focusing on a single or few events, with edges derived from summarization atten-
tion. We also introduce a novel retrieval method using LLM attention weights and LLM-controlled
retrieval, with efficiency maintained through KV caching. Our Dynamic Progress Control can be
easily adapted to other retrieval methods. Experiments show our method outperforms baselines
while maintaining retrieval computational efficiency, and increasing stop patience can further im-
prove performance. There are some areas that could be improved. As we placed the query at the be-
ginning, we had to apply an empirical normalization, which might not be optimal. Additionally, the
equal weighting of attention-based and embedding similarity scores could be refined. Further work
could explore incorporating Chain-of-Thought (CoT) reasoning to further enhance performance.
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A  PROMPT

A.1 SUMMARY GRAPH CONSTRUCTION PROMPT

In Summary Graph Construction, the prompt instructs the LLM to generate summaries in bullet-
point format, with each point referred to as an Information Point (IP). The LLM prompt used is
shown in Table@ with an example from NarrativeQA (Kocisky et al., 2018)). In the prompt, we use
the term “summary point” to refer to the IPs in the response, distinguishing them from the IPs in the
input for LLM. Each IP in our method describes a single or very few events, and during retrieval,
each IP, corresponding to each node, reduces the smallest retrievable unit from a chunk to an IP. An
IP usually consists of just one sentence, allowing our method to retrieve specific pieces of knowledge
more efficiently.

Table 4: The prompt used for the LLM during Summary Graph Construction, with an example
from NarrativeQA. The italicized text represents the example context, while the remaining text is
the prompt instruction. To differentiate between the input and output IPs, the output IPs are named
as “summary points” in the prompt to avoid confusion for LLM. Each summary point starts with an
asterisk and typically consists of a single sentence.

Summary Graph Construction

Prompt:
Summary the following information. Each segment is separated by a new line symbol.

* Mrs. Tabitha Twitchit expects “fine company” for tea and fetches the children before her friends arrive.
* Tabitha dresses Moppet and Mittens in clean pinafores and tuckers, and Tom in "all sorts of elegant
uncomfortable clothes” taken from a chest of drawers.

* Tom is fat and bursts several buttons, but his mother sews them back on again.

* Tabitha turns her kittens into the garden to keep them out of the way while she makes hot buttered toast
for the party.

Split your summary into different summary points according to the semantic information in these
information points. It is not necessary to generate each summary point for each information point. Gather
and organize information into summary points. In each summary point, try to avoid using pronouns like
he/she/they and instead use full names. Generate in the format of:

* summary point
* summary point
* summary point

Do not provide any explanation and start the summary directly.

Response:

* Mrs. Tabitha Twitchit expects fine company for tea and dresses Mittens, Tom Kitten, and Moppet
in clean clothes.
* Mrs. Tabitha Twitchit sends Mittens, Tom Kitten, and Moppet to the garden to keep them out of the way.

A.2 DYNAMIC GRAPH SEARCH PROMPT

The two-turn prompt is shown in Table[5]in Appendix[A.2] including an example from NarrativeQA
(Kocisky et al.,[2018)). In the first turn, the LLM is prompted to determine whether the current set of
visited nodes S is sufficient to answer the query. The prompt asks the LLM, “Can this question be
answered by the following information?”, followed by the query and visited nodes S. If the response
is “No”, the search continues, and the next node is retrieved. This process repeats until the LLM
responds with “Yes”. Once the LLM responds with “Yes”, the second turn of the prompt will ask
the LLM to answer the query.
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Table 5: The two-turn prompt used for Dynamic Graph Search, with an example from NarrativeQA.
The italicized text represents the example context, while the remaining text is the prompt instruction.
The first-turn prompt asks the LLM to determine if the current context is sufficient to answer the
query. If the response is “No,” more context will be added to the end of the prompt, and the LLM
will be asked again, with all previous context KV cached to avoid additional computation. Once
the LLM responds with “Yes,” the second turn will prompt the LLM to provide the final answer
directly.

Dynamic Graph Search

First-Turn Prompt:

Can this question be answered by the following information? Response “Yes” or “No” in one word.
Do not provide any explanation.

Question:
Where does the mother send her kittens to keep them out of the way while getting ready for the party?

Information:

* Mrs. Tabitha Twitchit sends Mittens, Tom Kitten, and Moppet to the garden to keep them out of the way.
* Tabitha turns her kittens into the garden to keep them out of the way while she makes hot buttered toast
for the party.

First-Turn Response:

Yes

Second-Turn Prompt:

Given the above information and question, answer the question as concisely as you can.

