
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GARLIC: LLM-GUIDED DYNAMIC PROGRESS CON-
TROL WITH HIERARCHICAL WEIGHTED GRAPH FOR
LONG DOCUMENT QA

Anonymous authors
Paper under double-blind review

ABSTRACT

In the past, Retrieval-Augmented Generation (RAG) methods split text into
chunks to enable language models to handle long documents. Recent tree-based
RAG methods are able to retrieve detailed information while preserving global
context. However, with the advent of more powerful LLMs, such as Llama
3.1, which offer better comprehension and support for longer inputs, we found
that even recent tree-based RAG methods perform worse than directly feeding
the entire document into Llama 3.1, although RAG methods still hold an ad-
vantage in reducing computational costs. In this paper, we propose a new re-
trieval method, called LLM-Guided Dynamic Progress Control with Hierarchical
Weighted Graph (GARLIC), which outperforms previous state-of-the-art base-
lines, including Llama 3.1, while retaining the computational efficiency of RAG
methods. Our method introduces several improvements: (1) Rather than using
a tree structure, we construct a Hierarchical Weighted Directed Acyclic Graph
with many-to-many summarization, where the graph edges are derived from at-
tention mechanisms, and each node focuses on a single event or very few events.
(2) We introduce a novel retrieval method that leverages the attention weights of
LLMs rather than dense embedding similarity. Our method allows for searching
the graph along multiple paths and can terminate at any depth. (3) We use the LLM
to control the retrieval process, enabling it to dynamically adjust the amount and
depth of information retrieved for different queries. Experimental results show
that our method outperforms previous state-of-the-art baselines, including Llama
3.1, on two single-document and two multi-document QA datasets, while main-
taining similar computational complexity to traditional RAG methods. 1

1 INTRODUCTION

Retrieval-Augmented Generation (RAG) methods (Robertson et al., 1995; Robertson & Zaragoza,
2009; Reimers & Gurevych, 2019; Karpukhin et al., 2020; Khattab & Zaharia, 2020; Tay et al.,
2022; Santhanam et al., 2022; Lin et al., 2023) have been a popular approach for handling QA
tasks. Longer documents were segmented into chunks, and the most relevant chunks were retrieved
and fed into a language model to generate answers. With the advent of Large Language Models
(LLMs) (Touvron et al., 2023a;b), tree-based approaches such as RAPTOR (Sarthi et al., 2024)
and MeMWalker (Chen et al., 2023a) have emerged. These models utilize LLMs to iteratively
summarize the text, constructing tree-based summaries. By integrating information from different
parts of the text, these methods facilitate the retrieval of both granular and high-level information,
thereby improving performance through a balance of detailed understanding and global context,
while managing longer documents effectively. However, as LLMs evolved, their capacity expanded,
and models such as Llama 3.1 (Dubey et al., 2024) started supporting inputs of up to 128K tokens
with enhanced comprehension capabilities. Studies like LongBench (Bai et al., 2024b) have demon-
strated that the performance of RAG methods is often inferior to feeding the full document into
LLMs directly (Zhang et al., 2023; Nair et al., 2023; Newman et al., 2023). Our experimental results
also find that both RAPTOR and MeMWalker perform less well when compared to directly inputting
the text into Llama 3.1. Nevertheless, retrieval methods remain beneficial in reducing input lengths
and managing computational costs.

1The source code will be released upon paper acceptance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SpongeBob SquarePants is an American animated television series created by Stephen
Hillenburg for Nickelodeon.

LLM

“SpongeBob SquarePants” is set in the fictional underwater city of Bikini Bottom and
centers on the adventures of SpongeBob SquarePants, an anthropomorphic sea sponge.

American animated television series "SpongeBob SquarePants" ... an anthropomorphic
sea sponge named SpongeBob SquarePants, attempting to get a job at a local restaurant
called the Krusty Krab. However, he is tasked to find a seemingly non-existent …

"SpongeBob SquarePants" is an American animated television series created by marine
biologist and animator Stephen Hillenburg ... centers on the adventures of SpongeBob
SquarePants, an over-optimistic sea sponge that annoys other characters…
"SpongeBob SquarePants" chronicles the adventures and endeavors of the title
character and his various friends in the fictional underwater city of Bikini Bottom …
show originated in an unpublished, educational comic book …

Figure 1: Overview of the Hierarchical Weighted Directed Acyclic Graph for summarization. Each
node contains an Information Point (IP) and has multiple parent and child nodes, i.e., multiple
successors and predecessors. Each time, the LLM is fed multiple nodes and prompted to generate
multiple IPs. The weights of edges between nodes are computed based on the attention weights
from LLM summarization. Some example IPs and chunks are shown on the right. For brevity, some
long text is omitted.

In this paper, we introduce a new method, LLM-Guided Dynamic Progress Control with
Hierarchical Weighted Graph (GARLIC), which outperforms RAG baselines and even Llama 3.1
while preserving the benefits of retrieval with lower computational costs. Our method consists of
two stages: Summary Graph Construction and Dynamic Graph Search. In the Summary Graph Con-
struction stage, we prompt an LLM to generate multiple bullet-point sentences, termed Information
Points (IPs). Each IP typically focuses on a single or very few events. IPs are initially generated
from text segments and then fed back into an LLM to recursively generate higher-level IPs. This
process forms a many-to-many graph in which each node can have multiple lower-level child nodes
and higher-level parent nodes, i.e., multiple successors and predecessors. During summarization,
the LLM attention weights between the generated IPs and the input IPs are extracted to capture
their relationships, as shown in Figure 1. The LLM consolidates and summarizes the same event
from different sources, enabling the model to efficiently identify specific events rather than scanning
through entire summary texts. The attention mechanism records which parts of the text contribute to
an IP. The resulting structure is a Hierarchical Weighted Directed Acyclic Graph (HWDAG), where
the extracted attention serves as the edge weights of the graph.

In the Dynamic Graph Search stage, we retrieve nodes from the HWDAG and feed them into the
LLM to predict answers. We introduce a method called LLM-guided Dynamic Progress Control,
which dynamically determines when to stop the search. Starting with top-level nodes, one node is
selected per iteration. The LLM evaluates if the retrieved nodes contain sufficient information to
answer a given query. The search continues until the LLM signals that enough information has been
gathered. The prompt asks: “Can this question be answered by the following documents?” followed
by the query and the text of the retrieved node. Each time a new node is retrieved, the previous
inputs are KV cached, allowing new documents to be appended without reprocessing the entire
input. Therefore, although we use LLM to decide when to stop the retrieval process, the method
does not introduce additional computational overhead. This approach effectively resolves the prior
challenge of determining how many chunks to search.

During the search, the attention between the retrieved nodes and the query is extracted, enabling it to
assess relevance based on the LLM’s knowledge. We combine this attention with the attention from
the Dynamic Graph Search stage to guide the search and retrieve the next node. We employ Greedy
Best-First Search (GBFS), a variant of Best-First Search (BFS), to traverse the graph. In contrast,
RAPTOR (Sarthi et al., 2024) and MeMWalker (Chen et al., 2023a) utilize search methods that are
more similar to Depth-First Search (DFS). We treat the graph as an adjacency matrix, considering all
nodes connected to the retrieved node during the search, enabling the exploration of multiple paths.
On the contrary, previous methods, as shown in Figure 2b, perform a search by following a single
path from the top node to the bottom node since the number of nodes to retrieve was uncertain. Our
method, however, is more flexible, as shown in Figure 2c, allowing for multiple paths and enabling
the search to terminate at any level. Therefore, our method can handle queries that require varying
amounts of information and information spread across different parts of the graph more effectively.

The combination of HWDAG and attention-based search enables us to introduce an alternative re-
trieval approach that solely relies on attention weights. GBFS integrates well with the HWDAG’s
structure, which consists of numerous smaller nodes, allowing the flexible retrieval of multiple IPs
in any quantity and order. GBFS equipped with Dynamic Progress Control empowers the LLM to
decide when to stop, making the retrieval process adaptable to different queries and allowing for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Chunk-based retrieval. (b) Tree-based retrieval. (c) Our HWDAG-based retrieval.

