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Problem definition: Motivated by the popularity of mobile-order-and-pay applications, especially in fast-

casual food restaurants and coffee shops, we study omni-channel service systems—where customers can

employ mobile applications for self-ordering—with respect to sojourn times, throughput, and social welfare.

Methodology/results: Our models are two-stage queues with two customer classes: walk-ins and mobiles.

We identify Pareto efficient prioritization policies, highlighting trade-offs between each class’s mean sojourn

times. We allow customers to make strategic joining decisions based on their anticipated delays under an

information structure where walk-ins observe partial queue length information. We draw from a wide array

of techniques, including steady-state, transient, busy period, hitting-time analyses, and matrix analytic

methods. We showcase the significance of prioritization on the system throughput and social welfare. We

demonstrate settings where the (typically beneficial) transformation of a traditional service system to an

omni-channel reduces throughput. Managerial implications: Our analysis highlights the importance of

prioritization policy choice for an efficient transition to an omni-channel service system. The throughput-

optimal policy choice is highly dependent on the operational parameters and on customer patience levels;

implementing a wrong policy can yield a significant loss in throughput and, hence, profitability.
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1. Introduction

Millions spend time waiting for services at coffee shops, government offices, and medical

clinics every day. Recent developments in mobile technologies aim to improve customers’

waiting time experience. For example, in some fast-food restaurants and coffee shops,

customers can use their mobile phones to place online orders and pay in advance, effec-

tively skipping the in-store ordering line. The usage of such applications has been growing

steadily. For example, the fraction of transactions conducted via Starbucks’s Mobile Order

& Pay application increased from 4% in 2016 to 24% in 2020 (Campbell 2020).

Despite the potential advantages of self-processing, introducing these mobile applications

has also caused complications. Reports of “long lines that are being exacerbated by an

uptick in mobile ordering... [that are causing] customers to walk out” at Starbucks (Ryan

2017) illustrate the need for proper system design to mitigate throughput loss due to

unsatisfied customers. Leveraging detailed queueing models and analyses, we fulfill this
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need by highlighting task prioritization as a crucial operational design lever impacting

system throughput and customers’ waiting experience in omni-channel services, in which

customers can employ mobile applications for self-ordering.

We take the coffee shop as the paradigmatic case of an omni-channel service system,

which has two stages: a customer waits in line to place and pay for their order and then

waits for the order to be prepared. The major brands, including Starbucks, Dunkin’ Donuts,

and McDonald’s, have launched online ordering applications in recent years, enabling

mobile customers (mobiles for short)—those who use the application—to make and pay

for their selections, skipping the cashier line and only waiting for preparation. Mean-

while, walk-in customers (walk-ins for short)—those who cannot or choose not to use the

application—must first wait to place their order.

Under this omni-channel paradigm, the staff preparing orders for mobiles often take

orders from—and prepare orders for—walk-ins; i.e., the service capacity is shared between

both channels. Mobiles bypass the first stage by processing their ordering and payment

tasks, which reduces their waiting times and frees up some service capacity. These benefits

could result in reduced total service requirements, lower waiting times (potentially for walk-

ins and mobiles), and possibly higher profits. It is crucial to note that this omni-channel

paradigm is distinct from its long-existing predecessor, whereby customers can call in an

order (e.g., pizza); the latter does not involve self-processing as the phone call engages an

employee’s time, reducing their ability to attend to other duties.

Introducing mobile self-processing applications, however, could result in inferior cus-

tomer satisfaction despite the mentioned benefits, eventually leading to throughput and

revenue loss (Ryan 2017). We show that part of these inefficiencies stems from higher task

prioritization complications (compared to the single-channel services). The introduction

of self-processing applications splits the homogeneous pool of customers (with respect to

service requirements) into two classes (walk-ins and mobiles) with distinct service flows.

In this case, an essential system design choice is how to prioritize the orders from the two

customer classes. Popular and easy-to-implement service policies (e.g., the first-come-first-

served (FCFS) policy) might not correctly differentiate the walk-ins’ and mobiles’ distinct

service requirements and waiting time expectations.

We capture the complicated stochasticity in omni-channel services by modeling them as

two-stage tandem queueing networks under single- and two-server settings (§3). We identify
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and analyze Pareto efficient prioritization policies (with respect to the class-specific mean

sojourn times of walk-ins and mobiles) in the case of non-strategic customers; we show

that they generate the entire Pareto frontier (§4). Then, we allow strategic customers to

join or balk based on their anticipated delays (§5). The challenge here is that walk-ins

observe the first stage’s state (based on which they draw inferences about the second stage)

when constructing their delay anticipation, while mobiles observe nothing. To address this

challenge, we draw from various techniques, including steady-state, transient, busy period,

and hitting-time analyses and matrix analytic methods. We showcase the significance of

the prioritization policy choice on system throughput and social welfare (§6).

We find a clear trend where throughput increases, on the aggregate level, with the rate

at which customers adopt mobile ordering technology. However, such throughput gains

are not homogeneous and heavily rely on implementing the optimal prioritization policy.

Furthermore, such throughout gains are not universally achievable. We locate diverse set-

tings where transforming to an omni-channel service reduces throughput, even under the

optimal prioritization policy (among those we study). This observation runs counter to

both the intuition on the benefits of offering a more efficient service stream and insights

generated by some recent work on omni-channel services, which celebrate the advantages

that the introduction of the mobile channel offers.

Our findings are driven by explicitly modeling previously abstracted queueing-theoretic

and information-structural features of omni-channel services. One such crucial feature is the

availability of self-service opportunities for mobile customers. In the absence of customers’

strategic behavior, self-service opportunities can sometimes present challenges for service

providers seeking to prioritize customers so that customers can anticipate the same end-

to-end delay regardless of their channel. In our single-server model, imposing such strict

“fairness” constraints comes at the cost of suboptimal mean sojourn times and, in some

parameter settings, comes at the cost of strategically idling the server, resulting in artificial

delays for at least some mobile customers. Meanwhile, when customers exhibit strategic

behavior, the operational advantages of self-service opportunities (i.e., service requirement

reductions) are not always sufficient to overcome inefficiencies introduced by information

uncertainty, leading to degraded throughput and/or social welfare.
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2. Literature Review

Methodologically, our work draws from several research streams. In exploring the Pareto

efficient prioritization policies with respect to class-specific mean sojourn times, we take

inspiration from the achievable regions methods developed in Bertsimas (1995) and further

articulated in Dacre et al. (1999). While our single-server models can also be interpreted as

polling models, our objectives, design choices, and analytic techniques are mainly unrelated

to those found in the polling literature, as surveyed in Boon et al. (2011) and Borst and

Boxma (2018). In terms of strategic customer behavior, we are indebted to Naor’s classical

paper on the subject (Naor 1969) and the long tradition of work on queueing games that

it has inspired, as surveyed in Hassin and Haviv (2003) and Hassin (2016).

In our strategic models, walk-ins observe only the queue length in the first stage and infer

a distribution on the second stage’s queue length when deciding to join. Similarly D’Auria

and Kanta (2015), Kim and Kim (2016), Kerner et al. (2017), and Ji and Roet-Green

(2020) present models where arrivals make joining decisions while observing only partial

queue-length information. In these papers, the unobserved information is a random variable

with finite support. In our work, the support is unbounded; hence, we must contend with

an infinite state space, necessitating distinct analytic techniques. One feature of our single-

server model—the server alternation between the two stages—is shared with the model

studied by Nimrod et al. (2020); however, our model differs significantly in that their work

renders both queues unobservable. Most significantly, our model differs from those featured

in the aforementioned papers in that we consider an omni-channel two-class system; the

papers cited above study single-class single-channel systems.

The analytical modeling of omni-channel retailing has received significant attention from

various aspects (examples include Chopra 2016, Gao and Su 2016, Bayram and Cesaret

2017, Gallino et al. 2017, Gao and Su 2017, Bell et al. 2018, Jin et al. 2018, Delasay

et al. 2021). However, the queueing-theoretic study of omni-channel services remains in its

infancy. In the remainder of this section, we discuss several related papers. To the best of

our knowledge, these papers—together with ours—constitute the entirety of the analytical

work on omni-channel services to date.

Gao and Su (2018) investigate the high-level impact of self-processing technologies on

capacity planning (i.e., staffing). While—like our work—they model omni-channel service

systems as tandem queues, in their model, they consider an unobservable queueing setting.
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Consequently—unlike our work—the technical contributions of the paper are not queueing-

theoretic. Under this model, Gao and Su find that self-ordering not only reduces mean

sojourn times for those customers who opt to use the mobile service (as expected) but

could also improve the mean sojourn time experienced by walk-ins. Although Gao and

Su endogenize the arrival rate as a function of the waiting time, it does not explicitly

model customers as rational. Considering rational customers in omni-channel services has

been the primary focus of several recent papers (including ours). We discuss the three

papers in this area most closely related to ours below. Baron et al. (2021) study customers’

channel choice in a single-stage FCFS omni-channel system, and show that offering an

online ordering channel will increase in the system throughput; this increase comes at the

cost of a drop in social welfare due to the resulting information uncertainty. However, they

find that prioritizing walk-ins can overcome social welfare loss. Our paper complements

this line of investigation by highlighting prioritization as a primary design choice for an

efficient transition from single-channel to omni-channel (although we show that such a

transition is not always possible). Moreover, much of our paper is dedicated to addressing

what Baron et al. (2021) identify as “an intriguing question and a promising future research

direction.” Namely, a model where “walk-in customers are aware of the availability of

the online channel but only observe the physical queue... [which] increases the analysis

complexity of walk-in customers’ joining decisions.”

Roet-Green and Yuan (2020) study omni-channel services in a way that can also be

thought of as addressing the “intriguing question” posed in Baron et al. (2021). They

treat information settings—in terms of the level of system occupancy observability—as

the primary design choice. By contrast, our work treats prioritization policies as the pri-

mary design choice. Each approach is capable of obtaining fundamentally different insights.

Furthermore, in all of their information settings, mobiles are also privy to some system

state information. This induces a threshold joining behavior on the part of mobiles and

thus yields finite state spaces, which—together with their restricted focus on single-stage

models—precludes their need for much of the sophisticated queueing-theoretic analysis

that forms an integral part of our paper. These differences have salient consequences: e.g.,

they prove that their model yields unique equilibria, whereas we find many cases where our

model gives rise to multiple equilibria. Roet-Green and Yuan express interest in exploring
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models of heterogeneous customers’ patience levels; we explore such heterogeneity as it

pertains to our models in Appendix EC.4.7.

Ghosh et al. (2020) explore a discrete-time model, primarily addressing the phenomenon

of channel choice (like Baron et al. 2021). Their work considers some additional features

(e.g., not all customers are given the opportunity to choose their channel) and also—as

in the work of Roet-Green and Yuan (2020)—explores more than one information setting

(either mobiles have full, but delayed, information, or no information at all). Unlike the

models in Baron et al. (2021) and Roet-Green and Yuan (2020), the extra features present

in the models considered in Ghosh et al. (2020) lead to the existence of settings where

system throughput under an omni-channel structure falls below that of a single-channel

system. In that respect, they draw conclusions that match ours, despite emphasizing dif-

ferent design aspects of omni-channel services. An important contribution of Ghosh et al.

(2020) is the study of the possibility of quality degradation during a mobile customer’s

travel time. This feature connects the paper to another stream of research on omni-channel

services with rational customers that focus on issues associated with travel (examples less

closely related to our work include Baron et al. (2020) and Liu and Yang (2020)).

Among the papers studying omni-channel services in the presence of rational customer

behavior discussed above, only our work considers a two-stage tandem queueing system.

This consideration allows our models to capture the reduction in the need for service capac-

ity when processing mobile customers due to their ability to self-order. Studying a partially

observable two-stage queueing system under various prioritization policies introduces the

need for substantial queueing analysis, which constitutes one of the key contributions of

our paper. Together with the three papers discussed above, we view our paper as providing

valuable complementary perspectives on the various quintessential features of omni-channel

service systems. We posit that considering all perspectives at once allows one to grasp

the bigger picture better than taking each perspective in isolation. That said, it may be

infeasible to analyze a single model that fully incorporates and exhaustively explores all of

these features (e.g., service requirement reduction from self-ordering, prioritization design,

information design, channel choice, travel time, etc.) simultaneously, justifying the need

for any given study to emphasize some of these features over others.
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Figure 1 Single-server model (server at Stage 2)
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Figure 2 Two-server model

3. Model

We consider a family of queueing systems with two service stages and two customer classes.

Each service stage consists of an infinite buffer queue. Walk-ins arrive to Stage 1 according

to a Poisson process with rate λw and proceed to Stage 2 upon service completion at

Stage 1. Meanwhile, mobiles bypass Stage 1 and arrive directly to Stage 2 according to a

Poisson process with rate λm; let Λ = λw + λm denote the total arrival rate to the system.

A walk-in’s (resp., mobile’s) sojourn time, Tw (resp., Tm), is the duration of time from the

moment of arrival to Stage 1 (resp., Stage 2) until the completion of service at Stage 2.

We emphasize that while only walk-ins can be present at Stage 1, customers of both

classes can be simultaneously present at Stage 2. For tractability, we assume that all

service requirements are independent and exponentially distributed with rates µ1 and µ2

at Stages 1 and 2, respectively.

We consider two models: (i) In our single-server model (see Fig. 1), a single flexible

server moves between the two stages instantaneously to serve customers according to a

prioritization policy (which we define in §3.1). (ii) In our two-server model (see Fig. 2), each

stage is served by its dedicated (inflexible) server; while the Stage 1 server serves walk-ins at

Stage 1 in their arrival order, the Stage 2 server can make service order decisions; e.g., they

could prioritize mobiles ahead of walk-ins. The single-server model allows us to highlight

the sojourn time trade-offs between the walk-ins and mobiles, while the two-server model

allows us to test the generalizability of our insights.

In a coffee shop setting, we can think of each walk-in as beginning their sojourn when

they arrive at a physical waiting line (Stage 1) leading to a cashier who takes orders, while

each mobile begins their sojourn as soon as they place their order via an app. A barista

(who is also the cashier in the single-server model) prepares food and beverages from a

virtual queue of orders (Stage 2) placed by walk-ins and mobiles. In practice, mobiles can
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often place their orders before arriving at the coffee shop, in which case their travel time

overlaps with their sojourn time. For simplicity, our models do not distinguish between

the experience of traveling and that of waiting in the coffee shop (see Liu and Yang (2020)

and Baron et al. (2020) for detailed models on this effect). We also do not allow for the

possibility of a walk-in deciding to switch to using the app after their arrival.

3.1. Prioritization Policy Structure

At any time, the flexible server in the single-server model must choose at which stage to

work. Furthermore, a server at Stage 2 (the flexible server in the single-server model or

the Stage 2 dedicated server in the two-server model) must choose which customer class to

serve. To this end, we introduce the notion of prioritization policies that dictate whom the

flexible (or Stage 2 dedicated) server must serve at any time. It is helpful to add further

granularity in how we view customers by breaking up each walk-in’s service into two tasks.

At any given time, each customer’s service belongs to one of three task classes: walk-in

tasks at Stage 1 (Os), walk-in tasks at Stage 2 (Ws), and mobile tasks at Stage 2 (Ms).

In the single-server model, we use the convention MWO, for example, to represent a

specific work-conserving preemptive class-based priority policy in which the flexible server

prioritizes tasks in the following order: (1) Ms (mobiles), (2) Ws (walk-ins in Stage 2),

and (3) Os (walk-ins in Stage 1). We can construct 3! = 6 policies by permuting the three

task classes. We use a similar convention in the two-server model: Noting that Stage 1’s

dedicated server can only serve Os (and Os can only be served by this server), we only need

to consider the relative prioritization between Ws and Ms at Stage 2. This yields only two

work-conserving preemptive class-based priority policies: MW (where Ms are prioritized)

and WM (where Ws are prioritized).

The families of policies discussed above are not exhaustive. Other feasible policies include

those that are not work-conserving, non-preemptive policies, randomized mixtures of other

policies, and policies that give two or more classes an equal priority. We note that in

the single-server model, much of our work extends to non-preemptive policies with mod-

est modifications to our analytic contributions. Still, we restrict attention to preemptive

policies in the interest of brevity.

Given any policy P, we are primarily interested in the class-specific mean (equivalently,

expected) sojourn times, EP[Tw] and EP[Tm], that emerge under that policy in steady state.

We facilitate steady-state analysis by making the following assumption:
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Assumption 1. The parameters Λ, λw, µ1, and µ2 must ensure system stability; i.e.,

(a) λw/µ1 + Λ/µ2 < 1 for the single-server model, and (b) λw < µ1 and Λ < µ2 for the

two-server model.

3.2. Customer Behavior and Information Structure

We consider delay-sensitive customers who join (resp., balk) if their anticipated expected

sojourn time upon arrival is less (resp., more) than their patience levels Tmax
w for walk-

ins and Tmax
m for mobiles; they are indifferent when their anticipation matches their

patience level exactly. We consider homogeneous patience levels within each customer class

(i.e., Tmax
w and Tmax

m are constants). However, our approach and insights largely general-

ize to the heterogeneous case (see Appendix EC.4.7 for details). When anticipating their

expected sojourn times, customers indirectly take into account the prioritization policy:

they have become accustomed to the policy’s steady-state mean sojourn time, e.g., from

experience or word-of-mouth.

Walk-ins joining behavior. Walk-ins observe the number of customers in Stage 1, N1,

upon arrival, motivated by the fact that a customer walking into a coffee shop sees how

many have lined up to place orders but cannot see how many outstanding orders are

currently awaiting preparation (or which Stage the server is currently serving). While walk-

ins cannot observe the number of customers in Stage 2, N2, upon arrival, their observation

of N1 allows for inference on N2.

In light of the above, under policy P, a walk-in joins if their conditional expected sojourn

time is no greater than their patience level (EP[Tw|N1 = i]≤ Tmax
w ). This gives rise to a

threshold, b, whereby walk-ins join if they observe N1 < b and balk otherwise; conse-

quently, b acts as a finite buffer size for Stage 1. Here, we simplify exposition by implicitly

considering that all indifferent walk-ins join. We can interpret our model so that the behav-

ior of walk-ins fits within the standard framework of rational queueing for risk-neutral

customers with linear waiting-time costs (see, e.g., Naor 1969); i.e., if we assume that walk-

ins obtain a benefit R from receiving service and experience a cost C per unit of sojourn

time, then they would behave exactly as described above if Tmax
w =R/C.

Mobiles joining behavior. Unlike walk-ins, mobiles enter the system observing nothing:

they place their order online before being present to witness the system occupancy. While

hypothetically, a mobile application could provide real-time delay estimates, we do not
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consider such features in our model. We concur with the following assessment of this issue

provided in Baron et al. (2021): “The invisibility of the online channel also reflects industry

practice. To the best of our knowledge, no omnichannel service provider offers real-time

queue length information to online customers ... Yet, some providers, e.g., Starbucks, quote

expected waiting times to online customers.” Even in the absence of such announcements,

mobiles can still behave strategically by employing a mixed joining strategy. Specifically,

under prioritization policy P, each mobile joins with probability pm (independently of other

mobiles) and balks otherwise, where pm is the highest probability for which EP[Tm]≤ Tmax
m .

Strategy profiles. Based on the discussion above, the joining behavior of all customers is

described by the strategy profile (b, pm), where walk-ins join if and only if they observe N1 <

b upon arrival and mobiles join with probability pm. For any b ∈ Z≥0 and pm ∈ [0,1], the

strategy profile (b, pm) results in a well-defined queueing system; we are most interested

in equilibrium strategy profiles, i.e., consistent with the joining behavior outlined above

(see §5 for details). For example, if (b, pm) is an equilibrium, then EP[Tw|N1 = i]≤ Tmax
w for

all i ∈ {0,1, . . . , b− 1}. However, the notation used in expressing the walk-in’s expected

sojourn time obfuscates a vital subtlety: EP[Tw|N1 = i] can depend on b and pm. To this end,

we write PP
(b,pm)

and EP
(b,pm)

to denote the probability and expectation operators, respectively,

under the strategy profile (b, pm) and priority policy P.

3.3. Throughput, Overall Mean Sojourn Time, Social Welfare

The throughput rate of walk-ins (resp., mobiles), χw (resp., χm), is the rate at which

walk-ins (resp. mobiles) are served. When patience levels are infinite (i.e., Tmax
w = Tmax

m =

∞), we have throughput rates χw = λw and χm = λm; otherwise, under the strategy pro-

file (b, pm) and priority policy P, we have χw = λwPP
(b,pm)

(N1 < b) and χm = λmpm. We measure

the overall throughput rate as X ≡ χw + χm, which can serve as a proxy for revenue if

walk-ins and mobiles pay the same average price for service. The overall mean sojourn

time is given by EP[T ]≡
(
λwEP[Tw] +λmEP[Tm]

)
/Λ when Tmax

w = Tmax
m =∞, and is given

by EP
(b,pm)

[T ] ≡
(
χwEP

(b,pm)
[Tw|N1 = i] +χmEP

(b,pm)
[Tm]

)
/X when customers are strategic.

When customers are finitely patient, we define the social welfare—denoted by SWP
(b,pm)

under strategy profile (b, pm) and policy P—as the mean surplus experienced across all

customers, where a customer’s surplus is their patience level less their sojourn time (0

if they balk). Our definition corresponds to the standard one in the rational queueing
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literature under the normalization that sets the waiting cost rate equal to one (C = 1).

Conditioning appropriately, we have:

SWP
(b,pm) =

λw

Λ

b−1∑
i=0

(
Tmax
w −EP

(b,pm)[Tw|N1 = i]
)
PP
(b,pm)(N1 = i)+

pmλm

Λ

(
Tmax
m −EP

(b,pm)[Tm]
)
.

Sections 4 and 5 analyze the cases where customers have infinite and finite patience,

respectively. In the infinite patience case (Tmax
w = Tmax

m = ∞), since all customers join

(i.e., (b, pm) = (∞,1)), the primary metrics of interest are the class-specific and overall mean

sojourn times. Meanwhile, in the finite patience case (Tmax
w , Tmax

m <∞), we are most inter-

ested in the equilibrium throughput and social welfare values, requiring the computation

of expected sojourn times.

