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ABSTRACT

Link prediction is a fundamental task in graph analysis. Despite the success of
various graph-based machine learning models for link prediction, there lacks a
general understanding of different models. In this paper, we propose a unified
framework for link prediction that covers matrix factorization and representative
network embedding and graph neural network methods. Our preliminary method-
ological and empirical analyses further reveal several key design factors based on
our unified framework. We believe our results could deepen our understanding
and inspire novel designs for link prediction methods.

1 INTRODUCTION

Link prediction, i.e., predicting the existence of links between nodes, is a fundamental task in graph
data mining with important applications such as recommendation systems (Ying et al., 2018), protein
interaction prediction (Liu et al., 2019), knowledge discovery (Wang et al., 2017), etc. Many ma-
chine learning methods have been developed to tackle the link prediction problem (Lü & Zhou, 2011;
Hasan & Zaki, 2011), ranging from early heuristic features (Barabási & Albert, 1999; Katz, 1953),
statistical machine learning (Tang et al., 2015; Perozzi et al., 2014), to the recent deep learning
methods (Hamilton et al., 2017; Wang et al., 2019). For example, matrix factorization (MF) (Koren
et al., 2009) is a representative method for link prediction with the assumption that the graph struc-
ture has an underlying low-rank structure. Network embedding methods such as DeepWalk (Perozzi
et al., 2014) and LINE (Tang et al., 2015) further consider the high-order proximity between nodes.
Recently, neural network-based graph learning methods such as NGCF (Wang et al., 2019) and
LightGCN (He et al., 2020) have shown superior performance, which has been attributed to the
explicit modeling of higher-order neighbors.

Despite the successes of the existing approaches, the aforementioned studies are relatively indepen-
dent with different assumptions and design objectives, and there lacks a general understanding of the
graph-based machine learning models for link prediction. Therefore, as the first contribution of this
work, we propose a unified framework for link prediction methods, covering matrix factorization,
network embedding methods such as DeepWalk (Perozzi et al., 2014) and LINE (Tang et al., 2015),
and graph neural network-based methods including LightGCN (He et al., 2020). Based on the uni-
fied framework, we further conduct in-depth methodological and empirical analyses. We make the
following observations.

• The overall learning process of the existing methods covered by our unified framework, includ-
ing the forward inference and backward gradient descent for optimization, is equivalent to a
representation propagation procedure.

• Propagation kernels, which determine how the representation is propagated and whether higher-
order neighbor information can be effectively utilized, greatly affect the performance of different
methods for the link prediction task.

• By regarding randomly drawn negative samples as negative edges, the existing approaches es-
sentially follow the balance theory of signed graphs in aggregating neighborhoods.

We believe our proposed unified framework and preliminary analysis results could deepen our un-
derstanding and inspire novel designs for graph-based link prediction methods.
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2 PRELIMINARIES

2.1 NOTATIONS

Firstly, we introduce some notations used in the paper. Consider a graph G = (V, E), where V
denotes the node set and E denotes the link set. The adjacency matrix is denoted as A. The goal
of link prediction is to discover potential links from the observed links A. We assume the graph
is undirected and the nodes have no features. Notice that our problem setting naturally covers the
recommendation problem, i.e., V = U ∪ I, and links only exist between U and I.

In the common setting of link prediction, there are no explicit negative samples. For example, people
seldom explicitly mark whom they do not want to be friends with or products they do not want to
buy. Therefore, negative sampling is usually used in link prediction to sample from pairs of nodes
that do not have links as pseudo negative samples during the optimization procedure. We denote the
adjacency matrix for sampled negative links as B ∈ {0, 1}|V|×|V|, where Bi,j = 1 represents that
node i and j has a negative link. We summarize other notations in Appendix A.

2.2 LOSS FUNCTION

In this paper, we focus on a widely adopted loss function, the binary cross-entropy (BCE) loss (He
et al., 2017) and leave exploring other loss functions as future works. The basic BCE loss with a L2
regularization term is formulated as

LBCE = −1

2
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log σ
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)
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2
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(1)
where NA(v) and NB(v) denote the positive and negative neighbors of node v, σ(·) is the Sigmoid
activation function, λ and β are hyper-parameters to control the strength of the corresponding terms,
and X denotes the representation of nodes. Eq. (1) can be written in an equivalent matrix form:

LBCE = −1
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2
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where 1|V| is a 1× |V| row matrix with the values being ones and ⊙ is the Hadamard product.

2.3 A BRIEF INTRODUCTION TO CONSIDERED LINK PREDICTION MODELS

In this section, we briefly introduce link prediction models considered in our framework. We con-
sider four representative methods divided into three categories:

• Matrix factorization, which directly optimizes the representation matrix X using the loss function.

