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In a dimly lit room, two men are talking, another figure stands behindA masked figure in suit stands against the of a modern cityscape

A corgi sits on a blue beach towel, holding a selfie stick with a GoPro A cat wearing thick round glasses sits on a deep crimson velvet armchair

Figure 1: From real-world complex scenes to AI-generated videos, our method preserves identity
fidelity and synthesizes plausible novel views by operating entirely in noise initialization phase.

Abstract

In this work, we address dynamic view synthesis from monocular videos as an
inverse problem in a training-free setting. By redesigning the noise initialization
phase of a pre-trained video diffusion model, we enable high-fidelity dynamic
view synthesis without any weight updates or auxiliary modules. We begin by
identifying a fundamental obstacle to deterministic inversion arising from zero-
terminal signal-to-noise ratio (SNR) schedules and resolve it by introducing a novel
noise representation, termed K-order Recursive Noise Representation. We derive
a closed form expression for this representation, enabling precise and efficient
alignment between the VAE-encoded and the DDIM inverted latents. To synthesize
newly visible regions resulting from camera motion, we introduce Stochastic Latent
Modulation, which performs visibility aware sampling over the latent space to
complete occluded regions. Comprehensive experiments demonstrate that dynamic
view synthesis can be effectively performed through structured latent manipulation
in the noise initialization phase.

1 Introduction

Dynamic view synthesis (DVS) [15, 40, 47, 57, 66] from monocular videos [12, 13, 30, 67, 52, 2, 17,
65, 59] is a computer vision task that aims to generate new, dynamic perspectives of a scene using
only a single video as input. This process involves predicting how a scene would appear from angles
not captured in the original footage, requiring the inference of depth, occluded regions, and unseen
details. In the film industry, DVS can revolutionize post-production by enabling virtual camera
sweeps through a scene or producing additional shots from different angles, eliminating the need for
expensive reshoots. In robotics, it supports advanced perception systems by generating synthetic
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viewpoints that train algorithms for navigation, manipulation, and active perception tasks in complex
environments.

Historically, DVS has relied on explicit 3D reconstruction methods, such as Neural Radiance
Fields (NeRF) [39], its dynamic extension D-NeRF [44], K-Planes [11], and 3D/4D Gaussian
Splatting [25, 56]. These seminal volumetric and point-based approaches model scenes as continuous
representations or point configurations. However, they impose strict prerequisites: multi-view super-
vision, computationally intensive per-scene optimization, and precise camera calibration. Recently,
a paradigm shift has emerged, leveraging video-diffusion [5, 61, 53, 4, 33] priors to address these
limitations. Diffusion models appeal for DVS because they implicitly capture geometry [64, 38] and
appearance [23, 63, 8, 62] in their latent space, inherently provide temporal consistency, and bypass
the need for explicit 3D modeling. Under this diffusion paradigm, two dominant approaches have
surfaced. The first involves attention-sharing architectures, as seen in Generative Camera Dolly [52],
TrajectoryAttention [59], TrajectoryCrafter [65], and ReCamMaster [2]. These methods integrate
camera-aware branches such as pixel-trajectory attention, dual streams, or 3D attention layers to
enable fine-grained camera control. However, they require additional architectural modules and
extensive retraining on large synthetic datasets like Unreal Engine 5 [10] or Kubric [16], leading
to domain-gap issues when applied to natural settings. The second recipe employs LoRA-based
fine-tuning, exemplified by ReCapture [67] and Reangle-A-Video [22]. These approaches attach
spatial and temporal Low-Rank Adaptations (LoRAs) [20, 7, 46, 9, 68], and perform per-video
fine-tuning leveraging masked losses. Across both strategies, shared limitations persist: they require
updating backbone parameters or adding layers, depend on curated synthetic data or video-specific
fine-tuning, and suffer from pitfalls when the inversion process misaligns with the model’s forward
noise schedule. These constraints underscore a critical open question: Can we achieve 6-DoF
monocular DVS without any weight updates, auxiliary modules, or synthetic pre-training
purely by manipulating the initial noise fed into a video-diffusion model?

In this work, we pioneer a fundamentally different approach to DVS from monocular videos. We
demonstrate that by solely manipulating the initial noise fed into a video diffusion model, we can
achieve state-of-the-art performance without any weight updates or auxiliary modules. This novel
perspective shifts the focus from architectural redesign or resource-intensive retraining to efficient
noise design, distinguishing our method from existing approaches. Our approach is centered around
two key innovations. First, we identify and formalize the Zero-Terminal SNR Collapse Problem,
which arises when training schedules enforce zero signal-to-noise ratio at the terminal timestep,
causing a collapse in information content and obstructing deterministic inversion. To resolve this, we
propose the K-order Recursive Noise Representation (K-RNR), which recursively refines the initial
noise in alignment with the model’s forward schedule, enabling stable and faithful reconstruction
of the original scene. We derive closed-form expressions for this refinement process and stabilize
generation with an adaptive variant that prevents scale explosion. Second, to address the synthesis
of newly visible content due to camera motion, we introduce Stochastic Latent Modulation, a
visibility-aware sampling mechanism that directly completes occluded latent regions using context-
aware latent permutations. This enables plausible scene completion in the noise initialization phase.
Together, these components form a unified framework that achieves high-fidelity reconstruction and
physically consistent view synthesis from monocular input. Our contributions can be summarized as
follows:

• We identify and formalize the Zero-Terminal SNR Collapse Problem, showing that while
zero terminal SNR schedules improve generation quality, they inherently break injectivity,
preventing deterministic inversion and hindering faithful reconstruction.

• We propose K-order Recursive Noise Representation (K-RNR) to resolve the obstruction
caused by the Zero-Terminal SNR Problem. By defining a recursive refinement relation
between the VAE-encoded latent and the positive-SNR DDIM-inverted latent, we derive
closed-form noise expression, enabling high-fidelity reconstructions of original scenes.

• We introduce Stochastic Latent Modulation (SLM), a novel latent-space completion mecha-
nism that infers content for newly visible regions by performing visibility-aware sampling
and contextual latent permutation, enabling physically plausible synthesis in occluded areas
without modifying the model.
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a. Original Frame b. Strength: 0.88 c. Strength: 0.95 f. K-RNR: K=6d. Deterministic Inversion

Figure 2: Approaches to Zero-Terminal SNR Collapse Problem. Figures b-f shows the inpainted
versions of Figure a. (b) Low strength preserves source content but renders unseen regions as black.
(c) High strength improves propagation into unseen areas but causes identity drift. (d) DDIM inverted
latent as initial noise leads to washed-out, high saturation generation. (f) Our K-RNR (k = 6) with
Stochastic Latent Modulation preserves identity and completes newly visible regions with plausible
content.

2 Related Work

This section reviews prior research in two closely related areas relevant to our work. The first is novel
view synthesis for dynamic scenes, and the second is video-to-video translation with camera control.