Figure 2: Comparison of three retrieval methods. Nodes shaded in green are retrieved nodes. (a)
Chunk-based retrieval. (b) Tree-based retrieval, starting from the top node and selecting a child
node at each level until reaching the bottom node. (c) Retrieval based on a HWDAG. The node
search is flexible, allowing multiple paths from the top level, and the search can stop at any level.

termination at various points along the search paths and at different levels of detail. In experiments,
GARLIC outperforms other baselines, including Llama 3.1, without incurring additional inference
computational costs. In summary, the contributions of this paper are as follows:

• We propose a novel Dynamic Progress Control mechanism using the LLM to control the
retrieval process while employing KV caching to avoid additional time complexity.

• We propose a novel Attention-based Retrieval paradigm based exclusively on LLM atten-
tion weights using a Hierarchical Weighted Directed Acyclic Graph with many-to-many
summarization. Each node represents an Information Point (IP) focused on a single or very
few events, and the graph edges are derived from LLM attention during summarization.

• Our method surpasses previous state-of-the-art baselines, including Llama 3.1, while main-
taining the computational efficiency of retrieval methods.

2 RELATED WORK

Retrieval Traditional retrieval techniques, such as TF-IDF (Jones, 1972) and BM25 (Robertson
et al., 1995; Robertson & Zaragoza, 2009), retrieve information based on word terms. Subsequently,
deep learning–based retrieval methods quickly became popular. REALM (Guu et al., 2020) aug-
ments the language model pre-training with a latent knowledge retriever using masked language
modeling. DPR (Dense Passage Retrieval) (Karpukhin et al., 2020) encodes queries and docu-
ments as dense embeddings, with similarity computed between them. ColBERT (Khattab & Za-
haria, 2020; Santhanam et al., 2022) produces multi-vector representations at the token level. JPR
(Joint Passage Retrieval) (Min et al., 2021) is a joint passage retrieval model with an autoregres-
sive reranker that selects a sequence of passages. DHR (Dense Hierarchical Retrieval) (Liu et al.,
2021) leverages both macroscopic document-level semantics and microscopic passage-level seman-
tics. Fusion-in-Decoder (Izacard & Grave, 2021) employs both DPR and BM25 in a knowledge
distillation manner, which does not require annotated query-document pairs. CPT-text (Neelakantan
et al., 2022) utilizes contrastive pre-training on unsupervised data. NCI (Wang et al., 2022) directly
generates relevant document identifiers for a given query. Atlas (Izacard et al., 2022) fine-tunes an
encoder-decoder model with a retriever to address knowledge-intensive tasks with minimal train-
ing examples. RETRO (Borgeaud et al., 2022; Wang et al., 2023a) conditions on document chunks
based on local similarity with preceding tokens. HHR (Hybrid Hierarchical Retrieval) (Arivazha-
gan et al., 2023) combines sparse and dense retrieval methods across both document and passage
retrieval stages. SimLM (Wang et al., 2023b) proposes a new loss function to reduce the mismatch
between pre-training and fine-tuning input distributions. Dragon (Lin et al., 2023) uses contrastive
learning and data augmentation to train a model, achieving state-of-the-art retrieval performance
among eight baselines. Additionally, with the rise of LLMs, some research has explored the use of
LLMs as retrievers. GENREAD (Yu et al., 2023) prompts LLMs to generate contextual documents
based on a given query. RECITE (Sun et al., 2023) retrieves relevant passages from the LLM’s
internal memory via sampling. KGP (Knowledge Graph Prompting) (Wang et al., 2023c) builds a
knowledge graph from multiple documents, with the LLM navigating. Recently, MeMWalker (Chen
et al., 2023a) constructs tree-based summaries and uses LLMs to navigate through the tree. RAP-
TOR (Sarthi et al., 2024) also creates tree-based summaries with clustering and uses embedding
similarities to select the most relevant nodes at each level for retrieval. However, our approach dif-
fers from these methods. We construct a summary graph with IPs and employ attention mechanisms
and GBFS for retrieval along any path, whereas MeMWalker and RAPTOR follow a single path
from the top level to the bottom. Additionally, our method uses the LLM to dynamically determine
when to stop the search, whereas MeMWalker also uses LLM to navigate but incurs significantly
higher computational costs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

LLM

LLM

LLM

No

KV Cache
Repeat to retrieve m

ore nodes

Yes

KV Cache

…

…

First-Turn with KV Cache

… Yes

Repeat until
response “Yes”

Final answer

Second Turn

Retrieve

Retrieve

Search

Search

Figure 3: Overview of Dynamic Graph Search. Each time, a node is retrieved by Greedy Best-
First Search using attention weights. The visited nodes are fed into the LLM, prompting the LLM
to determine if sufficient nodes have been gathered to answer the query. This process incurs no
additional computational cost due to KV caching. The search continues until the LLM signals that
enough relevant nodes are retrieved, at which point the final answer is generated. The process adjusts
dynamically based on the query, retrieving nodes flexibly across multiple graph paths and depths.

Long-Context Language Models Recent long-context language models have focused on over-
coming the limitations of context window size, primarily through positional interpolation to extend
long-context capabilities by training on full-length texts. Chen et al. (2023b) used positional inter-
polation on RoPE (Rotary Position Embedding) (Su et al., 2023) to extend context length. Ding
et al. (2024) proposed LongRoPE which performs direct extrapolation by rescaling RoPE with var-
ied interpolation across RoPE dimensions at different token positions. Peng et al. (2024) and Fu
et al. (2024) fine-tuned models on longer inputs and extended RoPE for longer contexts. LongLoRA
(Chen et al., 2024) shifts sparse attention on LoRA (Hu et al., 2022) to extend model capacity for
longer inputs. LongAlign (Bai et al., 2024a) constructs a long-context dataset, adopting packing and
sorted batching strategies. PoSE (Zhu et al., 2024) manipulates position indices by skipping bias
terms in each chunk. SkipAlign (Wu et al., 2024) synthesizes long-range dependencies from the as-
pect of position indices. Liu et al. (2024) showed that performance can degrade significantly when
the position of relevant information is altered. Infini-Transformer (Munkhdalai et al., 2024) handles
infinitely long inputs using compressive memory, masked local attention, and long-term attention
mechanisms. Our method is complementary to these approaches. The LLMs used in these methods
could serve as the base model in our approach to further reduce computational demands. Our focus
is on utilizing LLMs effectively rather than improving the LLMs, and our method is compatible with
these long-context LLMs.

3 METHODOLOGY

Our method consists of two main steps: Summary Graph Construction and Dynamic Graph Search.
During Summary Graph Construction, as depicted in Figure 1, we iteratively construct an HWDAG
from the documents, where the nodes represent IPs. In Dynamic Graph Search, as illustrated in Fig-
ure 3, given a query, we dynamically retrieve the IPs from the constructed HWDAG by performing
a search guided by an LLM. Once enough nodes are retrieved, the LLM generates the final answer
based on them. Summary Graph Construction is independent of the query, while Dynamic Graph
Search is query-dependent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 SUMMARY GRAPH CONSTRUCTION

This step generates a HWDAG, defined as G = (V, E), where V represents the collection of nodes,
and E represents the collection of edges. Each node vli ∈ V contains the text and is in level l. The
subset of nodes at level l is denoted by Vl ⊂ V . Each edge ei,j ∈ E represents a scalar value
indicating the relatedness between node vi and node vj . Since G is a directed graph, ei,j ̸= ej,i. By
default, if there is no relationship between nodes vi and vj , then ei,j , ej,i = 0.

The text content is initially split into chunks of 300 tokens, which serve as the first-level nodes V1.
For each level, we iteratively summarize nodes from Vl by batching them and feeding them into the
LLM to obtain the higher-level nodes Vl+1, as illustrated in Figure 1. Specifically, we select nodes
for each batch by sequentially choosing them until the total text content length exceeds a threshold
ns. This threshold ns includes both the prompt and the generated summary. These nodes are then
input into the LLM. The prompt instructs the LLM to generate summaries in bullet-point format,
with each point referred to as an Information Point (IP). The LLM prompt used for summarization
is shown in Table 4 in Appendix A.1, and a graph example is shown in Appendix D.