4. Analysis: The Case of Customers with Infinite Patience

Customers always join when they have infinite patience, i.e., patience levels Tmax
w = Tmax

m =

∞. Thus, we do not need to consider any strategic joining decision on their part. Assump-

tion 1 guarantees that the system is both stable and throughput-optimal under any work-

conserving policy. In this setting, we aim to understand the trade-offs associated with

helping one customer class over the other via prioritization in terms of the mean sojourn

time experienced by each class. We assume throughout this section that λw, λm > 0.

We formalize our discussion of tradeoffs by writing P to denote the set of all possible

policies P. For any P∈P, we write aP ≡ (EP[Tw],EP[Tm]) to denote the allocation (i.e., the

pair of class-specific mean sojourn times) under policy P; we write O≡ {aP ∈R2
+ : P ∈P}

to denote the achievable region of allocations. Given two policies P and P′, we say that a

customer class is “better off” under policy P as opposed to P′ if the class experiences a lower

mean sojourn time under P; if one class is better off under P and the other is not better off

under P′, then we say that P dominates P′, writing aP ≻ aP′
. The relation ‘≻’ induces partial

orders on both P and O. We call a policy P Pareto optimal—writing P∈P∗—if no other

policy dominates it; equivalently, in symbols: (P∈P∗) ≡ ( ̸ ∃P′ ∈P : aP
′ ≻ aP). We call the

set of allocations yielded by Pareto optimal policies the Pareto frontier, O∗ ≡ {aP : P∈P∗}.

4.1. Pareto Optimal Policies

Typically, we are interested in selecting a policy P that minimizes some function of the

class-specific sojourn times (e.g., the overall mean sojourn time, either class’s mean sojourn

time, or any weighted average of these) that is strictly monotone with respect to the
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ordering on allocations induces by the ‘≻’ relation. Consequently, a system designer seeking

to minimize such a function need only consider Pareto-optimal policies.

We proceed by observing that given any pair of policies P,P′ ∈ P, we can construct a

family of policies {⟨P,P′⟩(θ) : θ ∈ [0,1]} ⊆P parameterized by θ, where ⟨P,P′⟩(θ) is imple-

mented as follows: at the start of each busy period, we choose to use either P or P′ for the

remainder of the busy period with probabilities θ and 1− θ (independent of past choices),

respectively. It follows that for any work-conserving policies P and P′, a⟨P,P
′⟩(θ) = θaP+(1−

θ)aP
′ ∈O. Extending this reasoning can establish the achievability of convex combinations

of achievable allocations. We identify several Pareto optimal policies (in both the single-

and two-server models). We show that these policy sets can generate all other Pareto opti-

mal policies (i.e., the entire Pareto frontier for the corresponding model) through random

mixtures of the kind described above; we call such policies Pareto generators. Formally,

for a given model, a set of Pareto optimal policies G ⊆P∗ form a set of Pareto generators

if the Pareto frontier O∗ satisfies O∗ ⊆ conv
({
aP : P∈ G

})
.

Recall our notation for work-conserving preemptive class-based priority policies

from §3.1, where, for example,MWO denotes the policy that prioritizesMs (mobiles) ahead

of Ws (walk-ins at Stage 2) and Ws ahead of Os (walk-ins at Stage 1). Of the six policies

in the single-server model, three—MOW, OMW, and OWM—prioritize Os over Ws; it is

straightforward to show that none of these three policies are Pareto optimal, so we dis-

regard them, focusing instead on MWO, WMO, and WOM. Meanwhile, in the two-server

model, the only relevant prioritization is between the two Stage 2 task classes, Ms and Ws

(as the Stage 1 dedicated server only servers Os), yielding the MW and WM policies. We

explicitly compute aP under all five of these policies (see Appendix EC.1.1 for a presen-

tation and proof of these results) and leverage these computations to establish that these

policies are Pareto generators for their respective models.

Proposition 1 The set {MWO,WMO,WOM} and the set {MW,WM} form a set of Pareto

generators for the single- and two-server models, respectively.

We also study a third policy in the two-server model that (our informal inspection

suggests) is the norm in practice: FCFS (first-come-first-served) gives the Ms and Ws

equal priority and serves them in the order in which they enter Stage 2. The computation

of aFCFS (also presented in Appendix EC.1.1) yields the following result:
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Figure 3 Examples of the achievable region for the parameter setting λw = 0.1, λm = 0.5, µ1 = µ2 = 1.

Proposition 2 In the two-server model, we have aFCFS = θaMW + (1− θ)aWM where θ =

(µ2−λm)/(2µ2−Λ) and FCFS∈P∗.

As a result of this proposition, we can treat FCFS as an “extraneous” Pareto generator.

That is, {MW,FCFS,WM} also forms a set of Pareto generators.

4.2. Fairness

Our performance analysis also allows us to address questions of fairness between the two

customer classes. While many notions of fairness exist, one strict and straightforward defi-

nition would be to require all customers to experience the same sojourn time in expectation

regardless of their class, i.e., P is “fair” (in this sense) if E[Tm] = E[Tw]. We facilitate our

discussion of fairness by way of illustrations. Fig. 3 shows the achievable region and Pareto

frontier for two example instances (one for each single- and two-server model). It follows

from arguments presented in our proof of Proposition 1 that these illustrative examples

are “representative” of what we would encounter in all instances. Specifically, in the single-

server model, WOM, WMO, and MWO are connected (from the “northwest” to “southeast”

in that order) by a pair of line segments, where the latter segment is steeper than the

former. Meanwhile, in the case of the two-server model, FCFS will lie on the line segment

running from WM southeast to MW, consistent with Proposition 2.

Now observe that in either model, a policy P is “fair” in the sense defined above if aP lies

on the line where E[Tw] =E[Tm] (the red dotted line in Fig. 3). Furthermore, this line crosses
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the boundary of the achievable region exactly once, so there is at most one Pareto optimal

fair allocation. Moreover, it follows from our expressions for the allocations under WMO

and FCFS (see Appendix EC.1.1) that E
[
TWMO
m

]
< E

[
TWMO
w

]
and E

[
T FCFS
m

]
< E

[
T FCFS
w

]
in

the single- and two-server models, respectively. Consequently, in the single-server model,

the E[Tw] = E[Tm] line crosses the boundary of the achievable region on either (i) the line

segment connecting WOM and WMO (including possibly at point aWOM) or (ii) the ray

extending “north” of WOM, i.e., {(0, y)+aWOM : y > 0}. An analogous observation—where

we replace WOM and WMO by WM and FCFS, respectively—holds for the two-server

model. In Fig. 3, case (i) holds for both policies (i.e., the “fairness” line crosses the Pareto

frontier), however, one can easily find examples for either model where case (ii) holds.

Under case (i), there is a unique Pareto optimal fair policy; whereas under case (ii), any

fair policy is Pareto-suboptimal, i.e., fairness comes at the steep cost of strategically idling

the server, resulting in artificial delays for at least some mobiles.

In the single-server model, fairness always comes with a price as it is inefficient (from

the overall system perspective) to prioritize walk-ins in Stage 1 over mobiles in Stage 2

even under case (i). This is because the E[Tw] = E[Tm] line crosses the line segment con-

necting aWOM and aWMO and this line segment descends with a slope of a greater magnitude

than the line segment connecting aWMO and aWOM; only the points on the latter line seg-

ment are optimal with respect to overall mean sojourn time, and hence, the unique fair

Pareto optimal policy is suboptimal in this respect. By contrast, in the two-server model,

the unique Pareto policy is optimal with respect to the overall mean sojourn time. These

observations are a consequence of the following general result:

Proposition 3 (a) In the single-server model, a work-conserving prioritization policy

minimizes the overall mean response time if it preemptively prioritizes customers in Stage 2

(i.e., Ws and Ms) over those in Stage 1 (i.e., Os); consequently, WMO and MWO are

optimal. Meanwhile, WOM is suboptimal with respect to the overall mean sojourn time

despite being Pareto optimal. (b) In the two-server model, a work-conserving prioritization

policy is optimal with respect to the overall mean response time if it is Pareto optimal.

This section highlighted how each customer class affects the other. The “interaction”

between the two classes becomes more complicated once we consider strategic behavior on

the part of customers with finite patience levels, which is the focus of the next two sections.
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5. Analysis: The Case of Customers with Finite Patience

In the setting where customers have finite patience levels, i.e., Tmax
w , Tmax

m <∞, we need

to consider customers’ strategic joining behavior. We are interested in the equilibrium

strategy profiles that emerge under policies we identified as Pareto generators in the infinite

patience case (see §4). Recall that walk-ins observe the current Stage 1 occupancy N1

upon arrival, while mobiles observe nothing. As implied by our choice of notation, each

of EP
(b,pm)

[Tw|N1 = i] and EP
(b,pm)

[Tm] can depend on both b and pm. Hence, given a policy P, we

seek to find an equilibrium of the form (b∗, p∗m) where (i) b
∗ is the equilibrium threshold such

that EP
(b∗,p∗m)

[Tw|N1 = i]≤ Tmax
w whenever N1 = i≤ b∗ and (ii) p∗m is the highest probability

with which mobiles can join while ensuring that EP
(b∗,pm)

[Tm]≤ Tmax
m . Formalizing, we have

the following necessary and sufficient conditions on equilibrium (b∗, p∗m):

EP
(b∗,p∗m)

[Tw|N1 = i]≤ Tmax
w , ∀i∈ {0,1, . . . , b∗− 1},

EP
(b∗,p∗m)

[Tw|N1 = b∗]>Tmax
w ,

argmax{pm ∈ [0,1] : EP
(b∗,pm)[Tm]≤ Tmax

m }= p∗m,

where argmax{∅} ≡ 0. While assumption 1 guarantees that EP
(b,pm)

[Tw|N1 = i] < ∞

and EP
(b,pm)

[Tm]<∞ for all policies P under consideration, b ∈ Z≥0, and pm ∈ [0,1], we will

see in §6 that neither the uniqueness nor the existence of equilibria is guaranteed.

5.1. Determining Equilibria in the Finite Patience Model

We proceed by discussing our method of finding equilibria, which applies to both the

single- and two-server models with minimal differences. The method requires one to

obtain EP
(b,pm)

[Tw|N1 = i] and EP
(b,pm)

[Tm]. For now, we assume these expressions are given,

deferring their derivations for the single- and two-server models to §§5.2 and 5.3, respec-

tively. The following proposition simplifies the process of searching for equilibria by limiting

the candidate values of threshold b and establishing that there exists a mobile joining

probability pm that is a “best response” to any threshold b.

Proposition 4 For any fixed threshold b and any P∈ {MWO,WMO,WOM} (in the single-

server model) or P∈ {MW,WM,FCFS} (in the two-server model):

(a) If we take pm to be a value such that (b, pm) is an equilibrium under P, then the

threshold b <B ≡ µ1(T
max
w − 1/µ2).
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(b) When we view pm ∈ [0,1] as a variable, the expected sojourn time of mobiles EP
(b,pm)

[Tm]

is strictly increasing in pm.

Proposition 4(a) simplifies the process of searching for an equilibrium threshold b, requir-

ing us to consider only finitely many cases, b ∈ {0,1, . . . ,B − 1} (for all six policies of

interest). Given a policy P, for each possible b ∈ {0,1, . . . ,B − 1} (where the bound B ≡
µ1(T

max
w − 1/µ2) or some better bound if available), we compute

pm(b)≡ sup{pm ∈ [0,1] : EP
(b,pm)[Tm]≤ Tmax

m },

where sup{∅} ≡ 0. Meanwhile, Proposition 4(b) (together with the continuity of the

mobiles’ mean sojourn time in pm) guarantees the existence of pm(b). Specifically, pm(b) = 1

if EP
(b,1)[Tm]≤ Tmax

m , pm(b) = 0 if EP
(b,0)[Tm]>T

max
m , and pm(b) = f−1

b (Tmax
m ) (letting the func-

tion fb(·) ≡ EP
(b,·)[Tm]) in any other case. While f−1

b (Tmax
m ) is well-defined, it may not be

possible to compute it exactly, in which case we can resort to arbitrarily accurate numer-

ical inversion techniques (e.g., the bisection method). Finally, we must check whether

each (b, pm(b)) pair is an equilibrium; this is the case if and only if EP
(b,pm(b))

[Tw|N1 = i]≤
Tmax
w , for each i∈ {0,1, . . . , b− 1}), and EP

(b,pm(b))
[Tw|N1 = b]>Tmax

w .

To complete our analysis, we obtain EP
(b,pm)

[Tw|N1 = i] and EP
(b,pm)

[Tm] for the single-

and two-server policies of interest in §§5.2 and 5.3, respectively. We begin each discussion

with an examination of the continuous-time Markov chain (CTMC) governing (N1,N2)

and/or (N1,N2,w), where N2,w is the number of W tasks in Stage 2. In particular, we must

find the steady-state limiting probability distributions of these chains, which we denote

by πP
(b,pm)

(i, j) ≡ PP
(b,pm)

(N1 = i,N2 = j) and ϕP
(b,pm)

(i, j) ≡ PP
(b,pm)

(N1 = i,N2,w = j) for any

policy P and strategy profile (b, pm).

5.2. Single-Server Finite Patience Model: Mean Sojourn Times

We derive exact expressions for the mean sojourn times in the single-server model

under policies MWO,WMO, and WOM by analyzing their underlying CTMCs. We

begin with MWO and WMO, under which (N1,N2) ∈ {0,1, . . . , b} × Z≥0 evolves accord-

ing to the same CTMC (Fig. 4a). We use the limiting probabilities of this CTMC

(πMWO
(b,pm)

(i, j) ≡ πWMO
(b,pm)

(i, j)) in terms of infinite series later to derive the mean sojourn

times. For any specified value of b ∈ {0,1, . . . ,B − 1}, these limiting probabilities—and

hence, the expected sojourn times of interest—can be determined in closed form (see

Appendix EC.3.1).
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Figure 4 Single-server CTMCs. In (a), N1 increases by 1 with rate λw due to a walk-in arrival when N1 < b;

N2 increases by 1 with rate pmλm due to a mobile arrival; N1 decreases by 1 and N2 increases from

0 to 1 with rate µ1 due to a Stage 1 service when N1 >N2 = 0; N2 decreases by 1 with rate µ2 due

to a Stage 2 departure when N2 > 0. In (b), N1 increases by 1 with rate λw due to a walk-in arrival

when N1 < b; N1 decreases by 1 and N2 increases from 0 to 1 with rate µ1 due to a Stage 1 service

when N1 >N2 = 0; N2 decreases from 1 to 0 with rate µ2 due to a Stage 2 departure when N2 = 1.

To find the mean sojourn times under WOM, rather than analyzing the CTMC gov-

erning (N1,N2), we analyze a chain with state variables (N1,N2,w) ∈ {0,1, . . . , b} × {0,1}

where N2,w is the number of Ws in Stage 2. Note that under WOM, Os (i.e., walk-ins

in Stage 1) receive service only when there are no Ws in the system. Moreover, once a

walk-in’s O task completes service at Stage 1, their W task arrives to Stage 2 and imme-

diately receives the highest priority, entering service, and precluding the service of any Os

until its service completion. Hence, there can be at most one W in the system at any

given time under WOM, resulting in the finite-state CTMC illustrated in Fig. 4b. The

chain’s finite state space allows for the straightforward determination of its exact limiting

probabilities, ϕWOM
(b,pm)

(i, j) (see Appendix EC.3.2). In the special case where b= 0, we have

a degenerate chain where ϕWOM
(b,pm)

(0,0) = 1. In any case, the limiting probabilities allow us

to express the conditional expected sojourn time EWOM
(b,pm)

[Tw|N1 = i].

On the other hand, the ϕWOM
(b,pm)

(i, j) values do not immediately lend themselves to deter-

mining EWOM
(b,pm)

[Tm]. Instead, we express EWOM
(b,pm)

[Tm] in terms of the first and second moments
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of two hitting time random variables, U and V , which depend on (b, pm) (for the com-

putation of these moments—which can be found in closed-form for any specified value

of b—see Appendix EC.3.3): U represents the waiting time of a mobile (i.e., the duration

from arrival time until service begins) who arrives when there are no other mobiles in the

system, while V represents the sojourn time of a mobile who enters an empty system.

Carrying out the analysis described above for all three policies of interest, we obtain all

of the desired expected sojourn times in the following proposition:

Proposition 5 Under MWO, WMO, and WOM in the single-server model, we have
EMWO

(b,pm)
[Tm] =

1

µ2− pmλm

EMWO
(b,pm)

[Tw|N1 = i] =

((
µ2

µ1

+1

)
(i+1)+

∞∑
j=0

jπMWO
(b,pm)

(i, j)

/
∞∑

j=0

πMWO
(b,pm)

(i, j)

)
EMWO

(b,pm)
[Tm]

, (1)


EWMO

(b,pm)
[Tm] =

1

µ2

(
1+

b∑
i=0

∞∑
j=0

jπWMO
(b,pm)

(i, j)

)
EWMO

(b,pm)
[Tw|N1 = i] =

1

µ2

−EMWO
(b,pm)

[Tm] +EMWO
(b,pm)

[Tw|N1 = i]

, (2)


EWOM

(b,pm)
[Tw|N1 = i] = (i+1)

(
1

µ1

+
1

µ2

)
+

ϕWOM
(b,pm)

(i,1)

µ2

(
ϕWOM
(b,pm)

(i,1)+ϕWOM
(b,pm)

(i,0)
)

EWOM
(b,pm)

[Tm] =EWOM
(b,pm)

[V ] +
pmλmEWOM

(b,pm)
[V 2]

2
(
1− pmλmEWOM

(b,pm)
[V ]
) +

2EWOM
(b,pm)

[U ] + pmλmEWOM
(b,pm)

[U2]

2
(
1+ pmλmEWOM

(b,pm)
[U ]
) . (3)

The results presented in Proposition 5 can then be used to determine the equilibria of

the form (b∗, p∗m) in the single-server model under all three prioritization policies of interest.

5.3. Two-Server Finite Patience Model: Mean Sojourn Times

We proceed to seek expressions for the appropriate expected sojourn times in the two-

server model—again with the ultimate goal of determining equilibria of the form (b∗, p∗m).

Determining such expected sojourn times for the two-server model will often necessitate

analyzing intractable infinite-state CTMCs and computing infinite sums over recursively

defined quantities. Consequently, unlike in the single-server model, the expected sojourn

times in the two-server model cannot generally be expressed in closed form (with EMW
(b,pm)

[Tm]

being a notable exception). While we provide exact expressions for all sojourn times of

interest, these expressions will be in terms of auxiliary quantities (e.g., infinite sums of

limiting probabilities) that cannot be determined exactly; we provide methods for approx-

imating these quantities throughout Appendix EC.3.
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Figure 5 Two-server CTMCs. In (a) N1 increases by 1 with rate λw due to a walk-in arrival when N1 < b; N2

increases by 1 with rate pmλm due to a mobile arrival; N1 decreases by 1 and N2 increases by 1 with

rate µ1 due to a walk-in service at Stage 1 when N1 > 0; N2 decreases by 1 with rate µ2 due to a

Stage 2 departure when N2 > 0. The CTMC in (b) corresponds to that in (a) when pm = 0.

Under the two-server policies—MW,WM, and FCFS—the system occupancy (N1,N2) ∈

{0,1, . . . , b}×Z≥0 evolves according to the Fig. 5a CTMC. Our analysis requires the lim-

iting probabilities πTS
(b,pm)

(i, j) of this CTMC (where TS stands for our three policies of

interest in the Two-Server model), which can be approximated with arbitrary accuracy

(see Appendix EC.3.4).

Prioritization plays a less critical role in the two-server model, as it only affects Stage 2

tasks. However, in this model, service can be provided at both stages simultaneously; this

complicates system dynamics, leading to significant analytic challenges. For example, con-

sider the FCFS policy: a tagged walk-in must infer the distribution of N2 based on the

observed value of N1 upon arrival. Even if the tagged walk-in knows N2 = j with certainty

when they arrive, by the time they finally reach Stage 2, the occupancy there may have

varied significantly from j due to arrivals and departures. Hence, the tagged walk-in’s con-

ditional expected sojourn time is E[Tw|N1 = i] = (i+1)/µ1 + Y (i, j), where Y (i, j) is the

expected workload that the tagged walk-in will encounter at Stage 2 once it arrives there,

given that they initially observed N1 = i and N2 = j when first arriving at Stage 1. By
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the workload at Stage 2, we mean the amount of time needed to clear all Stage 2 tasks—

including the tagged walk-in’s task—assuming no further arrivals to Stage 2. Determining

the expected workload Y (i, j) requires transient queueing analysis while determining the

distribution of N2 conditioned on N1 = i requires steady-state analysis. To allow for tran-

sient analysis, let {Mρ(t)}t≥0 denote the number of customers in an M/M/1 system under

load ρ ∈ (0,∞) at time t and {tn}n≥1 denote the time of the n-th Poisson arrival to this

system since time 0. Now consider Definition 1, adapted from Kaczynski et al. (2012):

Definition 1 For integers u ≥ 0, v ≥ 1, and w ∈ {1,2, . . . , u + v}, let the probabil-

ity P (u, v,w;ρ) ≡ P (Mρ(tv) =w|Mρ(0) = u); i.e., P (u, v,w;ρ) is the probability that the

system occupancy of an M/M/1 system under load ρ > 0 transitions from u to w after

exactly v further arrivals.

Lemma 1 expresses Y (i, j) exactly in terms of infinite sums of these probabilities, which

allows for Y (i, j)—and further infinite sums expressed in terms of Y (i, j)—to be approx-

imated by using sum truncation together with a recursive method presented Kaczynski

et al. (2012) for computing the P (u, v,w;ρ) exactly (see Appendix EC.3.5 for details).

