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Abstract— Abnormal event detection is an important task in
video surveillance systems. In this paper, we propose novel bidi-
rectional multi-scale aggregation networks (BMAN) for abnormal
event detection. The proposed BMAN learns spatio-temporal
patterns of normal events to detect deviations from the learned
normal patterns as abnormalities. The BMAN consists of two
main parts: an inter-frame predictor and an appearance-motion
joint detector. The inter-frame predictor is devised to encode
normal patterns, which generates an inter-frame using bidi-
rectional multi-scale aggregation based on attention. With the
feature aggregation, robustness for object scale variations and
complex motions is achieved in normal pattern encoding. Based
on the encoded normal patterns, abnormal events are detected by
the appearance-motion joint detector in which both appearance
and motion characteristics of scenes are considered. Compre-
hensive experiments are performed, and the results show that
the proposed method outperforms the existing state-of-the-art
methods. The resulting abnormal event detection is interpretable
on the visual basis of where the detected events occur. Further,
we validate the effectiveness of the proposed network designs by
conducting ablation study and feature visualization.

Index Terms— Video analysis, abnormal event detection, nor-
mal pattern encoding, multi-scale.

I. INTRODUCTION

RECENTLY, surveillance videos are being acquired in
various environments such as car black boxes, indus-

trial factories, and CCTVs in public places due to concerns
over security and safety. Such videos are intended to detect
meaningful moments (i.e., abnormal events) like accidents,
process errors, and crimes. However, it is labor-intensive
and time-consuming for people to manually check all the
video sequences to find abnormal events because most of
the acquired scenes are normal and meaningless. Therefore,
automatic abnormal event detection is needed to reduce labor
and time resources.

For detecting abnormal events, an intuitive approach is to
learn abnormal patterns directly. However, there are some
problems in modeling abnormal patterns. First, it is difficult
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Fig. 1. Overview of the BMAN. An inter-frame predictor takes previous
and later video sequences to generate an inter-frame and an attention map.
An appearance-motion joint detector receives the attention map, the generated
sequence, and the original sequence to output an abnormality score.

to obtain sufficient abnormal data for modeling abnormal
patterns because abnormal events occur sporadically. Second,
the definition of abnormal events is not bounded. Thus, it is
difficult to model all possible abnormal events in various
environments. One reasonable solution is to utilize normal
data that can easily be obtained. By modeling normal patterns,
events that deviate from the modeled normal patterns can be
considered as abnormal ones.

Some previous works have proposed abnormal event detec-
tion based on normal pattern modeling. Trajectory-based meth-
ods [1]–[4] usually employ tracking algorithms to extract
dynamic information. Based on the tracking results, statistical
modeling methods are applied to acquire normal patterns.
However, since tracking algorithms are not robust to occluded
and crowded scenes, trajectory-based methods could be vul-
nerable to such conditions [5]. Other common abnormal event
detection methods utilize local low-level features [6]–[11].
These methods model spatio-temporal patterns by utilizing
low-level features such as HOF [12] and HOG [13]. However,
they require prior knowledge to design appropriate features for
various events [5].

In recent years, generative model-based methods using
deep learning have achieved state-of-the-art performances in
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abnormal event detection [14]–[21]. Since the generative mod-
els are trained to create frames for normal events, they could
not properly create frames for abnormal events at testing time.
Differences between the original frames and the generated
frames can be used to discriminate abnormal events from nor-
mal events. However, the previous deep generative networks
are not sufficiently capable of learning spatio-temporal features
of complex events, aggregating unidirectional or single-scale
features. Thus, the previous deep generative networks are not
fully capable of capturing complex events.

In this paper, we propose novel bidirectional multi-scale
aggregation networks (BMAN) in which normal
spatio-temporal features are learned to detect abnormal
events. The proposed BMAN consists of two main parts: an
inter-frame predictor and an appearance-motion joint detector
(see Fig. 1). The inter-frame predictor receives previous and
later frames to create an inter-frame. Since the inter-frame
predictor is trained to generate target inter-frames for normal
scenes only, it could not generate inter-frames clearly for
abnormal scenes at testing time. Thus, abnormal events can be
discriminated from normal events by analyzing the differences
between the generated frames and the corresponding original
frames. The appearance-motion joint detector receives a
generated sequence and an original sequence. It outputs
an abnormality score considering both appearance domain
analysis and motion domain analysis.

To properly distinguish abnormal events from normal
events, it is required to effectively learn the spatio-temporal
characteristics of normal events. The proposed work focuses
on encoding multi-scale spatio-temporal features to address
object scale variations in abnormal event detection. In surveil-
lance environments, an object scale could have large variations
due to the actual object size and the distance from the camera.
We do not know at which scale abnormal events would
occur. Therefore, multi-scale encoding is needed in abnormal
event detection. The proposed model learns normal patterns
of various scales using the multi-scale encoding. Abnormal
events can be compared with the normal patterns learned at
different scales, which makes it possible to detect abnormal
events with various scales. To the best of our knowledge,
the proposed method is a first attempt to handle multi-scale
encoding with fully learnable neural networks in abnormal
event detection.

The proposed inter-frame predictor is composed of four sub-
parts: (i) a spatial encoder for representing the spatial features
of frames, (ii) a bidirectional multi-scale encoder for extracting
bidirectional multi-scale motion features, (iii) a scale-selective
aggregator for encoding which scale is important for a target
scene, and (iv) a spatial decoder for generating an inter-frame.
In addition to the multi-scale encoding, it is worth focusing
on specific regions in abnormal event detection because actual
events occur locally in surveillance environments. To this end,
attention encoding is devised to effectively focus on move-
ment regions by considering the spatio-temporal scene con-
text in the inter-frame predictor. The resulting attention
maps are utilized as feature refiners in the inter-frame pre-
dictor and also as a supplementary motion guide in the

appearance-motion joint detector. To the best of our knowl-
edge, this is a first work to deal with attention encod-
ing with fully learnable neural networks in abnormal event
detection.