In previous retrieval methods, whether using chunks or summaries, multiple events are often con-
tained in a single text chunk, requiring the retrieval of the entire chunk even if only one event is
relevant (Karpukhin et al., 2020; Lin et al., 2023; Chen et al., 2023a; Sarthi et al., 2024). In contrast,
each IP corresponding to each node in our method describes a single event and reduces the smallest
retrievable unit from a chunk to an IP.

The attention from a higher-level node vl+1
i to a lower-level node vlj is averaged across all tokens and

layers to produce a scalar value ei,j , which serves as the edge value from node vi to node vj , where∑
j ei,j = 1. The value of ei,j represents how much information the higher-level node vl+1

i extracts
from the lower-level node vlj . For example, in Figure 3, node v9 directs to nodes {vj}4j=1, with edge
values {e9,j}4j=1, and

∑4
j=1 e9,j = 1. Detailed computation can be found in Appendix B.1.

3.2 DYNAMIC GRAPH SEARCH

This section explains the process of retrieving nodes from the graph G. An overview of dynamic
graph search is illustrated in Figure 3. The process consists of two steps: Dynamic Progress Control,
discussed in Section 3.2.1, and Graph Search in Section 3.2.2.

3.2.1 DYNAMIC PROGRESS CONTROL

This subsection describes the dynamic control of the search process. Initially, a visited set, denoted
as S ⊂ V , which is initialized with the top-level nodes of V , is fed into the LLM. We use a two-turn
prompt system. In the first turn, the LLM is prompted to determine whether the current set of visited
nodes S is sufficient to answer the query. The prompt asks the LLM, “Can this question be answered
by the following information?”, followed by the query and visited nodes S . The complete prompt is
shown in Table 5 in Appendix A.2, including an example from NarrativeQA (Kočiský et al., 2018).
If the response is “No”, the search continues, and the next node is retrieved. The details of the search
process will be introduced in Section 3.2.2. The newly retrieved node is then appended to the end
of the visited set S, and the LLM is queried again. This process repeats until the LLM responds
with “Yes”. Throughout the search, all previous inputs, including the prompt, query, and visited
nodes S, are cached using KV caching, as illustrated in Figure 3. Additional details can be found
in Appendix C. This ensures that no additional computational resources are required. Some LLMs
may insert special tokens between the prompt and response, but these tokens are minimal, and the
additional computation is negligible. Once the LLM responds with “Yes”, the second turn of the
prompt will ask the LLM to answer the query. At this point, the final answer is obtained.

This approach allows the LLM to dynamically determine the number of nodes needed for retrieval
based on the query. Different queries may require varying amounts and types of content. For ex-
ample, a query that requires only high-level information can be answered with just a few high-level
nodes, whereas a query spanning multiple detailed aspects of the document may require the retrieval
of both high- and low-level nodes. Previous methods typically had a fixed length of retrieved con-
tent, which could lead to either too much or too little information being retrieved for certain queries.

Similar to the concept of early stopping patience, we introduce a stop patience p. With this approach,
the search stops after the LLM responds “Yes” p times. We observed that increasing p can even

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

further improve performance, though this creates a trade-off between performance gains and com-
putational cost. Performance improvements tend to plateau when p > 5, while the computational
cost continues to increase. See Section 4.3 for more details.

3.2.2 GRAPH SEARCH

This section describes the process of searching the graph G = (V, E). Beyond the embedding
similarity used in dense retrieval, as described in (Sarthi et al., 2024), we introduce another approach
by leveraging the attention mechanisms of the LLM.

First, we define the adjacency matrix as E ∈ Rnv×nv , where Ei,j = ei,j and nv represents the
number of nodes in V . Each time, the visited nodes S ⊂ V are fed into the LLM using the prompt
shown in Table 5. The attention weight between the visited node vi and the query q is extracted and
averaged across tokens and layers, denoted as ai, which represents the attention that node vi gives
to the query q. Given that the query precedes the visited nodes in the prompt, nodes that appear
later in the sequence may distribute some of their attention to earlier nodes. We observe that nodes
positioned later in the sequence tend to have lower attention scores. To address this issue, we apply
an empirical normalization to ai by multiplying of the corresponding position vi, with q occupying
the first position. For example, in Figure 3, the extracted attention a15 is multiplied by 3, as a15 is
in the third position. We found this adjustment yields good experimental results. After obtaining all
attention values on all nodes, we construct a vector a ∈ Rnv , where ai = ai, and the remaining
elements are set to 0, i.e., aj = 0 for vj /∈ S.

Once the adjacency matrix E ∈ Rnv×nv and the query attention vector a ∈ Rnv are computed, the
score vector z ∈ Rnv is calculated as follows: z = ETa, where z represents the score for each
node, indicating how likely it is to be retrieved. Further details on the computation process can be
found in Section B.2. The intuition behind this is that, if a node, i.e., an IP, is strongly correlated with
the query, the details about this node will be more helpful for answering the query. E represents
the relationships between nodes, while a highlights which of the currently visited nodes is more
relevant. Through matrix multiplication, we can identify nodes that are related to the current query
but are not yet part of the visited set S. Nodes that are more closely related to the query q, will
have their related successor nodes assigned higher scores. If a retrieved node is not relevant to the
query, it will receive a low score in z, thus preventing the search from continuing through that node.
When sufficient relevant details are retrieved, Dynamic Progress Control will stop the search to avoid
retrieving unnecessary details. We use ET

j,i for the calculation of z, which represents the attention
received by vj from vi, because the goal is to calculate candidate scores for each node, focusing on
the nodes that are the focus of attention. If multiple nodes are highly related to q and also connected
to a successor, that successor node will receive a higher score, as it accumulates scores from multiple
predecessors. For example, in Figure 3, v3 will receive scores from both v9 and v10. We normalize
z and the query-node embedding similarity so that the sum of their elements equals 1, and then we
add the embedding similarity to z as the final score. The node v /∈ S that is not yet in the visited set
and has the highest score is selected as the next node to retrieve.

4 EXPERIMENTS

4.1 SETUP

Dataset We use two single-document QA and two multi-document QA datasets from LongBench
(Bai et al., 2024b): NarrativeQA (Kočiský et al., 2018) is a single-doc QA dataset containing 1,567
stories, including full texts of books and movie transcripts. Qasper (Dasigi et al., 2021) is a single-
doc QA dataset with 1,585 papers, designed to seek information present in the papers. HotpotQA
(Yang et al., 2018) is a multi-doc QA dataset that contains 112,779 examples, focusing on multi-hop
QA. MuSiQue (Trivedi et al., 2022) is a multi-doc QA dataset with 24,814 examples featuring 2-4
hop questions and six reasoning types. See Appendix E for more statistics.

Metrics We use F1, ROUGE-L (Lin, 2004), and BLEU-4 (Papineni et al., 2002) as evaluation
metrics. The final scores are computed using the evaluation source code from LongBench (Bai
et al., 2024b) and Hugging Face Evaluate2. Additionally, we measure the average TFLOPs (Tera
Floating Point Operations) during search and inference for each query.

2https://github.com/huggingface/evaluate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Baseline We employ both traditional and recent baselines: BM25 (Robertson et al., 1995; Robert-
son & Zaragoza, 2009) is a bag-of-words based retrieval method that ranks documents based on the
query terms appearing in them. SBERT (Reimers & Gurevych, 2019) is a dense retrieval method
that employs dense embeddings obtained through the encoder model. Dragon (Lin et al., 2023)
is a dense retrieval method that uses contrastive learning and data augmentation to train a model,
achieving state-of-the-art retrieval performance among eight baselines. LongLLMLingua (Jiang
et al., 2024) introduces question-aware compression based on LLMLingua (Jiang et al., 2023), a
prompt compression method. MeMWalker (Chen et al., 2023a) processes context into a tree of
summary nodes and navigates the tree to search for relevant information guided by the LLM, to
handle long-text QA tasks within a limited input window. RAPTOR (Sarthi et al., 2024) constructs
a tree by recursively embedding, clustering, and summarizing chunks of text for retrieval. RAPTOR
has two variants: “tree traversal” (RAPTOR-TT) and “collapsed tree” (RAPTOR-CT). Llama3.1-
8B (Dubey et al., 2024) is the 8B version of Llama3.1, which expands the context window to 128K
tokens, allowing documents from the four datasets, except for some from NarrativeQA, to be directly
fed into the model.