Lemma 1 If a walk-in joins a two-server system when (N1,N2) = (i, j), the expected

Stage 2 workload upon arrival of this customer to Stage 2 (including the customer’s own

Stage 2 service requirement) under any work-conserving policy is given by:

Y (i, j) =

(
µ1

µ1 + pmλm

)i+1 ∞∑
k=0

i+j+k+1∑
ℓ=1

ℓ

µ2

P

(
j, i+ k+1, ℓ;

µ1 + pmλm

µ2

)(
k+ i

k

)(
pmλm

µ1 + pmλm

)k

. (4)

The probabilities P (u, v,w;ρ) are also instrumental in deriving the mean sojourn times

under the WM policy. Under WM, (N1,N2) is again governed by the Fig. 5a CTMC, with

limiting probabilities πTS
(b,pm)

(i, j). However, in this case (as in the case of WOM in the single-

server model), we are also interested in the limiting probabilities of the CTMC governed

by (N1,N2,w)∈ {0,1, . . . , b}×Z≥0, which we can approximate with arbitrary accuracy (see

Appendix EC.3.7). This CTMC is depicted in Fig. 5b. We also need the expectation of the

“hitting time” random variable Z(i, j), which represents the time it takes to reach a state

where N2,w = 0 from state (N1,N2,w) = (i, j) under WM, given the strategy profile (b, pm),

i.e., Z(i, j) ∼ inf{s ≥ 0: N2,w(t + s) = 0|N1(t) = i,N2,w(t) = j} for all t ≥ 0. Details on

approximating EWM
(b,pm)

[Z(i, j)] with arbitrary precision are given in Appendix EC.3.8.
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Carrying out performance analysis for all three policies of interest in the two-server

setting, we obtain the following results for the sojourn times of interest in terms of the

problem parameters and sums involving P (u, v,w;ρ), Y (i, j), and/or EWM
(b,pm)

[Z(i, j)].

Proposition 6 Under MW, FCFS, and WM in the two-server model, we have
EMW

(b,pm)
[Tw|N1 = i] =

i+1

µ1

+
1

1− pmλm/µ2

∞∑
j=0

Y (i, j)πTS
(b,pm)

(i, j)

/
∞∑

j=0

πTS
(b,pm)

(i, j)

EMW
(b,pm)

[Tm] =
1

µ2− pmλm

, (5)


EFCFS

(b,pm)
[Tw|N1 = i] =

i+1

µ1

+

∞∑
j=0

Y (i, j)πTS
(b,pm)

(i, j)

/
∞∑

j=0

πTS
(b,pm)

(i, j)

EFCFS
(b,pm)

[Tm] =
1

µ2

(
1+

b∑
i=0

∞∑
j=0

jπTS
(b,pm)

(i, j)

) , (6)


EWM

(b,pm)
[Tw|N1 = i] =

i+1

µ1

+

∞∑
j=0

i+j+1∑
ℓ=1

ℓ

µ2

P

(
j, i+1, ℓ;

µ1

µ2

)
ϕWM
(b,pm)

(i, j)

/
∞∑

j=0

ϕWM
(b,pm)

(i, j)

EWM
(b,pm)

[Tm] =

b∑
i=0

∞∑
j=0

EWM
(b,pm)

[Z(i, j+1)]πTS
(b,pm)

(i, j)

. (7)

6. Results and Insights

This section employs our equilibrium determination methodology in the case of finite

patience levels (outlined in §5) to explore the impact of our two service design choices

on throughput and social welfare: (1) whether to offer a mobile ordering option and if so

(2) the prioritization policy to be implemented. We investigate what happens if a single-

channel walk-in only system transitions to an omni-channel system when an exogenous

fraction α ∈ [0,1] of customers “adopt” the new technology once the app is introduced,

switching from being walk-ins to mobiles (i.e., λw = (1−α)Λ and λm = αΛ). We examine

what occurs under the new steady-state equilibrium resulting from the adoption of the

app. In reality, some new customers who were previously uninterested in the single-channel

system may also adopt the service (allowing for an increase in Λ); while we do not consider

this possibility in the interest of brevity, we can study such scenarios using the same

methods by setting λw and λm to any desired values.

6.1. Illustration of the Adoption Rate Impact

This section demonstrates the possible impact of the adoption rate α on the normalized

throughput rate X/Λ and social welfare SWP
(b,pm) using an illustrative problem instance. In

this problem, we consider a single-server system in which walk-ins are less patient (Tmax
w =

5.2< Tmax
m = 8). For illustration, we generate the plots in Figs. 6a and 6b, by computing
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Figure 6 Single-server model: Λ= 0.625, µ1 = 2, µ2 = 1, Tmax
w = 5.2, Tmax

m = 8.

equilibria and the resulting metrics for the adoption rate α ∈ {0,0.005, . . . ,0.995,1}. At

some α values, there are multiple equilibria for a policy (the gray regions in the figures).

Furthermore, at some α values, no pure strategy on the part of walk-ins yields an equi-

librium (the yellow regions); therefore, we plot the metrics associated with an equilibrium

featuring a mixed strategy on walk-ins where the assumption that indifferent walk-ins join

is relaxed. That is, walk-ins will randomly choose whether or not to join with some proba-

bility pw (which is part of the description of their strategy) when they observe b− 1 other

customers in the Stage 1 queue upon their arrival (see Appendix EC.4.1).

We first discuss the impact of the adoption rate on throughput (Fig. 6a). We observe

that although WMO always performs at least as well as MWO, the two policies yield the

same throughput at most adoption rates (orange-blue dashed curves) due to the discrete

nature of the walk-ins’ equilibrium threshold b∗. As a higher mobile adoption alleviates the

load at Stage 1—and because we are considering a case where mobiles are more patient—

unsurprisingly, higher α tends to improve the throughput. Nevertheless, α’s increase may

trigger a discontinuous drop in throughput due to a shift of size one in b∗. As WOM

aggressively favors walk-ins, mobiles do not join until the adoption rate crosses a point A,

making λw low enough to allow a fraction of mobiles to join using a mixed strategy, pm ∈
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(0,1). At adoption rates beyond point B, enough mobiles opt to join such that WOM

outperforms the other two policies with respect to throughput. Finally, when the adoption

rate is beyond a threshold (point C), all mobiles join (pm = 1) as service interruptions due

to walk-ins become sufficiently infrequent.

As expected, there is little throughput benefit in offering the app when the adoption

rate is very low (below point D). Most surprisingly, the no-app benchmark outperforms all

three policies for α between points D and E—even though mobiles are more patient in this

setting—which suggests that the operational advantages from self-ordering technology (i.e.,

service requirement reductions) can be insufficient to overcome inefficiencies introduced by

information uncertainty, which can be in two forms: (i) walk-ins have uncertainty regarding

the queue length at Stage 2 once mobiles are also using the system, and (ii) mobiles

lack access to queue length information that they would have had if they were walk-ins.

Hence, the omni-channel structure is not always beneficial. We will revisit the information

uncertainty issue in greater detail at the end of this subsection.

Turning our attention to social welfare (Fig. 6b), we observe that MWO and WMO

outperform the no-app benchmark for the vast majority of α values. Social welfare tends

to increase with α partially because the average system-wide patience level also increases

with α (because Tmax
m > Tmax

w in this problem instance). On the other hand, aggressive

prioritization of walk-ins (i.e.,WOM) often yields considerably lower social welfare than the

no-app benchmark; by prioritizing walk-ins—who have higher service requirements than

mobiles—WOM yields relatively poor mean sojourn times and hence lower social welfare.

We can observe qualitatively similar phenomena in the two-server model. Specifically,

Fig. 7b shows that in a system with equal patience levels for walk-ins and mobiles, it is

even possible for all three policies to underperform the no-app benchmark with respect to

social welfare (even at α= 1). The dominance of the no-app at the adoption rate α= 1 is

initially counter-intuitive: moving from a customer base of all walk-ins (no-app) to one of

all mobiles (α= 1)—who require less service, are equally patient, and equally numerous—

may be expected to generate higher social welfare. It turns out that in the “all walk-in”

(no-app) case, about 20% (see the dashed red line in Fig. 7a where X/Λ≈ 0.8) of customers

balk. This throughput inefficiency in the no-app case has a beneficial side effect of reducing

congestion and hence expected sojourn times. As a result, despite (in fact, because of ) the

lower throughput in the no-app case, reduced congestion allows the average customer to
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Figure 7 Two-server model: Λ= 0.05, µ1 = 0.16, µ2 = 0.08, Tmax
w = Tmax

m = 40.

experience a greater surplus (i.e., contribution to social welfare) than what they would

experience in the omni-channel system at some α values, including the “all mobile” system.

Apart from an intermediate region where α is roughly between 28%–40%, the policy that

prioritizes mobiles (i.e., MW) performs very well with respect to social welfare until α >

90%, where the congestion effect sharply increases the overall mean sojourn time. These

results suggest a rich space of trade-offs between throughput and social welfare.

6.2. Discussion of Information Uncertainty

This section numerically illustrates the impact of information uncertainty on walk-in and

mobile customers’ joining decisions as the adoption rate varies. We focus on the single-

server model (as we can compute all expected sojourn times exactly) and consider the

impact of information uncertainty on a tagged customer’s decision—and the impact on the

throughput—while fixing the behavior of all other customers in equilibrium.

We can classify customers’ decisions into four categories: (i) those who join given the

information they observed at the time of arrival, who would have joined anyway had they

observed the full system state N1 +N2 at the time of their arrival, (ii) those who join

but would not have done so with full information, (iii) those who balked and would have

done the same with full information, and (iv) those who balked but would not have done
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Figure 8 Total net change in throughput due to information uncertainty under single-server model: Λ=

0.625, µ1 = 2, µ2 = 1, Tmax
w = 5.2, Tmax

m = 8.

so with full information. For any given instance and prioritization policy, let Ew quantify

the net change to the system’s throughput due to each individual walk-in’s information

uncertainty compared to how they would have made their join/balk decision had they been

given full information regarding the system’s current state (N1,N2). We must have Ew ≡

λw(υ
+
w − υ−w ) denote this net change, where υ+w and υ−w are the probabilities with which a

walk-in’s decision falls into categories (ii) and (iv), respectively. We can define Em (and the

probabilities υ+m and υ−m for mobiles analogously (although we note that walk-ins are privy

to N1 when making their decision, while mobiles decide based on no information about

the current system state). We then let E ≡ Ew +Em denote the total net change to the

throughput due to the individuals’ information uncertainty—while noting that E does not

fully capture the role information uncertainty can play in the equilibrium that emerges.

It is straightforward to compute E in the single-server model by leveraging our per-

formance analysis. Leveraging this computation, we plot E as a function of the adoption

rate α in Fig. 8 (for the same scenario considered in Fig. 6). This plot leads us to con-

clude that there is no easily interpretable relationship between the net change E and the

adoption rate α. In particular, we note that this figure exhibits many oscillations inherited

from oscillations in the υ+w and υ−w—and especially the υ+m and υ−m—values as the set of

states (N1,N2) where a walk-in or mobile would prefer to join the system can frequently

change with α and those variables that change with α (e.g., the equilibrium (b∗, p∗m), the

limiting probability distribution over (N1,N2), etc.).
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It is clear from the plot, however, that when measuring the benefit of information uncer-

tainty on throughput in this way, offering the app rarely increases this benefit under this

example; only the policy that prioritizes walk-ins (i.e., WOM) “outperforms” No-app with

respect to E, and even then only for about a quarter of the range of α values. Hence,

information uncertainty plays a subtle role in driving the impact of α on throughput (and

a similar role in driving social welfare), giving rise to the counter-intuitive observation

that we have discussed in §6.1: that is, sometimes the detrimental impact of the nature of

information uncertainty introduced by offering an app offsets the benefit of self-ordering

opportunities provided by the addition of the mobile stream.

6.3. Full Factorial Experiment

In §6.1, we showed through illustrative examples that introducing the self-ordering

technology may sometimes hurt throughput and social welfare. To explore the gen-

erality of this observation and other discussions provided in §6.1, we design an

extensive problem set by setting λ = 1 and varying the other parameters as fol-

lows: µ2 ∈ {1.5,2,2.5,3}, µ1/µ2 ∈ {0.25,0.5,1,2,4}, α ∈ {0.05,0.15, . . . ,0.95}, and Tmax
m ∈

{0.5,1,2,4}, Tmax
w /Tmax

m ∈ {0.8,1,1.25}. We focus on the single-server model under which

we can obtain all expected sojourn times exactly. Of the 2400 possible combinations, we

remove 980 instances where customers of at least one class are too impatient to join even

an empty system (i.e., b= 0 is the best response to pm = 0 or vice-versa; such cases occur

precisely when Tmax
w ≤ 1/µ1+1/µ2 or T

max
m ≤ 1/µ2). We do not remove cases where Assump-

tion 1 is violated; such violations merely limit the space of feasible b and pm that yield

finite sojourn times and do not preclude the existence of equilibria.

For each problem instance, we record the policy that yields the highest throughput

(including the no-app scenario with α= 0). Occasionally, there will be a tie for the highest

throughput between MWO and WMO; where possible, we break such ties in favor of the

policy with the higher social welfare, while in the remaining cases—where the systems

behave identically—we report a tie. In summary, we list our key observations below:

- In most settings (93.2% of problem instances), introducing the app using the optimal

prioritization policy increases the throughput. Under the optimal policy, throughput

increases almost linearly with the adoption rate (see Fig. 10).

- In some settings (6.8% of problem instances), introducing the app, even using the

optimal policy, reduces the throughput substantially (on average, 12.4%).
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Table 1 Policies and associated regrets

No-app MWO WMO WOM Tie

Optimality freq. 96 4 63 867 390
Optimality prop. (%) 6.8 0.3 4.4 61.1 27.5
Regret prop. (%) 93.2 72.3 68.1 38.9
Regret magn. (%) 15.9 5.4 3.3 8.4

Table 2 Throughput loss of
suboptimally offering the app

Average Std. dev. Median Max

12.4% 11.0% 10.6% 40.3%

- Prioritizing walk-ins (i.e., WOM) is often the best policy (61.1% of problem instances),

but the regret from suboptimally employing it is the highest (on average, 8.4%).

We elaborate on these and other observations in the remainder of this section.

When should an omni-channel structure be employed? According to Table 1,

transitioning to an omni-channel setting reduces the throughput in 96 (6.8% of the) exper-

iments. This suggests that the detrimental effect of app introduction is not so unlikely that

it can be safely dismissed out of hand. Across these 96 no-app cases, the throughput loss

resulting from suboptimally offering the app (compared to the policy that generates the

highest throughput) can be as high as 40.3%, with a mean of 12.4% (see Table 2).

Based on Fig. 9, the incidence of no-app cases initially increases with the adoption rate,

peaking at α = 0.25, after which the frequency of these cases drops monotonically; two-

thirds of no-app cases occur in the lower half of the α values examined (i.e., between 0.05

and 0.45). As expected, the likelihood of these cases decreases as Tmax
m grows: more patience

among mobiles is favorable for the app introduction. Note that for a fixed Tmax
w /Tmax

m , Tmax
w

grows along with Tmax
m , but more patience among walk-ins is also favorable for app intro-

duction as walk-ins will be willing to wait behind mobiles, under say MWO. Similarly, the

likelihood of such cases drops as µ2 rises (and µ1 with it): faster service rates play a sim-

ilar role to that of higher patience levels. On the other hand, there is no such clear trend

associated with Tmax
w /Tmax

m , although we note that the no-app cases are more likely to arise

when Tmax
w > Tmax

m . Meanwhile, cases where app introduction is detrimental rise sharply

with µ1/µ2. The faster the walk-in’s service at Stage 1 (relative to that at Stage 2), the less

significant the advantage of bypassing Stage 1; consequently, the operational advantage of

offering a mobile-ordering option diminishes as µ1/µ2 increases.

What prioritization policy should be implemented? Based on Table 1, WOM

outperforms the other policies in 61.1% of our experiments. Table 1 also quantifies the

regret associated with choosing a policy and implementing it across all experiments in

terms of the “proportion” of experiments where another policy would yield either greater
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Figure 9 Impact of parameters on the optimality proportion. (No app: , MWO: , WMO: ,

WOM: , MWO & WMO tie: )

throughput or the same throughput (but greater social welfare) and the “magnitude” of

this regret (average throughput loss relative to the optimal policy). Prioritizing walk-ins

(i.e., WOM) generates regret in the fewest experiments by far. However, it performs quite

poorly when suboptimal. This observation is corroborated by Fig. 10, which plots the

average throughput change as a function of α relative to the no-app case.

We attribute the widespread dominance of WOM (and the lesser success of the other two

policies) to the fact that it is possible to achieve mobile throughput optimality (i.e., pm = 1)

in many experiments, even when prioritizing walk-ins. As long as the full participation of
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mobiles can be guaranteed, the problem of maximizing the overall throughput reduces to

maximizing that of walk-ins, which is achieved through WOM. As (i) faster service, (ii) a

reduction in the share of customers that are walk-ins (i.e., increased adoption rate), and

(iii) more mobile patience all tend to reduce the effect of the negative externality imposed

on mobiles by the prioritization of walk-ins, the number of instances in which WOM is

optimal increases with (i) µ2 (and µ1/µ2), (ii) α, and (iii) Tmax
m (Fig. 9). On the other

hand, these instances become more rare as Tmax
w /Tmax

m increases: when the ratio of walk-in

patience to mobile patience grows—and the latter is not high enough to guarantee pm = 1

under WOM—the alternative policies (i.e., MWO and WMO) tend to become more favor-

able. We can explain this tendency by observing that while prioritizing mobiles can lead

to both a mobile throughput gain and a walk-in throughput loss, as Tmax
w /Tmax

m grows, it

becomes increasingly likely that the gain will outweigh the loss.

The discussion above illustrates the conditions that make full mobile participation favor-

able even under WOM. In the absence of these conditions, giving the mobiles top priority

can yield the opposite: no participation of mobiles (pm = 0), leading to a significant loss in

throughput compared to MWO, WMO, and even the single-channel system.
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7. Conclusion

This paper utilizes queueing-theoretic techniques to evaluate single- and two-server omni-

channel service models in the presence of non-strategic customers with infinite patience

levels and strategic customers with finite patience levels. We highlight the importance of

prioritization for an efficient transition to an omni-channel service with a finitely-patient

customer base. The throughput-optimal policy choice is highly dependent on the oper-

ational parameters and on customer patience levels; implementing a wrong policy can

yield a significant loss in throughput and, hence, profitability. We uncover a non-negligible

number of settings where offering the app under any of the policies we have studied (i.e.,

Pareto optimal in the setting where customers are infinitely patient) would be detrimen-

tal. Such settings arise in the single- and two-server models (and in the former case,

even when patience levels are heterogeneous). Such settings also exist (at least in single-

server models) when customers exhibit heterogeneous patience levels within each class (see

Appendix EC.4.7).

We believe that our contributions in this paper open up ample room for future work

in game-theoretic queueing models of omni-channel services. First, our results implicitly

feature the occasional existence of throughput-welfare trade-offs, suggesting a rich space of

problems that would emerge from introducing a (channel-specific) pricing design lever and

the objective of profit maximization. Second, mobile apps are beginning to provide delay

estimates to customers, suggesting a real-world need for future work to explore models like

those in this paper that assume different information structures. As mentioned in §2, Roet-

Green and Yuan have already begun an exploration of this space, and we are optimistic

that a detailed examination of a richer model incorporating features of both our models

and theirs can shed further light on the dynamics of omni-channel services. Third, in

reality, mobiles will often place an order before they are present at the service facility; by

incorporating their travel time into our model (possibly incorporating ideas from Baron

et al. 2020, Hassin and Roet-Green 2020), we may extract additional insights.

Additionally, future work on customers with finite patience could introduce dynamic

(state-dependent) policies and new techniques for analyzing their performance and the

equilibria they yield. We are particularly curious about how alternate information struc-

tures and dynamic policies can avoid or mitigate the potential harm associated with omni-

channel services that this paper highlights. We could also extend our model by endogenizing
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the adoption rate α. One approach would be to leverage our expected sojourn time expres-

sions to incorporate strategic channel choice behavior (as in Baron et al. (2021) and Ghosh

et al. (2020)) in our models; we suspect this modeling change will suppress adoption rates

under WOM and WM, thus making these policies less attractive.

Finally, the blend of queueing-theoretic methods that we have employed in evaluating

expected sojourn times may have implications beyond omni-channel services. Specifically,

our performance evaluation methods may be seen as the first steps in analyzing a rich

space of queueing network models where some—but not all—service stations are buffered.
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Prioritization in the Presence of Self-ordering Opportunities
in Omni-channel Services—Technical Appendices.

The following six technical appendices are provided as a supplement the body of the paper

“Prioritization in the Presence of Self-ordering Opportunities in Omni-channel Services.”

First, Appendix EC.1 provides the supplemental results and proofs while Appendix EC.2

provides proofs of the results presented throughout the body of the paper. Second, several

quantities discussed in the paper (such as a variety of limiting probability distributions)

appear in formulas of the key results, but details on how to compute these quantities (either

exactly or approximately) are omitted from the main body of the paper. A discussion on

how to obtain these values exactly or approximately is provided in Appendix EC.3. Third,

Appendix EC.4 provides a discussion of mixed strategies on the part of walk-ins. Building

off of this discussion, this appendix also provides the analysis of the case where patience

levels are heterogeneous. Next, Appendix EC.5 presents tables of results associated with

the pruned full factorial experiment presented in Section 6 of the body of the paper. Finally,

in the interest of aiding the reader, we provide a near-exhaustive table of the notation used

throughout the body of the paper and/or these appendices in Appendix EC.6.

EC.1. Supplemental Results
EC.1.1. Allocations under Pareto Generators and Proofs

The following proposition provides the allocations under Pareto generators (MWO, WMO,

and WOM in the single-server model; MW, FCFS, and WM in the two-server model).