Novel View Synthesis for Dynamic Scenes. Novel view synthesis seeks to generate unseen
perspectives from available visual data, with substantial advancements driven by neural rendering.
For static scenes, Neural Radiance Fields (NeRF) [39] and 3D Gaussian Splatting [25] provide
detailed 3D reconstructions. Dynamic scene extensions, such as D-NeRF [44], K-Planes [11],
HexPlane [6], and HyperReel [1], depend on synchronized multi-view inputs, which are often
impractical for casual settings. Monocular video methods, including Neural Scene Flow Fields [31],
DynIBaR [32], Robust Dynamic Radiance Fields [36], and Dynamic View Synthesis [12], utilize
depth-based warping or neural encodings but face challenges with occlusions and extrapolation
beyond input views. Recent approaches, such as 4D Gaussian Splatting [56], Dynamic Gaussian
Marbles [50], and GaussianFlow [14], enhance efficiency with 3D Gaussian representations, yet
require robust multi-view data or significant input camera motion, restricting broader applicability.

Video-to-Video Translation with Camera Control. Early video-to-video translation efforts, such
as World Consistent Video to Video [37] and Few Shot Video to Video [55], targeted tasks like
outpainting. Generative Camera Dolly [52] trains on synthetic multiview videos from Kubric, but
domain gaps limit generalizability in natural settings. ReCapture [67] uses a two stage pipeline
that first generates an anchor video with CAT3D [15] multiview diffusion or point cloud rendering,
followed by refinement using spatial and temporal LoRA modules. However, per video optimization
hampers scalability. Methods like DaS [17] and GS DiT [3] enforce 4D consistency through 3D point
tracking with tools such as SpatialTracker [58] and Cotracker [24], though tracking inaccuracies
in complex scenes limit effectiveness. ReCamMaster [2] proposes generative rerendering within
pre-trained text to video models using with a frame-conditioning attention sharing mechanism using a
large Unreal Engine 5 [10] dataset, but struggles with high computational cost as the number of tokens
are doubled in the 3D attention mechanism. TrajectoryCrafter [65] decouples view transformation
and content generation using a dual stream diffusion model conditioned on point clouds and source
videos, but remains constrained under large camera shifts. Trajectory Attention [59] applies pixel
trajectory attention for camera motion control and long range consistency, however, it is sensitive to
sparse or fast motions and lacks full 3D consistency.

3 Background

In this section, we review the base video diffusion model in §3.1, followed by common noise
initialization strategies used in current video models for I2V and V2V applications in §3.2.

3.1 Base Video Diffusion Model

Following prior works [65, 17], our work builds upon the I2V variant of the CogVideoX [61].
CogVideoX is a transformer-based video diffusion model operating in latent space with a 4×
temporal and 8× spatial compression. The model takes a single RGB image I ∈ RH×W×3 as input
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Figure 3: Overview of Our Method. (Left) We lift a monocular video into a dynamic 3D point
cloud and render novel views under target camera trajectories, revealing unseen regions. (Right) Our
method synthesizes coherent outputs by initializing noise with DDIM inversion, Stochastic Latent
Modulation, and K-order Recursive Noise Representation, without modifying the video model.

and generates a video V ∈ RF×H×W×3 with F frames. The image is first encoded by a 3D VAE [26]
into a spatial latent zimg of size C × H

8 × W
8 , with C = 16. To extend this representation across time,

it is broadcast along the temporal dimension and concatenated with F
4 − 1 zero latents, forming a

tensor x0 of size F
4 × C × H

8 × W
8 . Finally, x0 is concatenated with a noise tensor ϵ ∼ N (0, I) along

the channel dimension, yielding the initial noisy input xinit of size 1 +
⌈ F-1

4

⌉
× 2C × H

8 × W
8 for the

I2V task.

3.2 Noise Initialization Strategies

Current video generation models [54, 27, 53, 61] for Image-to-Video (I2V) and Video-to-Video
(V2V) tasks typically employ specific noise initialization strategies. These strategies can be broadly
categorized into two main groups: deterministic inversion and schedule-consistent interpolation.

Deterministic Inversion. In models such as ModelScope [54], the network is conditioned on
a discrete sequence of timesteps {t = 0, . . . , T}, with each timestep associated with a strictly
positive cumulative signal coefficient ᾱt > 0. In this setting, the clean latent representation can be
deterministically mapped to the noise manifold using DDIM Inversion [49].

Schedule-consistent Interpolation. In contrast, standard DDIM inversion is not directly applicable
when the network is conditioned on a continuous sequence of timesteps, as in models like SVD [4]. In
such cases, the initial noisy latent is initialized as xinit = x0 + γ · ϵ, where γ is a noise augmentation
parameter that controls the strength of the initial image perturbation. In the Flow Matching-based
[35] video model HunyuanVideo [27], the initial noisy latent at a discrete timestep t ∈ {0, . . . , T}
is given by xinit = t · ϵ + (1 − t) · x0 for I2V applications. Similarly, in Wan [53], another Flow
Matching model, the noise initialization is defined as xt = σt · ϵ + (1 − σt) · x0, where σt is a
schedule-dependent weighting factor. CogVideoX [61] is trained with zero terminal signal-to-noise
ratio (SNR), which makes DDIM inversion not directly applicable as we discuss in §4.1. In V2V
translation tasks, it initializes the noisy latent as xinit =

√
ᾱtx0+

√
1− ᾱtϵ with signal-to-noise-ratio

SNR(t) = āt

1−āt
.

4 Methodology

Dynamic view synthesis involves simultaneously (1) preserving scene fidelity and (2) completing
newly visible regions as the camera moves. This requires not only faithfully reconstructing identities
and actions over time but also plausibly synthesizing previously unseen regions. To address the former,
we first define the zero terminal SNR collapse problem, which reveals the incompatibility between
deterministic inversion and schedule-consistent interpolation in models like CogVideoX trained with
zero terminal SNR (§4.1). We resolve this with K-order Recursive Noise Representation , which
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a. Cosine Similarity b. Exploding Mean c. Exploding Variance

Figure 4: K-RNR Analysis (a) Cosine similarity between ϵ(k) and VAE-encoded latent x0. (b) For
increasing k values, the mean and (c) the variance of ϵ(k) explodes.

enables effective use of DDIM-inverted latents in such settings (§4.2). To address the latter, we
propose a stochastic latent modulation strategy that infers unseen regions resulting from camera
motion (§4.4).

4.1 Zero Terminal SNR Collapse

We begin our discussion by identifying a key issue that hinders the direct use of DDIM-inverted
latents during the noise initialization phase under zero-terminal SNR noise schedules. Lin et al. [34]
argue that noise schedules should enforce zero SNR at the final timestep and that sampling should
always start from t = T to ensure alignment between diffusion training and inference. Based on this
principle, CogVideoX [61] adopts a zero terminal SNR during training following the noise schedule
used in [45]. While this setup improves generation quality and ensures consistency between training
and inference, we show that it causes a breakdown in injectivity.

Proposition 4.1. Let {αt}Tt=0 be a variance-preserving noise schedule with cumulative products
ᾱt =

∏t
s=1(1− βs), such that the schedule enforces zero terminal SNR with ᾱT = 0. Define the

forward diffusion map

ΦT (x0, ϵ) =
√
ᾱTx0 +

√
1− ᾱT ϵ, ϵ ∼ N (0, I).

Then, for every pair of latents x0, x
′
0 ∈ Rd and every noise sample ϵ,

ΦT (x0, ϵ) = ΦT (x
′
0, ϵ) = ϵ.

Hence ΦT (·, ϵ) is not injective in x0. Consequently, deterministic inversion methods such as
DDIM inversion cannot uniquely recover x0 from xT .