For all baselines and GARLIC, we use Llama3.1-8B (Dubey et al., 2024) as the LLM for both sum-
marization and inference. For MeMWalker, since the source code was not released, we implemented
it according to the paper using Llama3.1. For LongLLMLingua, which was originally proposed to
use a smaller model to compress prompts for GPT-3.5, we used the published model Phi-2-2.7B, as
provided by LongLLMLingua, to compress the text before inputting it into Llama3.1-8B. For other
models, we ran their source code using Llama3.1-8B. For all inferences, we did not use Chain-of-
Thought (CoT). We use SBERT (Reimers & Gurevych, 2019) as the retrieval model in GARLIC. In
the experiments, we set the stop patience p = 1 by default and the length threshold ns to 8K. Across
all datasets and steps of our method, including graph construction and search, the input window is
capped by ns and can be processed using an NVIDIA A100 80G GPU. A summary graph example
is illustrated in Appendix D.

4.2 MAIN RESULTS

The main results are shown in Table 1. Here, TFLOPs refers to the query-dependent inference. For
MeMWalker, RAPTOR, and GARLIC, summarization TFLOPs are not included as summarization
is query-independent. For BM25, SBERT, and Dragon, in addition to top-5, we also add a top-X
set to match the TFLOPs of GARLIC for a fair comparison. Specifically, we used Top-7, Top-14,
Top-4, and Top-7 for NarrativeQA, Qasper, HotpotQA, and MuSiQue, respectively. A similar top-X
applies to RAPTOR-CT, with Top-20, Top-42, Top-12, and Top-22, respectively. It is worth noting
that our Dynamic Progress Control can determine the appropriate number of chunks or nodes to
retrieve in a single pass, whereas these methods require extensive hyperparameter searches to find
the optimal number. For Llama3.1-8B on NarrativeQA, we used 8 A100 80G GPUs, with CPU
offloading, to handle the dataset. However, we could only process an input window of 100K tokens
with these resources, resulting in 22.3% of documents being truncated. For LongLLMLingua, since
the compression is query-dependent, we included the compression TFLOPs.

The performance of BM25, SBERT, and Dragon was relatively similar, with Dragon showing an
advantage on NarrativeQA. Comparing the top-5 and top-X results, we found that for Llama3.1-8B,
retrieving more chunks generally leads to better results. LongLLMLingua achieves better results
than Llama3.1-8B on HotpotQA, possibly because it reorders documents to place the most rele-
vant content upfront, mitigating the lost-in-the-middle effect (Liu et al., 2024). However, for other
datasets, the deletion of sentences and tokens in LongLLMLingua negatively impacts its perfor-
mance. Given the small size difference between Phi-2 and Llama3.1-8B, the compression TFLOPs
take up a significant portion of the overall computation. This may not reflect the intended use
cases of LongLLMLingua, making efficiency comparisons challenging. MeMWalker did not per-
form well and lagged behind traditional retrieval methods. MeMWalker was initially designed to
overcome the input length limitations for LLMs, but it struggles to navigate large trees effectively.
It requires the LLM to generate correct responses and formats at every node, and when the tree
becomes too large, navigation is prone to failure. This likely contributed to its poor performance
on NarrativeQA. Additionally, its high computational complexity arises from the need to invoke
the LLM at every node. RAPTOR outperformed other retrieval methods at lower TFLOPs. Its
summarization is able to extract key information from the document, which improves performance
and reduces TFLOPs. RAPTOR-TT is constrained by its fixed retrieval path, which sequentially
retrieves nodes from the top level to the bottom. While RAPTOR-CT top-X achieves higher per-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: F1 (%), ROUGE-L (%), BLEU-4 (%), and TFLOPs of baselines and GARLIC on Nar-
rativeQA, Qasper, HotpotQA, and MuSiQue. TFLOPs are calculated during query-dependent in-
ference. “Ratio” represents the ratio of the baselines’ TFLOPs to GARLIC’s TFLOPs. Top-X of
BM25, SBERT, and Dragon denotes Top-7, Top-14, Top-4, and Top-7 for NarrativeQA, Qasper,
HotpotQA, and MuSiQue, respectively, where the numbers are selected to ensure the baselines have
similar TFLOPs to GARLIC for a performance comparison at the same TFLOPs. A similar top-X
applies to RAPTOR-CT, with Top-20, Top-42, Top-12, and Top-22, respectively.

Method NarrativeQA Qasper
F1 ROUGE-L BLEU-4 TFLOPs Ratio F1 ROUGE-L BLEU-4 TFLOPs Ratio

BM25 top-5 52.7 51.8 13.4 26.7 0.86x 41.0 39.6 21.0 26.3 0.39x
SBERT top-5 36.5 35.8 6.6 26.8 0.86x 44.4 42.4 23.9 26.0 0.39x
Dragon top-5 53.8 52.9 13.6 26.9 0.87x 43.0 41.4 22.8 24.5 0.36x
RAPTOR-TT 40.6 39.8 7.8 20.3 0.65x 42.1 40.1 17.2 17.7 0.26x
RAPTOR-CT 48.6 47.8 11.8 17.9 0.58x 44.6 42.7 19.5 16.6 0.25x
LongLLMLingua 50.5 49.5 10.1 1789.4 57.72x 43.2 43.0 21.0 159.7 2.39x
MeMWalker 11.2 9.8 2.6 353.8 11.41x 39.0 36.8 17.4 123.9 1.85x
BM25 top-X 53.7 52.9 14.0 37.5 1.21x 47.0 45.1 22.8 69.3 1.04x
SBERT top-X 39.5 38.8 7.3 37.5 1.21x 46.6 44.5 23.3 68.9 1.03x
Dragon top-X 55.1 54.2 13.6 37.5 1.21x 46.9 44.8 22.1 67.0 1.00x
RAPTOR-CT top-X 52.0 51.2 11.8 35.1 1.13x 46.9 44.7 20.8 67.3 1.01x
Llama3.1-8B 53.7 52.6 10.4 3361.9 108.45x 49.4 47.6 26.9 92.5 1.38x

GARLIC 61.1 60.2 18.6 31.0 1.00x 49.7 47.9 27.0 66.9 1.00x

Method HotpotQA MuSiQue
F1 ROUGE-L BLEU-4 TFLOPs Ratio F1 ROUGE-L BLEU-4 TFLOPs Ratio

BM25 top-5 40.8 40.9 7.7 22.9 1.43x 28.7 28.7 5.1 26.3 0.85x
SBERT top-5 40.9 40.8 8.0 22.6 1.41x 30.7 30.8 6.3 26.1 0.84x
Dragon top-5 39.7 39.6 6.9 23.3 1.46x 28.5 28.4 5.4 28.1 0.91x
RAPTOR-TT 38.6 38.5 6.7 8.4 0.53x 29.3 29.3 4.7 12.6 0.41x
RAPTOR-CT 40.9 40.4 7.2 15.3 0.96x 31.5 31.5 5.5 16.1 0.52x
LongLLMLingua 43.4 43.5 8.1 43.6 2.73x 34.5 34.4 5.6 78.9 2.55x
MeMWalker 39.7 38.9 13.9 93.4 5.84x 24.0 23.5 9.9 175.7 5.69x
BM25 top-X 40.7 40.8 7.7 20.0 1.25x 31.8 31.7 5.6 35.6 1.15x
SBERT top-X 40.8 40.7 7.5 19.6 1.23x 32.5 32.5 6.4 35.6 1.15x
Dragon top-X 39.2 39.1 6.7 20.6 1.29x 30.2 30.1 6.0 38.0 1.23x
RAPTOR-CT top-X 40.7 40.7 7.2 17.9 1.12x 35.4 35.2 7.2 32.2 1.04x
Llama3.1-8B 41.3 41.2 6.3 23.7 1.48x 35.8 35.7 5.6 40.6 1.31x

GARLIC 43.5 43.5 7.2 16.0 1.00x 36.9 36.8 5.7 30.9 1.00x

formance by using more nodes, it still underperforms compared to our method at similar TFLOPs,
demonstrating that its tree-based summarization is not as efficient as ours. Llama3.1-8B’s excelled
on most datasets except NarrativeQA, where input truncation likely affected its performance. For
particularly long inputs in NarrativeQA, Llama3.1-8B reached 3361.9 TFLOPs due to an average
token length of 794,457, suggesting that directly feeding very long texts into an LLM may not be
the optimal choice.