Proposition EC. 1 We summarize the class-specific mean sojourn times as follows:

(a) for the single-server model:

aMWO =

(
µ2 (µ1+µ2−Λ)

(µ2−λm) (µ1µ2−µ1Λ−µ2λw)
,

1

µ2−λm

)
(EC.1)

aWMO =

(
µ3
2+µ2

2 (µ1−Λ)−µ2λm (µ1−λw)+µ1Λλm

µ2 (µ2−λm) (µ1µ2−µ1Λ−µ2λw)
,

µ2+λw

µ2 (µ2−λm)

)
(EC.2)

aWOM =

(
µ1+µ2−λw

µ1µ2− (µ1+µ2)λw
,

µ2 (µ
2
1+µ2λw)

(µ1µ2−λw (µ1+µ2)) (µ1µ2−µ1Λ−µ2λw)

)
(EC.3)

(b) for the two-server model:

aMW =

(
µ2

(µ2−Λ)(µ2−λm)
,

1

µ2−λm

)
(EC.4)

aFCFS =

(
µ1+µ2−λw−Λ

(µ1−λw)(µ2−Λ)
,

1

µ2−Λ

)
(EC.5)

aWM =

(
µ1+µ2− 2λw

(µ1−λw)(µ2−λw)
,

µ2

(µ2−Λ)(µ2−λw)

)
(EC.6)
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Proofs of Proposition EC. 1

Proof for MWO (Eq. (EC.1)). We can view a system under MWO as operating like a

two-class M/G/1 system under preemptive-priority scheduling with class-specific service

requirement distributions. Under MWO the mobiles (resp. walk-ins) form the high-priority

(resp. low-priority) class, and are conventionally designated as class 1 (resp. class 2). There-

fore, we can obtain the desired sojourn times by using the formula (see Chapter 32.2 in

Harchol-Balter (2013)),

E[Tk] =
E [Sk]

1−
∑k−1

i=1 ρi
+

∑k
i=1 ρiE [S2

i ]/(2E [Si])(
1−

∑k−1
i=1 ρi

)(
1−

∑k
i=1 ρi

) , (EC.7)

where E[Tk] is the sojourn time associated with class k, [Si] and E [S2
i ] are the first and

second moments of the class i service requirement distribution, and ρi = λiE [Si] is the

contribution to the load due to class i (with λi the class i arrival rate).

By observing that under MWO mobiles (resp. walk-ins) require service only at Stage 2

(resp. both Stages 1 and 2), we see that their service requirements are distributed Exp(µ2)

(resp., like the sum of an Exp(µ1) and an independent Exp(µ2) random variable). It then

follows that

λ1 = λw, E[S1] =
1

µ2

, E[S2
1 ] =

2

µ2
2

, λ2 = λm, E[S2] =
1

µ2

+
1

µ1

, E[S2
2 ] =

2

µ1µ2

+
2

µ2
1

+
2

µ2
2

. (EC.8)

Substituting the values given in display (EC.8) into (EC.7) readily yields (EC.1).

Proof for WMO (Eq. (EC.2)). Under WMO, once a walk-in finishes service in Stage 1,

they will be served with the highest priority and without interruption in Stage 2 until his

service is completed; i.e., the mean sojourn time of walk-ins in Stage 2 is 1/µ2. Therefore,

we can represent the walk-in mean sojourn time as:

EWMO[Tw] =EWMO[Tw,1] +
1

µ2

, (EC.9)

where Tw,1 represents a walk-in’s sojourn time in Stage 1. A walk-in’s Stage 1 sojourn time

consists of a busy period with initial work equal to the amount of work the walk-in finds

in the system (at both stages) upon its arrival, W , in addition to its own contribution to

work in Stage 1—distributed Exp(µ1)—and interruptions due to mobile arrivals (which

arrive according to a Poisson process with rate λm, where each interruption contributes an

average of 1/µ2 additional work). Hence, standard busy period analysis yields

EWMO[Tw,1] =
E[W ] + 1/µ1

1−λm/µ2

. (EC.10)
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We proceed to determine E[W ]. First observe that W has the same distribution under any

work-conserving service policy, and therefore corresponds to the distribution of the sojourn

time in queue, TQ, associated with an M/G/1 system under first-come-first-serve scheduling

with two independent arrival streams: the first (resp. second) stream corresponds to that

of walk-ins (resp. mobiles) in the original setting and has an arrival rate of λw (resp. λm);

meanwhile, service requirements are distributed like Exp(µ1)+Exp(µ2) (resp. Exp(µ2)). By

“merging” these arrival streams, we find that this M/G/1 system has a total arrival rate of

Λ= λw +λm, with the first and second moments of the service requirement distribution—

denoted by E[S] and E [S2], respectively—given by

E[S] =
λw

Λ

(
1

µ1

+
1

µ2

)
+
λm

Λ

(
1

µ2

)
, E

[
S2
]
=
λw

Λ

(
2

µ2
2
+

2

µ1
2
+

2

µ1µ2

)
+
λm

Λ

(
2

µ2
2

)
.

(EC.11)

Letting ρ ≡ ΛE[S] denote the load associated with this M/G/1 system, the Pollaczek-

Khinchine formula yields the following:

E[W ] =E[TQ] =
ρ

1− ρ
E [S2]

2E[S]
. (EC.12)

Substituting the equations in display (EC.11) into Eq. (EC.12), and the result into

Eq. (EC.9), we obtain the EWMO[Tw] expression in Eq. (EC.2) as desired.

Now, we derive the mobiles mean sojourn time. Under WMO, when a mobile begins

service, we know that there are no walk-ins currently at Stage 2, and hence the mobile’s

service cannot be interrupted. Let EWMO[Nm,Q] and EWMO[Tm,Q] denote the mean queue

length (ignoring the server) and mean sojourn time in queue (ignoring the service time)

associated with mobiles. We have:

EWMO[Tm,Q] =EWMO[Time to serve orders in queue]

+PWMO(M arrival finds server busy with W or M) ·EWMO[Time to finish current service]

=EWMO[Nm,Q] ·
1

µ2

+PWMO(M arrival finds server busy with W or M) · 1
µ2

=
λm

µ2

·EWMO[Tm,Q] +
Λ

µ2

· 1
µ2

(according to the Little’s law.) (EC.13)

From Eq. (EC.13), we derive EWMO[Tm,Q] = Λ/(µ2 (µ2−λm)); using EWMO[Tm] =

EWMO[Tm,Q] + 1/µ2, we derive the EWMO[Tm] expression in Eq. (EC.2).

Proof for WOM (Eq. (EC.3)). WOM prioritizes the walk-ins in both stages as opposed

to MWO, which prioritizes the mobiles over all walk-ins. Therefore, applying the same
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procedure presented in the case of MWO—with the modification that walk-ins are now

designated as class 1 and mobiles as class 2—yields the desired result.

Viewing the two-server model as a tandem Jackson network, we see that Stage 1 is

an M/M/1 queue with only walk-in customers. We observe that Stage 2 receives two

independent arrival streams: new Ws which are former Os departing Stage 1 (with rate

λw) and external M arrivals (with rate µ2). The former arrival stream is also the departure

process of an M/M/1, and hence, by Burke’s Theorem (see Harchol-Balter (2013) Ch.

16.3), it constitutes a Poisson process, while the latter arrival stream is a Poisson process

by assumption. As the two arrival streams are independent, the resulting merged process—

and hence, the overall arrival process to Stage 2—is a Poisson process with rate λw + λm.

It follows that Stage 2 is also an M/M/1 queue.

MW Policy: Under MW, mobiles have the higher priority in Stage 2, so they experience

an M/M/1 with arrival rate λm and service rate µ2, and hence EMW[Tm] = 1/(µ2 − λm).

Meanwhile, we determine the mean sojourn time of walk-ins under WM by summing their

Stage 1 mean sojourn time (which is that of an M/M/1 system with arrival rate λw and

service rate µ1) with their Stage 2 mean sojourn time; this latter mean sojourn time is

obtained from Eq. (EC.7), by noting that under WM walk-ins have lower priority than

mobiles in Stage 2. Simplifying the result yields the following:

EMW[Tw] =
1

µ1−λw
+

1

(µ2−Λ)(1−λm/µ2)
=

µ2

(µ2−Λ)(µ2−λm)
.

WM Policy: Under WM, walk-ins have the higher priority in Stage 2, so they experience

two successive M/M/1 sojourn times (one for each stage); summing the resulting mean

sojourn times yields the following:

EWM[Tw] =
1

µ1−λw
+

1

µ2−λw
=

µ1+µ2− 2λw

(µ1−λw)(µ2−λw)
.

Meanwhile, as mobiles have lower priority than walk-ins in Stage 2 underWM, we determine

the mean mobile sojourn time by applying Eq. (EC.7):

EWM[Tm] =
1

(µ2−Λ)(1−λw/µ2)
=

µ2

(µ2−Λ)(µ2−λw)
.

FCFS Policy: Under FCFS, both walk-ins and mobiles have the same mean sojourn time

at Stage 2, so we have EFCFS[Tm] = 1/(µ2−Λ) and

EFCFS[Tw] =
1

µ1−λw
+

1

µ2−Λ
=
µ1+µ2−λw−Λ

(µ1−λw)(µ2−Λ)
.
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EC.1.2. The Statement and Proof of the Deconditioning Lemma

The following lemma—which we call the deconditioning lemma—is helpful in proving a

number of this paper’s propositions:

Lemma EC. 1 For any policy P, we have

EP
(b,pm)[Tw|N1 = i] =

∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2 = j]πP

(b,pm)(i, j)

/
∞∑
j=0

πP
(b,pm)(i, j)

=

∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2,w = j]ϕP

(b,pm)(i, j)

/
∞∑
j=0

ϕP
(b,pm)(i, j).

Proof. The first equality follows from “deconditioning” on N2 = j—along with the implicit

use of the PASTA (Poisson Arrivals See Time Averages) property—as follows:

EP
(b,pm)

[Tw|N1 = i] =

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]PP
(b,pm)

(N2 = j|N1 = i)

=

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]PP
(b,pm)

(N1 = i,N2 = j)

/
PP
(b,pm)

(N1 = i)

=

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]PP
(b,pm)

(N1 = i,N2 = j)

/
∞∑

j=0

PP
(b,pm)

(N1 = i,N2 = j)

=

∞∑
j=0

EP
(b,pm)

[Tw|N1 = i,N2 = j]πP
(b,pm)

(i, j)

/
∞∑

j=0

πP
(b,pm)

(i, j).

The second equality follows in a similar fashion by deconditioning on N2,w = j:

EP
(b,pm)[Tw|N1 = i] =

∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2,w = j]PP

(b,pm)(N2,w = j|N1 = i)

=
∞∑
j=0

EP
(b,pm)[Tw|N1 = i,N2,w = j]ϕP

(b,pm)(i, j)

/
∞∑
j=0

ϕP
(b,pm)(i, j).

EC.2. Proofs of Results

Here we provide the proofs of the Propositions and Theorems presented in body of the

paper.

EC.2.1. Proof of Proposition 1

Proof outline. We first prove the set {MWO,WMO,WOM} forms a set of Pareto gen-

erators for the single-server model in section EC.2.1.1, then we proceed to prove the

set {MW,WM} also forms a set of Pareto generators for the two-server model in sec-

tion EC.2.1.2.
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EC.2.1.1. Proof for the single-server model

Preliminaries. To prove the statement, it is sufficient to show that the achiev-

able region O = conv{aMWO, aWMO, aWOM} + cone{(0,1), (1,0)} ⊆ R2 is equivalent to the

unbounded convex polygon defined by all pairs aP=(EP[Tw],EP[Tm]) satisfying the following

four inequality constraints (equivalently, all such points lying in the intersection of the four

half-planes defined by these affine inequality constraints), which correspond (at equality) to

the rays and line segments, which together make up the boundary of the achievable region,

bd(O), as captured by the example illustrated in Fig. 3a (from leftmost to rightmost):

1. EP[Tw]≥EWOM[Tw]

2. EP[Tm]≥
(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

EWMO[Tm]EWOM[Tw]−EWMO[Tw]EWOM[Tm]

EWOM[Tw]−EWMO[Tw]

3. EP[Tm]≥−
λw

λm
EP[Tw] +

Λ

λm
EWMO[T ]

4. EP[Tm]≥EMWO[Tm]

The first and fourth inequalities are readily apparent from the formulation of O given

above, with the second corresponding to the line that runs through both aWOM and aWMO,

and the third—which corresponds to the line running through aWMO and aMWO—following

directly from the fact that for all P ∈ P, we have EP[T ] ≥ EMWO[T ], where the overall

mean sojourn time is given by EP[T ] =
(
λwEP[Tw] +λmEP[Tm]

)
/Λ (see Proposition 3). It

can be verified in a straightforward manner that—consistent with what we observe from

Fig. 3a—the line corresponding to the first inequality is vertical (i.e., parallel to the E[Tm]-

axis), those corresponding to the second and third inequalities are negatively sloped (with

the second steeper than the third), while that corresponding to the forth is horizontal

(i.e., parallel to the E[Tw]-axis). Moreover, the first and second lines intersect at aWOM,

the second and third at aWMO, and the last two at aMWO, establishing that O will always

qualitatively resemble that in Fig. 3a, although the locations of—and thus the angles and

distances between—aWOM, aWMO, and aMWO are parameter-dependent. If we can show that

these four inequalities define the achievable region, then we have proved the first claim of

the theorem, and the second claim follows from straightforward observation that the only

Pareto allocations are those that in addition to satisfying all four inequalities, satisfy the

second and/or third with equality.

It remains only to prove that the constraints defined by these four inequalities are both

necessary (i.e., for any policy P∈P, aP satisfies these four inequalities) and sufficient (i.e.,
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any allocation a satisfying these four inequalities can be achieved by implementing some

feasible policy P ∈ P, or equivalently for all such a there exists P ∈ P such that a = aP)

in order to establish that an allocation a∈O. In referring to these four, we use the terms

inequality and constraint interchangeably.

Proof for sufficiency. We first address the case where a lies on one of the four lines

corresponding to the inequalities that we claim define the achievable region (i.e., if a

satisfies one or more of these inequalities strictly). If a lies on the line corresponding to the

first inequality, then we can achieve allocation a= (EWOM[Tw], rm) for some rm >EWOM[Tm]

by implementing a modification of WOM where we slow down the rate at which we serve

mobiles (but not walk-ins) at Stage 2 from µ2 to some specific µ′
2 < µ2 that would cause

the mean sojourn time of mobiles to rise from EWOM[Tm] to rm while keeping that of

walk-ins fixed at EWOM[Tw]. Such a a value of µ′
2 must exist as the mean sojourn time

of walk-ins under such modifications of WOM will continuously vary over the interval

(EWOM[Tm],∞) as we vary the new service rate of walk-ins at Stage 2 over the interval

(λm/(1− λw/µ1 − λw/µ2), µ2). If a lies on the line corresponding to the second or third

inequalities, i.e., if a ∈ conv{aWOM, aWMO} ∩ conv{aWMO, aMWO}, then we can achieve this

allocation by implementing ⟨WOM,WMO⟩(θ) or ⟨WMO,MWO⟩(θ) for the appropriately

chosen θ. Next, see that if a lies on the line corresponding to the fourth inequality, then

a= (rw,EMWO[Tm]) can be achieved by implementing a modification of MWO analogous to

the modification of WMO considered for a lying on the line corresponding to the second

inequality; in this case, we slow down the service rate of walk-ins—rather than that of

mobiles—at Stage 2.

We now address the remaining case where a satisfies all four inequalities, but does not

satisfy any of them strictly. We consider two sub-cases: first, if a lies in (the interior or

boundary) of the triangle conv{aWOM, aWMO, aMWO} (shaded in red in Fig. EC.1), then we

can achieve a by implementing a policy that randomly uses WOM, WMO, and MWO

at the start of each busy period with the appropriate probabilities. The only case that

remains is when a satisfies all of the inequalities and also lies above and to the right of

the line segment connecting WOM and MWO. In this case, as shown in Fig. EC.1, we can

take achieve a by implementing a policy that randomizes between two specific policies,

P1 and P4 with appropriate probabilities. These two policies are chosen so that they yield

allocations aP1 and aP4 that uniquely satisfy the following: (i) aP1 and aP4 satisfy the
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first and fourth inequalities with equality, respectively, (ii) the line segment connecting

aP1 and aP4 is parallel to the line segment connecting aWOM to aMWO, and (iii) a lies on

the aforementioned line segment. Recall from the preceding paragraph that any policy,

such as P1 (resp. P4), that satisfies the first (resp. fourth) inequality with equality can be

implemented by modifying WOM (resp. MWO) through a service rate reduction for mobiles

(resp. walk-ins) at Stage 2. Note that in this case, while we can still implement all of the

policies {⟨P1,P4⟩(θ) : θ ∈ [0,1]}, it may not be the case that a⟨P1,P4⟩(θ) = θaP1 + (1− θ)aP4,

as P1 and P4 are not work-conserving. Nevertheless, there must exist some value of θ ∈

(0,1) for which a= a⟨P1,P4⟩(θ) (for P1 and P4 chosen appropriately) because {a⟨P1,P4⟩(θ) : θ ∈

(0,1)}= {θaP1 +(1− θ)aP4 : θ ∈ (0,1)}. This completes the proof that the four inequalities

provide constraints on allocations a, that are sufficient for establishing that a∈O.

Proof for necessity. We proceed by showing that for any a∈O (or equivalently, for any

P∈P), each of the four constraints must hold. Addressing the first constraint, observe that

WOM achieves the minimum possible mean walk-in sojourn time, as this policy strictly pri-

oritizes walk-ins over mobiles, while also prioritizing those walk-ins with the least remaining

expected service requirements (the latter follows from the fact that Ws are prioritized

over Os), and hence, the first constraint must hold. We can address the fourth constraint

E[Tw]

E[Tm]

MWO
·WMO

·

WOM ·

·

·

P1

P4

· a

Figure EC.1 Allocations lying in the red triangle can be implemented by considering a probabilistic mixture of

the WOM, WMO, and MWO policies, while allocations within the blue region, such as the example a

illustrated here, all lie on a line that runs parallel to that connecting aWOM and aMWO and intersects

the vertical and horizontal boundaries at a pair of allocations that can be implemented through the

policies P1 and P4. Implementing an appropriate random mixture of these two policies will allow for

achieving allocation a.
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in a similar manner: MWO achieves the minimum possible mean mobile sojourn time, so

the fourth constraint must also hold. Meanwhile, as alluded to earlier in this proof, the

necessity of the third constraint follows directly from Proposition 3, which establishes that

for all P ∈ P, we have EP[T ]≥ EMWO[T ], where the overall mean sojourn time is given by

EP[T ] =
(
λwEP[Tw] +λmEP[Tm]

)
/Λ.

We now turn to addressing the only remaining item: the necessity of the second inequal-

ity:

EP[Tm]≥
(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

EWMO[Tm]EWOM[Tw]−EWMO[Tw]EWOM[Tm]

EWOM[Tw]−EWMO[Tw]
.

We begin by examining the overall mean work in the system under P, which we denote by

EP[W ]. Clearly, each W and M task contributes an average of 1/µ2 work each. Meanwhile,

each O task contributes an average of 1/µ1 work by itself ; if we also account for the W task

that must be served after serving each O task (in order to serve a walk-in in its entirety),

we can view each O currently in the system as contributing an average of 1/µ1 + 1/µ2

work to the system. Before using the observations above to derive the total work in the

system, we recall that N1 and N2 denote the number of customers at Stages 1 (all of which

are walk-ins) and 2, respectively; we further let Nw, N2,w, and Nm denote the number of

walk-in customers in the system as a whole, the number of walk-ins at Stage 2 specifically,

and the number of mobile customers (all of whom are at Stage 2), respectively, and note

that N1+N2,w =Nw, while Nm+N2,w =N2. We can now decompose EP[W ] as follows:

EP[W ] =

(
1

µ1

+
1

µ2

)
EP[N1] +

(
1

µ2

)
EP[N2,w] +

(
1

µ2

)
EP[Nm]

=

(
1

µ1

+
1

µ2

)
EP[Nw]−

(
1

µ1

)
EP[N2,w] +

(
1

µ2

)
EP[Nm] (EC.14)

Applying Little’s Law to Eq. (EC.14), and rearranging terms, we have:

EP[Tm] =−
(
ρw
ρm

)
EP[Tw] +

(
1

ρm

)
EP[W ] +

(
1

µ1ρm

)
EP[N2,w], (EC.15)

where ρw ≡ λw(1/µ1 + 1/µ2) and ρm ≡ λm/µ2 are the fractions of the time spent serving

walk-ins and mobiles, respectively (and hence, 1− ρw− ρm is the fraction of time in which

the server is idle).
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We rewrite Eq. (EC.15) in terms of EWOM[Tw], EWOM[Tm], EWMO[Tw], EWMO[Tm] (all of

which are provided explicitly in Proposition 3), and use the resulting expression to bound

EP[Tm] as follows:

EP[Tm] =

(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

(
1

ρm

)
EP[W ] +

(
1

µ1ρm

)
EP[N2,w]

≥
(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

(
1

ρm

)
EWOM[W ] +

(
1

µ1ρm

)
EWOM[N2,w]

(EC.16)

=

(
EWOM[Tm]−EWMO[Tm]

EWOM[Tw]−EWMO[Tw]

)
EP[Tw] +

EWMO[Tm]EWOM[Tw]−EWMO[Tw]EWOM[Tm]

EWOM[Tw]−EWMO[Tw]
.

(EC.17)

Hence, EP[Tm] is bounded below by the expression to the right of the equals sign in

Eq. (EC.17), which yields precisely the second constraint, and so it only remains to justify

Ineq. (EC.16) and Eq. (EC.17). We justify Ineq. (EC.16) by showing that minP∈P EP[W ] =

EWOM[W ] and minP∈P EP[N2,w] =EWOM[N2,w]. Moreover, we provide explicit expressions for

these two expectations; Eq. (EC.17) follows from these expressions directly after straight-

forward (if lengthy) calculations.

We first show that minP∈P EP[W ] = EWOM[W ]. This follows directly from the fact that

WOM is work-conserving; indeed, EP[W ] must attain its minimum value under all work-

conserving policies P ∈P. We proceed to compute EWOM[W ], noting that this is the same

as the time average work under any work-conserving policy. In fact, we can view EWOM[W ]

as the average work in an ordinary M/G/1 system (under any work-conserving scheduling

policy) with two streams of Poisson arrivals, exactly like those described in the proof of

Eq. (EC.2) in Appendix EC.1.1; i.e., the first (resp. second) stream corresponds to that

of walk-ins (resp. mobiles) in the original setting and has an arrival rate of λw (resp. λm);

meanwhile, service requirements are distributed like Exp(µ1) + Exp(µ2) (resp. Exp(µ2)),

and so by standard M/G/1 analysis, we have

EWOM[W ] =

(
λw

(
1

µ2
1

+
1

µ2
2

+
1

µ1µ2

)
+
ρm
µ2

)/
(1− ρw− ρm). (EC.18)

Finally, we justify minP∈P EP[N2,w] = EWOM[N2,w]. In fact EP[N2,w] is minimized by any

policy P ∈ P that give Ws priority over all other tasks. Such policies (including WOM),

allow only one W task to be in the system at any given time, as they would not serve an
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O (allowing it to become a W) if there is already a W present in the system. Hence, under

such policies, N2,w = 1 whenever there is a W in service and N2,w = 0 otherwise. Since each

W spends the minimum average amount of time possible (i.e., 1/µ2) in service, the claim

is justified. Furthermore, Ws arrive to the system at the same rate at which Os complete

service, and since the system is throughput-optimal, we know that the arrival rate of Ws

is λw. Meanwhile, we have already argued that under WOM and the other W-prioritizing

policies, Ws spend an average of 1/µ2 time in the system, and so by Little’s law, we have

EWOM[N2,w] = λw/µ2.