Proposition 4.1 implies that a noise schedule with zero terminal SNR forces the schedule-consistent
latent at the last time step to be

xT =
√
ᾱT x0 +

√
1− ᾱT ϵ = ϵ, ϵ ∼ N (0, I),

which collapses to pure noise because ᾱT = 0. No information from the original frame x0 survives,
so the resulting video-to-video translation cannot remain aligned with the source content. A common
workaround is to begin sampling from an earlier index t < T for which ᾱt > 0. However, it shortens
the diffusion trajectory and therefore limits translation diversity, which is an important component of
dynamic view synthesis. As shown in Fig.2(b), this also results in the reconstruction of regions that
are unseen after camera transformation. Even when ᾱt is very small but non-zero, the stochastic term
ϵ introduces perturbations that accumulate during generation and ultimately lead to identity drift as
demonstrated in Fig.2(c).

4.2 K-order Recursive Noise Representation (K-RNR)

Figure 5: Expected Norm Deviation
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An alternative workaround to the zero-terminal SNR col-
lapse problem is to perform DDIM inversion with a posi-
tive terminal SNR, allowing the resulting latent to initialize
the diffusion process for downstream tasks. However, as
shown in Fig.2(d), this approach still results in images with
a washed-out appearance. We attribute this issue to a mis-
match between the scale of the expected initial noise and that
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produced by schedule-consistent interpolation, given by xinit =
√
ᾱt x0 +

√
1− ᾱt ϵ

inv, evaluated
at t = 0.95T . This discrepancy is visualized in Fig.5 along the k = 1 axis. Moreover, applying
normalization or standardization to the xinit introduces trajectory drift, leading to degraded results, as
demonstrated in Supplementary Material.

Given the limitations of existing workarounds for the zero-terminal SNR collapse problem, we
propose a new noise initialization mechanism, K-order Recursive Noise Representation , which
aligns deterministic inversion with schedule-consistent interpolation. In this formulation, we treat the
VAE-encoded latent x0 as the pivot latent, and define the initial noise as xinit = ϵ(k). Throughout
the paper, we use superscripts enclosed in parentheses to denote recursion order, while superscripts
without parentheses indicate exponentiation.

Proposition 4.2. Let x0 ∈ Rd be the pivot latent and let ᾱt > 0 denote the cumulative signal
coefficient at timestep t. Define the recursive noise initialization by:

ϵ(1) =
√
ᾱt x0 +

√
1− ᾱt ϵ

inv,

and for k > 1,
ϵ(k) =

√
ᾱt x0 +

√
1− ᾱt ϵ

(k−1).

Then, for a discrete recursion depth k ∈ N>0, the closed-form expression for ϵ(k) is:

ϵ(k) =

(
k∑

i=1

√
ᾱt

(√
1− ᾱt

)i−1

)
x0 +

(√
1− ᾱt

)k
ϵinv. (1)

Which can be generalized to continuous recursion depth k ∈ R>0 as:

ϵ(k) =

(
√
ᾱt

1−
(√

1− ᾱt

)k
1−

√
1− ᾱt

)
x0 +

(√
1− ᾱt

)k
ϵinv. (2)

Refer to the Appendix for the proofs of Eq.(1-2). By treating x0 as a pivot latent and recursively
updating the noise latent ϵ(i), the resulting initialization xinit = ϵ(k) becomes increasingly aligned
with the structure of x0. We quantify the alignment by measuring the cosine similarity between
x0 and ϵ(k), as shown in Fig.4(a). To isolate the effect of the inverted latent ϵinv, we initialize the
recursion with ϵ(1) =

√
ᾱt x0 +

√
1− ᾱt ϵ, where ϵ ∼ N (0, I), and apply the recursive formulation

with discrete depth as described in Proposition 4.2. As k increases, the similarity steadily improves,
indicating that K-RNR progressively enhances structural fidelity by injecting more of the original
latent structure into the initialized noise.

Importantly, this growing similarity is not the only factor contributing to improved reconstruction
quality. As shown in Fig.5, the expected scale of ϵ(k) also becomes better aligned with the reference
distribution scale as k increases, up to a certain threshold. This alignment is achieved without
applying explicit normalization or standardization which results in high saturation generations.

Inverted Latent Encoded Latent

K-order RNR

AdaIN

Noise 𝜀𝛿 Noise 𝜀(i)

Video Model

Figure 6: Adaptive K-RNR

However, K-RNR on its own suffers from exploding
mean and variance, as demonstrated in Fig.4(b–c). This
indicates that as the recursion order k increases, the scale
of the initialized noise grows rapidly. In practice this
problem leads to high contrast outputs with exploded
RGB colors in the generated video. To address this
issue, we introduce Adaptive K-RNR, which stabilizes
the recursion by incorporating scale information from
an intermediate recursion step. Specifically, given
a total recursion depth k, we select an intermediate
index δ ∈ {1, . . . , k}, compute the intermediate noise
representation ϵ(δ), and apply x̃init = AdaIN

[
ϵ(k), ϵ(δ)

]
.

This operation preserves the structural benefits of K-RNR
while suppressing the scale explosion that leads to visual
artifacts.

6



c. Filled Frameb. Render Frame d. Generated Framea. Camera Transformation

Figure 7: Stochastic Latent Modulation Motivation. To evaluate the model’s capacity for physical
plausibility in unseen regions, we modify the rendered input with occlusion-filling strategies. (a)
Camera motion trajectory. (b) Original render frame. (c) Occluded regions are filled by repeating
a background patch. (d) Resulting frame generated by combining the filled render with ϵinv using
K-RNR, demonstrating plausible yet artifact-prone content synthesis in unseen areas.

4.3 Conditioning on Camera Information

Following prior works [65, 67, 22, 66, 59, 17], we incorporate explicit camera conditioning [29]
into our framework to enable precise control over novel view synthesis. Given a source video
V = {Ii}ni=1, where each frame Ii ∈ RC×H×W, we first estimate a sequence of depth maps
D = {Di}ni=1 using monocular depth prediction models, with each Di ∈ RH×W. Using camera
intrinsics K ∈ R3×3, we lift each RGB-D pair (Ii, Di) into a point cloud Pi ∈ R3×(H·W) via
unprojection function Π−1(·), forming a dynamic point cloud sequence P = {Pi}ni=1:

Pi = Π−1(Ii, Di,K), (3)

where Π−1 denotes inverse projection from 2D image space to 3D camera space. Next, we define
a set of target camera poses T = {Ti}ni=1, where each Ti ∈ R4×4 represents the desired relative
transformation from the source view. Using these poses, we render a novel view sequence I′ =
{I′i}ni=1 from the transformed point clouds via forward projection Π(·):

I′i = Π(Ti ·Pi,K), (4)

where Π is the standard perspective projection from 3D points to the image plane. In addition to
the rendered novel views I′, we generate corresponding visibility masks M′ = {M′

i}ni=1 to capture
occluded or out-of-frame regions resulting from the new camera trajectory.

4.4 Stochastic Latent Modulation (SLM)

Having addressed the fidelity aspect of dynamic view synthesis, we now turn to the second core
requirement: completing regions that become newly visible as the camera moves. As shown in Fig.3,
we apply DDIM inversion to videos rendered under novel camera trajectories and interpolate between
the VAE-encoded latent x0 and the DDIM-inverted latent ϵinv using Adaptive K-RNR. However,
regions that are occluded in the rendered input remain occluded in both x0 and ϵinv, causing these
areas to be regenerated as black in the output.