Our method outperformed all baselines and Llama3.1-8B across all four datasets. Even with the
same TFLOPs, our results were better than those of BM25, SBERT, and Dragon. Compared to
LongLLMLingua, our method achieved better performance with lower TFLOPs, although the dif-
fering application scenarios limit direct comparison. Compared to MeMWalker and Llama3.1-8B,
our method achieved higher performance at a lower computational cost. Similarly, our method out-
performed RAPTOR while omitting the clustering step, as our retrieval process stops only after
gathering sufficient nodes. Overall, our method demonstrates both performance advantages and low
computational complexity. Its superiority over Llama3.1-8B can be attributed to the effective sum-
marization of document key points through IPs, and the utilization of attention to enhance search
effectiveness, combined with Dynamic Progress Control to ensure adequate information collection.

4.3 DYNAMIC SEARCH STOP STUDY

Following the concept of early stop patience, the stop patience p in this paper refers to the number
of times the LLM responds “Yes” before the search stops, as introduced in Section 3.2.1. In Table 1,
we set the stop patience p = 1. In this section, we investigate how the stop patience p influences
both performance and efficiency.

As shown in Figure 4, increasing p can further improve performance beyond the results in Table 1,
but at the cost of increased computational resources. It can be observed that with our method and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Llama3.1, retrieving more nodes allows the model to provide more accurate answers. When p < 5,
the F1 score increases rapidly, indicating that, on average, there are still up to 5 nodes containing
useful information that have not yet been retrieved. However, when p > 5, the improvement in
the F1 score slows, and the TFLOPs curve begins to exceed the F1 increase, suggesting that the
additional retrieved nodes do not contribute significantly to the model’s performance, thus reducing
the cost-effectiveness of further computation. The slowdown in performance improvement as p
increases also validates the LLM’s ability to stop the search, as few additional nodes are beneficial
once the search stops. By adjusting p, GARLIC can balance between effectiveness and efficiency.
Due to the presence of Dynamic Progress Control, there is a lower bound for this adjustment range,
specifically when p = 1, and across all four datasets, performance increases more rapidly when
p < 5. In contrast, previous methods required adjusting the number of chunks to retrieve based
on different data distributions or even individual queries, resulting in higher hyper-parameter search
costs.

31

33

35

37

39

41

43

45

47

49

60

61

62

63

64

65

66

67

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

NarrativeQA

F1 TFLOPs

60

65

70

75

80

85

90

95

49

49.5

50

50.5

51

51.5

52

52.5

1 2 3 4 5 6 7 8
TF

LO
Ps

F1
 (%

)

Qasper

F1 TFLOPs

12
14
16
18
20
22
24
26
28
30

43

43.5

44

44.5

45

45.5

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

HotpotQA

F1 TFLOPs

28

31

34

37

40

43

46

49

52

36

37

38

39

40

41

42

1 2 3 4 5 6 7 8

TF
LO

Ps

F1
 (%

)

MuSiQue

F1 TFLOPs

Figure 4: The F1 (%) and TFLOPs of GARLIC on NarrativeQA, Qasper, HotpotQA, and MuSiQue
with different stop patience values p. The horizontal axis represents stop patience p. The left vertical
axis shows the F1 (%) corresponding to the blue line, and the right vertical axis shows TFLOPs
corresponding to the red line. As p increases from 1 to 8, both F1 and TFLOPs increase, but the
increase in F1 slows when p > 5, while TFLOPs continue to rise.

4.4 ABLATION STUDY

In this section, we study how each component contributes to performance, as shown in Table 2, and
describe them below.

Table 2: Ablation study of the four components of GARLIC with F1 (%), ROUGE-L (%), and
BLEU-4 (%) on NarrativeQA, Qasper, HotpotQA, and MuSiQue.

Method NarrativeQA Qasper HotpotQA MuSiQue
F1 ROUGE-L BLEU-4 F1 ROUGE-L BLEU-4 F1 ROUGE-L BLEU-4 F1 ROUGE-L BLEU-4

GARLIC 61.1 60.2 18.6 49.7 47.9 27.0 43.5 43.4 7.2 36.9 36.9 5.7

w/o Graph-based Summary 51.4 50.8 9.2 47.3 45.5 23.8 40.9 40.7 6.4 32.3 32.3 4.1
w/o Dynamic Progress Control 53.5 52.9 16.0 37.7 36.4 20.8 39.4 39.3 5.9 27.0 27.1 3.4
w/o Attention Search 53.0 52.4 18.3 46.9 45.5 25.3 41.9 41.7 6.8 33.1 32.9 5.1
w/o Embedding Similarity Search 59.5 58.7 17.6 48.0 46.2 23.5 42.9 42.8 6.6 35.9 35.8 5.0

w/o Graph-based Summary: We drop the graph-based summary and instead follow a tree-based
manner, as illustrated in Figure 2b, by iteratively summarizing nodes and conducting the search with
it. All datasets show a decline in performance, especially for NarrativeQA. For more complex and
longer inputs, IPs help organize information more effectively.

w/o Dynamic Progress Control: We measured the average number of nodes used across the four
datasets with GARLIC, which were 48, 36, 17, and 30 for NarrativeQA, Qasper, HotpotQA, and
MuSiQue, respectively. Instead of using the LLM to dynamically decide when to stop the search,
we employ a fixed number of nodes based on these averages. The search stops after retrieving this
predefined number of nodes. For documents with many top-level nodes, the initial number of visited
nodes S is limited to the preset value divided by the number of levels, ensuring sufficient room to
search. The most relevant top-level nodes are selected using embedding similarity, similar to RAP-
TOR (Sarthi et al., 2024). We retain the same search mechanism using attention and embedding
similarity, so unselected top-level nodes can still be retrieved via embedding similarity. Without
Dynamic Progress Control, performance dropped across all datasets, even though the average num-
ber of nodes retrieved remained unchanged. Some queries retrieve unnecessary information, while
others still lack the required information, leading to decreased performance. GARLIC dynamically
adjusts the amount of information retrieved for each query, ensuring a proper amount is retrieved.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

w/o Attention Search: We remove the use of attention and rely solely on embedding similarity for
node search, similar to RAPTOR (Sarthi et al., 2024). Performance dropped across all datasets, with
the most significant drop occurring in NarrativeQA, indicating that attention scores are particularly
effective in retrieving hierarchical information from long texts.

w/o Embedding Similarity Search: We exclude embedding similarity from the final score z, rely-
ing entirely on attention weights to compute retrieval scores. While performance decreased slightly,
it was not a major drop. The score for NarrativeQA was not significantly affected, indicating that
while embedding similarity is beneficial, attention-based search plays a more critical role.

4.5 EFFICIENCY ANALYSIS

Table 1 lists the TFLOPs for search and inference for each query. In this section, we provide a closer
analysis of efficiency. Table 3 shows the graph construction TFLOPs per document as GARLIC
graph construction and the graph search TFLOPs per query as GARLIC graph search. GARLIC
graph construction + graph search shows the average TFLOPs per query when each document
contains 2, 4, or 8 queries.