With the explicit computation of EWOM[W ] as given in Eq. (EC.18) and the fact that we

have EWOM[N2,w] = λw/µ2, we can readily verify Eq. (EC.17), which completes the proof.

EC.2.1.2. Proof for the two-server model

We follow the same approach that we used in proving the statement for single-server model

(see Appendix EC.2.1.1); we opt for less expository precision and shorter justifications in

the interest of brevity. The achievable region O = conv{aMW, aWM}+ cone{(0,1), (1,0)} ⊆

R2 (for allocations in the two-server model) is equivalent the region expressed by the

conjunction of the following inequalities (also referred to as constraints):

1. EP[Tw]≥EWM[Tw]

2. EP[Tm]≥
(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

EMW[Tm]EWM[Tw]−EMW[Tw]EWM[Tm]

EWM[Tw]−EMW[Tw]
3. EP[Tm]≥EMW[Tm]

Note that the allocation of FCFS policy, aFCFS, is located on the line segment generated

by aWM and aMW. Applying an analogous argument to that deployed in Appendix EC.2.1.1,

we can deduce that any allocation satisfying these three constraints can be implemented

by a feasible two-server prioritization policy P ∈ P. It remains to show that these three

constraints are also necessary.

It is straightforward to see the first and the third inequalities are satisfied by any service

policy since WM and MW achieve the minimum possible mean sojourn time for walk-ins

or mobiles respectively. It remains only to prove the second inequality for all P∈P.

For any given set of parameters λw, λm, µ1, and µ2 satisfying Assumption 1(b), it follows

from Burke’s Theorem (see Section 16.3 in Harchol-Balter (2013)) that the departure

process at Stage 1 (and hence the arrival rate of walk-ins to Stage 2) is a Poisson process

with rate χw = λw. Hence, we focus on Stage 2, which we view as an M/M/1 system with
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arrival rate Λ= λw+λm and service rate µ2. For any two-server prioritization policy P∈P,

we can decompose EP[W2], the mean work at Stage 2, and apply Little’s Law to obtain the

following:

EP[W2] =

(
1

µ2

)
EP[N2,w] +

(
1

µ2

)
EP[Nm]

=

(
λw

µ2

)(
EP[Tw]−

1

µ1−λw

)
+

(
λm

µ2

)
EP[Tm]. (EC.19)

We rearrange terms and write Eq. (EC.19) in terms of EWM[Tw], EWM[Tm], EMW[Tw], EMW[Tm]

(all of which are provided explicitly in Proposition EC. 1 (b)), and use the resulting

expression to bound EP[Tm] as follows:

EP[Tm] =−
(
λw

λm

)
EP[Tw] +

(
µ2

λm

)
EP[W2] +

λw

λm(µ1−λw)
(EC.20)

=

(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

(
µ2

λm

)
EP[W2] +

λw

λm(µ1−λw)

≥
(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

(
µ2

λm

)
EWM[W2] +

λw

λm(µ1−λw)
(EC.21)

=

(
EWM[Tm]−EMW[Tm]

EWM[Tw]−EMW[Tw]

)
EP[Tw] +

EMW[Tm]EWM[Tw]−EMW[Tw]EWM[Tm]

EWM[Tw]−EMW[Tw]
. (EC.22)

Hence, EP[Tm] is bounded below by the expression to the right of the equals sign in

Eq. (EC.22), which yields precisely the second constraint, and so it only remains to justify

Ineq. (EC.21) and Eq. (EC.22). We justify Ineq. (EC.21) by showing that minP∈P EP[W2] =

EWM[W2]. Moreover, we provide an explicit expression for EWM[W2], from which we can

obtain Eq. (EC.22) directly after straightforward (if lengthy) calculations.

We first show that minP∈P EP[W2] = EWM[W2]. This follows directly from the fact that

WM is work-conserving; indeed, EP[W2] must attain its minimum value under all work-

conserving policies P ∈ P. Then we proceed to determine EWM[W2]. Once more, we view

Stage 2 as an M/M/1 queueing system, but this time we are considering the system under

WM; leveraging the fact that WM is a work-conserving policy we can apply standard

M/M/1 analysis together with Little’s Law to obtain the following:

EWM[W2] =

(
1

µ2

)
EWM[N2] =

Λ

µ2(µ2−Λ)
. (EC.23)

With the explicit computation of EWM[W2] as given in Eq. (EC.23), we can readily verify

Eq. (EC.22), which completes the proof.
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EC.2.2. Proof of Proposition 3

In the single-server model, under MWO, mobiles experience an M/M/1 queue as they

have the highest priority, while walk-ins will be preempted by mobile arrivals. Meanwhile,

under WOM, walk-ins experience an M/G/1 queue with the highest priority, while mobiles

are preempted by walk-in arrivals (to Stage 1). Since customers at Stage 2—which are

(expected to be) closer to service completion than those at Stage 1—receive the highest

priority under both MWO and WMO, we have the following lowest overall mean sojourn

time:

EMWO[T ] =EMWO[Tw]
λw

Λ
+EMWO[Tm]

λm

Λ
=EWMO[Tw]

λw

Λ
+EWMO[Tm]

λm

Λ
=EWMO[T ]

(EC.24)

Replacing EMWO[Tw] and EMWO[Tm] (or EWMO[Tw] and EWMO[Tm]) in Eq. (EC.24) results in

the exact formula of the lowest overall mean sojourn time.

In the two-server model, for any Pareto optimal policy, the statement directly follows from

Eq. (EC.20) after rearranging terms.

EC.2.3. Proof of Proposition 4(a)

Let (b, pm) be an equilibrium and assume by way of contradiction that b >B. If we can show

that EP
(b,pm)

[Tw|N1 = b− 1] ≥ b/µ1 + 1/µ2 > Tmax
w holds, the proof is complete as we have

contradicted the equilibrium conditions. The first inequality follows from the fact that the

assumption on P dictates that a walk-in that sees N1 = b−1 upon arrival must wait behind

b− 1 other walk-ins at Stage 1, in addition to their own service at each stage. The second

inequality follows from the definition of B, i.e., B ≡ µ1(T
max
w − 1/µ2), and straightforward

arithmetic.

EC.2.4. Proof of Proposition 4(b)

First we address the cases of MWO and MW in the single- and two-server settings, respec-

tively. In both cases, mobiles have preemptive priority over all others, and so mobiles expe-

rience an M/M/1 system with arrival rate pmλm and service rate µ2. Therefore, EMWO
(b,pm)

[Tm] =

EMW
(b,pm)

[Tm] = 1/(µ2− pmλm), which is clearly increasing in the arrival rate pmλm, and hence

in pm.

Next, we examine the case of WOM in the single-server model. We observe that the

arrival process of Ws to Stage 2 is the same as the departure process of Os at Stage 1, and
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since these have priority over mobiles and b is fixed, this arrival process does not depend

on pmλm. Hence, if we examine only mobiles, we note that they experience a queue with

Poisson arrivals and an exponential service process with (exogenous) Markov-modulated

service interruptions. In such a system, the higher the arrival rate, the longer the sojourn

time, so the desired result holds.

The case of WM and FCFS in the two-server model is similar to that of WOM in the

single-server model. As in that case, the arrival process of Ws to Stage 2 does not depend

on pmλm, which again allows us to view mobiles as experiencing a queue that is a modi-

fied M/M/1 with (exogenous) Markov-modulated service interruptions. Again, the desired

result follows.

Finally, we consider the case of WMO in the single-server model. Unlike the previous

cases, the arrival process of Ws to Stage 2 can depend on pmλm under WMO; so, the

same type of argument that we used for the previous cases does not suffice. Instead,

we consider the overall mean sojourn time, observing that EWMO
(b,pm)

[T ] = EMWO
(b,pm)

[T ]. This

observation follows from the fact that b and pm are fixed, which ensures that the evolution

of (N1,N2)—and hence N = N1 +N2—is the same under both policies. Naturally, E[N ]

is also the same under both policies, as is E[T ] (by Little’s Law). With this observation

in mind, we can break up these overall sojourn times into class-specific sojourn times,

yielding:

χw

X
EWMO

(b,pm)[Tw] +
χm

X
EWMO

(b,pm)[Tm] =
χw

X
EMWO

(b,pm)[Tw] +
χm

X
EMWO

(b,pm)[Tm], (EC.25)

where χw, χm, and χ can depend on one or more of λmpm, λw, µ1, µ2, and b, but do

not depend on the choice of MWO versus WMO (recall that we are not considering an

equilibrium, but a fixed value of b that is the same under both policies). From Eq. (EC.25),

we obtain:

EWMO
(b,pm)[Tm] =

χw

χm

(
EMWO

(b,pm)[Tw]−EWMO
(b,pm)[Tw]

)
+EMWO

(b,pm)[Tm]

=
χw

pmλm

(
1

µ2− pmλm
− 1

µ2

)
+

1

µ2− pmλm
=

χw +µ2

µ2(µ2− pmλm)
,

where the difference in the mean sojourn times for walk-ins under the two policies is

computed by considering only the sojourn times in Stage 2 (as those in Stage 1 are identical

for both policies): under MWO the walk-in sojourn time in Stage 2 is distributed like an
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M/M/1 busy period, while under WMO it would be a single exponential distributed service

time. From the computation above, together with the fact that χw is constant in pmλm, we

conclude that EWMO
(b,pm)

[Tm] is increasing in pmλm as desired.

EC.2.5. Proof of Proposition 5

Proof for MWO (Eq. (1))

Proof for mobiles. Since mobiles have preemptive priority over all others under MWO,

they will experience an M/M/1 queue with arrival rate pmλm and service rate µ2. Conse-

quently, we have EMWO
(b,pm)

[Tm] = 1/(µ2− pmλm).

Proof for walk-ins. We first find EMWO
(b,pm)

[Tw|N1 = i,N2 = j], and then apply Lemma 1.

Under MWO walk-ins are preempted by mobiles in both stages; therefore, we can think of

a walk-in’s sojourn time as being distributed as a particular kind of busy period. When a

walk-in joins the system seeing N1 = i other customers in Stage 1 and N2 = j customers

in Stage 2, the total work in the system—which is equal to the sojourn time of the newly

arrived walk-in under MWO assuming no further arrivals—consists of i+ 1 independent

Stage 1 services and i+j+1 independent Stage 2 services (as the customers in Stage 1 will

all also require service at Stage 2). However, the walk-in will be preempted by any mobile

arrivals, with each contributing its service requirement to the walk-in’s sojourn time. The

aforementioned preemptions occur according to a Poisson process with rate pmλm. Hence,

the standard busy period analysis—together with the fact that all services are i.i.d. and

consume Exp(µk) time at Stage k—yields:

EMWO
(b,pm)[Tw|N1 = i,N2 = j] =

(
i+1

µ1

+
i+ j+1

µ2

)/(
1− pmλm

µ2

)
=

(i+1)(µ1+µ2)+ jµ1

µ1(µ2− pmλm)
.

(EC.26)

Applying Lemma 1 to the above, we obtain the sojourn time of walk-ins:

EMWO
(b,pm)[Tw|N1 = i] =

(
∞∑
j=0

EMWO
(b,pm)[Tw|N1 = i,N2 = j]πMWO

(b,pm)(i, j)

)/
∞∑
j=0

πMWO
(b,pm)(i, j)

=

(
∞∑
j=0

(i+1)(µ1+µ2)+ jµ1

µ1(µ2− pmλm)
πMWO
(b,pm)(i, j)

)/
∞∑
j=0

πMWO
(b,pm)(i, j)

=

(
(i+1) (µ1+µ2)+µ1

∞∑
j=0

jπMWO
(b,pm)(i, j)

/
∞∑
j=0

πMWO
(b,pm)(i, j)

)/
(µ1 (µ2− pmλm))

=

((
µ2

µ1

+1

)
(i+1)+

∞∑
j=0

jπMWO
(b,pm)(i, j)

/
∞∑
j=0

πMWO
(b,pm)(i, j)

)
EMWO

(b,pm)[Tm].
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Proof for WMO (Eq. (2))

Proof for mobiles. We determine the sojourn time of mobiles under WMO, by seeing

that a mobile arriving to a system where N2 = j experiences a sojourn time consisting of

j + 1 services, each distributed Exp(µ2). We note that when a mobile enters the system

when Stage 2 is nonempty (i.e., when N2 = j ≥ 1), the job currently in service may be a

mobile or a walk-in, while all customers in the Stage 2 queue are mobiles. Which of these

is the case, however, is immaterial, however, as the remaining service requirement of the

customer in service is distributed Exp(µ2), regardless of whether they are an M or W. So

in any case, we have EWMO
(b,pm)

[Tm|N2 = j] = (j+1)/µ2.

Deconditioning on N2 = j, observing that the mobile-sojourn time is independent of N1

under WMO, and applying the PASTA property proves the claimed result for the mobiles

in Eq. (2):

EWMO
(b,pm)

[Tm] =

b∑
i=0

∞∑
j=0

EWMO
(b,pm)

[Tm|N1 = i,N2 = j]PWMO
(b,pm)

(N1 = i,N2 = j)

=

b∑
i=0

∞∑
j=0

EWMO
(b,pm)

[Tm|N2 = j]πWMO
(b,pm)

(i, j) =

b∑
i=0

∞∑
j=0

(
j+1

µ2

)
πWMO
(b,pm)

(i, j) =
1

µ2

(
1+

b∑
i=0

∞∑
j=0

jπWMO
(b,pm)

(i, j)

)
.

Proof for walk-ins. We follow an approach similar to that used to prove the walk-in’s

equation in Eq. (1). Under WMO, walk-ins are preempted by mobiles while they are in

Stage 1, but then they receive priority once they are in Stage 2. Consequently, since walk-

ins can complete Stage 1 service only when Stage 2 is unoccupied (i.e., when N2 = 0), upon

completion of Stage 1 service, they move to Stage 1, where they will be served uninterrupted

(as there are no other walk-ins already present at Stage 1, nor can they be preempted by

mobiles). Hence, the time a walk-in spends in Stage 1 is distributed like a busy period

(discussed below), while the time spent in Stage 2 is simply distributed Exp(µ2).

Now recall that under MWO and based on the busy period analysis, we expressed

EMWO
(b,pm)

[Tw|N1 = i,N2 = j] by the first equality in Eq. (EC.26).

By contrast underWMO, the initial workload (seen by a walk-in that arrives when N1 = i

and N2 = j) that contributes to possible preemptions by mobiles (from the perspective of

this walk-in) consists of one fewer Stage 2 service, since the walk-in’s own Stage 2 service is

“immune” to interruptions. The arrival rate and service requirement of these interruptions

remain unchanged. Hence, we have:

EWMO
(b,pm)[Tw|N1 = i,N2 = j] =

(
i+1

µ1

+
i+ j

µ2

)/(
1− pmλm

µ2

)
+

1

µ2

.
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The application of Lemma 1 again resembles that featured in the proof of Eq. (1), and

yields the claimed result for the walk-ins in Eq. (2).

Proof for WOM (Eq. (3))

Proof for walk-ins. Consider a walk-in that sees N1 = i Os in Stage 1 and N2,w = j Ws

in Stage 2 upon arrival in the system under WOM; the presence of any Ms in Stage 2

will not concern a walk-in as walk-ins have preemptive priority over mobiles under WOM.

Moreover, recall that j ∈ {0,1} as there can be at most one W in Stage 2 under WOM (as

soon as a walk-in advances to Stage 2, they receive uninterrupted service in Stage 2 until

completion). Since walk-ins cannot be preempted, it follows that the walk-in’s sojourn time

consists of i+ 1 services at each Stage, plus an additional service at Stage 2 if j = 1, so

that

EWOM
(b,pm)[Tw|N1 = i,N2,w = j] =

i+1

µ1

+
i+1

µ2

+
j

µ2

,

which results in the expression for the walk-ins in Eq. (3) by deconditioning on N2,w = j.

Proof for mobiles. We start by tagging a mobile arrival under WOM. Consider two

cases: (i) the tagged mobile arrives to an empty system with no other mobiles, and (ii)

the mobile arrives to a system with at least one other mobile present in Stage 2. These

cases are mutually exclusive and exhaustive and neither case stipulates anything regarding

the presence or absence of walk-ins at either stage at the arrival time. In case (i), the

tagged mobile’s sojourn time is clearly distributed like U + V , as the mobile will initiate

service after a duration of time distributed like U , after which its remaining sojourn time is

distributed like that of a mobile that arrives to an empty system (i.e., like V ). In case (ii)

the tagged mobile begins service precisely when there are no mobiles in the system that

arrived before it and no walk-ins in the system (at either stage); this will necessarily be a

point in time at which the last mobile to arrive before the tagged mobile has just completed

service. At this point, the remaining sojourn time of the tagged mobile is distributed like

that of a mobile that arrives to an empty system, i.e., it is distributed like V .

Now imagine that we view the “service time” of the tagged mobile—and in fact of any

mobile—as the time from when it first enters service until its completion time. That is, we

view the service time as consisting of the ordinary service time of the mobile in addition

to the service time of all walk-ins (originally Os and later Ws) that interrupt this service

time. Note that we cannot think of V as an ordinary busy period with Poisson arrivals,
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because walk-ins do not effectively arrive according to a Poisson arrival process (walk-

ins attempting to arrive when N1 = b will balk). Viewed like this, the system is always

“serving” mobiles (if there are any in the system), as the system is either actually serving

a mobile, or “serving” a mobile in the new view by actually serving walk-ins that are

interrupting the service of a mobile. Hence, the system can be viewed as an M/G/1 system

with i.i.d. service requirements distributed like V , however, the first mobile at the start of

each mobile busy period (i.e., mobiles that arrive to a system with no other mobiles) must

first wait for a duration of time distributed like U before service begins. Therefore, this

system is an M/G/1/setup system with arrivals following a Poisson process with rate pmλm,

services distributed like V , and setups distributed like U . It follows from the discussion of

such systems in Harchol-Balter (2013) (Section 27.3; Eq. (27.14)) that we have the claimed

result for mobiles in Eq. (3). The calculation of the moments of U and V are provided in

Appendix EC.3.3.

EC.2.6. Proof of Lemma 1

We consider a “tagged” walk-in who arrives to the system seeing N1 = i customers in

Stage 1 and N2 = j customers in Stage 2. Now consider the time interval I(i) from when

the tagged customer first arrived to Stage 1 (equivalently, arrived to the system) until

they first arrived to Stage 2 (equivalently, finished service at Stage 1). As our notation

suggests, I(i) depends on i. Observe that Y (i, j) must be the expected Stage 2 workload

at the end of I(i). The length of I(i) is distributed Erlang(i+1, µ1).

Now let K(i) (which depends on i) be the random quantity of mobile customers that

arrived during I(i). It follows that Stage 2 would have received i+K+1 arrivals—including

the tagged customer—during I(i): the i walk-ins who were already present in Stage 1, the

aforementioned K(i) mobiles, and the walk-in that arrived to Stage 2 at the end of I.
We will determine the distribution of K(i) shortly, but for now let us assume that

we are given that K(i) = k. Given this, let L(i, j, k) (which depends on i, j, and k) be

the number of customers present in Stage 2 at the end of I(i); the tagged customer will

find anywhere between 0 and i + j + k other customers in Stage 2 depending on the

number of Stage 2 service completions during I(i); so, L(i, j, k) ∈ {1,2, . . . , i+ j + k+1}.
Moreover, note that Y (i, j) is the expectation of the sum of L(i, j, k) independent service

requirements, S1, S2, . . ., each of which is distributed Exp(µ2). In order to compute Y (i, j),

we now turn to determining the distribution of L(i, j, k).
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Now observe that L(i, j, k) = ℓ precisely when the Stage 2 occupancy—which starts

at j at the start of I(i)—reaches ℓ at the end of I(i); i.e., L(i, j, k) = ℓ, when N2 goes

from i to j after exactly i+ j + k + 1 arrivals. Since a customer is in service in Stage 1

during the entirety of I(i) (except possibly at the last moment), Stage 2 functions like

an M/M/1 queue with an arrival rate of µ1 + pmλm and a service rate of µ2, and hence a

load of ρ= (µ1 + pmλm)/µ2. Therefore, using the notation P (·, ·, ·; ·) as defined in Def. 1,

we have:

P(L(i, j, k) = ℓ) = P

(
j, i+ k+1, ℓ;

µ1+ pmλm

µ2

)
.

We now return to determining the distribution of K(i). Note that K(i) ∈ {0,1, . . .} is

the number of arrivals during I(i), where the arrivals follow a Poisson process with rate

pmλm. Recall that the length of I(i) is distributed Erlang(i+ 1, µ1), and note that it is

independent of the aforementioned Poisson process. ConsequentlyK(i) can also be thought

of as sum of i+1 independent copies of a random variable, X, corresponding to the number

of arrivals in a duration of time that is distributed Exp(µ1). Elementary techniques yield

X ∼Geo(pmλm/(µ1 + pmλm)), and hence K(i)∼NB(i+1, pmλm/(µ1 + pmλm)) (where both

of these distributions are of the kind where the support consists of all non-negative integers,

including zero). It follows that

P(K(i) = k) =

(
k+ i

k

)(
pmλm

µ1+ pmλm

)k(
1− pmλm

µ1+ pmλm

)i+1

.