Second-Turn Response:

The garden.

B ATTENTION COMPUTATION

B.1 AVERAGING AND NORMALIZATION

This section introduces the detailed computation of the final attention weight e; ; € £ between a
high-level node v*! and a low-level node vé, as introduced in Section We define the lower-level

i
node vé» with tokens {xi}kK; 1 and the higher-level node v,ﬁ“ with tokens {xf;}ff;l, where K; and
I+1

K; denote the number of tokens in nodes U;’- and v; ", respectively.

First, we extract all attention weights from the LLM during summarization. These attention weights
are averaged across attention heads and layers. In practice, we iteratively accumulate attention
weights averaged over attention heads for each layer to reduce memory usage. This process yields

the attention weight e,: ,; between tokens A= vé“ and 27 € vé..
Next, we average attention weights at the token level within each node. For the lower-level node Ué,
I+1

Kj . . . . ;
we average {e_; i}, into e i 1, which represents the attention weight from token z* € v;"" to
Yk ()

.. For

vt
J

L Qi : I+1 K -
the node v;. Similarly, for the higher-level node v;" ", we average {e% ol b, into €yt
simplicity, we refer to €1 1 as e ; in SectlonE}

This process is repeated for all nodes. If no connection exists between two nodes, the edge weight is
set to zero. Finally, the attention weights are normalized as e; ; = Z‘?'e-’m , ensuring that > € =

1. This provides the final attention weights for the edges £ in the graph G. Similarly, the query-based
attention a described in Section [3.2.2]is computed in this manner.

We classify attention into two types: syntactic attention, which reflects grammatical relationships,
and semantic attention, which captures meaning connections, often between paragraphs. When
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averaging token-level attentions, we only extract attentions between high-level and low-level nodes,
omitting attentions within the same node. This process emphasizes long-distance semantic attention,
which effectively reflects the semantic relationships between nodes.

B.2 RETRIEVAL SCORE COMPUTATION

In this section, we introduce the computation of 2z = E” a from a different perspective.

The final retrieval score z is obtained as the product of the adjacency matrix E” and the query
relation vector a. Specifically, for a node v;, its predecessors are defined in the set P;. We identify
the intersection of P; and the set of visited nodes S, denoting itas R; = P; N S.

Given nodes v; € R;, retrieval score z; of a node v; ¢ S is computed as:

z; = Zej,iaja (1)
J
where ¢, ; represents the edge weight from node v; to node v;. Once this operation is performed for
all nodes, the vector z is fully computed.

This computation aligns with z = ETa described in Section When the adjacency matrix E
is sparse or the set S is small, leveraging sparse matrix multiplication or directly using Eq. (I can
be more computationally efficient.

C KV CACHING IN DYNAMIC PROGRESS CONTROL

This section introduces the usage of the KV cache described in Section[3.2.1} Given the last retrieved
node v; in the visited set S, let {xi}szl denote the tokens of node v;, where K; represents the
number of tokens in v;.

The query and visited nodes are represented as [q, v1, ..., ;, ..., vs], with their corresponding to-
1 , :

kens organized as [x7,. .. ,x%q@l, R TTRY o

. . VK-
When a new node v; is retrieved, the query, key, and value states of the tokens {7}, in v; are
computed using the self-attention mechanism of the LLM. Since v; also attend to the previously vis-
ited nodes, the stored KV cache containing the tokens [z, ... ,x%q, S N LN

is input into the LLM. At this point, the query states from v; and the key-value states from ¢, S, and
v; are available. The LLM performs self-attention over these query, key, and value states.

After processing, v; is added to the visited set &, and the key-value states of its tokens

{xfe}kle are stored. These states are concatenated with the previous KV cache to form

q o} 1 1 i oy J 2 ; ;
[:cl,...,qu,xl,...,xKl,...,:cl,...,bLKi,xl ...,LKj]. This updated KV cache is then used for

the next node retrieval. In this common scenario, KV caching is typically performed at the token
level, where the LLM caches the key-value states of previous tokens when generating the next token.
In contrast, our approach utilizes a node-level KV cache for retrieval.

Once the retrieval process is complete, the key-value states of all visited nodes in S are cached, and
the LLM is prompted to answer the question using these cached states. The LLM follows standard
decoding to generate each token one at a time, leveraging the KV cache of the previous tokens.
The query, key, and value states for all nodes, the query, and the answers are computed only once
throughout the retrieval process to avoid additional computation.