Based on the normal patterns encoded with the inter-frame
predictor, an appearance-motion joint detector is devised to
detect abnormal events by analyzing both appearance and
motion characteristics of target scenes. The appearance domain
analysis uses pixel-level differences between a generated frame
and an original frame while the motion domain analysis
uses flow-level differences between a generated sequence
and an original sequence. For the motion domain analy-
sis, we adopt a learnable motion domain [22] that can be
trained with normal videos in an unsupervised way. Further-
more, the scene context-based attention from the inter-frame
predictor is utilized as a supplementary motion guide in
the motion domain analysis. Finally, appearance-motion joint
detection is achieved by combining two domain analysis
results. Different from the previous works with deep gener-
ative models, the proposed method detects abnormal events
on both the appearance and the motion domains without
utilizing previously designed handcrafted features. The pro-
posed appearance-motion fusion is constructed as a fully
learnable scheme with normal data, which is more suitable
for detecting abnormal events. Analysis in each detection
domain works complementarily to improve the detection
performance.

We evaluate the performance of the proposed method in
terms of both quantitative and qualitative aspects with vari-
ous public datasets. Extensive experimental results show that
the proposed method outperforms the existing state-of-the-art
methods and has interpretability by presenting the visual basis
of where the detected events occur. In addition, we verify the
effectiveness of the network designs through ablation study.
In particular, the effectiveness of the multi-scale encoding is
analyzed through attention feature visualization.

The major contributions of this paper are as follows.
1) To the best of our knowledge, the proposed method is

a first attempt to deal with multi-scale and attention
schemes with fully learnable neural networks in abnor-
mal event detection. Utilizing bidirectional multi-scale
and attention encoding, the proposed model robustly
learns normal patterns including object scale variations
and complex motions.

2) Based on the learned normal patterns, the appearance-
motion joint detector is devised to detect abnormal
events by analyzing appearance and motion charac-
teristics of target scenes. Analyses in appearance and
motion domains work complementarily for detecting
abnormal events. In addition, the resulting detection is
interpretable on the visual basis of where the detected
events occur at each scene.

II. RELATED WORK

A. Trajectory-Based Methods

Trajectory-based abnormal event detection methods utilize
the dynamic information of objects usually relying on the
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tracking algorithms. Makris and Ellis [1] propose a seman-
tic activity-based Bayesian approach with motion tracking.
Hu et al. [2] introduce a method for learning statistical motion
patterns with multi-object tracking. Jiang et al. [3] propose a
method based on hidden markov model (HMM) with trajectory
clustering. Mo et al. [4] exploit a trajectory-based joint sparse
reconstruction framework. The trajectory-based methods show
satisfactory performances in simple scenes containing few
objects without occlusions. However, those methods do not
guarantee satisfactory results in complex environments where
tracking algorithms do not work robustly. Unlike these previ-
ous works, our method does not depend on tracking algorithms
and could be more robust to complex and occluded scenes.

B. Local Low-Level Feature-Based Methods

This approach models normal patterns with spatio-temporal
characteristics using locally extracted low-level features.
Zaharescu and Wildes [6] adopt distributions of
spatio-temporal oriented energy to model behavior. Wang and
Snoussi [7] utilize histograms of the orientation of optical
flow (HOF) to represent motion information. Kaltsa et al. [8]
introduce a dynamic representation on histograms of oriented
swarms (HOS). Cheng et al. [9] present a hierarchical
framework based on gaussian process regression (GPR).
Colque et al. [10] propose a spatio-temporal descriptor,
histograms of optical flow orientation and magnitude and
entropy (HOFME). Leyva et al. [11] exploit a compact
set of features with optical flow and foreground occupancy
information. Moreover, there is an approach utilizing both
trajectory analysis and pixel-level analysis [23]. Unlike these
previous works, our method does not require any prior
knowledge when designing features on various events. The
proposed model is based on a data-driven approach and is
learned by specific normal data without utilizing any prior
handcrafted features.

C. Deep Learning-Based Methods

There are many neural network architectures for handling
video data in deep learning field. A recurrent neural network
(RNN), which recurrently receives sequential inputs has been
generally adopted to deal with sequential features of video
data. A long short-term memory (LSTM) [24], a type of the
RNN, is proposed to solve the vanishing gradients problem in
long-term encoding by utilizing input, output, and forget gate
units. In [25], a convolutional LSTM (ConvLSTM) is proposed
by modifying fully connected layers with convolutional layers
in LSTM to capture spatio-temporal features. In terms of gen-
eration tasks for video analysis, a convolutional auto-encoder
structure [26] has been utilized alone or with the RNN. The
convolutional auto-encoder contains encoding and decoding
configurations with convolutions and deconvolutions, which
enables to analyze video data. Recently, generative adversarial
networks (GAN) framework [27] is adopted to generate data
close to real distribution. In the GAN, the generator tries to
deceive the discriminator by generating more realistic data,
and the discriminator tries to distinguish generated data from

real data. Through this GAN process, the generator creates
data more similar to the real distribution.