Putting everything together, and recalling that S1, S2, . . . are i.i.d. Exp(µ2) random vari-

ables representing (remaining) Stage 2 service requirements, we can prove our claim:

Y (i, j) =E

L(i,j,K)∑
m=1

Sm

=

∞∑
k=0

E

L(i,j,k)∑
m=1

Sm

P(K(i) = k) =
∞∑
k=0

E[L(i, j, k)]E[S1]P(K(i) = k)

=
∞∑
k=0

i+j+k+1∑
ℓ=1

ℓ

µ2

P(L(i, j, k) = ℓ)P(K(i) = k)

=

∞∑
k=0

i+j+k+1∑
ℓ=1

ℓ

µ2

P

(
j, i+ k+1, ℓ;

µ1+ pmλm

µ2

)
P(K(i) = k)

=

(
1− pmλm

µ1+ pmλm

)i+1 ∞∑
k=0

i+j+k+1∑
ℓ=1

ℓ

µ2

P

(
j, i+ k+1, ℓ;

µ1+ pmλm

µ2

)(
k+ i

k

)(
pmλm

µ1+ pmλm

)k

.
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EC.2.7. Proof of Proposition 6

Proof for MW (Eq. (5))

Proof for walk-ins. Under MW, a walk-in seeing N1 = i customers in Stage 1 and N2 =

j customers in Stage 2 upon arrival spends i + 1 services in Stage 1 (each distributed

Exp(µ1)) before advancing to Stage 2. The walk-in arrives to Stage 2 and spends an amount

of time in Stage 2 that is distributed like a busy period initiated by Y (i, j) workload

(see Lemma 1) and interrupted by mobile arrivals (with rate pmλm, with each interrup-

tion requiring Exp(µ2) service). Hence, we have EMW
(b,pm)

[Tw|N1 = i,N2 = j] = (i+ 1)/µ1 +

Y (i, j)/(1 − pmλm/µ2), which with a straightforward application of Lemma 1 yields the

result for the walk-ins in Eq. (5).

Proof for mobiles. As in the case of MWO in the single-server setting—by having pre-

emptive priority over all others, mobiles experience an M/M/1 queue, and so EMW
(b,pm)

[Tm] =

1/(µ2− pmλm) as claimed.

Proof for FCFS (Eq. (6))

Proof for walk-ins. Under FCFS a walk-in seeing Ni = i and N2 = j waits for i + 1

services in Stage 1, which takes on average (i+1)/µ1 time, and then waits for a number

of services in Stage 2, which takes on average Y (i, j) time (see Lemma 1). Hence, we have

EFCFS
(b,pm)

[Tw|N1 = i,N2 = j] = (i+1)/µ1+Y (i, j), and applying Lemma 1 yields the result for

the walk-ins in Eq. (6).

Proof for mobiles. Mobiles are treated under FCFS in a similar fashion as they were

under WMO in the single-server setting: they are not preempted, but have to wait behind

any pre-existing Ms or Ws in Stage 2 when they arrive. Hence, if mobiles arrive seeing

N2 = j, their sojourn time will consist of j + 1 Stage 2 services. Following an approach

similar to that in the proof of Eq. (1) from Proposition 5, which gives EMWO
(b,pm)

[Tm], we readily

have the claimed result:

EFCFS
(b,pm)[Tm] =

b∑
i=0

∞∑
j=0

j+1

µ2

πTS
(b,pm)(i, j) =

1

µ2

(
1+

b∑
i=0

∞∑
j=0

jπTS
(b,pm)(i, j)

)
.

Proof for WM (Eq. (7)) Proof for walk-ins. Recall that walk-ins can preempt mobiles

under WM; so, they need only care about other walk-ins in the system upon arrival.

Consider a tagged walk-in underWM that sees upon arrivalN1 = iOs in Stage 1 andN2,w =

j Ws in Stage 2. Let L(i, j) be the number of customers in Stage 2 (including the tagged
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walk-in) at time of the tagged walk-in’s arrival to Stage 2, given that N1 = i and N2 = j. It

then readily follows that the tagged walk-in’s mean sojourn time is (i+1)/µ1+ ℓ/µ2, given

that L(i, j) = ℓ. Now we turn our attention to determining the distribution of L(i, j).

The distribution of L(i, j) is analogous to the distribution of L(i, j, k) from the proof of

Lemma 1 (see Appendix EC.2.6), with the key difference that we ignore mobile arrivals

entirely (that is, K(i) = k= 0 and we can view pm = 0 when determining the arrival rate to

Stage 2). That is, we view the queue of Ws in Stage 2 as an M/M/1 system with arrival

rate µ1—as Stage 1 is occupied during the entirety of the tagged walk-in’s sojourn there—

and service rate µ2, so that Stage 2 is under a load of ρ= µ1/µ2. It follows that L(i, j) = ℓ

precisely with the probability that an M/M/1 system with load ρ= µ1/µ2 starting with j

customers will have ℓ customers after i+1 additional arrivals (as arrival i+1 is the tagged

walk-in), so that P(L(i, j) = ℓ) = P (j, i+1, ℓ, µ1/µ2) (see Def. 1). Therefore, it follows that:

EWM
(b,pm)[Tw|N1 = i,N2,w = j] =

i+1

µ1

+
E[L(i, j)]

µ2

=
i+1

µ1

+

i+j+1∑
ℓ=1

(
ℓ

µ2

)
P

(
j, i+1, ℓ,

µ1

µ2

)
.

Now recall that the probability of an arrival finding N1 = i and N2,w = j is given by

ϕWM
(b,pm)

(i, j); so, by deconditioning on N2,w = j (in a fashion similar to Lemma 1), we have

the claimed result for walk-ins in Eq. (7).

Proof for mobiles. Consider a tagged mobile arrival that enters a system under WM.

Observe that any mobiles arriving after the tagged mobile have no impact on the sojourn

time of the tagged mobile as they are of lower priority. Hence, we can carry out our analysis

while imagining that no further mobiles arrive after the tagged mobile.

Under the view described above, the tagged mobile completes service precisely when

Stage 2 is next empty, as the tagged arrival has the absolute lowest priority among all

customers who will be present in Stage 2 at any point in its sojourn because (i) the tagged

mobile is preempted by all Ws, and (ii) the tagged mobile arrived after all other Ms (given

our modified view of the system). Hence the sojourn time of the tagged mobile is the time

to clear Stage 2 of all its contents; alternatively, it is a busy period initiated by an amount

of work equal to j+1 Stage 2 services (including the service of the tagged mobile), where

the only other arrivals are walk-ins, given that there are currently i of them in Stage 1.

The exotic arrival process of Ws through the tandem queue complicates using standard

M/G/1 busy period analysis, so we use Markov chain analysis instead. To this end, we
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observe that it does not matter how many of the j +1 Stage 2 services are Ws and how

many are Ms, as this does not affect service times. So, let us think of all of them as

being Ws (note that this is clearly false as we know at least one of the j + 1 Stage 2

customers is the tagged mobile, which is of course an M and not a W). It follows that

EWM
(b,pm)

[Tm] coincides with the time to clear a “mobile-less” system (i.e., one where pm = 0)

of all Stage 2 customers given that we start with N1 = i and N2 =N2,w = j + 1. In other

words, we are interested in the time until we go from stage (i, j+1) in the Markov chain

governing (N1,N2,w) (see Fig. 5b) to any state in the initial column, i.e., (k,0) for some

k ∈ {0,1, . . . , b}. Hence, (Tm|N1 = i,N2 = j)∼Z(i, j+1), where

Z(i, j)∼ inf{s≥ 0: N2,w(t+ s) = 0|N1(t) = i,N2,w(t) = j}.

A method for approximating the expectation of Z(i, j) with arbitrary accuracy is given in

Appendix EC.3.8.

To complete the proof of the claim we condition on the event that N1 = i and N2 = j.

Recall that although earlier in our argument we chose to treat all Stage 2 customers

as Ws, when conditioning we condition on the event that (N1 = i,N2 = j) and not on

(N1 = i,N2,w = j), because the tagged mobile arrival is concerned with the total number

of Stage 2 customers at the arrival time of the tagged mobile, as the pre-existing mobiles

still have a higher priority. Hence, the probabilities of the events of interest are given

by πMW
(b,pm)

(i, j) (equivalently, πTS
(b,pm)

(i, j)) rather than ϕMW
(b,pm)

(i, j). Finally, carrying out the

appropriate conditioning step, we can establish the claimed result for mobiles in Eq. (7).

EC.3. Computational details

We provide details for calculating various quantities of interest.

EC.3.1. The Limiting Probabilities πMWO
(b,pm)(i, j) and πWMO

(b,pm)(i, j) and their Associated
Series

Recall that (N1,N2) is governed by the same CTMC under both MWO and WMO (see

Fig. 4a), which has finitely many phases (rows) and infinitely many levels (columns).

We notice that phase transitions are unidirectional throughout the infinite repeating

portion of the chain (but bidirectional in the initial non-repeating portion). We use

π(b,pm)(i, j) to denote the limiting probabilities under both MWO and WMO, and we let

π⃗j = (π(b,pm)(0, j), . . . , π(b,pm)(b, j)), j ≥ 0. We define the five square matrices F0,F,L0,L,
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and B∈R(b+1)×(b+1) such that (using zero-based indexing so that the upper left element of

any matrix M is denoted by M(0,0)) for the repeated portion of the Markov chain, F(ℓ, k),

L(ℓ, k), and B(ℓ, k) “generally” correspond to the transition rates from states (ℓ, j − 1),

(ℓ, j), and (ℓ, j + 1), respectively, to state (k, j) for any ℓ, k ∈ {0,1, . . . , b} and j ≥ 1. The

only exceptions to this correspondence are the diagonal entries of L, which are equal to the

negative of the sum of the outflow rates from any state (ℓ, j). Meanwhile, the matrices F0

and L0 play the similar role as F and L (respectively) for the initial non-repeating portion

of the chain. We now write the balance equations as matrix equations as follows:
0⃗ = π⃗0 ·L0+ π⃗1 ·B

0⃗ = π⃗0 ·F0+ π⃗1 ·L+ π⃗2 ·B

0⃗ = π⃗j ·F+ π⃗j+1 ·L+ π⃗j+2 ·B j = 1,2, · · ·

, (EC.27)

where

F0 =



pmλm

µ1 pmλm

. . .
. . .

µ1 pmλm

µ1 pmλm


, F=



pmλm

pmλm

. . .

pmλm

pmλm


,

L0 =



−γ0 λw

−γ1 λw

. . .
. . .

−γb−1 λw

−γb


, L=



−ξ0 λw

−ξ1 λw

. . .
. . .

−ξb−1 λw

−ξb


, B=



µ2

µ2

. . .

µ2

µ2


,

γi =


pmλm+λw i= 0

µ1+ pmλm +λw 1≤ i≤ b− 1

µ1+ pmλm i= b

, ξi =

 pmλm +λw +µ2 0≤ i≤ b− 1

pmλm +µ2 i= b
.

(EC.28)

We aim to find a matrix R ∈ R(b+1)×(b+1) such that π⃗j = π⃗1R
j−1 ∀j ≥ 1. Following the

standard theory of matrix analytic methods, this matrix satisfies the following matrix-
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quadratic equation, which we proceed to solve in R:

F+RL+R2B= 0, (EC.29)

where 0 is the (b+1)× (b+1) square zero matrix.

We let R(i, j) denote the (i, j)-th element of R,∀i, j ∈ {0,1, . . . , b} and observe that R is

an upper triangular matrix (as all phase-transitions in the infinite repeating portion of the

CTMC of interest are unidirectional). Consequently, R(i, j) = 0, whenever 0≤ j < i≤ b. By
rewriting the matrix-quadratic Eq. (EC.29) into the corresponding system of component-

wise (scalar) quadratic equations, we observe that for all i∈ {0,1, . . . , b}, the i-th diagonal

element of R, R(i, i), is the (lesser) solution to a the single (scalar) quadratic equation

µ2R(i, i)2 − ξiR(i, i) + pmλm = 0 (we discard the greater solution as it exceeds 1). Hence,

R(i, i) =
(
ξi−

√
ξ2i − 4pmλmµ2

)/
2µ2 . We note that all elements of the diagonal of R are

actually the same except for the last, R(b, b).

After determining all the elements on the diagonal of R, let ei denote the i-th unit

vector. We can compute each value of the super-diagonal of R by solving the following

system of linear equations:λwR(i, j− 1)− ξjR(i, j)+µ2(e
T
i R

2ej) = 0 1≤ j ≤ b− 1

λwR(i, j− 1)− (pmλm+µ2)R(i, j)+µ2(e
T
i R

2ej) = 0 j = b
.

As long as the values of this super-diagonal are determined, we can compute the “super-

diagonal” of this super-diagonal following the same procedure; finally, all other elements

of R can be determined recursively in closed form.

Example of finding the closed form solution of R when b= 2. We first solve the

diagonal element of the matrix R, which gives us R(i, i) =
(
ξi−

√
ξ2i − 4pmλmµ2

)/
2µ2 , for

i= 0,1,2. Note that R(0,0) =R(1,1) and R(2,2) can be further simplified as R(2,2) =

pmλm/µ2. Then using the linear equations described above, we solve the super-diagonal

elements (R(0,1) and R(1,2)), finally, we derive R(0,2) in the closed form as well. We

summarize the closed form solution of each element of the matrix R in this specific case

as follows:
R(0,0) =

(
ξ0−
√

ξ20−4pmλmµ2

)
2µ2

R(1,1) =

(
ξ1−
√

ξ21−4pmλmµ2

)
2µ2

R(2,2) = pmλm/µ2



R(0,1) =
λw

(
ξ1−
√

ξ21−4pmλmµ2

)
2µ2

√
ξ21−4pmλmµ2

R(1,2) =
λw

(
ξ1−
√

ξ21−4pmλmµ2

)
2µ2

2−µ2

(
ξ1−
√

ξ21−4pmλmµ2

)
R(0,2) =

2λ2
w

(
ξ1−
√

ξ21−4pmλmµ2

)
√

ξ21−4pmλmµ2

(
2µ2−ξ1+

√
ξ21−4pmλmµ2

)2


R(1,0) = 0

R(2,0) = 0

R(2,1) = 0
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where

ξi =

 pmλm +λw +µ2 ∀i∈ {0,1}

pmλm +µ2 i= 2
.

Finally, from the first two equations in Eq. (EC.27) we have that

[
π⃗0 π⃗1

]L0 F0

B0 L+RB

= 0⃗,

which we can combine with the normalizing equation (i.e. the sum of all the limiting

probabilities is equal to one) to find the initial limiting probabilities π⃗0 and π⃗1 (see Eq. 21.5

in Harchol-Balter 2013). Hence, the limiting probabilities πMWO
(b,pm)

(i, j) and πWMO
(b,pm)

(i, j) are all

determined and their associated series such as
∑∞

j=0 π
MWO
(b,pm)

(i, j) and
∑∞

j=0 jπ
WMO
(b,pm)

(i, j) can

all be computed as follows (for any policy P∈ {MWO,WMO}):

∞∑
j=0

πP
(b,pm)(i, j) =

(
π⃗P
0 +

∞∑
j=1

π⃗P
1R

j−1

)
ei =

(
π⃗P
0 +

∞∑
j=0

π⃗P
1R

j

)
ei =

(
π⃗P
0 + π⃗P

1 (I−R)−1)ei,
∞∑
j=0

jπP
(b,pm)(i, j) = π⃗P

1

∞∑
j=1

jRj−1ei = π⃗P
1

d

dR

(
∞∑
j=0

Rj

)
ei = π⃗P

1 (I−R)−2ei.

EC.3.2. The Limiting Probabilities ϕWOM
(b,pm)(i, j)

The quantities ϕWOM
(b,pm)

(i, j), i ∈ {0,1, . . . , b} and j ∈ {0,1}, are the limiting probabilities of

a finite state CTMC (see Fig. 4b), so we can find them by solving the balance equations

below (where for simplicity we use the notation ϕi,j ≡ ϕWOM
(b,pm)

(i, j)):

λwϕ0,0 = µ2ϕ0,1

(λw +µ1)ϕi,0 = λwϕi−1,0+µ2ϕi,1 ∀i∈ {1,2, . . . , b− 1}

µ1ϕb,0 = λwϕb−1,0+µ2ϕb,1

(λw +µ2)ϕ0,1 = µ1ϕ1,0

(λw +µ2)ϕi,1 = λwϕi−1,1+µ1ϕi+1,0 ∀i∈ {1,2, . . . , b− 1}

µ2ϕb,1 = λwϕb−1,1

b∑
i=0

(ϕi,0+ϕi,1) = 1

. (EC.30)
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EC.3.3. The Laplace Transforms and Moments of U and V

In this section we give a procedure for determining the Laplace transforms of U and V in

closed form. We denote the transforms by Ũ(s) ≡ EWOM
(b,pm)

[
e−sU

]
and Ṽ (s) ≡ EWOM

(b,pm)

[
e−sV

]
(all transforms in this appendix implicitly depend on the strategy profile (b, pm), but we

omit the reference to strategy profile in our notation in the interest of brevity). One can

determine the first and second moments of U and V from the Laplace transforms readily

from standard formulas (given at the end of this section). Alternatively, similar techniques

used for computing the Laplace transforms can be used to compute the first moments

directly, and subsequently, the second moments as well.

Finding Ũ(s). Recall that U is the time until a mobile arrival that enters a mobile-less

system (i.e., a system that has no mobiles)—but a steady-state number of walk-ins in each

stage conditioned on the fact that there are no mobiles in the system—will ultimately

leave the system. It follows that U depends on the system state at the time of the mobile’s

arrival. There are 2(b+1) such states, as the number of Os in the system, N1 ∈ {0,1, . . . , b},

while the number of Ws in the system, N2,w ∈ {0,1}. Therefore, we can define random

variables Ui,j ∼ (U |N1 = i,N2,w = j ). If we can find the probability that N1 = i and N2,w = j

at the time of a mobile’s arrival to a mobile-less system, and the distribution of Ũi,j(s) for

all (i, j)∈ {0,1, . . . , b}× {0,1}, then we can determine Ũ(s) by taking a standard mixture

of transforms.

We first address the probability that N1 = i and N2 = N2,w = j at the time of a

mobile’s arrival to a mobile-less system. We can determine such probabilities as the lim-

iting probabilities—which we denote by ψWOM
(b,pm)

(i, j)—of a CTMC. Consider the stochastic

process that governs (N1,N2,w) during the union of all time intervals (epochs) in which the

system is mobile-less. As soon as a mobile would enter the system, we immediately “jump

ahead” in time until the first moment in which the system is again memory-less; so the time

intervals in question are closed on the left (i.e., at their lower bound in time) and open at

the right (i.e., at their upper bound in time). That is, if a mobile would arrive, we instead

transition directly to state (0,0), as the next time that the system is again mobile-less,

there would not be any walk-ins of any kind in the system (as all walk-ins have preemptive

priority over mobiles under WOM). Since mobiles arrive with rate pmλm, the stochastic

process governing (N1,N2,w) during mobile-less epochs is a CTMC, which corresponds to

the one depicted in Fig. 4b with the key difference that there is an additional transition (or
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increased transition rate) from each non-(0,0) state to state (0,0) with rate (or increase

in rate equal to) pmλm; mobiles cannot of course arrive when we are in state (0,0) as well,

but in that case we would be back at (0,0) at the start of the next mobile-less time epoch;

so no transition is necessary as CTMCs do not have “self-loops” by standard convention.

The limiting probability distribution of the CTMC corresponds to ψWOM
(b,pm)

(i, j), as mobile

arrivals are governed by a Poisson process that is independent of the state of this chain,

and so the likelihood of a mobile arriving to a mobile-less system in a state where N1 = i

and N2,w = j is given by the corresponding limiting probability of this CTMC. These

limiting probabilities can be computed by solving a system of linear equations that greatly

resemble those corresponding to the system of linear equations that we solve to obtain

ϕWOM
(b,pm)

(i, j) probabilities (Eqs. (EC.30) in Appendix EC.3.2) with several differences: (i)

The variable symbols contain a ψ rather than a ϕ, and more crucially in that (ii) the

balance equations take into account the outgoing rate from each non-(0,0) state (i, j) equal

to pmλmψ
WOM
(b,pm)

(i, j), and (iii) there is an increased incoming rate to state (0,0) equal to the

some of all those rates; taking the normalization equation into account, this increase is

equal to pmλm

(
1−ψWOM

(b,pm)
(0,0)

)
. Hence, we can obtain the limiting probabilities of interest

by solving the system equations below (where for simplicity we use the notation ψi,j ≡

ψWOM
(b,pm)

(i, j)):

λwψ0,0 = µ2ψ0,1+ pmλm (1−ψ0,0)

(λw +µ1+ pmλm)ψi,0 = λwψi−1,0+µ2ψi,1 ∀i∈ {1,2, . . . , b− 1}

(µ1+ pmλm)ψb,0 = λwψb−1,0+µ2ψb,1

(λw +µ2+ pmλm)ψ0,1 = µ1ψ1,0

(λw +µ2+ pmλm)ψi,1 = λwψi−1,1+µ1ψi+1,0 ∀i∈ {1,2, . . . , b− 1}

(µ2+ pmλm)ψb,1 = λwψb−1,1

b∑
i=0

(ψi,0+ψi,1) = 1

. (EC.31)

Next, we turn to the task of finding Ũi,j(s), which we shall also present as the solution to

a linear system of equations (with symbolic coefficients). First, see that U0,0 = 0, as if a

mobile arrives to an empty system, it immediately goes into service. In all other cases, Ui,j

corresponds to the time it takes for a system currently in a state where N1 = i and N2,w = j
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to be empty of all its walk-ins, without regard for any mobile arrivals (since any mobile

arrivals will have lower priority than the original mobile arrival). That is, Ui,j is distributed

like the time it takes to enter state (0,0) of the Markov chain depicted in Fig. 4b, given

that we initially start in state (i, j). Note that this is the original Markov chain and not

the modified one with additional transitions to state (0,0) that we described earlier in our

procedure for finding ψWOM
(b,pm)

(i, j).