Table 3: TFLOPs for graph construction and graph search. GARLIC graph construction + graph
search shows the average TFLOPs per query when each document contains 2, 4, or 8 queries.

Method NarrativeQA Qasper HotpotQA MuSiQue
TFLOPs TFLOPs TFLOPs TFLOPs

Llama3.1-8B 3361.9 92.5 23.6 40.6

GARLIC graph construction 2042.8 136.6 40.2 66.7
GARLIC graph search 31.0 66.9 16.0 30.9

GARLIC graph construction + graph search
2 queries per document 1052.4 135.2 36.1 64.3
4 queries per document 541.7 101.1 26.1 47.6
8 queries per document 286.4 84.0 21.0 39.2

If each document has only one query, the TFLOPs of our method exceed those of Llama3.1 on
Qasper, HotpotQA, and MuSiQue. During graph construction, the entire document is processed
by the GARLIC, along with the additional summary generation. However, Llama3.1 uses more
TFLOPs on NarrativeQA than GARLIC as the complexity of the Transformer (Vaswani et al., 2017)
increases quadratically with input length for very long inputs. Even though the total amount of
text processed by our method is longer, Llama3.1 processes the entire input at once, whereas our
method processes the document in chunks, resulting in lower TFLOPs. As the number of queries
per document increases, the TFLOPs for graph construction are amortized, reducing the average
TFLOPs per query. When each document has more than 8 queries, our method achieves lower
average TFLOPs per query, even when accounting for the summary.

Additionally, GARLIC is able to use an input window of 8K, allowing it to run on an NVIDIA A100
80G GPU. In contrast, we had to use 8 A100 80G GPUs, even with CPU offloading, to run Llama3.1
on NarrativeQA with an input window of 100K tokens. This limits the practical application of
Llama3.1 in real-world scenarios, whereas our method can easily run on a single GPU.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a new retrieval method, called GARLIC, which constructs a Hierarchi-
cal Weighted Directed Acyclic Graph with many-to-many summarization. Each node represents an
Information Point focusing on a single or few events, with edges derived from summarization atten-
tion. We also introduce a novel retrieval method using LLM attention weights and LLM-controlled
retrieval, with efficiency maintained through KV caching. Our Dynamic Progress Control can be
easily adapted to other retrieval methods. Experiments show our method outperforms baselines
while maintaining retrieval computational efficiency, and increasing stop patience can further im-
prove performance. There are some areas that could be improved. As we placed the query at the be-
ginning, we had to apply an empirical normalization, which might not be optimal. Additionally, the
equal weighting of attention-based and embedding similarity scores could be refined. Further work
could explore incorporating Chain-of-Thought (CoT) reasoning to further enhance performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Manoj Ghuhan Arivazhagan, Lan Liu, Peng Qi, Xinchi Chen, William Yang Wang, and Zhiheng
Huang. Hybrid hierarchical retrieval for open-domain question answering. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 10680–10689, Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.679. URL https://aclanthology.
org/2023.findings-acl.679.

Yushi Bai, Xin Lv, Jiajie Zhang, Yuze He, Ji Qi, Lei Hou, Jie Tang, Yuxiao Dong, and Juanzi
Li. Longalign: A recipe for long context alignment of large language models. arXiv preprint
arXiv:2401.18058, 2024a.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August 2024b.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
acl-long.172.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irv-
ing, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Lau-
rent Sifre. Improving language models by retrieving from trillions of tokens, 2022. URL
https://arxiv.org/abs/2112.04426.

Howard Chen, Ramakanth Pasunuru, Jason Weston, and Asli Celikyilmaz. Walking down the mem-
ory maze: Beyond context limit through interactive reading, 2023a. URL https://arxiv.
org/abs/2310.05029.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window
of large language models via positional interpolation, 2023b. URL https://arxiv.org/
abs/2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models, 2024. URL https://arxiv.
org/abs/2309.12307.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4599–4610, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.365. URL https://aclanthology.org/2021.
naacl-main.365.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan
Yang, and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv
preprint arXiv:2402.13753, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael

11

https://aclanthology.org/2023.findings-acl.679
https://aclanthology.org/2023.findings-acl.679
https://aclanthology.org/2024.acl-long.172
https://aclanthology.org/2024.acl-long.172
https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2310.05029
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307
https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/2021.naacl-main.365

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney
Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and Hao Peng.
Data engineering for scaling language models to 128k context, 2024. URL https://arxiv.
org/abs/2402.10171.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: retrieval-
augmented language model pre-training. In Proceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org, 2020.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for question
answering. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=NTEz-6wysdb.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models, 2022. URL https://arxiv.org/abs/2208.
03299.

Huiqiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. LLMLingua: Com-
pressing prompts for accelerated inference of large language models. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 13358–13376, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.825. URL https:
//aclanthology.org/2023.emnlp-main.825.

Huiqiang Jiang, Qianhui Wu, , Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
1658–1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. URL
https://aclanthology.org/2024.acl-long.91.

Karen Spärck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation, 1972.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2402.10171
https://arxiv.org/abs/2402.10171
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NTEz-6wysdb
https://openreview.net/forum?id=NTEz-6wysdb
https://arxiv.org/abs/2208.03299
https://arxiv.org/abs/2208.03299
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2023.emnlp-main.825
https://aclanthology.org/2024.acl-long.91

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bon-
nie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 6769–6781, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL
https://aclanthology.org/2020.emnlp-main.550.

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’20, pp. 39–48, New York, NY, USA,
2020. Association for Computing Machinery. ISBN 9781450380164. doi: 10.1145/3397271.
3401075. URL https://doi.org/10.1145/3397271.3401075.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl a 00023.
URL https://aclanthology.org/Q18-1023.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen-tau
Yih, and Xilun Chen. How to train your dragon: Diverse augmentation towards generalizable
dense retrieval. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023, pp. 6385–6400, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.423. URL
https://aclanthology.org/2023.findings-emnlp.423.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173, 2024. doi: 10.1162/tacl a 00638. URL
https://aclanthology.org/2024.tacl-1.9.

Ye Liu, Kazuma Hashimoto, Yingbo Zhou, Semih Yavuz, Caiming Xiong, and Philip Yu. Dense
hierarchical retrieval for open-domain question answering. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, pp. 188–200, Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.19.
URL https://aclanthology.org/2021.findings-emnlp.19.

Sewon Min, Kenton Lee, Ming-Wei Chang, Kristina Toutanova, and Hannaneh Hajishirzi. Joint
passage ranking for diverse multi-answer retrieval. In Marie-Francine Moens, Xuanjing Huang,
Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 6997–7008, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.560. URL https://aclanthology.org/2021.emnlp-main.560.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention, 2024. URL https://arxiv.org/abs/
2404.07143.

Inderjeet Nair, Aparna Garimella, Balaji Vasan Srinivasan, Natwar Modani, Niyati Chhaya, Srikr-
ishna Karanam, and Sumit Shekhar. A neural CRF-based hierarchical approach for linear
text segmentation. In Andreas Vlachos and Isabelle Augenstein (eds.), Findings of the As-
sociation for Computational Linguistics: EACL 2023, pp. 883–893, Dubrovnik, Croatia, May
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-eacl.65. URL
https://aclanthology.org/2023.findings-eacl.65.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris
Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski
Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter

14

https://aclanthology.org/2020.emnlp-main.550
https://doi.org/10.1145/3397271.3401075
https://aclanthology.org/Q18-1023
https://aclanthology.org/W04-1013
https://aclanthology.org/2023.findings-emnlp.423
https://aclanthology.org/2024.tacl-1.9
https://aclanthology.org/2021.findings-emnlp.19
https://aclanthology.org/2021.emnlp-main.560
https://arxiv.org/abs/2404.07143
https://arxiv.org/abs/2404.07143
https://aclanthology.org/2023.findings-eacl.65

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training, 2022. URL
https://arxiv.org/abs/2201.10005.