D SuUMMARY GRAPH EXAMPLE

In this section, we present an example of generated IPs with part of the first and second-level nodes
in Figure [5| from HotpotQA (Yang et all, 2018). The nodes on the right are higher-level IPs gener-
ated from the low-level chunk nodes on the left. The connections in the middle represent attention
weights. The higher the attention weight, the redder and thicker the line. Lines with attention
weights less than 0.05 are omitted from the figure. It can be observed that IPs are generated from
multiple chunks. For example, high-level nodes 10, 13, 14, 15, 16, 17, 18, and 19 are connected to
multiple low-level nodes. In contrast, high-level nodes 11 and 20 mainly rely on single low-level
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0: SpongeBob SquarePants: Plankton's Robotlo Revenge Is an ection-adventure

video game based on the television seriss "SpongsBob SquarePants". It was 10: The show orlginated from an unpublished, educstional comic book titled "The
relsased in October 2013 for Wil U, Wi, Nintendo 3DS, Nintendo DS, PlayStation 3, Intertidal Zone" created by Stephen Hillenburg in the mid-1980s.

and Xbox 360. The game was devaloped by Behaviour Interactive and published by
Adctivision, who took over from pravious video
isher THQ after iquidation. ... /

1: SpongsBob SquarsPanta: Lights, Gamera, Pants! 1s a 2005 party video game 11: Stophen Hi i into @ television
based on the TV series "SpongeBab SquarePants". It was released in October 2005 serles In 1986 aftr the cancallation of "Rocko's Modern Life".

for the Xbox, PlayStation 2, GameCube, Game Boy Advance, and the PC. It was

released for the Nintendo DS in Korea in 2007, but its North American release was

cancelled ...... Nelson Rellly would voice the Dirty Bubble before his death in 2007.

For reasons unknown, Mermald Man was not voloed by his original volce actor

i I Joe Alaskey, who would voice him again in ..... ' 12: The pllot eplsode of q first alred on Inthe ]

United States on May 1, 1999.
2: The SpongsBob SquarePants Movia s & 2004 American live-action/animated = ’7 1”
comedy fllm based on the television setles q .
The film was co-written, directed, and co-produced by series creator Stephen 7”. %
Hillenburg and starred the series' cast of Tom Kenny, Bill Fagerbakke, ..... and was A\‘ ’ .' l~
also the first film in the "SpongsBob SquarePants" film series. In the film, Plankton ‘\ / A ,I.& 13: SpongsBob SquarePants has been featured In various video games, Inoluding
devises & plan to steal KIng Neptune's crown and send It to Shell Chy, and \‘V/ Y% "SpongeBob  SquarePants: Plankion's Robotic Revenge" and “SpongeBob
SpongeBob and Patrick must retrieve the crown o save Mr. Krabs from King \ /’ SquarePants: Lights, Camera, Pantsl"
Neptune's wrath end Bikini Bottom from Plankton's plan....... ‘ l/' /
3: SpongeBob SquerePants 4D: The Great Jelly Rescus (often referred to as 4 l'//
SpongeBob SquarePants 4D or simply The Great Jelly Rescus) is a 4-D film attraction $ Q / , /\
that quel to q 4. It follows Patrick, \ / 14: SpongeBob SquarsPants is an American animated television series created by
and Sandy as they go jellyfishing.... \ “,' Stephen Hillenburg for Nickelodeon.
4: SpongeBob SquarePants: Original Theme Highlights Is the first album of songs ‘ ‘
playd on the Ni TV series a " It includes tracks

sung by the cartoon's characters: SpongeBob SquarePants, Sandy Cheeks, Patrick
Star, Squidward Tentacles, and Plankton. Its total running time is 9 minutes and 9
saconds, spanning seven tracks.......

15: "SpongeBob SquarePants” s set In the flotlonal underwater city of Blkinl Bottom

SPK
, /£XT ) /" ‘ and centers on the adventures and endeavors of SpongeBob SquarePants, an over-
X ‘ ‘ /"‘ o v/ optimistic sea sponge.
5: “Help Wantsd" Ia the pllot eplaod of the American animeted talevision serlea A\ () X
" It originally aired on Ni in the United States on / X v’,‘/ , 2
May 1, 1899, following the telsvislon alring of the 1999 Kids' Gholcs Awards. The / < M/\/ \
episode follows the protagonist, an anthropomorphic sea sponge named
SpongsBob SquarePants ..... his ertand, having fulfiled the request of M. Krabs ', 4/A 7 ';‘\ 16: The series has also been adapted Into seversl fiims, including "The SpongsBob

and found a mechanical spatula. He utilizes the spatula to fulfil the anchovies' SquarePants Movie" (2004} and "The SpongeBob Movie: Sponge Out of Water
hunger. SpongseBob is then welcomed by Mr. Krabs as a Krusty Krab employee. ......