Now that we can interpret the Ui,j random variables as the hitting times of a finite state

Markov chain, it is straightforward to write a system of linear equations for the transforms

of interest using first-step analysis. Recall that the Laplace transform of an exponential

random variable with rate κ is κ/(κ+s) and that the minimum of two exponential random

variables Exp(η) and Exp(κ) is distributed as Exp(κ+ η). Then, we have:

Ũ0,0(s) = 1

Ũi,0(s) =
λw +µ1

s+λw +µ1

(
λw

λw +µ1

Ũi+1,0(s)+
µ1

λw +µ1

Ũi−1,1(s)

)
∀i∈ {1,2, . . . , b− 1}

Ũb,0(s) =
µ1

s+µ1

Ũb−1,1(s)

Ũi,1(s) =
λw +µ2

s+λw +µ2

(
λw

λw +µ2

Ũi+1,1(s)+
µ2

λw +µ2

Ũi,0(s)

)
∀i∈ {0,1, . . . , b− 1}

Ũb,1(s) =
µ2

s+µ2

Ũb,0(s)

.

(EC.32)

Solving the above system of equations will yield all of the Ũi,j(s) in closed form. Together

with the ψWOM
(b,pm)

(i, j) values, we can determine Ũ(s) by taking the appropriate weighted

sum:

Ũ(s) =

b∑
i=0

Ũi,0(s)ψ
WOM
(b,pm)(i,0)+ Ũi,1(s)ψ

WOM
(b,pm)(i,1). (EC.33)

Finding Ṽ (s). Recall that V ∼ (Tm|N1 = 0,N2 = 0) under WOM. Once service begins on a

mobile, we know that there are currently no walk-ins in the system. One of two events will

happen, either (i) a walk-in will arrive to Stage 1 interrupting the service of the mobile

until there are again no walk-ins in the system, or (ii) the mobile will be served before any

walk-ins arrive. Under case (i), the process that interrupts the mobile will be distributed

like U1,0, and once the mobile resumes service its expected remaining service time is again
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distributed like an independent copy of V (due to the memoryless property). Formalizing

the first-step analysis described above, we have:

Ṽ (s) =
λw +µ2

s+λw +µ2

(
λw

λw +µ2

Ũ1,0(s)Ṽ (s)+
µ2

λw +µ2

)
=⇒ Ṽ (s) =

µ2

s+λw

(
1− Ũ1,0(s)

)
+µ2

. (EC.34)

Finally, the moments of U and V can be obtained by using the standard technique which

gives the first and second moments of a random variable X—with well defined Laplace

transform X̃(s)—to be lim
s→0+

X ′(s) =−E[X] and lim
s→0+

X ′′(s) =E
[
X2
]
, respectively.

A computationally efficient technique for finding the first and second

moments of U and V . Rather than compute Ũ(s) and Ṽ (s), if we are only interested in

the first and second moments of of U and V (which is the case for finding the sojourn times

of interest in this paper), we can use the standard technique for finding moments from

transforms (described above) to each equation in the system (EC.32) directly, yielding a

new system (where we use the shorthand E[Ui,j] for EWOM
(b,pm)

[Ui,j]:

E[U0,0] = 1

E[Ui,0] =
1+λwE[Ui+1,0] +µ1E[Ui−1,1]

λw +µ1

∀i∈ {1,2, . . . , b− 1}

E[Ub,0] =
1

µ1

+E[Ub−1,1]

E[Ui,1] =
1+λwE[Ui+1,1] +µ2E[Ui,0]

λw +µ2

∀i∈ {0,1, . . . , b− 1}

E[Ub,1] =
1

µ2

+E[Ub,0]

E
[
U 2

0,0

]
= 1

E
[
U 2

i,0

]
=

2+2λwE[Ui+1,0] + 2µ1E[Ui−1,1]

(λw +µ1)2
+
λwE

[
U 2

i+1,0

]
+µ1E

[
U 2

i−1,1

]
λw +µ1

∀i∈ {1,2, . . . , b− 1}

E
[
U 2

b,0

]
=

2+2µ1E[Ub−1,1]

µ1
2

+E
[
U 2

b−1,1

]
E
[
U 2

i,1

]
=

2+2λwE[Ui+1,1] + 2µ2E[Ui,0]

(λw +µ2)2
+
λwE

[
U 2

i+1,1

]
+µ2E

[
U 2

i,0

]
λw +µ2

∀i∈ {0,1, . . . , b− 1}

E
[
U 2

b,1

]
=

2+2µ2E[Ub,0]

µ2
2

+E
[
U 2

b,0

]

.

(EC.35)
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After solving this system, we can find the first and second moments via standard condi-

tioning:

EWOM
(b,pm)[U

n] =

b∑
i=0

EWOM
(b,pm)[U

n
i,0]ψ

WOM
(b,pm)(i,0)+EWOM

(b,pm)[U
n
i,1]ψ

WOM
(b,pm)(i,1),

where we are interested in the cases where n∈ {1,2}. Similar methods yield:

EWOM
(b,pm)[V ] =

1+λwE[U1,0]

µ2

, EWOM
(b,pm)

[
V 2
]
=

2(1+λwE[U1,0])
2+λwµ2E

[
U 2

1,0

]
µ2

2
. (EC.36)

EC.3.4. Approximating the Limiting Probabilities πTS
(b,pm)(i, j) and an Associated

Series

To determine the limiting probabilities of the CTMC of Fig. 5a, πTS
(b,pm)

(i, j), we first observe

that the chain has finitely many phases (rows) and infinitely many levels (columns). More-

over, phase transitions are bidirectional throughout the infinite portion of the chain, that

is, we can transition to a higher row and a lower row from any phase. Such chains do not

often lend themselves to exact analysis; so, we opt to approximate the probabilities via

numerical matrix analytic methods.

We first define the three square matrices F,L, and B ∈ R(b+1)×(b+1) such that (using

zero-based numbering so that the upper left element of any matrix M is denoted by

M(0,0)) F(ℓ, k), L(ℓ, k), and B(ℓ, k) “generally” correspond to the transition rates from

states (ℓ, j − 1), (ℓ, j), and (ℓ, j +1), respectively, to state (k, j) for any ℓ, k ∈ {0,1, . . . , b}
and j ≥ 1. The only exceptions to this correspondence are the entries L(ℓ, k) when ℓ= k.

In these cases, L(ℓ, k) =L(ℓ, ℓ) is equal to the negative of the sum of the outflow rates from

state (ℓ, j). Thus, for the CTMC of Fig. 5a, B and F has the same structures as B and F0

in Eq. (EC.28), respectively, and L follows:

L=



−ν0 λw

−ν1 λw

. . .
. . .

−νb−1 λw

−νb


, where νi =


pmλm+λw +µ2 i= 0

µ1+ pmλm +λw +µ2 1≤ i≤ b− 1

µ1+ pmλm +µ2 i= b

.

(EC.37)

We would like to express the limiting probabilities of interest in terms of a square matrix

R∈R(b+1)×(b+1) that satisfies Eq. (EC.29). In general, we cannot find R in closed form, so

we resort to a procedure where we iteratively calculate Rn+1 =−(R2
nB+F)L−1 (here Rn
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denotes the n-th iteration of R) until ||Rn+1−Rn||< ϵ (here we define the metric || · || to be

the maximum of all the elements in the matrix), for any arbitrary given ϵ. The associated

series can be computed in the similar way as in Appendix EC.3.1.

EC.3.5. The Transient Probabilities P (u, v,w;ρ)

Individual probabilities of the form P (u, v,w;ρ) can be computed exactly in a recursive

fashion from the following relations due to Kaczynski et al. (2012):

P (u,u,u+ v;ρ) =

(
ρ

ρ+1

)v

u≥ 1, v≥ 1

P (0, v, v) =

(
ρ

ρ+1

)v−1

v≥ 1

P (u,1,w;ρ) =
ρ

(ρ+1)u−w+2
2≤w≤ u

P (u, v,w;ρ) =
ρ

ρ+1

u+v−1∑
j=w−1

(
1

ρ+1

)j−w+1

P (u, v− 1, j;ρ) v≥ 2 and 2≤w≤ u+ v− 1

.

In the interest of computational efficiency, it is advisable to use a “memoization” approach

when computing a set of probabilities.

EC.3.6. Approximating Y (i, j) and an Associated Series

We cannot determine Y (i, j) in closed form so we rely on truncation. Truncating the first

summation (by summing from k= 0 to K instead of k= 0 to ∞) in the expression giving

Y (i, j) (i.e., Eq. (4)) at K and denoting the result by YK(i, j) given by

YK(i, j)≡
(
1− pmλm

µ1+ pmλm

)i+1 K∑
k=0

i+j+k+1∑
ℓ=1

ℓ

µ2

P

(
j, i+ k+1, ℓ;

µ1+ pmλm

µ2

)(
k+ i

k

)(
pmλm

µ1+ pmλm

)k

,

it follows that YK(i, j)→ Y (i, j) as K→∞, and so Y (i, j)≈ YK(i, j) for sufficiently large

K values. Based on our exploration of different parameters, it appears that |YK+1(i, j)−
YK(i, j)| is negligible for values of K on the order of 20, suggesting that the approximation

is adequate when K is on that order.

Similarly, we approximate the following series involving Y (i, j) via “double truncation”

for sufficiently large J and K values (where it may or may not be appropriate to set J =K

based on the parameters). We have:

∞∑
j=0

Y (i, j)πTS
(b,pm)(i, j)≈

J∑
j=0

YK(i, j)π
TS
(b,pm)(i, j).

Of course, since we generally do not know πTS
(b,pm)

(i, j) exactly, we compute the above

approximation in terms of the approximated (rather than exact) πTS
(b,pm)

(i, j) values.
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EC.3.7. Approximating the Limiting Probabilities ϕWM
(b,pm)(i, j) and an Associated

Series

We can approximate the limiting probabilities of the CTMC shown in Fig. 5b,

ϕWM
(b,pm)

(i, j), by using the same approach we used to determine the πTS
(b,pm)

(i, j) values (see

Appendix EC.3.4), with the only difference that we set pm = 0 everywhere (regardless of

the actual value of pm, which ϕ
WM
(b,pm)

(i, j) does not depend on) as the Fig. 5b chain is a spe-

cial case of the Fig. 5a chain where pm = 0. As a result, we start with a modified F matrix

with zero entries for its main diagonal. We follow the rest of the procedure in the exact

same way. The limiting probabilities yielded by this procedure will be (an approximation

of) ϕWM
(b,pm)

(i, j), and the series computed will be (an approximation of)
∑∞

j=0 jϕ
WM
(b,pm)

(i, j).

EC.3.8. Approximating EWM
(b,pm)[Z(i, j)] and an Associated Series

First observe that Z(i, j) corresponds to the “hitting time” associated with reaching a

state of the form (k,0) (for any value of k ∈ {0,1, . . . , b}) starting at an initial state (i, j)

in the CTMC shown in Fig. 5b. Now, assume that we are in some state (ℓ,m) where

m ≥ 1, and consider the first time we reach (k,m− 1) for any k ∈ {0,1, . . . , b} (i.e., the

first time N2,w drops from its initial value of m). Let τℓ be the expected “hitting time”

(duration) associated with this trip from (ℓ,m) to some (k,m− 1), and for any specific

value of k ∈ {0,1, . . . , b}, let pℓ→k be the probability with which we specifically end up in

(k,m−1) at the conclusion of this trip (i.e., we reach (k,m−1) before reaching (k′,m−1)

for any k′ ̸= k). As our notation suggests, these quantities are well-defined for any m≥ 1,

and do not otherwise depend on the particular value of m (i.e., the initial level or N2,w

value is irrelevant); this fact is easily confirmed by considering the repeating nature of the

CTMC of Fig. 5b

With the τℓ and pℓ→k quantities, we can determine EWM
(b,pm)

[Z(i, j)] via first-step analysis.

First, note from the definition of Z(i, j) and τℓ that we readily have EWM
(b,pm)

[Z(i,1)] = τi,

∀i ∈ {0,1, . . . , b}. Meanwhile, when examining Z(i, j) for any value of j > 1, we string

together trips that drop the phase number (N2,w) by one while taking into account the

distribution over the level (N1) that we are in at the conclusion of each phase drop. Hence,

we have the following relations:
EWM

(b,pm)
[Z(i,1)] = τi 0≤ i≤ b,

EWM
(b,pm)[Z(i, j)] = τi +

b∑
k=0

(pi→k)EWM
(b,pm)[Z(i, j− 1)] 0≤ i≤ b, 1≤ j

. (EC.38)
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We can solve for any EWM
(b,pm)

[Z(i,1)] values in closed form in terms of the τℓ and pℓ→k values;

a “memoization” approach is advisable. We note that this can become cumbersome for

large values of j, so from a computational efficiency perspective it is preferable to have

numerical values for τℓ and pℓ→k. We now address how to derive these values.

We proceed by deriving a system of equations relating the τℓ values to one another in

terms of the pℓ→m values via a straightforward application of the first step analysis:

τ0 =
1

λw +µ2

+
λw

λw +µ2

τ1

τℓ =
1

λw +µ1+µ2

+
λw

λw +µ1+µ2

τℓ+1 +
µ1

λw +µ1+µ2

(
τℓ−1+

b∑
k=0

(
p(ℓ−1)→k

)
τk

)
1≤ ℓ≤ b− 1

τb =
1

µ1+µ2

+
µ1

µ1+µ2

(
τb−1+

b∑
k=0

(
p(b−1)→k

)
τk

) .

(EC.39)

It turns out that Eq. (EC.39) is a finite system of equations that are linear in the τℓ values,

which we can easily solve for in closed form, this time in terms of the pℓ→k probabilities.

Unfortunately, the pℓ→k probabilities cannot generally be determined in closed-form in

terms of elementary functions, as writing a system of equations relating these values to

one another will involve nonlinear terms and solving the system will require solving higher

ordered polynomials (the order of which can be arbitrary high based on the value of b).

Therefore, we resort to approximating the pℓ→k probabilities numerically.

In order to approximate the pℓ→k probabilities numerically, we invoke the notion of the

G matrix from the literature on matrix analytic methods (for a comprehensive discussion

of the G matrix, see the chapter 6 of the standard textbook (Latouche and Ramaswami

(1999)). The G matrix associated with a quasi-birth–death process (such as those depicted

in Fig. 5) is a square matrix with a number of rows and columns equal to the number of

phases and levels of the chain in question such that (using zero-based numbering so that

we start with row 0) the entry in row ℓ and column k of G corresponds precisely to pℓ→k as

we have defined it above. That is, pℓ→k =G(ℓ, k), so it remains to approximate G. There

are a variety of ways to carry out the task in the literature, but for the purpose of our

discussion the most straightforward (although not necessarily most efficient) approach is

likely to use the relation:

G=−F−1
(
R−1F−L

)
, (EC.40)
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where F and L are matrices associated with the Markov chain of interest and R is the rate

matrix. F and L are given in Eq. (EC.37) for the more general CTMC of Fig. 5a; we need

only modify F for the CTMC of Fig. 5b by replacing the its main diagonal entries with

zeroes. Approximating G turns out to be straightforward once we identify F, L, and B

and use them to approximate the R matrix (on this, see Appendices EC.3.4 and EC.3.7).

Finally, putting everything together and proceeding in roughly reverse order of the pre-

sentation of our discussion in this section, we can find the EWM
(b,pm)

[Z(i, j)] as follows:

1. Identify F, B, and L, as given in Eq. (EC.37), with the modification that the main

diagonal of F should be replaced with zeros.

2. Use F, B, and L to compute R following the procedure given in Appendix EC.3.4.

3. Use Eq. (EC.40) to compute G.

4. Solve the linear system Eq. (EC.39) to obtain all of the τℓ values based on G (recall

that pℓ→k =G(ℓ, k)).

5. Use the recursive relations given in Eq. (EC.38), to compute any of the EWM
(b,pm)

[Z(i, j)]

of interest (say ∀i∈ {0,1, . . . , b} and j ∈ {1,2, . . . , J} for some J).

We note that step 2 is the only step that is not based on one or more exact relations, i.e., it

introduces an approximation, resulting in an inexact value for R. Consequently, all calcu-

lations based directly or indirectly on R—namely, G, the τℓ values, and the EWM
(b,pm)

[Z(i, j)]

values—will also all be approximations. We also note that EWM
(b,pm)

[Z(i, j)] is actually con-

stant in pm as mobile arrivals do not affect this quantity.

Finally, in the absence of better alternatives, the following series (which depends on the

index i) can be approximated by truncation:

∞∑
j=0

πTS
(b,pm)(i, j)E(b,pm)[Z(i, j+1)]≈

J∑
j=0

πTS
(b,pm)(i, j)E(b,pm)[Z(i, j+1)],

for sufficiently large J (where the right-hand side converges to the left-hand side as J →

∞). We also note that as we generally do not know πTS
(b,pm)

(i, j) exactly, we compute the

approximation for this series in terms of the approximated (rather than exact) πTS
(b,pm)

(i, j)

values.

EC.4. Mixed walk-in strategies and heterogeneous patience levels

In this section we relax the assumption that indifferent walk-ins will always join, by allowing

walk-ins to pursue a mixed strategy. This generalization will be essential in addressing the
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case of walk-ins with heterogeneous patience levels. In this section, we address both the

single- and two-server settings, but we will primarily focus on the former, where we provide

a systematic method for determining such equilibria, although in some problem instances

we can only find approximate equilibria under WMO.

EC.4.1. Mixed Walk-In Strategies

Throughout Section 5, we assume that the strategy (behavior) employed by walk-ins is

described by a single integer value, b. Specifically, in that section, we assume that if a walk-

in observes N1 = i < b other walk-ins in Stage 1 upon arrival they will join, and otherwise

they will balk. We now consider a more general mixed strategy on the part of walk-ins,

where for each non-negative integer i, we denote by pi, the fraction (probability) of walk-in

customers who opt to join given that they observe N1 = i other walk-ins in Stage 1 upon

arrival. Letting b≡ argmini∈Z≥0
pi = 0, we once again have b as a threshold on N1 at which

no walk-ins join. A pure walk-in strategy described by b corresponds precisely to the mixed

walk-in strategy where p0 = p1 = · · ·= pb−1 = 1 and pb = 0; i.e., the strategy b corresponds

to a pw that is a vector of length b, with each entry is equal to 1. It follows that the space

of walk-in strategies is formally given by

S ≡
∞⋃
b=0

b−1∏
i=0

(0,1],

where
∏

denotes the generalized Cartesian product. Note that pw is the “empty vector”

(which we can denote by ∅) when b= 0. We could equivalently consider strategies coming

from the space
∏∞

i=0[0,1], which would include “redundant” strategies as whenever pi = 0,

the values of pk where k > i are inconsequential.

We use (pw, pm) to denote the strategy profile describing the behavior of both walk-ins

and mobiles, where the interpretation of pm remains unchanged (i.e., pm is the fraction of

mobile arrivals who join). Note that the strategy profile (pw, pm) implies a value for b as

well (i.e., b is the number of entries in the vector pw). In this setting, given a policy P, an

equilibrium is a joint-strategy, (p∗
w, p

∗
m), which satisfies

EP
(p∗

w,p
∗
m)
[Tw|N1 = i]≤ Tmax

w ∀i∈ {0,1, . . . , b∗− 1} s.t. pi = 1

EP
(p∗

w,p
∗
m)
[Tw|N1 = i] = Tmax

w ∀i∈ {0,1, . . . , b∗− 1} s.t. pi < 1

EP
(p∗

w,p
∗
m)
[Tw|N1 = b∗]≥ Tmax

w

argmax{pm ∈ [0,1] : EP
(p∗

w,pm)
[Tm]≤ Tmax

m }= p∗m,
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where b∗ is the number of entries in p∗
w. Meanwhile, we also have a slightly revised formula

for social welfare in this setting:

SWP
(pw,pm) =

1

Λ

(
λw

b−1∑
i=0

pi
(
Tmax
w −EP

(pw,pm)[Tw|N1 = i]
)
PP
(pw,pm)(N1 = i)+ pmλm

(
Tmax
m −EP

(b,pm)[Tm]
))

.

EC.4.2. General Approach for Finding Equilibria with Mixed Walk-in Strategies

We proceed to discuss how we can find equilibria under mixed walk-in strategies in the

single-server model, taking EP
(pw,pm)

[Tw|N1 = i] and EP
(pw,pm)

[Tm] as given; the computation of

these sojourn times is deferred to Appendix EC.4.6. There are challenges associated with

determining equilibria in the two-server setting, so we avoid that case.

A key distinguishing feature of equilibria determination in this setting as compared with

the setting of pure walk-in strategies (where the walk-in behavior depends on an integer

value, b), is that we can no longer examine a finite number of cases b ∈ {0,1, . . . ,B}. In

fact the space of mixed walk-in strategies, S, is unaccountably large, spanning a union of

hypercubes of different dimensionalities.

In an effort to make the equilibria determination problem tractable, we use a different

approach depending on the policy under consideration. We make a couple of observations.

First, under MWO, we note that mobiles have priority over all walk-ins. As a result,

EMWO
(pw,pm)

[Tm] does not depend on pw, so we can determine p∗m first (via the final equilibrium

constraint) and then, given this value of p∗m, we find those vectors p∗
w ∈ S that satisfy the

equilibrium constraints for walk-ins. Second, under WOM, we have the opposite situation:

walk-ins have priority over mobiles and so EWOM
(pw,pm)

[Tw|N1 = i] does not depend on pm. This

allows us to determine p∗
w based on the equilibrium constraints for walk-ins, and then,

given this vector for p∗
w, we find the value of pm ∈ [0,1] that satisfies the final equilibrium

constraint (i.e., we find the “best response” of mobiles to the strategies adopted by the

walk-ins). Such straightforward situations do not necessarily arise in the case of WMO,

and so we differ discussion equilibria determination under WMO to Appendix EC.4.5.