Benjamin Newman, Luca Soldaini, Raymond Fok, Arman Cohan, and Kyle Lo. A question an-
swering framework for decontextualizing user-facing snippets from scientific documents. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, pp. 3194–3212, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.193. URL
https://aclanthology.org/2023.emnlp-main.193.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp.
311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguis-
tics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing, pp. 3982–3992, Hong Kong, China,
November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL
https://aclanthology.org/D19-1410.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Found. Trends Inf. Retr., 3(4):333–389, April 2009. ISSN 1554-0669. doi: 10.1561/1500000019.
URL https://doi.org/10.1561/1500000019.

Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-
3. In Overview of the Third Text REtrieval Conference (TREC-3), pp. 109–126. Gaithersburg,
MD: NIST, January 1995. URL https://www.microsoft.com/en-us/research/
publication/okapi-at-trec-3/.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Zaharia. Col-
BERTv2: Effective and efficient retrieval via lightweight late interaction. In Marine Carpuat,
Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 3715–3734, Seattle, United States, July 2022. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.272. URL https:
//aclanthology.org/2022.naacl-main.272.

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
ning. RAPTOR: Recursive abstractive processing for tree-organized retrieval. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=GN921JHCRw.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

Zhiqing Sun, Xuezhi Wang, Yi Tay, Yiming Yang, and Denny Zhou. Recitation-augmented language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=-cqvvvb-NkI.

Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai
Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and Donald Metzler. Transformer
memory as a differentiable search index. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=Vu-B0clPfq.

15

https://arxiv.org/abs/2201.10005
https://aclanthology.org/2023.emnlp-main.193
https://aclanthology.org/P02-1040
https://openreview.net/forum?id=wHBfxhZu1u
https://aclanthology.org/D19-1410
https://doi.org/10.1561/1500000019
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3/
https://aclanthology.org/2022.naacl-main.272
https://aclanthology.org/2022.naacl-main.272
https://openreview.net/forum?id=GN921JHCRw
https://openreview.net/forum?id=GN921JHCRw
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://openreview.net/forum?id=-cqvvvb-NkI
https://openreview.net/forum?id=Vu-B0clPfq

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023a. URL https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b. URL https://arxiv.org/abs/2307.09288.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multi-
hop questions via single-hop question composition. Transactions of the Association for Compu-
tational Linguistics, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee, Zihan Liu, Mohammad Shoeybi, Yi Dong,
Oleksii Kuchaiev, Bo Li, Chaowei Xiao, Anima Anandkumar, and Bryan Catanzaro. Shall
we pretrain autoregressive language models with retrieval? a comprehensive study. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pp. 7763–7786, Singapore, December 2023a.
Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.482. URL
https://aclanthology.org/2023.emnlp-main.482.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. SimLM: Pre-training with representation bottleneck for dense passage
retrieval. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2244–2258, Toronto, Canada, July 2023b. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.acl-long.125. URL https://aclanthology.org/2023.
acl-long.125.

Yu Wang, Nedim Lipka, Ryan A. Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering, 2023c. URL https://arxiv.org/abs/
2308.11730.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing
Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang,
and Mao Yang. A neural corpus indexer for document retrieval. In Alice H. Oh, Alekh Agar-
wal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/forum?id=fSfcEYQP_qc.

Wenhao Wu, Yizhong Wang, Yao Fu, Xiang Yue, Dawei Zhu, and Sujian Li. Long context alignment
with short instructions and synthesized positions, 2024. URL https://arxiv.org/abs/
2405.03939.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Conference on Empirical Methods in Natural Language Processing, 2018.

16

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2023.emnlp-main.482
https://aclanthology.org/2023.acl-long.125
https://aclanthology.org/2023.acl-long.125
https://arxiv.org/abs/2308.11730
https://arxiv.org/abs/2308.11730
https://openreview.net/forum?id=fSfcEYQP_qc
https://arxiv.org/abs/2405.03939
https://arxiv.org/abs/2405.03939

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu,
Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong
context generators. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=fB0hRu9GZUS.

Shiyue Zhang, David Wan, and Mohit Bansal. Extractive is not faithful: An investigation of
broad unfaithfulness problems in extractive summarization. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 2153–2174, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.120. URL
https://aclanthology.org/2023.acl-long.120.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. PoSE:
Efficient context window extension of LLMs via positional skip-wise training. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=3Z1gxuAQrA.

17

https://openreview.net/forum?id=fB0hRu9GZUS
https://aclanthology.org/2023.acl-long.120
https://openreview.net/forum?id=3Z1gxuAQrA
https://openreview.net/forum?id=3Z1gxuAQrA

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A PROMPT

A.1 SUMMARY GRAPH CONSTRUCTION PROMPT

In Summary Graph Construction, the prompt instructs the LLM to generate summaries in bullet-
point format, with each point referred to as an Information Point (IP). The LLM prompt used is
shown in Table 4, with an example from NarrativeQA (Kočiský et al., 2018). In the prompt, we use
the term “summary point” to refer to the IPs in the response, distinguishing them from the IPs in the
input for LLM. Each IP in our method describes a single or very few events, and during retrieval,
each IP, corresponding to each node, reduces the smallest retrievable unit from a chunk to an IP. An
IP usually consists of just one sentence, allowing our method to retrieve specific pieces of knowledge
more efficiently.

Table 4: The prompt used for the LLM during Summary Graph Construction, with an example
from NarrativeQA. The italicized text represents the example context, while the remaining text is
the prompt instruction. To differentiate between the input and output IPs, the output IPs are named
as “summary points” in the prompt to avoid confusion for LLM. Each summary point starts with an
asterisk and typically consists of a single sentence.

Summary Graph Construction
Prompt:

Summary the following information. Each segment is separated by a new line symbol.

......
* Mrs. Tabitha Twitchit expects “fine company” for tea and fetches the children before her friends arrive.
* Tabitha dresses Moppet and Mittens in clean pinafores and tuckers, and Tom in ”all sorts of elegant
uncomfortable clothes” taken from a chest of drawers.
* Tom is fat and bursts several buttons, but his mother sews them back on again.
* Tabitha turns her kittens into the garden to keep them out of the way while she makes hot buttered toast
for the party.
......

Split your summary into different summary points according to the semantic information in these
information points. It is not necessary to generate each summary point for each information point. Gather
and organize information into summary points. In each summary point, try to avoid using pronouns like
he/she/they and instead use full names. Generate in the format of:

* summary point
* summary point
* summary point
......

Do not provide any explanation and start the summary directly.

Response:

* Mrs. Tabitha Twitchit expects fine company for tea and dresses Mittens, Tom Kitten, and Moppet
in clean clothes.
* Mrs. Tabitha Twitchit sends Mittens, Tom Kitten, and Moppet to the garden to keep them out of the way.
......

A.2 DYNAMIC GRAPH SEARCH PROMPT

The two-turn prompt is shown in Table 5 in Appendix A.2, including an example from NarrativeQA
(Kočiský et al., 2018). In the first turn, the LLM is prompted to determine whether the current set of
visited nodes S is sufficient to answer the query. The prompt asks the LLM, “Can this question be
answered by the following information?”, followed by the query and visited nodes S. If the response
is “No”, the search continues, and the next node is retrieved. This process repeats until the LLM
responds with “Yes”. Once the LLM responds with “Yes”, the second turn of the prompt will ask
the LLM to answer the query.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: The two-turn prompt used for Dynamic Graph Search, with an example from NarrativeQA.
The italicized text represents the example context, while the remaining text is the prompt instruction.
The first-turn prompt asks the LLM to determine if the current context is sufficient to answer the
query. If the response is “No,” more context will be added to the end of the prompt, and the LLM
will be asked again, with all previous context KV cached to avoid additional computation. Once
the LLM responds with “Yes,” the second turn will prompt the LLM to provide the final answer
directly.

Dynamic Graph Search
First-Turn Prompt:

Can this question be answered by the following information? Response “Yes” or “No” in one word.
Do not provide any explanation.

Question:
Where does the mother send her kittens to keep them out of the way while getting ready for the party?

Information:
......
* Mrs. Tabitha Twitchit sends Mittens, Tom Kitten, and Moppet to the garden to keep them out of the way.
* Tabitha turns her kittens into the garden to keep them out of the way while she makes hot buttered toast
for the party.
......