6: "SpongeBob SquarePants" Is an American animated television serles created " //’ ‘/ / " =
7

In the fictional underwater city of Bikinf Battom, and centers on the adventures and /
endeavors of Sq ), an ptimistic ...... which Hillenburg 17: SpongsBob SquarsPants 4-D is a 4-D film attraction that serves as a sequel to
created In the mid-1980s. He began developing "SpongeBob SquaraPants” Into a ~ \\‘ B D foloving etk and Sandy ae they g0
)" w7
N

jollyfishing.

Nickelodeon television series which Hillenburg previously directed. ......

television series in 1996 after the cancellation of "Rocka's Modemn Life", another /

7: The SpongeBob Movie: Spongs Out of Water is a 2015 American 3D lve-

ection/animated comedy film based on the animated televislon serles *SpongeBob X

a . A stand-al Lo Movie" (2004), 18: SpongeBob SquarePants: Original Theme Highlights Is the first album of sol
Itwas directed by former serles showrunner Paul Tibbltt In his directorlal debut ...... o o " e e

played on the TV series 8q ", featuring tracks
Burger-Beard, who steals the Krabby Patty secret formula using a magical book that

makes any text written upon it come true. SpongeBob and his friends must travel to I"I,;,‘ /‘) (‘/ Sung by the cartoon's shareoters..
W7\

&:In addition show's regular cast of voice actors, guest stars have been featured on //
“SpongeBob SquarePants’, en American enimated television serfes created by /[

marine biologist and animator Stephen Hillenburg for Nickelodean. ...... episode 19: The series has a wide range of guest stars, including Antonio Banderas, Scarlett
firet alred on Nickslodeon In the United States on May 1, 1988. Tha show's ninth 17 | Johansson, Jeffray Tambar, Alac Baldwin, and David Hasssthof.
seasan premiered in 2012, and episades of *SpongsBob SquarePants” have aired. A

feature-langth fllm adeptation of the show, "The SpongeBob SquarePants Movie',

‘was relsased in 2004; in 2015, a sequel, ™', was released. ......

: SpongaBob SquarePants 4-D {also known es SpongeBob SquarePante 4-D Ride, 20: SpongeBob SquarsPants 4-D is a cel-shaded 4-D film based upon the popular
: The Ride or 3-D)is a cel-shaded telsvislon serles "SpongeBob SquarePants™ and can be found at many aquarfums

a S
4-Dfilm based upon the popular telsvision serles "SpongeBob SquarePants". It can and theme parks across the world.
be found et many aquadums and theme parks across the World ..
simulator with a 3D movie. The effects on the ride vary t different p
spray, bubbles, wind, leg ticklers, smoke, and smells are usually foUNd......

a motlon
. Water

Figure 5: An example of generated IPs with part of the first and second-level nodes from HotpotQA.
The nodes on the right are higher-level IPs generated from the low-level chunk nodes on the left. The
connections in the middle represent attention weights. The higher the attention weight, the redder
and thicker the line. Lines with attention weights less than 0.05 are omitted from the figure. For
brevity, some long text in the nodes on the left is omitted.

nodes, with minimal connections to other low-level nodes. From the perspective of low-level nodes,
nodes 2, 5, 6, 7, 8, and 9 are connected to many high-level nodes. Meanwhile, low-level node 3 is
only attended to by node 17. Different nodes automatically adjust their relevance based on attention
with other nodes. Some nodes connect to multiple nodes, while others connect to a single node. Our
method uses IPs and attention to make the relationships between low-level nodes and higher-level
nodes more explicit, allowing the model to understand how each piece of information is connected
to different parts of the text through the graph.

E DATASETS STATISTICS

Table |E] shows the token length statistics of the datasets NarrativeQA (Kocisky et al.L, Qasper

Dasigi et all, 2021), HotpotQA (Yang et all, [2018), and MuSiQue (Trivedi et al., [2022). Narra-
tiveQA is much longer than the other datasets, followed by Qasper. HotpotQA and MuSiQue are
relatively shorter.
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Table 6: Token length statistics for the NarrativeQA, Qasper, HotpotQA, and MuSiQue datasets,
including the average, minimum, and maximum token length per document.

Dataset Average Min Max
NarrativeQA (KocCisky et al.|[2018) 79,457 5,077 467,867
Qasper (Dasigi et al./[2021) 4,866 918 29,408
HotpotQA (Yang et al./[2018) 1,318 70 3,575
MuSiQue (Trived: et al.[[2022) 2,267 909 4,432
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