In recent years, deep learning has shown more effective
performances than traditional methods in various computer
vision tasks [27]–[29]. In the abnormal event detection task,
several methods using deep learning have been proposed
to achieve effective performances. The deep learning-based
abnormal event detection methods usually adopt a generative
model to learn normal patterns in an unsupervised way. These
methods utilize the assumption that if a generative model
is trained to create frames for normal scenes only, then it
cannot properly create frames for abnormal scenes. Therefore,
differences between original frames and generated frames can
be used to detect abnormal events. Hasan et al. [14] utilize
the convolutional auto-encoder to reconstruct video frames for
learning temporal regularity. Medel and Savakis [15] employ
the ConvLSTM to predict future frames for abnormal event
detection. Then, architectures that combine the convolutional
auto-encoder with the ConvLSTM are proposed to recon-
struct frames for detecting abnormal events [16], [17]. More
recently, the GAN is adopted in the abnormal event detec-
tion task. GAN-based abnormal event detection methods
include spatio-temporal adversarial networks [18], future pre-
diction networks [19], and image-to-image translation net-
works [20], [21]. These methods detect abnormal events
by predicting frames or changing domains with adversarial
learning.

Although the image-to-image translation model [20], [21]
tries to detect abnormal events in motion domains, it is
difficult to consider actual motion characteristics in such
motion domains because only a single frame is used as input
to generate the motion domain map. Overall, the previous
deep learning-based works adopt simple feature aggregation
networks, which are not sufficiently capable of learning
complex spatio-temporal patterns. Compared to the previous
deep learning-based methods, our work focuses on effective
spatio-temporal feature encoding with bidirectional multi-scale
feature aggregation and appearance-motion joint detection.

III. PROPOSED METHOD

A. Inter-Frame Predictor

Fig. 2 shows the network configuration of the proposed
inter-frame predictor. The inter-frame predictor is trained with
normal videos to generate a clear frame for normal scenes
only. Therefore, the inter-frame predictor could not generate
inter-frames properly for abnormal scenes at testing time.
In the inter-frame predictor, the context of the surrounding
sequence can be utilized to determine whether the target frame
is abnormal. When there are normal events involving complex
motions such as actions with legs or arms, it is possible to
predict the frame better for such normal events by using the
inter-frame predictor because the previous and later contexts
of the target inter-frame are utilized together. To consider the
previous and later contexts, the inter-frame predictor encodes
bidirectional spatio-temporal features in a multi-scale man-
ner and aggregate those bidirectional features in scale-wise.
With the bidirectional configuration, the inter-frame predictor
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Fig. 2. Network configuration of the inter-frame predictor that consists of four sub-parts: a spatial decoder, a bidirectional multi-scale encoder, a scale-selective
aggregator, and a spatial decoder. The inter-frame predictor is trained with a spatio-temporal discriminator in an adversarial way for normal pattern encoding.
At testing time, the inter-frame predictor outputs the inter-frame and the attention map without the spatio-temporal discriminator.

can effectively address normal events that include complex
motions. However, it could be difficult to precisely generate
the frame for the normal events containing complex motions
by simply predicting the future only based on the previous
context, which could lead to false alarms in abnormal event
detection.

The proposed inter-frame predictor consists of a spatial
encoder, a bidirectional multi-scale encoder, a scale-selective
aggregator, and a spatial decoder (see Fig. 2). With the
spatial encoder, latent spatial features are encoded to represent
the visual information of each frame. The spatial features
of the previous four frames and the later four frames are
fed into the forward and the backward multi-scale encoders,
respectively, to encode the spatio-temporal features in both
directions. Each multi-scale encoder consists of a stack of
four SFA-ConvLSTM that is described in sub-section B.
By adjusting a scale factor of each SFA-ConvLSTM, the dif-
ferences between the receptive fields of each scale are
adjusted to encode various scales of motion information.
Each SFA-ConvLSTM receives cell states and hidden states
obtained from the previous step SFA-ConvLSTMs. Then,
the hidden states resulting from the last step of each
SFA-ConvLSTM are concatenated in each scale pair to com-
bine forward and backward features. The scale-selective aggre-
gator that consists of the typical ConvLSTM [25] receives
the concatenated hidden states as sequential inputs. The
scale-selective aggregator focuses on which scale information
is important at which part according to LSTM gate mecha-
nism [30]. As shown in Fig. 2, the scale-selective aggregator
outputs a hidden state, a spatio-temporal latent feature of
the inter-frame. Finally, the inter-frame is generated by the

spatial decoder. In the process of generating the inter-frame,
the scene context-based attention maps from the last step of
the multi-scale encoding are obtained. The obtained maps are
utilized as feature refiners in the inter-frame predictor and
used later in the appearance-motion joint detector at testing
time. More details on the attention scheme are covered in
sub-sections B and C.

The proposed bidirectional prediction requires the four next
frames of the target frame to determine whether or not the
target frame is abnormal. It is possible to apply the proposed
model to real applications by allocating a buffer for the next
four frames. It results in a detection delay of 4 frames,
which corresponds to only 0.16 sec for 25 fps videos and
0.06 sec for 60 fps videos. Such marginal delay for the target
frame could also happen in existing abnormal event detection
methods [6], [15], [31], [32] that use future frames.