To investigate this limitation, we examine whether the base model possesses a meaningful physical
understanding of the scene that allows it to plausibly infer content in unseen regions. We conduct
an analysis on 100 randomly sampled videos from the OpenVid dataset [41], with a particular focus
on cases where the input render video lies outside the training distribution or violates basic physical
realism. The central question is whether the model can still produce outputs that are plausible
and consistent with the rules of the physical world. Although unseen areas are also encoded
occluded in the inverted latent, we keep ϵinv unchanged, as it retains semantic cues due to attention
across visible tokens during the forward trajectory. Instead, we modify the rendered frames by
experimenting with different occlusion-filling strategies. As illustrated in Fig.7(c), one approach
involves repeating a background patch across the occluded regions. When passed through the 3D VAE
and combined with ϵinv through K-RNR, this leads to plausible propagation of visual information
into previously unseen areas, as shown in Fig.7(d) with visible visual artifacts.

Motivated by this discovery, we propose Stochastic Latent Modulation, where instead of completing
unseen regions at the input level, we perform stochastic modulation directly in the latent space.
Specifically, given a binary occlusion mask M ∈ {0, 1}B×F×C×H×W, where M = 1 indicates
occluded regions, and a depth-based background mask D ∈ {0, 1}B×F×C×H×W, where D = 1
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Figure 8: Qualitative Comparison. K-RNR with SLM better preserves subject identity and ensures
that synthesized regions remain consistent with the original scene.

Method Visual Quality Camera Accuracy View Synchronization

FID ↓ FVD ↓ CLIP-T ↑ CLIP-F ↑ RotErr ↓ TransErr ↓ Mat. Pix. (K) ↑ FVD-V ↓ CLIP-V ↑
GCD 89.12 482.73 28.64 91.02 3.67 6.12 603.25 429.52 82.45
TrajectoryAttention 78.91 342.19 30.53 93.67 3.09 5.64 620.83 310.78 84.21
DaS 71.44 201.83 32.91 96.03 2.72 5.21 638.77 182.41 86.72
TrajectoryCrafter 62.77 162.67 34.13 97.48 2.39 4.89 823.91 108.38 88.36
ReCamMaster 58.12 118.82 35.02 98.89 1.46 4.52 863.54 82.66 89.91

Ours 53.15 103.44 35.37 98.54 1.31 4.33 881.43 75.17 92.04

Table 1: Quantitative comparison of visual quality, camera pose accuracy, and view synchronization
on 1000 randomly selected samples from the OpenVid-1M [41] dataset.

marks background areas, we define a visibility-aware sampling mask as S = (1 −M) ·D which
identifies spatial locations that are both visible and lie on background surfaces. We define a stochastic
permutation operator PS : RB×F×C×H×W → RB×F×C×H×W that samples latent values from positions
indicated by S and randomly redistributes them to the occluded positions indicated by M. Our
modulation function is given by x̃0 = PS(x0), ϵ̃inv = PS(ϵ

inv) where x̃ and ϵ̃ are the modulated
content and noise latents. This operation stochastically fills occluded regions in latent space with
contextually relevant signals sampled from visible background areas, enabling the model to synthesize
plausible completions aligned with physical scene structure.

5 Experiments
Implementation. Our framework is built on the pretrained CogVideoX-5B-I2V model. Inference
is performed with 50 steps at a strength of 0.95 to ensure āT > 0. For all quantitative evaluations,
we set the classifier-free guidance (CFG) scale to 6.0 and use a recursion order of k = 10 and
adaptive order of δ = 3. 3D dynamic point clouds are generated using DepthCrafter [21], fol-
lowing the procedure described in [65]. We apply DDIM inversion with a positive terminal-SNR
noise schedule using 30 steps, and adopt v-prediction in all cases. For quantitative evaluations,
we use CogVideoX’s modified DDIM sampling method in the reverse trajectory. The output res-
olution is fixed at 480 × 720, and all experiments are conducted on a single NVIDIA L40 GPU.

Method FID ↓ CLIP-T ↑ CLIP-V ↑ PSNR ↑

Random Noise 74.86 37.12 73.74 12.06

DDIM Inversion 102.54 19.98 63.39 5.43
+ K-RNR w.o AS 71.80 31.25 86.78 14.99
+ K-RNR w AS 61.43 33.46 89.12 15.64

+ K-RNR w SLM 53.15 35.37 92.04 16.28

Figure 9: Ablation on K-RNR, Adaptive Scaling,
and Stochastic Latent Modulation

Evaluation Set. We construct a dataset of
1100 videos to evaluate performance across vary-
ing content and motion complexity: 1000 from
OpenVid-1M [41], 50 from DAVIS [43], and
50 AI-generated videos. OpenVid-1M provides
semantically rich scenes, DAVIS offers high-
motion content for testing temporal stability, and
AI-generated samples assess generalization to
synthetic inputs. Each video is rendered under 10
canonical camera trajectories including transla-
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Method
PSNR ↑ SSIM ↑ LPIPS ↓

OpenVid [41] DAVIS [43] Synthetic Mean OpenVid [41] DAVIS [43] Synthetic Mean OpenVid [41] DAVIS [43] Synthetic Mean

GCD 9.87 8.32 10.57 9.58 0.212 0.191 0.227 0.210 0.739 0.754 0.681 0.724
TrajectoryAttention 10.11 9.70 11.04 10.28 0.241 0.211 0.272 0.241 0.685 0.708 0.618 0.670
DaS 11.37 10.14 12.27 11.26 0.309 0.259 0.348 0.305 0.586 0.621 0.545 0.584
TrajectoryCrafter 13.02 10.89 13.94 12.61 0.428 0.306 0.501 0.411 0.366 0.646 0.537 0.516
ReCamMaster 15.84 11.31 14.17 13.77 0.610 0.339 0.623 0.524 0.421 0.588 0.517 0.508
Ours 16.28 12.64 14.59 14.50 0.623 0.354 0.617 0.531 0.397 0.561 0.504 0.487

Table 2: Quantitative comparison on our curated benchmark. We report PSNR (↑), SSIM (↑), and
LPIPS (↓), averaged over 10 canonical camera trajectories per video.

tions, pans, tilts, and arcs, to evaluate robustness
under diverse viewpoint shifts.

Comparison Baselines. We compare our method against five baselines: GCD [52], TrajectoryAtten-
tion [59], RecamMaster [2], TrajectoryCrafter [65], and Diffusion-as-Shader (DaS) [17]. GCD and
TrajectoryAttention are built on SVD [4], RecamMaster is based on Wan [53], while TrajectoryCrafter,
DaS, and our method are based on CogVideoX.

Evaluation Metrics. We evaluate our method for camera pose accuracy, source-target synchroniza-
tion, and visual quality. For camera accuracy, we use GLOMAP [42] to extract estimated camera
trajectories and report rotation and translation errors (RotErr, TransErr) following [18, 2]. Synchro-
nization is measured using GIM [48] by counting matched pixels with high confidence (Mat. Pix.),
along with FVD-V [60] and CLIP-V [28], which compute CLIP similarity between source and target
frames at corresponding timestamps. Visual quality is evaluated using FID [19], FVD [51], CLIP-T,
and CLIP-F, capturing fidelity, text alignment, and temporal consistency, respectively. We addition-
ally compute the full reference metrics PSNR, SSIM, and LPIPS on the OpenVid-1M, DAVIS, and
Sora-generated videos [5] to quantify per-frame visual fidelity with respect to ground truth frames.