• DeepWalk and LINE: these network embedding methods also optimize the representation matrix
X, but with different loss functions that consider the high-order neighborhoods between nodes.

• LightGCN: a linear GNN model that first propagates the representation as X̄ =
∑K

k=0
1

K+1Ã
kX,

Ã is a normalized adjacency matrix, e.g., Ã = D
− 1

2

A AD
− 1

2

A , DA is the diagonal degree matrix,
and then optimize X using the loss function.

Following the standard training paradigm in machine learning, we assume all these methods are opti-
mized by the full-batch gradient descent and denote the node representations in the mth optimization
step as X(m), i.e., X(m+1) = X(m) − α∇X(m)L.

3 OUR PROPOSED FRAMEWORK

3.1 THE UNIFIED FRAMEWORK

Although the aforementioned methods appear to have unrelated design objectives and loss functions
based on diverse motivations, we find that they can be unified into a general framework that only
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performs forward propagation, i.e., even the back propagation for gradient descends is equivalent to
the forward propagation. Specifically, we have:

X(m+1) = H(m+1)X(m)

=
(
c1I+ c2Pa1,b1(Ã)

[
K(m+1)

+ (A)− λK(m+1)
− (B)

]
Pa1,b1(Ã)

)
X(m),

(3)

where c1, c2 are constants that depend on the learning rate α and regularization term β, a1, b1 ∈ N
are model-specific constants, and I is the |V | × |V | identity matrix. The detailed proof and the
correspondence of different methods to our framework are provided in Appendix B and Appendix C,
respectively. Though Eq. (3) appears to be complicated, we elaborate the terms one by one.

Firstly, H(m+1) ∈ R|V|×|V| is the propagation kernel that determines how the representation is prop-
agated. It is composed of three major terms: a high-order proximity matrix Pa1,b1(Ã), a positive
link kernel K(m+1)

+ (A), and a negative link kernel K(m+1)
− (B). The high-order matrix is defined as:

Pa,b(Ã) =
∑b

r=a

1

b− a+ 1
Ãr, (4)

i.e., it is a weighted sum of the ath order to the bth order normalized adjacency matrix Ã, a ≤ b.
The positive and negative link kernels are defined as follows:

K(m+1)
+ (A) = S

(m+1)
A ⊙ (c3Pa2,b2(Ã) + (1− c3)A)

K(m+1)
− (B) = S

(m+1)
B ⊙ (c3B̃+ (1− c3)B),

(5)

where c3 ∈ {0, 1}, B̃ is the normalized adjacency matrix of negative links, e.g., B̃ = D
− 1

2

B BD
− 1

2

B ,
and S

(m+1)
A ,S

(m+1)
B are score matrices that measure the difference between the similarity calculated

by the representation vectors and the target link as follows

S
(m+1)
A = 1− σ

(
X̄(m)X̄(m)⊤

)
,S

(m+1)
B = σ

(
X̄(m)X̄(m)⊤

)
, (6)

where X̄(m) = Pa1,b1(Ã)X(m) =
∑b1

r=a1

1
b1−a1+1Ã

rX(m) is the propagated node representation.
From Eq. (6), score matrices equal 0 when the representation perfectly reconstructs the training data.

In summary, all these four representative methods can be unified in Eq. (3), which indicates that their
underlying mechanism shares strong connections. In the next section, we conduct in-depth analyses
based on this framework.

3.2 REVISITING THE EXISTING LINK PREDICTION METHODS

In this section, we revisit the existing methods based on our proposed framework.

Firstly, it is easy to see that all the four covered methods have analytical solutions only using the
forward propagation, i.e., doing back propagation for gradient descends ends up being equivalent to
changing the forward propagation kernel. Therefore, our framework sheds lights on novel design
principles for link prediction that do no involve computationally expensive back propagations.

In view of signed graphs that sampled negative links correspond to real negative connections, the
propagation step in Eq. (3) satisfies the balance theory, i.e., a sociological assumption that “the
enemy of my enemy is my friend”. Though this assumption is never explicitly stated for any of the
covered methods, it is always behind the curtain and naturally surfaces from our unified framework,
which should draw further research attention.