We additionally employ the spatio-temporal discriminator to
help the predictor learn the spatio-temporal features of normal
patterns at training time. The spatio-temporal discriminator
consists of 3D convolutional layers (i.e., 3D CNN). The 3D
CNN has one more dimension for temporal encoding than
the typical 2D CNN. The 3D CNN can reliably determine
whether the sequence is real or fake by considering both
spatial and temporal characteristics of scenes [33]. The dis-
criminator outputs a 4 × 4 probability map for exploiting
the local adversarial loss [34]. We average the loss values
over 4 × 4 patches for training. Consecutive frames including
the generated inter-frame are considered as a fake sequence
(generated sequence) while a real sequence (original sequence)
contains the real inter-frame (original inter-frame). Through
the adversarial learning [27], the spatio-temporal discriminator
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TABLE I

NETWORK DETAILS OF THE PREDICTOR AND THE DISCRIMINATOR

is trained to determine whether the input sequence is real
or fake. The inter-frame predictor is trained to generate the
inter-frame that can fool the discriminator. Note that the
discriminator is only utilized at training time. The network
details of the inter-frame predictor and the spatio-temporal
discriminator are seen in Table I.

To generate a desirable inter-frame, we utilize a pixel-wise
loss and a generative adversarial loss for the inter-frame
predictor. By minimizing the pixel-wise loss between the t-
th real frame It ∈ R

256×256×3 and the t-th generated frame Ît

∈ R
256×256×3, the generated frame becomes similar to the real

frame at the pixel-level. Let Pθ and Dφ denote the predictor
function with parameter θ and the discriminator function with
parameter φ, respectively. The pixel-wise loss �pixel can be
written as

�pixel(θ; t) = ‖Pθ (It−4, . . . , It−1, It+1, . . . , It+4) − It‖2
2. (1)

In addition, by minimizing the generative adversarial loss,
the inter-frame predictor can force the discriminator to fail to
classify the generated sequence as fake. Let Ŝt ∈ R

3×256×256×3

denote the fake sequence including the generated frame Ît

and St ∈ R
3×256×256×3 denote the real sequence with the real

frame It . The generative adversarial loss function �Gadv can
be written as

�Gadv(θ; t) = − log(Dφ(Ŝt )), (2)

where Dφ(.) is the probability of the input being real. Finally,
the total objective loss LP (θ) for the predictor is defined as a

Fig. 3. Network structure of the SFA-ConvLSTM that consists of attention
modules and a ConvLSTM structure. Note that dotted box shows a convo-
lutional kernel with scale factor = 2 (dilation rate = 2) used in the spatial
attention module and the ConvLSTM structure.

Fig. 4. Illustration of the effective receptive fields that each scale
SFA-ConvLSTM covers. The SFA-ConvLSTMs in the inter-frame predictor
cover from 27×27 to 99×99 regions with respect to an input video sequence.

combination of (1) and (2).

LP (θ) = 1

N

∑
t∈batch

�pixel(θ; t) + λL�Gadv(θ; t), (3)

where N is a mini batch size, λL is a hyper-parameter to
balance the pixel-wise loss and the generative adversarial loss.

A discriminative adversarial loss is designed for training
the discriminator. By minimizing the discriminative adversarial
loss, the discriminator tries to distinguish between the real
sequence and the fake sequence. The objective loss for the
discriminator can be written as

LD(φ) = 1

N

∑
t∈batch

− log(1 − Dφ(Ŝt )) − log(Dφ(St )), (4)

where the first term, − log(1 − Dφ(Ŝt )), allows the discrimi-
nator to classify the fake sequence as fake. The second term,
− log(Dφ(St )), allows the discriminator to classify the real
sequence as real.

B. Scale Factor Attentive-ConvLSTM

The scale factor attentive-ConvLSTM (SFA-ConvLSTM)
in the inter-frame predictor has two objectives. First, the
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Fig. 5. Framework of the appearance-motion joint detector. (a) Appearance domain analysis with pixel-level comparison between a generated frame and an
original frame. (b) Motion domain analysis with flow-level comparison between a generated sequence and an original sequence. (c) Appearance-motion joint
detection that combines difference maps from the appearance domain analysis and the motion domain analysis.

SFA-ConvLSTM learns the motion information of various
scales. By adjusting dilation rates of the convolutional kernels
in the SFA-ConvLSTM, we can control the receptive fields
of spatio-temporal encoding. Second, the SFA-ConvLSTM
performs attention encoding to focus on movement regions
in surveillance environments where events occur locally. The
attention maps in the SFA-ConvLSTM refine the features in
the inter-frame predictor to be able to focus on local parts
considering scene context.

Fig. 3 shows the structure of the SFA-ConvLSTM. Each
instance of attention is generated by encoding both the previ-
ous step hidden state Ht−1 and the current step input Xt to
account for the scene context according to an attention-based
RNN [35]. Taking both Ht−1 and Xt allows the normal pattern
encoding to focus on the specific regions where the actual
motion occurs by considering the spatio-temporal features in
the SFA-ConvLSTM. A channel attention map Ac

t and a spatial
attention map As

t are sequentially applied to the input Xt

of the SFA-ConvLSTM. Finally, the refined input feature X ′′
t

is entered to the ConvLSTM structure. We adopt a parallel
attention structure of max pooling and average pooling [36].
The proposed attention modules can be formulated as

Ac
t = σ(M L PH (Avg Pools(Ht−1))

+ M L PH (Max Pools(Ht−1))

+ M L PX (Avg Pools(Xt ))

+ M L PX (Max Pools(Xt ))), (5)

X ′
t = Ac

t ◦ Xt , (6)

As
t = σ(WH ∗ [Avg Poolc(Ht−1); Max Poolc(Ht−1)]

+ W d
X ∗ [Avg Poolc(X ′

t ); Max Poolc(X ′
t )]), (7)

X ′′
t = As

t ◦ X ′
t , (8)

where σ denotes the sigmoid function, Pools and Poolc

respectively represent the pooling along spatial and channel
axes. W denotes the convolutional layer, and W d denotes
the dilated convolutional layer [37]. Each M L P , multi-layer

perceptron, consists of two fully connected layers (4, 64) with
reduction ratio 16 as in [36]. The hyperbolic tangent (tanh) is
used as an activation function in the middle of the M L P .