Main Results. As reported in Table 1, our method achieves state-of-the-art performance across
all quantitative evaluation axes, encompassing visual fidelity, camera pose accuracy, and view
synchronization. The results demonstrate that our framework consistently preserves semantic content
and visual coherence while maintaining accurate geometric alignment under camera transformations.
Compared to existing baselines, our approach yields improved consistency across frames and more
precise reconstruction of dynamic scenes, validating the effectiveness of our noise-space formulation.
Furthermore, Table 2 reports full-reference metrics, where our method exhibits robust reconstruction
quality across diverse datasets and camera trajectories, further confirming its generalizability and
resilience under varying content complexity and motion dynamics. We show identity preservation
quality of our method and the baselines in Fig.8. Our framework produces visually coherent results
under various viewpoints and demonstrates strong temporal alignment with the source footage. For
video samples, please refer to the Supplementary Material.

Ablation Studies. Table 9 shows the impact of our proposed methods: K-RNR, Adaptive K-RNR,
and K-RNR with Stochastic Latent Modulation. Directly using DDIM-inverted latents leads to poor
results, often producing oversaturated and washed-out outputs, as seen in Fig. 2(d). Initializing
with random noise also results in weak view synchronization. In contrast, our methods significantly
improve both view alignment and reconstruction quality, as reflected in PSNR and FID scores.

Method PSNR ↑ SSIM ↑ LPIPS ↓

Random Noise 12.03 0.313 0.486
Encoded Video + Random Noise 15.97 0.674 0.539
DDIM Inversion 9.08 0.315 0.904
Encoded Video + DDIM Inversion 10.16 0.324 0.907
Random Noise + KV Caching 23.98 0.824 0.118

K-RNR 29.56 0.910 0.063

Figure 10: Ablation on noise initialization strategies for video
reconstruction without camera transformation.

Noise Initialization Ablations.
The results presented in Figure
10 provide a comparative eval-
uation of various initialization
strategies for video reconstruc-
tion in the absence of camera
transformations. The baseline
method that begins generation
with standard normal noise (ϵ)
underperforms across all metrics,
which is expected due to the
lack of structured guidance dur-
ing synthesis. Injecting signal
via a linear combination of VAE-encoded video latents (x0) and noise, as in the Encoded Video
+ Random Noise strategy, yields noticeable improvements, indicating the benefit of directly in-
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corporating source video content into the initial conditions. In contrast, DDIM Inversion, which
initializes with an inverted latent but without scheduler-consistent interpolation, achieves the lowest
reconstruction quality, yielding high saturation, washed-out generations. The marginal improvement
obtained by combining the encoded latent with DDIM inversion further underscores the sensitivity of
the diffusion trajectory to initialization fidelity.

Random Noise + KV Caching introduces a mechanism where the generation initiated from noise
is guided by attending to key-value pairs derived from a parallel DDIM-inverted path, integrating
cross-stream structural memory. This strategy shows some gains, particularly in perceptual quality as
measured by LPIPS with the expense of reduced efficiency since 2 parallel attention computation
over the extended sequence dimension is performed. Our proposed K-RNR approach that achieves
the highest performance across all metrics, with PSNR, SSIM, and LPIPS values of 29.56, 0.910,
and 0.063 respectively. These results confirm the effectiveness of recursive noise representation for
high-fidelity video reconstruction. The superior quantitative outcomes suggest that K-RNR is capable
of leveraging structured priors in noise space more effectively than existing baselines. Results are
demonstrated in Figure 2 and corresponding videos are shared in website.html

K-Depth PSNR ↑ SSIM ↑ LPIPS ↓

k = 1 7.82 0.221 0.896
k = 2 8.85 0.231 0.871
k = 3 15.91 0.550 0.465
k = 4 15.94 0.550 0.468
k = 5 16.00 0.550 0.489
k = 6 16.39 0.555 0.471
k = 7 16.34 0.558 0.474
k = 8 15.30 0.545 0.483

Figure 11: Ablation on the recursion depth k in
K-RNR after applying adaptive scaling.

Discrete K-order Ablations. Figure 11 presents
an ablation study on the discrete recursion depth
k in K-RNR, following the application of adap-
tive scaling. The results demonstrate a clear per-
formance trend as k increases. For shallow re-
cursion depths (k = 1 and k = 2), the model
exhibits poor reconstruction quality across all
metrics, indicating that insufficient recursive re-
finement fails to recover meaningful structure
in the video content. A substantial performance
jump is observed at k = 3, suggesting that a min-
imum level of recursive processing is necessary
to capture the underlying temporal and spatial
consistency required for high-fidelity generation.

As k increases beyond 3, PSNR and SSIM met-
rics improve steadily, peaking at k = 6 and k = 7
respectively. The LPIPS metric reaches its lowest value at k = 3 (0.465), indicating optimal per-
ceptual similarity at moderate recursion depth, though values remain competitive through k = 7.
Notably, performance begins to degrade at k = 8, likely due to over-recursion, which may introduce
noise or overfitting artifacts into the refinement process. These findings suggest that while increasing
recursion depth generally enhances reconstruction, there exists a sweet spot around k = 6 to k = 7
that balances iterative refinement with stability. This trade-off is essential to consider when tuning
K-RNR for optimal video reconstruction performance.

6 Discussion

Limitations and Broader Impact Our method provides a training-free framework for generative
camera control in real-world videos, making it broadly accessible for creative editing. However, it
inherits biases from the base diffusion model which may limit performance in scenes with uncommon
objects, or heavy occlusion. Stochastic latent modulation can also produce unstable or incoherent
results when large regions become newly visible. The ability to generate realistic synthetic content
raises concerns, highlighting the need for future safeguards such as attribution or model auditing.

Conclusion In this paper, we introduce a training-free framework for dynamic view synthesis
from monocular videos. Our key contributions (1) the identification of the Zero-Terminal SNR
Collapse Problem, (2) the development of the K-order Recursive Noise Representation for the use
of deterministic inversion, and (3) the Stochastic Latent Modulation technique for occlusion-aware
scene completion. Together, they enable high-fidelity synthesis of novel views without fine-tuning or
architectural changes. Through rigorous theoretical analysis and empirical validation, we demonstrate
that structured manipulation of the noise space alone can unlock new capabilities in generative models,
offering a principled and practical path toward controllable, efficient dynamic scene generation.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions of the paper,
which are consistently developed and supported throughout the work. Each claim made
at the beginning is addressed in the core sections, with empirical evidence and theoretical
discussion reinforcing the paper’s scope. There is no overstatement or mismatch between
the stated objectives and the actual content.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
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Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last section we discuss limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We share our propositions and we prove them in the Supplementary Material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will make the code public. People are welcome to validate our results.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will share the data (video generation result) in supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Experiment section we share the implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We followed the practice of our prior works and we share the mean results of
our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our work is training-free. But still we shared that we conducted our experi-
ments on a single L40 GPU.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We added a Potential Societal Impacts section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
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Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used publicly available data and cited them properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We don’t propose a new asset
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [Yes]
Justification: We will share the screenshots of each type of questions we used for User
Study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Our work does not suffer from such risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our work is not related to LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Videos and Website

To facilitate comprehensive evaluation and enhance result accessibility, we provide 100+ video results
including motivation examples, qualitative results, ablation studies, qualitative comparisons, and
limitations in our project page.