Different methods have diverse strategies in using the high-order information from neighborhoods.
To be more specific, from Eq. (3), it is easy to see that both a1, b1 in the high-order proximity matrix
Pa1,b1(Ã) and a2, b2 in the positive link kernel K(m+1)

+ (A) affects the high-order proximity (please
see Appendix C for the exact values of different methods). For MF and LINE, they can aggregate one
extra order proximity during each optimization step. Therefore, MF and LINE can learn from high-
order neighborhoods by accumulating steps during optimization. Such a result is in sharp contrast
with the current belief that MF and LINE can only preserve the first-order proximity between nodes.
In addition, DeepWalk and LightGCN can aggregate multiple orders of neighborhoods during each
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Figure 1: The analysis results of MF and LightGCN. (a) The mean value of K+ as the optimization
step increases; (b) The Frobenius norm of X as the optimization step increases; (c) The Frobenius
norm ∥X∥F for LightGCN as the optimization substeps increase.

optimization step through two separate mechanisms: DeepWalk constructs a high-order proximity in
the objective function using random walks, while LightGCN contains an internal propagation step.
In short, how different methods utilize high-order proximities is vital to the model design.

To empirically analyze different methods based on our framework, we conduct experiments on two
recommendation datasets: Elect and LastFM. We mainly compare the results of MF and LightGCN
with some analyses. More details about the experimental settings can be found in Appendix D.

The results are shown in Appendix E. Not surprisingly, LightGCN achieves better results than MF,
which is consistent with the literature. Based on the results, we try to investigate a more fundamental
question: ”What factors drive the success of link prediction models?” Using our framework, we
preliminary examine two targets: the positive link kernel K+ and the representation matrix X.

For the positive link kernel, recall that it measures how well the node representation can reconstruct
the positive links. Therefore, its average value is a good indicator of the model learning process. To
analyze its influence, we plot the mean value of K+ as the optimization progresses in Figure 1(a).
The figure clearly shows that the mean values for MF drop much faster than LightGCN, indicating
that MF quickly fits the training positive data. However, the final results of LightGCN are much
better (both methods have already adopted early stopping to prevent overfitting). Therefore, the
empirical results show that we need to properly control the fitting curve to realize effective link
prediction models.

Next, we analyze the representation matrix X. Specifically, since inner product is used to measure
the similarity between node representations, both the length and direction of representation vectors
affect the similarity. Here, we focus on the average length of representation vectors and plot the
Frobenius norm of X vs. the optimization steps in Figure 1(b). The results indicate that the repre-
sentation of LightGCN has smoother lengths than MF. To further analyze the underlying reason, we
decompose one optimization step of LightGCN, i.e., one step of Eq. (3), into four substeps (please
check Appendix C for details): (1) Propagate K layers using Ã; (2) Propagate one layer using
K(m+1)

+ (A); (3) Propagate another K layers using Ã; (4) Update the representations.

We further plot the Frobenius norm of LightGCN with respect to these four substeps in Figures 1(c)
and (d). The results show that substeps (1) and (3) can reduce the length while steps (2) and (34
increase the length. The reason is that the propagations in (1) and (3) use the normalized adja-
cency matrix Ã, which can control the length of the representation. The results show that properly
choosing the normalization of adjacency matrix is crucial for the success of link prediction methods.

4 CONCLUSION

In this paper, we introduce a unified framework for four representative link prediction methods in-
cluding MF, DeepWalk, LINE, and LightGCN. We reveal several key design principles of these
methods based on our proposed framework. We believe our proposed framework and in-depth anal-
yses can open up new research opportunities for developing link prediction methods.
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A MAIN NOTATIONS

Table 1: Notations used in the paper

Notations Descriptions

A ∈ {0, 1}|V|×|V| The adjacency matrix of positive links
B ∈ {0, 1}|V|×|V| The adjacency matrix of negative links by negative sampling
DA/DB The diagonal degree matrix of A/B
NA(u) The positive neighborhood of node u
NB(u) The sampled negative neighborhood of node u
X(m) The node representation matrix at the mth epoch
α The learning rate
β The strength for the L2 regularization
H(m) The propagation kernel at the mth epoch
Ã(B̃) The normalized adjacency matrix of positive and negative links
S
(m)
A /S

(m)
B The scoring matrix for positive and negative links at the mth epoch

σ(·) The Sigmoid activation function
⊙ The Hadamard product

B PROOF

In this section, we first give the modified loss function of the corresponding methods in the matrix
format. Then, we take LightGCN as an example to show the derivation of our unified framework,
while other methods can be proved in similar ways.

B.1 LOSS

For matrix factorization, a commonly used loss function is the original BCE loss, i.e., LMF = LBCE.
For LINE, its loss function can be written as follows

LLINE = −1

2
1|V|

([
log
(
σ(XX⊤)

)
⊙ Ã

]
+ λ

[
log
(
−σ(XX⊤)

)
⊙B

])
1⊤
|V| +

β

2
∥X∥22, (7)

where Ã = D−1
A A and B is the expectation of negative sampled links as follows

B ∝ D
3
4

A. (8)

For DeepWalk, based on the analysis by Qiu et al. (2018), when the walk length L → +∞, the loss
function of DeepWalk in the matrix form with the window size w ∈ N+ can be written as

LDW = −1

2
1|V|

([
log
(
σ(XX⊤)

)
⊙ P1,w(Ã)

]
+ λ

[
log
(
−σ(XX⊤)

)
⊙ B̃

])
1⊤
|V| +

β

2
∥X∥22,

(9)
where Ã = D−1

A A and B̃ = D−1
B B.