The proposed attention maps are obtained by learning the
parameters in an end-to-end fashion. The attention parameters
in the SFA-ConvLSTM are concurrently learned to emphasize
the regions needed for predicting a frame when the inter-frame
predictor is trained to generate an inter-frame. The proposed
attention maps are not only utilized as a supplementary motion
guide in the motion domain analysis but also utilized as feature
refiners in the inter-frame predictor. Since the scale factor
is applied to the proposed attention module, attention maps
can be generated suitably for each scale flow in multi-scale
encoding through the parameter learning. As the feature refin-
ers, the attention scheme helps the inter-frame predictor to
effectively concentrate on the regions by considering local
movements.

After applying the attention to Xt , the formulation of the
remaining ConvLSTM structure can be represented as

it = σ(W d
xi ∗ X ′′

t + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi ), (9)

ft = σ(W d
x f ∗ X ′′

t + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f ), (10)

Ct = ft ◦ Ct−1 + it ◦ tanh(W d
xc ∗ X ′′

t + Whc ∗ Ht−1 + bc),

(11)

ot = σ(W d
xo ∗ X ′′

t + Who ∗ Ht−1 + Wco ◦ Ct + bo), (12)

Ht = ot ◦ tanh(Ct ). (13)

Unlike the typical ConvLSTM [25], the dilated convolution
W d is used in the proposed network to adjust the receptive
field for the input without increasing the number of weight
parameters. The scale factor of the SFA-ConvLSTM indicates
the dilation rate used in the spatial attention module and the
ConvLSTM structure. it , ft , and ot indicates input, forget,
and output gates for controlling how much information to
select. The cell state Ct has accumulated information and
is further controlled by the output gate ot to obtain Ht .
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The output hidden state Ht represents the high-level feature
in which the sequence up to the t-th frame is considered
in the procedure of predicting the target inter-frame. Spatial
encoding is performed through convolutional layers in the
SFA-ConvLSTM and temporal encoding is conducted through
stacks of the SFA-ConvLSTM in the temporal axis. Thus,
the output Ht contains the spatio-temporal characteristics of
the sequence up to the t-th frame.

In the proposed model, the SFA-ConvLSTM is applied to
the forward multi-scale encoder and the backward multi-scale
encoder parts in the inter-frame predictor. Each scale of the
SFA-ConvLSTM encodes input video sequences with different
effective receptive fields. The receptive field of the CNN
indicates the region of an input frame that can be seen in one
kernel at a time. Fig. 4 shows the effective receptive fields of
the SFA-ConvLSTM for each scale. Each SFA-ConvLSTM is
stacked in the inter-frame predictor. The regions of the kernels
for each current step input are manipulated by the scale factor
so that effective receptive fields of kernels with respect to the
actual input video sequence are varied. As shown in Fig. 4,
the kernels with the different scales could cover regions from
27 × 27 to 99 × 99 for input frames, which makes it possible
to encode multi-scale motion features.

C. Appearance-Motion Joint Detector

At testing time, the appearance-motion joint detector
receives the original sequence St and the generated sequence
Ŝt to output an abnormality score. Fig. 5 shows the overall
process of the appearance-motion joint detection. Abnormal
event detection in the appearance domain uses the pixel-level
difference between the original frame and the generated frame.
Abnormal event detection in the motion domain uses the
flow-level difference between the original sequence and the
generated sequence containing the generated inter-frame.

The appearance-level difference map Da
t ∈ R

256×256

in Fig. 5(a) is obtained from the pixel-level difference between
the generated frame Ît and the original frame It . The
pixel-level difference maps Da,R

t , Da,G
t , and Da,B

t for color
channels are computed as

Da,R
t =

∣∣∣ Î R
t − I R

t

∣∣∣ , (14)

Da,G
t =

∣∣∣ Î G
t − I G

t

∣∣∣ , (15)

Da,B
t =

∣∣∣ Î B
t − I B

t

∣∣∣ , (16)

where I R
t , I G

t , and I B
t denote R, G, and B channels for the

original frame while Î R
t , Î G

t , and Î B
t denote R, G, and B chan-

nels for the generated frame. The average of the pixel-level
difference maps is determined as the appearance-level differ-
ence map. The appearance-level difference map Da

t can be
written as

Da
t = Da,R

t + Da,G
t + Da,B

t

3
. (17)

We employ an unsupervised optical-flow extractor,
UnFlow [22] for the motion domain analysis. The UnFlow
is first trained alone to extract the optical-flow between two

frames with corresponding normal data in an unsupervised
way. By using the UnFlow trained with the normal data,
the motion-level difference map Dm

t ∈ R
256×256 in Fig. 5(b) is

obtained from the flow-level differences between the original
sequence St (It−1, It , It+1) and the generated sequence
Ŝt (It−1, Ît , It+1) from the inter-frame predictor. For Dm

t ,
the flow-level difference maps (Dm,x

t , Dm,y
t ) are computed

from the x-axis and y-axis optical-flows between St and Ŝt .
Then, the two flow-level difference maps and the scene
context-based spatial attention maps are aggregated to obtain
the motion-level difference map Dm

t . Dm
t has higher values

for abnormal events and is utilized to detect abnormal events.
Note that scene context-based attention maps are obtained
from the inter-frame predictor as shown in Fig. 2. The
attention guide map As∗ utilized as the supplementary motion
guide in the motion domain analysis can be written as