B Symbols and Notations

In this section, we present the symbols and notations used throughout the paper to ensure clarity and
consistency in our mathematical and algorithmic descriptions.

C Elaboration on Proposition 4.1

Consider a variance-preserving noise schedule {αt}Tt=0 with cumulative products defined as ᾱt =∏t
s=1(1− βs), where the schedule enforces a zero terminal signal-to-noise ratio (SNR), such that

1



Symbol Description
Video and Frame Symbols

V Source video
Ii Individual frame of the source video
D = {Di}ni=1 Sequence of depth maps
Di Depth map for frame Ii
K Camera intrinsics matrix
Pi Point cloud for frame Ii
Ti Target camera pose for frame i
I′i Rendered novel view for frame i
M′ Visibility masks for novel views

Latent Space Symbols
Φt Diffusion for timestep t
αt Cumulative signal coefficient at timestep t
ᾱt Cumulative product of αt

xinit Initial noise for diffusion process
x0 VAE-encoded latent also our pivot latent
ϵ Noise sample from standard normal distribution
ϵinv DDIM inverted latent
ϵ(k) K-order recursive noise representation

Mask and Modulation Symbols
M Binary occlusion mask
D Depth-based near depth mask
S Visibility-aware sampling mask
PS Stochastic permutation operator
x̃0 Modulated content latent
ϵ̂inv Modulated noise latent

Table 1: List of symbols used in the paper.

ᾱT = 0. The forward diffusion map is given by:

ΦT (x0, ϵ) =
√
ᾱTx0 +

√
1− ᾱT ϵ,

where x0 ∈ RF×C×H×W is the initial latent variable, and ϵ ∼ N (0, I) is a noise sample drawn from a
standard normal distribution.

C.1 Forward Diffusion Map Under Zero-Terminal SNR

Since the zero-terminal SNR noise schedule specifies ᾱT = 0, substitute this into the definition of
ΦT :

ΦT (x0, ϵ) =
√
ᾱTx0 +

√
1− ᾱT ϵ =

√
0x0 +

√
1− 0ϵ = 0 · x0 + 1 · ϵ = ϵ.

Thus, ΦT (x0, ϵ) = ϵ, which depends solely on the noise ϵ and is independent of the initial latent x0.
For any two initial latents x0, x

′
0 ∈ RF×C×H×W and a fixed noise sample ϵ, it follows that:

ΦT (x0, ϵ) = ϵ and ΦT (x
′
0, ϵ) = ϵ.

Therefore, ΦT (x0, ϵ) = ΦT (x
′
0, ϵ) = ϵ, regardless of whether x0 = x′

0 or x0 ̸= x′
0.

C.2 Breakdown of Injectivity

A function f : A → B is injective if, for all a, a′ ∈ A, f(a) = f(a′) implies a = a′. Consider
the map ΦT (·, ϵ) : RF×C×H×W → RF×C×H×W with ϵ fixed. From §C.1, for any distinct x0, x

′
0 ∈

RF×C×H×W where x0 ̸= x′
0, we have:

ΦT (x0, ϵ) = ϵ = ΦT (x
′
0, ϵ).

Since ΦT (x0, ϵ) = ΦT (x
′
0, ϵ) holds even when x0 ̸= x′

0, the condition for injectivity is violated.
Hence, ΦT (·, ϵ) is not injective in x0, as multiple (indeed, all) initial latents x0 map to the same
output ϵ for a given ϵ.
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C.3 Implications for Deterministic Inversion

In diffusion models, the terminal state is denoted xT = ΦT (x0, ϵ), which, under the condition
ᾱT = 0, simplifies to xT = ϵ. Deterministic inversion methods, such as DDIM inversion, aim to
recover the original latent x0 from xT by reversing the forward diffusion process. These methods
assume that the forward map ΦT can be inverted uniquely, which requires ΦT to be injective.
However, since ΦT (·, ϵ) is not injective, multiple distinct x0 produce the same xT = ϵ. Consequently,
given only xT , it is impossible to determine which x0 among the infinitely many possible initial
latents was the original, rendering unique recovery via deterministic inversion unfeasible.

D Elaboration on Proposition 4.2

In this section, we prove the closed-form expressions associated with the recursive noise initialization
process K-RNR outlined in Proposition 4.2. The recursive process is defined as follows: for an initial
step where k = 1, the expression is given by

ϵ(1) =
√
ᾱtx0 +

√
1− ᾱtϵ

inv,

and for subsequent steps where k > 1, the expression becomes

ϵ(k) =
√
ᾱtx0 +

√
1− ᾱtϵ

(k−1).

Here, x0 ∈ RF×C×H×W represents the pivot latent variable, ᾱt > 0 denotes the cumulative signal
coefficient at timestep t, and ϵinv is the initial noise term.

The proposition posits two closed-form expressions. For the discrete recursion depth, where k ∈ N≥0,
the expression is

ϵ(k) =

(
k∑

i=1

√
ᾱt

(√
1− ᾱt

)i−1

)
x0 +

(√
1− ᾱt

)k
ϵinv.

For the continuous recursion depth, where k ∈ R≥0, the expression is

ϵ(k) =

(
√
ᾱt

1−
(√

1− ᾱt

)k
1−

√
1− ᾱt

)
x0 +

(√
1− ᾱt

)k
ϵinv.

The proof is divided into two parts: the discrete case is addressed in §D.1, and continuous case is
addressed in §D.2.

D.1 Proof for the Discrete Case: k ∈ N≥0

To verify the closed-form expression for discrete values of k, mathematical induction is employed as
a method of proof.

For the initial step, consider the case where k = 1. The recursive definition states that

ϵ(1) =
√
ᾱtx0 +

√
1− ᾱtϵ

inv.

To confirm this, the proposed closed-form expression is evaluated at k = 1:

ϵ(1) =

(
1∑

i=1

√
ᾱt

(√
1− ᾱt

)i−1

)
x0 +

(√
1− ᾱt

)1
ϵinv.

The summation involves only one term, corresponding to i = 1. This term is calculated as follows:
√
ᾱt

(√
1− ᾱt

)1−1
=

√
ᾱt

(√
1− ᾱt

)0
=

√
ᾱt · 1 =

√
ᾱt.

Thus, the closed-form expression becomes

ϵ(1) =
√
ᾱtx0 +

√
1− ᾱtϵ

inv,

which is identical to the recursive definition. This establishes the validity of the expression for the
base case.
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Next, suppose that for some positive integer n ≥ 1, the closed-form expression holds true:

ϵ(n) =

(
n∑

i=1

√
ᾱt

(√
1− ᾱt

)i−1

)
x0 +

(√
1− ᾱt

)n
ϵinv.

The objective is now to demonstrate that this expression remains valid for the next integer, k = n+1.
According to the recursive definition,

ϵ(n+1) =
√
ᾱtx0 +

√
1− ᾱtϵ

(n).