As for LightGCN, the loss function can be written in a matrix form as

LLGC = −1

2
1|V|

([
log
(
σ(X̄X̄⊤)

)
⊙A

]
+ λ

[
log
(
−σ(X̄X̄⊤)

)
⊙B

])
1⊤
|V| +

β

2
∥X∥22 (10)

where X̄ =
∑K

k=0
1

K+1Ã
kX, Ã = D

− 1
2

A AD
− 1

2

A .
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B.2 LIGHTGCN DERIVATION

In this subsection, we take LightGCN as an example to show how to derive our unified framework.
The derivative of Eq. (10) is calculated as

∂LLGC

∂X(m)
=

(
βI−

K∑
k=0

Ãk

K + 1

[(
1− σ(X̄(m)X̄(m)⊤)

)
⊙A− λσ(X̄(m)X̄(m)⊤)⊙B

] K∑
k′=0

Ãk′

K + 1

)
X(m)

=
(
βI− P1,K(Ã)

[
S
(m+1)
A ⊙A− λS

(m+1)
B ⊙B

]
P1,K(Ã)

)
X(m).

(11)
Then, we have

X(m+1) = X(m) − α
∂LLGC

∂X(m)

=
(
(1− αβ)I+ αP1,K(Ã)

[
S
(m+1)
A ⊙A− λS

(m+1)
B ⊙B

]
P1,K(Ã)

)
X(m),

(12)

which is a special case of Eq. (3) by setting c1 = 1− αβ, c2 = α, a1 = a2 = b2 = 0, b1 = K and
Ã = D

− 1
2

A AD
− 1

2

A .

C DETAILED CORRESPONDENCE OF LINK PREDICTION MODELS

We summarize the detailed correspondence of different models in our unified framework in Table 2.

Table 2: The detailed correspondence of different models in our unified framework.

Model c1 c2 c3 a1 b1 a2 b2 Ã B̃

MF 1− αβ α 0 0 0 0 0 — —

LINE 1− αβ α 1 0 0 1 1 D−1
A A ∝ D

3
4

AB

DeepWalk 1− αβ α 1 0 0 1 w D−1
A A D−1

B A

LightGCN 1− αβ α 0 0 K 0 0 D
− 1

2

A AD
− 1

2

A —

D EXPERIMENTAL SETTINGS

D.1 DATASETS

We adopt the following two public datasets in our experiments:

• Elect is a dataset from the Amazon-review collection about electronics, which is widely used for
item recommendation tasks. We use the dataset processed by Yu & Qin (2020).

• LastFM is collected from the music community site. It records the download relationships be-
tween users and artists. We use the dataset processed by He et al. (2020).

The statistics of the datasets are summarized in Table 3

Table 3: The statistics of datasets

Dataset # Nodes # Links Density

Elect 2,957 35,931 1.645%
LastFM 6,381 52,668 0.620%
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D.2 EVALUATION METRICS

Following previous works (Wang et al., 2019; He et al., 2020), we treat all non-interacted products
as candidate links and output the link prediction scores and perform the top-K recommendation
task, where K is set as 20. As for the evaluation metrics, we choose Precision@K, Recall@K, and
NDCG@K. For all the metrics, higher values indicate better performance. We repeat all experiments
five times with different random seeds and report the average results.

D.3 HYPER-PARAMETERS

We tune the learning rate α in {1e− 5, 1e− 4, 1e− 3, 1e− 2, 1e− 1} and the propagation layers for
LightGCN in {1, 3, 5}. For each observed user-item interaction, we randomly sample one negative
pair from non-interacted items before training. Besides, we set λ = 1 for all models. For all
methods, we adopt an early stopping strategy with a patience of 10, i.e., stop the optimization if the
validation accuracy does not improve for 10 steps.

E EXPERIMENTAL RESULTS

Table 4: The result of link prediction for different methods.

Dataset Metric MF LightGCN

Electronics
Precision@20 0.0079 0.0157

Recall@20 0.0547 0.1125
NDCG@20 0.0321 0.0652

LastFM
Precision@20 0.0302 0.0557

Recall@20 0.1112 0.1981
NDCG@20 0.0767 0.1468
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