As∗ = 1

4

4∑
k=1

As,scale k
t−1 + As,scale k

t+1

2
, (18)

where As,scale k
t denotes the spatial attention from scale k

SFA-ConvLSTM in the inter-frame predictor. In other words,
As∗ is the average map of the attention maps from the last step
of each SFA-ConvLSTM. Using the attention map As∗ as the
motion guide, the proposed motion-level difference map Dm

t
can be defined as

Dm,x
t =

∣∣∣∣∣
(

Ox (It−1, Ît ) + Ox ( Ît , It+1)

2

)

−
(

Ox (It−1, It ) + Ox (It , It+1)

2

)∣∣∣∣ , (19)

Dm,y
t =

∣∣∣∣∣
(

O y(It−1, Ît ) + O y( Ît , It+1)

2

)

−
(

O y(It−1, It ) + O y(It , It+1)

2

)∣∣∣∣ , (20)

Dm
t = As∗ ◦

(
Dm,x

t + Dm,y
t

2

)
, (21)

where Ox and O y respectively denote optical flow maps for
x-axis and y-axis extracted by the UnFlow network.

We perform the appearance-motion joint detection by com-
bining the two difference maps into an appearance-motion
joint difference map D j

t ∈ R
256×256. Then, D j

t is converted
to a scalar value and normalized to an abnormality score s(t).
The proposed abnormality score s(t) can be defined as

D j
t = Da

t + λD Dm
t , (22)

s̃(t) = ‖D j
t ‖2

2, (23)

s(t) = s̃(t) − mint s̃(t)

maxt s̃(t) − mint s̃(t)
, (24)

where λD is a hyper-parameter to balance the appearance
domain detection and the motion domain detection. Note
that video sequences containing abnormal events have higher
abnormality scores.
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TABLE II

SUMMARY OF THE DATASETS FOR ABNORMAL EVENT DETECTION

Fig. 6. Abnormality score graph for a testing video in the Avenue dataset. Red regions in the graph indicate frame-level ground truth of abnormal events.

IV. EXPERIMENTS

A. Datasets

To validate the proposed method, we conduct experi-
ments with four public datasets: UCSD [38], UMN [39],
Avenue [40], and ShanghaiTech [41] datasets. The train-
ing sets of these datasets contain only normal events while
the testing sets contain both normal and abnormal events.
The datasets used in the experiments are summarized in
Table II.

1) UCSD Dataset: The UCSD Pedestrian dataset consists
of two subsets, Ped1 and Ped2. We only use the Ped2 dataset
because Ped1 has low resolution [42], frame corruption [18],
and ambiguity of abnormal events. The UCSD Ped2 dataset
consists of 16 video clips for training and 12 video clips for
testing with a frame resolution of 360 × 240 pixels. There
are 2,550 frames in the training set and 2,010 frames in the
testing set. Abnormal events contain occurrences of bicycles,
vehicles, and skateboards.

2) UMN Dataset: The UMN Unusual Crowd Activity
dataset contains three different scenes with 11 video clips.
We use the first 300 frames of each clip as a training set and the
remaining as a testing set. To sum up, the training set contains
3,300 frames and the testing set contains 4,439 frames. The
frame resolution is 320 × 240 pixels. Abnormal events include
people running with panic.

3) Avenue Dataset: The Avenue dataset contains 16 video
clips for training and 21 video clips for testing with frames
of 640 × 360 pixels. The training set consists of 15,328 frames
and the testing set consists of 15,324 frames. The Avenue
dataset is more challenging than the UCSD and the UMN
datasets because it contains motions of various scale objects
and large size objects with complex motions. In addition,
abnormal events include various kinds of behaviors such as
dancing, throwing, and moving in the wrong direction.

4) ShanghaiTech Dataset: The ShanghaiTech is a
large-scale dataset that includes 330 video clips for training
and 107 video clips for testing. There are 274,515 frames
in the training set and 42,883 frames in the testing set.
The resolution of each frame is 856 × 480 pixels. The
ShanghaiTech dataset is the most challenging dataset because
it includes object scale variations with complex motions and
13 different scenes with complex light conditions. Abnormal
events of the dataset contain various situations such as
vehicles, personal behaviors, and interactions between two
people such as fighting.

B. Implementation

The input frames are normalized to intensity of [−1, 1]
and resized to a 256 × 256 resolution. We use an Adam
solver [43] to optimize the proposed BMAN with a learning
rate of 0.0002 and a batch size of 5. At training time, first, only
the inter-frame predictor is trained to minimize the pixel-wise
loss �pixel . Then, the predictor and the discriminator are
trained in an adversarial way to minimize LP (θ) and LD(φ)
alternately. The predictor training hyper-parameter λL in (3)
is set as 20. Batch normalization [44] is applied after the
convolutions and the deconvolutions of the spatial encoder
and decoder except for the last deconvolution. The exponential
linear unit (ELU) [45] is used as the activation function on the
predictor and the discriminator except for the last layer. At the
end of the predictor and the discriminator, tanh and sigmoid
are used as the activation functions respectively to match the
intensity scale. The UnFlow-C architecture [22] is used as the
flow extractor in the appearance-motion joint detector. Note
that both the inter-frame predictor and the UnFlow network
are trained with corresponding normal data. At testing time,
we set the detection hyper-parameter λD as 0.2 in (22) for all
datasets. The experiments are conducted on a server system
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TABLE III

FRAME-LEVEL PERFORMANCE ON THE UCSD PED2

TABLE IV

PIXEL-LEVEL PERFORMANCE ON THE UCSD PED2

Fig. 7. Visualization results of abnormal events in the UCSD Ped2.

with Intel Xeon Scalable Silver 4114 CPU @ 2.20 GHz,
128 GB memory, and Nvidia TITAN XP GPU. We implement
the proposed model in TensorFlow [46].