The inductive hypothesis is substituted into this equation, yielding

ϵ(n+1) =
√
ᾱtx0 +

√
1− ᾱt

[(
n∑

i=1

√
ᾱt

(√
1− ᾱt

)i−1

)
x0 +

(√
1− ᾱt

)n
ϵinv

]
.

The factor
√
1− ᾱt is applied to each term within the brackets. For the summation term, this results

in
√
1− ᾱt ·

n∑
i=1

√
ᾱt

(√
1− ᾱt

)i−1
=

n∑
i=1

√
ᾱt

(√
1− ᾱt

)i
,

and for the noise term, √
1− ᾱt ·

(√
1− ᾱt

)n
=
(√

1− ᾱt

)n+1
.

Thus, the expression for ϵ(n+1) is written as

ϵ(n+1) =
√
ᾱtx0 +

(
n∑

i=1

√
ᾱt

(√
1− ᾱt

)i)
x0 +

(√
1− ᾱt

)n+1
ϵinv.

The terms involving x0 are then grouped together:

ϵ(n+1) =

(
√
ᾱt +

n∑
i=1

√
ᾱt

(√
1− ᾱt

)i)
x0 +

(√
1− ᾱt

)n+1
ϵinv.

To express this as a single summation, it is noted that
√
ᾱt can be written as

√
ᾱt

(√
1− ᾱt

)0
. This

allows the expression to be rewritten by adjusting the summation indices:

√
ᾱt +

n∑
i=1

√
ᾱt

(√
1− ᾱt

)i
=

n∑
i=0

√
ᾱt

(√
1− ᾱt

)i
.

This summation from i = 0 to n corresponds exactly to the desired form when re-indexed:
n∑

i=0

√
ᾱt

(√
1− ᾱt

)i
=

n+1∑
i=1

√
ᾱt

(√
1− ᾱt

)i−1
,

since each term aligns appropriately with the change in index. Therefore, the expression becomes

ϵ(n+1) =

(
n+1∑
i=1

√
ᾱt

(√
1− ᾱt

)i−1

)
x0 +

(√
1− ᾱt

)n+1
ϵinv,

which matches the proposed closed-form expression for k = n+ 1. This step confirms the inductive
hypothesis for the next integer, and by the principle of mathematical induction, the closed-form
expression is valid for all positive integers k which completes the proof ■

D.2 Proof for the Continuous Case: k ∈ R≥0

To extend the result to real values of k, the discrete case’s summation is analyzed as a geometric series.
Let the ratio r =

√
1− ᾱt, where, given 0 < ᾱt < 1, it follows that 0 < r < 1. The summation in

the discrete expression is expressed as
k∑

i=1

√
ᾱtr

i−1 =
√
ᾱt

k−1∑
i=0

ri.
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The formula for the sum of a finite geometric series is applied here:

k−1∑
i=0

ri =
1− rk

1− r
.

This allows the summation to be rewritten as

√
ᾱt

k−1∑
i=0

ri =
√
ᾱt ·

1− rk

1− r
.

Substituting r =
√
1− ᾱt back into the expression, it becomes

√
ᾱt ·

1−
(√

1− ᾱt

)k
1−

√
1− ᾱt

.

Incorporating this into the discrete closed-form expression, the result is

ϵ(k) =

(
√
ᾱt ·

1−
(√

1− ᾱt

)k
1−

√
1− ᾱt

)
x0 +

(√
1− ᾱt

)k
ϵinv.

This formulation is well-defined for all real k ≥ 0, as the exponential terms are continuous functions
over the real numbers which completes the proof ■

E Elaboration on Stochastic Latent Modulation

In this section, we provide a detailed technical elaboration of the Stochastic Latent Modulation
(SLM) mechanism, a key component of our approach to dynamic view synthesis. SLM addresses
the challenge of synthesizing plausible content for regions that become newly visible due to camera
motion, operating directly in the latent space of a pre-trained video diffusion model. This process
modulates both the VAE-encoded latent x0 and the inverted latent ϵinv using a single binary occlusion
mask and depth map, ensuring a consistent and efficient strategy for handling occlusions. By
leveraging visibility-aware sampling and stochastic permutation, SLM enables the diffusion model to
infer content for occluded regions without requiring architectural changes or additional training.

E.1 Technical Details of Stochastic Latent Modulation

The SLM process modulates the latents x and ϵ by filling their occluded regions with values sampled
from visible, depth-specific areas, using a single mask M and depth map D to guide the operation.
This begins with the computation of a visibility mask, defined as V = (1−M) · (D), which identifies
regions that are both visible (where M = 0) and depthwise near (where D). These regions serve as
the source pool for sampling, as they contain stable and contextually relevant latent values from the
scene. The target regions, where content synthesis is needed, correspond to the occluded areas where
M = 1.

The modulation proceeds by identifying the spatial indices of the source and target regions. The set
of source indices, Isource, consists of all positions where V = 1, while the set of target indices, Itarget,
includes all positions where M = 1. For each latent, SLM counts the number of occluded elements
(i.e., the size of Itarget) and randomly selects an equal number of indices from Isource. These randomly
chosen source values are then assigned to the target positions. Specifically, for x, the values at indices
i ∈ Itarget are replaced with values from randomly selected indices j ∈ Isource, such that xi = xj.
The same process is applied to ϵ, where ϵi = ϵj for corresponding pairs of indices. This stochastic
sampling ensures that the occluded regions of both latents are populated with plausible content drawn
from the visible, near-depth areas of the scene.

The use of a single mask and depth map for both x and ϵ ensures that the source and target regions
remain consistent across the two latents, while the independent application of the sampling process to
each latent preserves their distinct roles in the diffusion pipeline. The randomness in selecting source
indices introduces variability, allowing the diffusion model to explore diverse completions for the
occluded regions, all while maintaining coherence with the visible parts of the scene.
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E.2 Algorithm for Stochastic Latent Modulation

Algorithm 1 Stochastic Latent Modulation

1: Input: x ∈ RB×F×C×H×W, ϵ ∈ RB×F×C×H×W, M ∈ {0, 1}B×F×C×H×W, D ∈ RB×F×C×H×W

2: Output: Modulated x, Modulated ϵ
3: Compute visibility mask V = (1−M) ·D
4: Let Isource = {i | Vi = 1}
5: Let Itarget = {i | Mi = 1}
6: for each i ∈ Itarget do
7: Sample j ∼ Uniform(Isource)
8: Set ϵi = ϵj
9: Set xi = xj

10: end for
11: return x, ϵ

F More Ablation Studies

In this section, we present additional ablation studies to further analyze the components of our
approach. in §F.1, we analyze the role of the adaptive normalization latent depth δ.

F.1 Adaptive Reference Latent Index δ Ablations

δ Index PSNR ↑ SSIM ↑ LPIPS ↓

δ = 1 10.32 0.342 0.883
δ = 2 19.23 0.748 0.148
δ = 3 24.97 0.885 0.078
δ = 4 15.29 0.592 0.240
δ = 5 13.92 0.468 0.329
δ = 6 12.66 0.333 0.451
δ = 7 11.28 0.244 0.604

Figure 1: Ablation on the adaptive index δ.