First-Turn Response:

Yes

Second-Turn Prompt:

Given the above information and question, answer the question as concisely as you can.

Second-Turn Response:

The garden.

B ATTENTION COMPUTATION

B.1 AVERAGING AND NORMALIZATION

This section introduces the detailed computation of the final attention weight ei,j ∈ E between a
high-level node vl+1

i and a low-level node vlj , as introduced in Section 3.1. We define the lower-level

node vlj with tokens {xj
k}

Kj

k=1 and the higher-level node vl+1
i with tokens {xi

k}
Ki

k=1, where Kj and
Ki denote the number of tokens in nodes vlj and vl+1

i , respectively.

First, we extract all attention weights from the LLM during summarization. These attention weights
are averaged across attention heads and layers. In practice, we iteratively accumulate attention
weights averaged over attention heads for each layer to reduce memory usage. This process yields
the attention weight exi,xj between tokens xi ∈ vl+1

i and xj ∈ vlj .

Next, we average attention weights at the token level within each node. For the lower-level node vlj ,

we average {exi,xj
k
}Kj

k=1 into exi,vl
j
, which represents the attention weight from token xi ∈ vl+1

i to

the node vlj . Similarly, for the higher-level node vl+1
i , we average {exi

k,v
l
j
}Ki

k=1 into evl+1
i ,vl

j
. For

simplicity, we refer to evl+1
i ,vl

j
as ei,j in Section 3.1.

This process is repeated for all nodes. If no connection exists between two nodes, the edge weight is
set to zero. Finally, the attention weights are normalized as ei,j =

ei,j∑
j ei,j

, ensuring that
∑

j ei,j =

1. This provides the final attention weights for the edges E in the graph G. Similarly, the query-based
attention a described in Section 3.2.2 is computed in this manner.

We classify attention into two types: syntactic attention, which reflects grammatical relationships,
and semantic attention, which captures meaning connections, often between paragraphs. When

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

averaging token-level attentions, we only extract attentions between high-level and low-level nodes,
omitting attentions within the same node. This process emphasizes long-distance semantic attention,
which effectively reflects the semantic relationships between nodes.

B.2 RETRIEVAL SCORE COMPUTATION

In this section, we introduce the computation of z = ETa from a different perspective.

The final retrieval score z is obtained as the product of the adjacency matrix ET and the query
relation vector a. Specifically, for a node vi, its predecessors are defined in the set Pi. We identify
the intersection of Pi and the set of visited nodes S, denoting it as Ri = Pi ∩ S .

Given nodes vj ∈ Ri, retrieval score zi of a node vi /∈ S is computed as:

zi =
∑
j

ej,iaj , (1)

where ej,i represents the edge weight from node vj to node vi. Once this operation is performed for
all nodes, the vector z is fully computed.

This computation aligns with z = ETa described in Section 3.2.2. When the adjacency matrix E
is sparse or the set S is small, leveraging sparse matrix multiplication or directly using Eq. (1) can
be more computationally efficient.

C KV CACHING IN DYNAMIC PROGRESS CONTROL

This section introduces the usage of the KV cache described in Section 3.2.1. Given the last retrieved
node vi in the visited set S, let {xi

k}
Ki

k=1 denote the tokens of node vi, where Ki represents the
number of tokens in vi.

The query and visited nodes are represented as [q, v1, . . . , vi, . . . , vS], with their corresponding to-
kens organized as [xq

1, . . . , x
q
Kq

, x1
1, . . . , x

1
K1

, . . . , xi
1, . . . , x

i
Ki

].

When a new node vj is retrieved, the query, key, and value states of the tokens {xj
k}

Kj

k=1 in vj are
computed using the self-attention mechanism of the LLM. Since vj also attend to the previously vis-
ited nodes, the stored KV cache containing the tokens [xq

1, . . . , x
q
Kq

, x1
1, . . . , x

1
K1

, . . . , xi
1, . . . , x

i
Ki

]

is input into the LLM. At this point, the query states from vj and the key-value states from q, S, and
vj are available. The LLM performs self-attention over these query, key, and value states.

After processing, vj is added to the visited set S, and the key-value states of its tokens
{xj

k}
Kj

k=1 are stored. These states are concatenated with the previous KV cache to form
[xq

1, . . . , x
q
Kq

, x1
1, . . . , x

1
K1

, . . . , xi
1, . . . , x

i
Ki

, xj
1, . . . , x

j
Kj

]. This updated KV cache is then used for
the next node retrieval. In this common scenario, KV caching is typically performed at the token
level, where the LLM caches the key-value states of previous tokens when generating the next token.
In contrast, our approach utilizes a node-level KV cache for retrieval.

Once the retrieval process is complete, the key-value states of all visited nodes in S are cached, and
the LLM is prompted to answer the question using these cached states. The LLM follows standard
decoding to generate each token one at a time, leveraging the KV cache of the previous tokens.
The query, key, and value states for all nodes, the query, and the answers are computed only once
throughout the retrieval process to avoid additional computation.

D SUMMARY GRAPH EXAMPLE

In this section, we present an example of generated IPs with part of the first and second-level nodes
in Figure 5 from HotpotQA (Yang et al., 2018). The nodes on the right are higher-level IPs gener-
ated from the low-level chunk nodes on the left. The connections in the middle represent attention
weights. The higher the attention weight, the redder and thicker the line. Lines with attention
weights less than 0.05 are omitted from the figure. It can be observed that IPs are generated from
multiple chunks. For example, high-level nodes 10, 13, 14, 15, 16, 17, 18, and 19 are connected to
multiple low-level nodes. In contrast, high-level nodes 11 and 20 mainly rely on single low-level

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 5: An example of generated IPs with part of the first and second-level nodes from HotpotQA.
The nodes on the right are higher-level IPs generated from the low-level chunk nodes on the left. The
connections in the middle represent attention weights. The higher the attention weight, the redder
and thicker the line. Lines with attention weights less than 0.05 are omitted from the figure. For
brevity, some long text in the nodes on the left is omitted.

nodes, with minimal connections to other low-level nodes. From the perspective of low-level nodes,
nodes 2, 5, 6, 7, 8, and 9 are connected to many high-level nodes. Meanwhile, low-level node 3 is
only attended to by node 17. Different nodes automatically adjust their relevance based on attention
with other nodes. Some nodes connect to multiple nodes, while others connect to a single node. Our
method uses IPs and attention to make the relationships between low-level nodes and higher-level
nodes more explicit, allowing the model to understand how each piece of information is connected
to different parts of the text through the graph.

E DATASETS STATISTICS

Table 6 shows the token length statistics of the datasets NarrativeQA (Kočiský et al., 2018), Qasper
(Dasigi et al., 2021), HotpotQA (Yang et al., 2018), and MuSiQue (Trivedi et al., 2022). Narra-
tiveQA is much longer than the other datasets, followed by Qasper. HotpotQA and MuSiQue are
relatively shorter.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Token length statistics for the NarrativeQA, Qasper, HotpotQA, and MuSiQue datasets,
including the average, minimum, and maximum token length per document.

Dataset Average Min Max
NarrativeQA (Kočiský et al., 2018) 79,457 5,077 467,867
Qasper (Dasigi et al., 2021) 4,866 918 29,408
HotpotQA (Yang et al., 2018) 1,318 70 3,575
MuSiQue (Trivedi et al., 2022) 2,267 909 4,432

22

	Introduction
	Related Work
	Methodology
	Summary Graph Construction
	Dynamic Graph Search
	Dynamic Progress Control
	Graph Search

	Experiments
	Setup
	Main Results
	Dynamic Search Stop Study
	Ablation Study
	Efficiency Analysis

	Conclusion and Future Work
	Prompt
	Summary Graph Construction Prompt
	Dynamic Graph Search Prompt

	Attention Computation
	Averaging and Normalization
	Retrieval Score Computation

	KV Caching in Dynamic Progress Control
	Summary Graph Example
	Datasets Statistics