C. Evaluation

To evaluate the performance of the proposed method, two
evaluation metrics are employed. First, a frame-level crite-
rion [47] is used to validate how well the abnormal frames are
detected. Fig. 6 shows an example of the abnormality score

TABLE V

FRAME-LEVEL PERFORMANCE ON THE UMN

Fig. 8. Visualization results of abnormal events in the UMN.

curve. It can be seen that the abnormality score has low values
for normal scenes and relatively high values when abnormal
events occur. Based on the abnormality score, we obtain a
frame-level ROC curve with the false positive rate and the
true positive rate, by changing the threshold within the range
of the score. We then obtain the AUC value of the ROC
curve and compare it to the values of other state-of-the-art
methods. Second, a pixel-level criterion [47] is adopted to
evaluate how well the abnormal regions are localized. In the
proposed model, the appearance-motion joint difference map
D j

t contains the local information of the detected events.
However, activated pixels are scattered sporadically. Thus,
we split the difference map into overlapping patches, and
add the average of each patch to the image plane to cluster
the nearby activated pixels for localization of the detected
events. A true positive detection indicates that detected regions
cover more than 40% of the abnormal ground truth pixels.
Otherwise, it is considered as a false positive detection. The
pixel-level ROC curve is obtained by changing the threshold.
Then the AUC value of the pixel-level ROC curve is used for
the performance comparison. The frame-level and pixel-level
AUC values of the other methods are taken from each previous
work and [5].
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TABLE VI

FRAME-LEVEL PERFORMANCE ON THE AVENUE

Fig. 9. Visualization results of abnormal events in the Avenue.

1) Results on UCSD Dataset: Table III shows the
frame-level performance compared with non-deep learning-
based methods [10], [38], [39], [48], [49] and deep
learning-based state-of-the-art methods [5], [14], [16], [18]–
[20], [31], [41], [42], [50], [51] on the UCSD Ped2 dataset.
As shown in Table III, the proposed method outperforms
other existing state-of-the-art methods. Table IV shows the
pixel-level performance indicating how well localization is
performed. The proposed method outperforms most of the
other methods in the pixel-level performance, except for the
Generic Knowledge [42]. Note that the Generic Knowledge
model utilizes an object detection framework based on the
Fast R-CNN [52], whereas our model does not employ any
previously designed local instruction. Fig. 7 shows actual
visualization results on the UCSD Ped2 dataset. The proposed
model properly detects abnormal event regions such as bicy-
cles, a skateboard, and an automobile. When two abnormal

TABLE VII

FRAME-LEVEL PERFORMANCE ON THE SHANGHAITECH

Fig. 10. Visualization results of abnormal events in the ShanghaiTech.

events occur simultaneously in a scene, they are also detected
correctly as shown in the figure.

2) Results on UMN Dataset: The UMN dataset includes
gray and color videos with scene variations. Frame-level
performance on the UMN dataset is shown in Table V. As is
clear from the table, the proposed model surpasses most of the
other methods and is comparable to the existing state-of-the-
art method in frame-level performance evaluation. In addition,
performances for each individual scene have better results than
with the existing methods. Note that the proposed model is
trained at once without dividing the data by each scene, which
shows that our model can be applied to various environments
at the same time. Visualization results on the UMN dataset
are shown in Fig. 8. The panic crowds are correctly localized
in the lawn, the indoor, and the plaza scenes.

3) Results on Avenue Dataset: The Avenue dataset is more
challenging than the UCSD and the UMN datasets because
it includes the object scale variations with complex motions
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TABLE VIII

EFFECTS OF THE NETWORK DESIGNS ON THE PERFORMANCE AND THE COMPUTATIONAL COST

TABLE IX

COMPARISON OF THE DIFFERENT DETECTION STREAMS

and frequent occlusions. Table VI shows the frame-level
performance on the Avenue dataset. Comparison methods are
classified into non-deep learning-based methods [40], [57]
and deep learning-based methods [14], [16], [18], [19], [31],
[41], [50], [51]. The proposed method outperforms the exist-
ing state-of-the-art methods. Visualization results are shown
in Fig. 9. As the figure reveals, the proposed model properly
detects abnormal events such as a jumping person, a running
person, a thrown bag, fluttering papers, dancing people, and
moving in the wrong direction.

4) Results on ShanghaiTech Dataset: The ShanhaiTech is
the most challenging dataset containing object scale varia-
tions with complex motions, frequent occlusions, and scene
variations. As shown in Table VII, the proposed model
outperforms other deep learning-based state-of-the-art meth-
ods [16], [19], [41] in frame-level performance. Fig. 10 shows
the visualization results of detected abnormal events. Various
events including bicycles, an automobile, a jumping person,
pushing, stealing, fighting, and chasing are correctly localized
by the proposed method as confirmed by the figure. Despite
various scene changes, each event is properly visualized.
Note that the proposed method is a data-driven approach
without utilizing any previously designed handcrafted features
or pre-trained models.