Figure 1 presents an ablation study on the choice
of the adaptive latent index δ, which determines
the reference noise level used for adaptive nor-
malization between the k-th order noise and the
δ-order noise. In all our experiments, we set
δ = 3, and the results in this ablation empirically
validate this design choice. When δ = 3, the
model achieves the highest reconstruction qual-
ity across all evaluation metrics, with a PSNR of
24.97, SSIM of 0.885, and LPIPS of 0.078.

Performance degrades notably when δ deviates
from this setting. For instance, lower values of δ
such as 1 and 2 lead to insufficient regularization, producing reconstructions with low fidelity and
poor perceptual quality. Conversely, higher values of δ (i.e., δ ≥ 4) introduce excessive deviation
in the normalization reference, which appears to destabilize the refinement process and result in
less consistent outputs. This pattern suggests that δ = 3 offers an optimal trade-off by aligning the
reference noise distribution closely with the target generation stage, enabling more effective adaptive
normalization. These findings confirm that careful selection of the latent reference index is critical
for preserving quality in recursive refinement.

G Discussion on Quantitative Results

Table 1 and Table 2 in the main paper present a comprehensive quantitative evaluation of our frame-
work against recent methods across multiple axes, including visual quality, camera pose accuracy,
view synchronization, and reconstruction fidelity. The baseline methods span three architectural
families: GCD and TrajectoryAttention are built upon the Stable Video Diffusion backbone, Diffu-
sion as Shader (DaS) and TrajectoryCrafter share the CogVideoX foundation with our method, and
ReCamMaster is based on the Wan architecture.

In our experiments, we observe that methods relying on Stable Video Diffusion, such as GCD and
TrajectoryAttention, consistently underperform in preserving the identity and motion dynamics of the
original videos when camera transformations are introduced. This can be attributed to the limited
expressiveness of the Stable Video Diffusion architecture compared to the more semantically rich
representations offered by CogVideoX and Wan. Among the CogVideoX-based approaches, Diffusion
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Original Video Sequence

Random Noise Initialization

DDIM Inversion + Reconstruction

KV Caching

Ours

Figure 2: Video Reconstruction Strategies. We perform quantitative and qualitative evaluation on
video reconstruction without camera transformation application. Video results can be found in the
supplementary material.

as Shader struggles to maintain action fidelity, often generating semantically coherent frames that fail
to reflect the intended motion trajectory. TrajectoryCrafter achieves a stronger balance between action
fidelity and identity preservation; however, we note that identity consistency tends to degrade toward
the latter segments of the video. ReCamMaster, while effective in its synthesis, incurs significant
inefficiency due to its reliance on concatenating source and target video frames along the frame
channel. This design increases the overall token sequence length, which not only limits scalability
but also results in considerably slower inference speeds. In contrast, our proposed method retains
both high fidelity and identity consistency across the video while maintaining efficient inference. The
quantitative comparisons are shared in website.html.
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H Technical Elaborations | Why not set ᾱT = 0?

Q: In experiments we use a strength of 0.95 to ensure ᾱT > 0, why not set ᾱT = 0?

When ᾱT = 0, Equation (1) reduces to standard DDIM inversion, which is the main motivation of
this paper: to demonstrate that standard DDIM inversion does not work under a zero terminal SNR
setting.

Let’s see this situation step by step. In Equation (1), when t = T where ᾱT = 0:

(
k∑

i=1

√
ᾱT (

√
1− ᾱT )

i−1

)
x0 + (

√
1− ᾱT )

k εinv

=

(
k∑

i=1

0×
√
1

)
x0 + (

√
1)k εinv

= εinv

Thus, when ᾱT = 0, the entire term collapses to the pure noise term εinv, showing that no image
content can be reconstructed, precisely why ᾱT should remain nonzero.

I Parameter Settings

I.1 How To Choose k?

We obtained the best results when we set k = 3 and k = 6. Note that we do not tweak the k value
per video–camera pair. We also want to clarify an important point:

• Book reading example: We presented video results for k = 20. This choice was not made
because k = 20 is optimal, but rather because it represents a relatively high value of k.
Our goal in that experiment is to highlight the effectiveness of our adaptive normalization
extension of K-RNR when k is high, which is why we chose to demonstrate the experiment
at a higher setting.

• Monkey example: We wanted to demonstrate the K-RNR’s effect on rendered videos
with increasing k values. The logic behind that experiment is demonstrating to readers the
evolution of videos with different k settings. As stated earlier, k = 6 generates plausible
results.

• Elephant and duck examples: We aimed to demonstrate the effectiveness of K-RNR in
source video reconstruction when there is no occlusion (i.e., no SLM involved). We reported
results using small values of k: [k = 2, k = 3, k = 4], to show that k = 3 is sufficient for
direct video reconstruction. We will elaborate our parameter selection process in more detail
in the camera-ready version.

I.2 How To Choose δ?

In Appendix F.3 Adaptive Reference Latent Index Ablations, we conducted quantitative experi-
ments regarding different values (in the table, the rows correspond to different k values, while the
columns vary δ). In that experiment, we report PSNR, SSIM, and LPIPS results. As a result of this
experimental validation, we observe that the best PSNR, SSIM, and LPIPS scores are obtained when
δ = 3. Therefore, in all of our experiments in the main paper and supplementary videos, we use
δ = 3.

J Proposed method on Wan 2.1 (for Flow Matching models in general)

K-RNR, along with our dynamic view synthesis approach, is directly compatible with Wan 2.1
without requiring any modifications. Furthermore, in the section below, we illustrate how K-RNR
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enables us to bypass traditional iterative inversion schemes, offering a more efficient, non-iterative
alternative.

In Wan noise scheduler, ϵ′ = αtx0 +σtϵ operation is performed, where x0 is the VAE-encoded latent
and ϵ is sampled from a standard normal distribution.

Furthermore, αt + σt = 1. From now on, we will use σt = (1− αt) parameterization.

We pose the following question: How effective is K-RNR when used without relying on any inversion
process?

To do so, we set ϵ(1) = ϵ ∼ N (0, I) and we followed our recursive noise representation formula:

K-RNR in Flow Matching
ϵ(k) = αtx0 + (1− αt)ϵ

(k−1) (1)

When this recursion is solved, we obtain a closed-form solution again in the form of:

ϵ(k) =

[
k∑

i=1

(1− αt)
i−1αtx0

]
+ (1− αt)

kϵ (2)

Importantly, x0 is sampled from the Wan 3D-VAE using argmax-sampling, which uses the mode =
mean of the latent distribution. Hence, E[x0] = x0 and VAR[x0] = 0.

Now let’s analyze the statistics and behavior of Eq. (2):

E[ϵ(k)] =

[
k∑

i=1

(1− αt)
i−1αtE[x0]

]
=

[
1− (1− αt)

k

αt

]
αtE[x0] =

[
1− (1− αt)

k
]
E[x0]

VAR[ϵ(k)] = (1− αt)
2k

For the default setting, αt = 0.07.

Behavior of the mean. When k = 1, E[ϵ(1)] = 0.07E[x0]. As k → ∞, E[ϵ(∞)] → E[x0], so it
gets 1

0.07 ≈ 15× larger, hence exploding.

Behavior of the variance. Note that we did not use inverted latents for the ϵ(1) but directly set it
as standard normal, different from our paper setting. This results in a completely opposite behavior
when it comes to variance. As k → ∞, VAR[ϵ(∞)] → 0, hence it is vanishing.
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