D. Ablation Study

We analyze the impact of network designs by ablating
them as shown in Table VIII. A baseline model consists of
a spatial encoder, a forward direction encoder with typical
ConvLSTM and a spatial decoder. A bidirectional multi-scale
encoding model contains the scale-selective aggregator and the
bidirectional multi-scale encoder without attention. An adver-
sarial learning model utilizes spatio-temporal discriminator

Fig. 11. Effects of the hyper-parameters λL and λD on the frame-level
performance.

with the adversarial loss at training time. In addition, we con-
duct an ablation study by adjusting the presence of scene
context-based attention and appearance-motion joint detection.
Note that the appearance-motion joint detection is guided by
the scene context-based attention. As shown in the table,
each factor contributes to the performance of the model.
In particular, the bidirectional multi-scale encoding and the
appearance-motion joint detection with attention contribute
significantly to the performances on the Avenue and the Shang-
haiTech datasets. Note that the Avenue and the ShanghaiTech
datasets include object scale variations with complex motion
information. Results show that the proposed network designs
are effective for the challenging datasets that are similar to
real-world environments.

In terms of the computational cost, the average detection
times are measured for the different network designs as shown
in Table VIII. The models are implemented with a single
Nvidia TITAN XP GPU and Tensorflow. The baseline model
shows a detection time of 0.010 sec per frame. When a bidi-
rectional multi-scale encoding structure is added, the detection
time increases to 0.028 sec per frame. Note that the detection
time does not increase when adversarial learning structure is
added because the discriminator is not used at testing time.
Finally, when appearance-motion joint detection with attention
is added, the detection time is 0.038 sec per frame. The
proposed final model performs the detection at 0.038 sec per
frame, which corresponds to 26 fps. Other state-of-the-art
methods have detection speeds of 25fps (with TITAN GPUs)
in [19], 50fps (with N/A) in [41], and 2fps (with i7-2600 CPU)
in [9].

Table IX shows the ablation study for the three detection
cases (appearance, motion, appearance-motion joint). Each
detection is performed based on the final proposed inter-frame
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Fig. 12. Visualizations of attention maps from the different scale SFA-
ConvLSTMs. Blue circles and red circles indicate small scale object regions
and large scale object regions, respectively.

predictor. In the table, for the detection stream: ‘appearance’,
the abnormality score is obtained from the appearance-level
difference map Da

t in (17). For the detection stream ‘motion’,
the abnormality score is predicted from the motion-level dif-
ference map Dm

t in (21). ‘Appearance-motion joint’ indicates
that the abnormality score is estimated from D j

t , the joint
form of Da

t and Dm
t as in (22). As seen in the table,

‘appearance-motion joint’ achieves the highest performances
for the all datasets. Particularly, for the ShanghaiTech which is
the challenging dataset, the importance of the motion part can
be seen in detection performances. Note that ShanghaiTech
includes various types of complex abnormal motions with
different camera views. In addition, we conduct a hypoth-
esis testing [61] on the differences between ‘appearance’
and ‘appearance-motion joint’ performances. The hypothesis
testing shows that the improvements from using the motion
part are statistically significant at P < 0.1 for the UCSD
Ped2 and at P < 0.05 for the UMN, the Avenue and the
ShanghaiTech.

E. Effects of Hyper-Parameters

We conduct experiments to see the effects of the
hyper-parameters on the performance. There are two
hyper-parameters (λL , λD) in the proposed model. λL is
the training hyper-parameter that balances the pixel-wise loss
and the generative adversarial loss in (3). λD is the detec-
tion hyper-parameter that balances the appearance domain
detection and the motion domain detection in (22). These
hyper-parameters are determined experimentally. Fig. 11
shows the effects of λL and λD on the performances. First,
the training hyper-parameter λL is varied with an exponential
scale [62] for the UCSD Ped2 and the Avenue datasets. When
λL is 20, high performances are obtained on both datasets.

Second, the detection hyper-parameter λD is changed from
0 to 2 linearly. When λD is 0.2, the proposed model achieves
good performances on both the UCSD Ped2 and the Avenue.

F. Visualizations for Multi-Scale Encoding

We visualize spatial attention feature maps to show that
different scales of motion information are encoded in each
scale stage of the SFA-ConvLSTM. The attention maps for
scale1 and scale4 SFA-ConvLSTM are shown in Fig. 12. Blue
circles and red circles represent small and large object motion
regions, respectively. As shown in the figure, regions with
motion occurrence are emphasized. The scale1 attention maps
show clearer localized results for the small motion regions.
On the other hand, the large motion regions are spotted more
clearly in the scale4 attention maps than in the scale1 attention
maps. Note that we do not use any supervised instruction to
extract local attention information; rather, that is extracted in
an unsupervised manner. The visualization results show that
the earlier stage SFA-ConvLSTM tends to learn small motion
information and the later stage tends to focus on large object
motions with consideration of the global regions.

V. CONCLUSION

In this paper, we propose novel bidirectional multi-scale
aggregation networks (BMAN) for abnormal event detection.
The proposed method is a data-driven approach, which does
not need prior designed handcrafted features or pre-trained
models. The inter-frame predictor aggregates features in bidi-
rectional multi-scale and attention aspects to effectively rep-
resent the spatio-temporal characteristics of normal events.
Based on the learned normal patterns, abnormal events are
detected by the proposed appearance-motion joint detector.
The proposed method outperforms the existing state-of-the-art
methods. In particular, it significantly surpasses other methods
on the challenging datasets containing object scale variations
and complex motions that are found in real-world envi-
ronments. In addition, by visualizing the detected abnormal
event regions, we could interpret how the proposed BMAN
determines abnormal events for each scene. Our ablation study
and feature visualization results demonstrate the effectiveness
of the network configurations.
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