EC.4.3. Finding p∗m in the setting with mixed walk-in strategies

We now directly address the method for finding equilibria, (p∗
w, p

∗
m). We first discuss the

method of determining p∗m under MWO and WOM, noting that this is the first step we

use in finding equilibria for MWO, but the second step (following the determination of

p∗
w, as this value is required) for WOM. For P ∈ {MWO,WOM}, we must simply compute
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p∗m = argmax
pm∈[0,1]

{EP
(p∗

w,pm)
[Tm] ≤ Tmax

m }, taking p∗
w to be as already found (using the method

discussed below) under WOM and taking the choice of p∗
w to be inconsequential for MWO

(as EMWO
(pw,pm)

[Tm] is constant in pw). Under both policies, if it is neither the case that p∗m = 0 or

p∗m = 1 (both of which can be readily checked), then p∗m is the unique value of pm satisfying

EP
(pw,pm)

[Tm] = Tmax
m , which can either be determined exactly, if possible, or approximated

with arbitrary precision using a bisection search, as EP
(pw,pm)

[Tm] is continuous and monotone

in pm (we assert continuity without proof, while monotonicity follows from a slight modi-

fication of the proof of Proposition 4, which establishes the monotonicity of EP
(b,pm)

[Tm]).

EC.4.4. Finding p∗
w in the setting with mixed-walk in strategies

We now address the determination of p∗
w, noting that this is the second step when p∗m is

required, as is the case under MWO (and sometimes under WMO, see Appendix EC.4.5),

and the first step otherwise (i.e., under WOM). We use the notation x⌢y (resp. x⌢y)

to denote the concatenation of the vector x and the scalar y (resp. the vector y);

e.g., if x = (1,1/2), y = 1/3, and y = (1/3,1/4),then x⌢y = (1,1/2,1/3), while x⌢y =

(1,1/2,1/3,1/4). This notation allows us to present the following crucial result, which plays

a key role in determination of p∗
w:

Proposition EC.1. For any policy P in the one-server setting, any pw ∈ S with at

least i entries, and any q∈ [0,1]k, we have

EP
(pw,pm)[Tw|N1 = i] =E(p⌢

w q,pm)[Tw|N1 = i].

That is, the response time of a walk-in seeing i customers in the system upon arrival does

not depend on the strategies of those walk-ins who observe at least i+ 1 customers upon

arrival.

Proof of Proposition EC.1. This observation follows readily from examining the rele-

vant Markov chains (i.e., those depicted in Fig. 4), by noting that once one leaves state

(N1,N2) = (i, j), to enter phase i+1, the next time one will enter phase i will always be in

state (N1,N2) = (i,1) (and analogously for (N1,N2,w) in the WOM case), from which it fol-

lows that the limiting distribution of N2 and N2,w conditioned on N1 = i is the same under

both pw and p⌢
w q; i.e., πP

(b,pm)
(i, j)

/∑∞
j=0 π

P
(b,pm)

(i, j) and ϕP
(b,pm)

(i, j)
/∑∞

j=0 π
P
(b,pm)

(i, j) do

not change if we replace pw with p⌢
w q, which is sufficient to yield the desired claim (see

Proposition 5). □
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Unfortunately, Proposition EC.1 not hold in the two-server model (as phase transitions are

bidirectional), hence analysis is not tractable in that setting; nonetheless, an adaptation

of this technique was able to give approximate equilibria that were used in generating

Fig. 7 for the two-server model. With this proposition in mind, we provide the following

“algorithm sketch” for determining at least one equilibrium strategy, p∗
w:

1. Set i← 0 and pw← ∅, where ∅ represents the empty vector. Then, continue on to

step 2.

2. If EP
(pw,p∗m)

[Tw|N1 = i]≥ Tmax
w , then report that (p∗

w, p
∗
m) is an equilibrium where p∗

w = pw

and end the algorithm. Otherwise, continue on to step 3.

3. If EP
(p⌢

w 1,p∗m)
[Tw|N1 = i] ≤ Tmax

w , set i← i + 1 and pw ← p⌢
w 1; then, return to step 2.

Otherwise, continue on to step 4

4. Consider the following function, g, of p ∈ [0,1]: g(p) ≡ EP
(p⌢

w p,p∗m)
[Tw|N1 = i] − Tmax

w .

Based on the results of steps 2 and 3, the fact that we have reached this step indicates

that g(0)< 1 and g(0)> 1. So, by the continuity of g (which we state without proof),

we know that g has at least one root. Find such a root—or approximate one to arbitrary

accuracy via a bisection search—and call it p∗. Now set i← i+ 1 and pw ← p⌢
w p

∗.

Then, return to step 2.

Note that this algorithm will terminate in finite time (as long as the length of bisection

searches are limited) as i increments by 1 through each loop of the algorithm, and the

algorithm will terminate without i exceeding B. Further, note that this algorithm will find

only one equilibrium value of pw. We know of no method for systematically and exhaustively

finding all such equilibria (although we have observed that multiple may exist as step 4

may have more than one solution), although one can “search” for additional equilibria

in an exploratory manner by developing variants of this algorithm that permute (with

appropriate modifications) steps 2, 3, and 4, and introduce some degree of randomization

in initializing the bisection search.

We note that the mixed equilibria discussed in our results (see Section 6) are all of the

form (1,1, . . . ,1, p). We conjecture that equilibria of this form (allowing for p= 0, yielding a

non-mixed threshold strategy) always exist. In obtaining the results presented in Section 6,

we attempt to find equilibria with mixed walk-in strategies whenever we fail to find any

equilibria with a pure walk-in strategy. In all such cases, we have observed that there exists

some b ∈ Z≥0 such that b+ 1 is a best-response for a walk-in when all other walk-ins are
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employing threshold b and vice versa. In such cases, we set pw← (1,1, . . . ,1) with length

b and set i← b and start running through the above algorithm at step 4; in all cases, we

observe that the algorithm next terminates when reaching step 2, yielding an equilibrium

walk-in strategy of the form (1,1, . . . ,1, p).

EC.4.5. Determining equilibria with mixed walk-in strategies under WMO

The case of determining equilibria with mixed walk-in strategies under WMO is more

challenging as compared to finding such equilibria under the other two single-server policies.

This is because in the case of WMO, we must determine p∗
w and p∗m jointly, since walk-in

strategies affect the “best response” of mobiles, and vice-versa. The following proposition

highlights a restricted case, where we can circumvent this problem:

Proposition EC.2. If Tmax
m ≥ 1/(µ2−λm)+1/µ2, then under any equilibrium (p∗

w, p
∗
m),

we must have p∗m = 1 under WMO.

Proof of Proposition EC.2. We first observe that we can view the subsystem of mobiles

at Stage 2 under WMO as behaving like an M/M/1 with setup. Mobiles arrive according to

a Poisson process with rate pmλm. Once the system begins serving mobiles, it will continue

serving mobiles (who have exponential service requirements) without interruption, at rate

µ2. However, when a mobile arrives to this system, they may not immediately begin service.

Specifically, immediate service does not begin if a W is already present at Stage 2, in

which case they will be in service. Say that whenever a mobile arrives into the system

with no other mobiles, the event where the mobile cannot go into service immediately

occurs with probability q (note that successive events are not necessarily independent, and

q depends on pw). When such an event occurs, we can view the time to serve this walk-in

as a setup time that is distributed Exp(µ2), after which time we can serve mobiles until

the completion of the mobile busy period without any interruptions. It is easy to see that

mobile sojourn times are upper-bounded by the special case where we always have setups,

i.e., q = 1. In this case the mobiles experience an M/M/1 with exponentially distributed

setup times with an arrival rate pmλm and both service and setup rates equal to µ2, which

is known to have a mean sojourn time equal to that of the corresponding M/M/1 plus

the mean setup time (see Harchol-Balter (2013) Section 27.3), and so we have the upper

bound EWMO
(pw,pm)

[Tm]≤ 1/(µ2− pmλm) + 1/µ2, which guarantees pm = 1 is a best response to

any pw ∈ S, so long as Tmax
m ≥ 1/(µ2−λm)+ 1/µ2, which establishes the claim. □
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Proposition EC.2 tells us that by restricting attention to settings where Tmax
m ≥ 1/(µ2−

λm)+1/µ2 (under WMO), we know that p∗m = 1, and can thus proceed to determining p∗
w in

accordance with the method presented in Appendix EC.4.4. This condition is satisfied by

1232 out of (86.76%) the 1420 problem instances in our pruned full-factorial experiment.

Of the remaining 188 instances, we find an equilibrium with a pure walk-in strategy in an

additional 131 instances, leaving 54 remaining cases.

We now sketch an iterative technique for approximating equilibria with mixed walk-in

strategies when Tmax
m < 1/(µ2 − λm) + 1/µ2 and no pure strategy equilibria are found to

exist:

1. Set pw ← ∅ and pm← 1 (or better initial “guesses” if available based on the failed

process of attempting to determine pure strategy equilibria). Continue on to step 2.

2. Apply the method presented in Appendix EC.4.4 (without overwriting pw←∅ in step

1 of that algorithm and taking p∗m to be the current value of pm), updating pw based on

the value of p∗
w returned (note that this need not be an equilibrium strategy, rather it

is merely a best response to the current of value of pm). Note the change (in terms of

an appropriate metric, e.g., the infinity-norm after adding zeros to the tail of a shorter

vector where appropriate) in pw as a result of this entire step and call it ∆w, then

continue on to step 3.

3. Apply the method presented in Appendix EC.4.3 to find an updated value of pm that

is a best response to the current pw. Note the change in pm as a result of this step and

call it ∆m, then continue on to step 4.

4. If max(∆w,∆m) falls below a desired precision threshold, then terminate the algorithm

here and report (pw, pm) as an approximate equilibrium. Otherwise, return to step 2.

While we cannot prove that this technique is guaranteed to converge, it yielded adequate

results in the aforementioned 54 cases where other methods did not suffice. A similar

technique can be used to find mixed equilibria in the two-server setting.

EC.4.6. Sojourn Time Computation Under Mixed Walk-in Strategies

We now turn to the question of how to compute the sojourn times of interest under

strategy profiles of the form (pw, pm) in both the single- and two-server settings. One

can show without difficulty that EP
(pw,pm)

[Tw|N1 = i] and EP
(pw,pm)

[Tm] follow the same forms

given for EP
(b,pm)

[Tw|N1 = i] and EP
(b,pm)

[Tm] (respectively), as given in Propositions 5 and
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6. More precisely, under all policies of interest, P, the aforementioned propositions con-

tinue to hold when all instances of the operator EP
(b,pm)

—and all implicit references to the

operator PP
(b,pm)

—in their statements are replaced with E(pw,pm) and P(pw,pm), respectively.

Such “implicit references” to PP
(b,pm)

appear in the limiting probabilities πP
(b,pm)

(i, j) and

ϕP
(b,pm)

(i, j), where reference to the strategy profile has been suppressed in the interest of

brevity.

In order to compute EP
(pw,pm)

[Tw|N1 = i] and EP
(pw,pm)

[Tm] for all policies of interest (exactly

in the single-server setting and approximately in the two-server setting), we must compute

the following under the strategy profile (pw, pm): (i) the first and second moments of U

and V under WOM, (ii) the mean value of Z(i, j) under WM, and (iii) the limiting prob-

abilities πMWO
(b,pm)

(i, j) (equivalently, πWMO
(b,pm)

(i, j)), ϕWOM
(b,pm)

(i, j), πTS
(b,pm)

(i, j), and ϕWM
(b,pm)

(i, j) (and

where appropriate, one or more series associated with these limiting probabilities). The

determination of these quantities under the strategy profile (pw, pm) requires only a minor

modification of the methods given throughout Appendix EC.3 for determination of their

analogues under the strategy profile (b, pm). These modifications result by observing that

the only consequence of generalizing from strategy profiles of the form (b, pm) to those of the

form (pw, pm) on all quantities of interest is an alteration of the Markov chains governing

(N1,N2) and (N1,N2,w). This is also why the aforementioned adaptation of Propositions 5

and 6 to the setting with mixed walk-in strategies is possible.

Specifically, all four chains of interest under the strategy profile (pw, pm) are identical

to their counterparts under (b, pm) (these are illustrated in Figs. 4 and 5) with one crucial

change: the transition rate from phase (row) i to phase (row) i+1 should be piλw rather

than λw, ∀i ∈ {0,1, . . . , b}. As a result, we can obtain the values of interest using the

following modifications of the methods presented throughout Appendix EC.3, all of which

essentially require replacing each instance of λw by piλw for the appropriately chosen value

of i:

1. The limiting probabilities πMWO
(pw,pm)

(i, j) and πWMO
(pw,pm)

(i, j) are equal to one another (as

were their analogues, πMWO
(b,pm)

(i, j) and πWMO
(b,pm)

(i, j)). These quantities, together with

their associated series, can be computed exactly via the same method given in

Appendix EC.3.1 for computing πMWO
(b,pm)

(i, j) and πWMO
(b,pm)

(i, j), by using the following
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revised matrices L0 and L and values γ0, γ1, . . . , γb and ξ0, ξ1, . . . , ξb, in place of those

given in display (EC.28):

L0 =



−γ0 p0λw

−γ1 p1λw

. . . . . .

−γb−1 pb−1λw

−γb


,L=



−ξ0 p0λw

−ξ1 p1λw

. . . . . .

−ξb−1 pb−1λw

−ξb


,

γi =


pmλm + p0λw i= 0

µ1+ pmλm+ piλw 1≤ i≤ b− 1

µ1+ pmλm i= b

, ξi =

 pmλm + piλw +µ2 0≤ i≤ b− 1

pmλm +µ2 i= b
.

Note that the statement “all elements of the diagonal of R are actually the same

except for the last, R(b, b),” no longer holds, but this holds no consequences for the

method in general.

2. The limiting probabilities ϕWOM
(pw,pm)

(i, j) can be computed exactly via the same method

given in Appendix EC.3.2 for computing the limiting probabilities ϕWOM
(b,pm)

(i, j), by using

the following revised system of equations in place of system (EC.30):

p0λwϕ0,0 = µ2ϕ0,1

(piλw +µ1)ϕi,0 = pi−1λwϕi−1,0+µ2ϕi,1 ∀i∈ {1,2, . . . , b− 1}

µ1ϕb,0 = pb−1λwϕb−1,0+µ2ϕb,1

(p0λw +µ2)ϕ0,1 = µ1ϕ1,0,

(piλw +µ2)ϕi,1 = pi−1λwϕi−1,1+µ1ϕi+1,0 ∀i∈ {1,2, . . . , b− 1}

µ2ϕb,1 = pb−1λwϕb−1,1

b∑
i=0

(ϕi,0+ϕi,1) = 1

.

3. The transforms of U and V under the strategy profile (pw, pm)—from which one can

find the quantities of interest EWOM
(pw,pm)

[U ], EWOM
(pw,pm)

[U 2], EWOM
(pw,pm)

[V ], and EWOM
(pw,pm)

[V 2]—can

be computed exactly via the same method given in Appendix EC.3.3, by making the

following modifications:
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(a) System (EC.31) should be revised as follows:

p0λwψ0,0 = µ2ψ0,1+ pmλm (1−ψ0,0)

(piλw +µ1+ pmλm)ψi,0 = pi−1λwψi−1,0+µ2ψi,1, ∀i∈ {1,2, . . . , b− 1}

(µ1+ pmλm)ψb,0 = pb−1λwψb−1,0+µ2ψb,1,

(p0λw +µ2+ pmλm)ψ0,1 = µ1ψ1,0,

(piλw +µ2+ pmλm)ψi,1 = pi−1λwψi−1,1+µ1ψi+1,0, ∀i∈ {1,2, . . . , b− 1},

(µ2+ pmλm)ψb,1 = pb−1λwψb−1,1,
b∑

i=0

(ψi,0+ψi,1) = 1.

(b) System (EC.32) should be revised as follows:

Ũ0,0(s) = 1,

Ũi,0(s) =
piλw +µ1

s+ piλw +µ1

(
piλw

piλw +µ1

Ũi+1,0(s)+
µ1

piλw +µ1

Ũi−1,1(s)

)
, ∀i∈ {1,2, . . . , b− 1},

Ũb,0(s) =
µ1

s+µ1

Ũb−1,1(s),

Ũi,1(s) =
piλw +µ2

s+ piλw +µ2

(
piλw

piλw +µ2

Ũi+1,1(s)+
µ2

piλw +µ2

Ũi,0

)
, ∀i∈ {0,1, . . . , b− 1},

Ũb,1(s) =
µ2

s+µ2

Ũb,0(s).

(EC.41)

(c) Eq. (EC.34) should be revised as follows:

Ṽ (s) =
p0λw +µ2

s+ p0λw +µ2

(
p0λw

p0λw +µ2

Ũ1,0(s)Ṽ (s)+
µ2

p0λw +µ2

)
(EC.42)

=⇒ Ṽ (s) =
µ2

s+ p0λw

(
1− Ũ1,0(s)

)
+µ2

.

If one opts to use the more efficient method discussed at the end of Appendix EC.3.3,

system (EC.35) and display (EC.36), should be revised to be consistent with sys-

tem (EC.41) and display (EC.42), respectively.

4. The limiting probabilities πTS
(pw,pm)

(i, j) and ϕWM
(pw,pm)

(i, j) and their associated series can

be approximated via the methods given in Appendices EC.3.4 and EC.3.7 for com-

puting the limiting probabilities πTS
(b,pm)

(i, j) and ϕWM
(b,pm)

(i, j), respectively, by using the
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following revised matrix L and values ν0, ν1, . . . , νb, in place of those given in display

(EC.37):

L=



−ν0 p0λw

−ν1 p1λw

. . .
. . .

−νb−1 pb−1λw

−νb


, νi =


pmλm+ p0λw +µ2 i= 0

µ1+ pmλm+ piλw +µ2 1≤ i≤ b− 1

µ1+ pmλm+µ2 i= b

.

5. The quantity EWM
(pw,pm)

[Z(i, j)] can be approximated via the methods given in

Appendix EC.3.8 by using the following revised system of equations in place of system

(EC.39):

τ0 =
1+ p0λwτ1
p0λw +µ2

τℓ =
1+ pℓλwτℓ+1

pℓλw +µ1+µ2

+
µ1

pℓλw +µ1+µ2

(
τℓ−1+

b∑
k=0

(
p(ℓ−1)→k

)
τk

)
1≤ ℓ≤ b− 1

τb =
1

µ1+µ2

+
µ1

µ1+µ2

(
τb−1+

b∑
k=0

(
p(b−1)→k

)
τk

)
.

EC.4.7. Heterogeneous Patience Levels in the Single-Server Setting

We turn our attention to the case where patience levels are heterogeneous and consider

the case where for each walk-in (resp. mobile), Tmax
w (resp., Tmax

m ) is a random variable

that is independently drawn from a bounded continuous distribution with c.d.f. Fw (resp.,

Fm). For the discussion that follows, it will be helpful to recall that a bounded distribution

with c.d.f. F has lower and upper bounds that can be expressed by F−1(0) and F−1(1),

respectively.

The theory developed in Appendix EC.4.1 makes it quite simple to address this exten-

sion, which also explains why we again necessarily restrict attention to the single-server

setting. This is because we again have action profiles of the form (pw, pm) with pw ∈ S,

although there is additional meaning carried in this action profile that was absent in the

case of constant (homogeneous) patience levels: specifically, pi (where pi is determined by

pw = (p0, p1, . . . , pb−1)) denotes that a walk-in with patience level Tmax
w will join when N1 = i

if and only if Tmax
w is at or above the (1−pi) quantile (of the patience level distribution for
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all walk-ins), i.e., Tmax
w ≥ F−1

w (1− pi). Similarly, pm denotes that a mobiles with patience

level Tmax
m will join if and only if Tmax

m is at or above the (1− pm) quantile (of the patience

level distribution for all mobiles), i.e., Tmax
w ≥ F−1

m (1− pm). Of course, as a consequence of

these interpretations, the original meanings of pi and pm still hold true as well: an arbitrary

walk-in joins at N1 = i with probability pi, while an arbitrary mobile joins with probability

pm.

In light of the above, in this setting (p∗
w, p

∗
m) is an equilibrium if it satisfies the following

revised equilibrium conditions:

EP
(p∗

w,p
∗
m)
[Tw|N1 = i] = F−1

w (1− pi) ∀i∈ {0,1, . . . , b∗− 1}

EP
(p∗

w,p
∗
m)
[Tw|N1 = b∗]≥ F−1

w (1)

argmax{pm ∈ [0,1] : EP
(p∗

w,pm)
[Tm]≤ F−1

m (1− pm)}= p∗m, (EC.43)

where b∗ is again the number of entries in p∗
w. Meanwhile, social welfare takes on the

following form under heterogeneous patience levels:

SWP
(pw,pm) =

1

Λ

(
λw

b−1∑
i=0

pi
(
Tmax
w (i)−EP

(pw,pm)[Tw|N1 = i]
)
PP
(pw,pm)(N1 = i)+ pmλm

(
Tmax
m −EP

(b,pm)[Tm]
))

,

where Tmax
w (i) is the average patience level of walk-ins who join when N1 = i and Tmax

m is

the average patience level of mobiles who join. Specifically, these quantities are given by

Tmax
w (i) =

1

pi

∫ F−1
w (1)

F−1
w (1−pi)

t dFw(t) and Tmax
m =

1

pm

∫ F−1
m (1)

F−1
m (1−pm)

t dFm(t).

The method described in Appendix EC.4.2 can then be modified in order to find one

or more equilibria in this setting. This modification is straightforward as one needs only

change equations being solved and the inequalities being checked on the basis of the new

equilibrium conditions given in display (EC.43). Note that the assumption Tmax
m ≥ 1/(µ2−

λm) + 1/µ2 that facilities tractable analysis becomes F−1
m (0)≥ 1/(µ2 − λm) + 1/µ2 in this

setting.

Applying this method to the case where patience thresholds follow a truncated normal

distribution, we find results that are in line with those presented in the body of the paper

in the setting where customers have homogeneous patience level (see Fig. EC.2); i.e., we

observe a region of adoption rates, α, where all three policies underperform the no-app

benchmark with respect to throughput.
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Figure EC.2 Single-server with heterogeneous customers: Λ = 0.05, µ1 = 0.16, µ2 = 0.08,

Tmax
w ∼TrN(62.5,10,60,65), Tmax

m ∼TrN(70,8,60,80); TrN(µ,σ,LB,UB) is a truncated

Normal distribution with mean µ, std. dev. σ, and lower and upper bounds LB and UB.
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EC.5. Experiments

In Table EC.1, we specify the non-degenerate parameter combinations using the “×” sym-

bol. Each cell in Table EC.1 includes 10 experiments (values of α). Our discussions in

Section 6 of the paper, which are based on the tables provided in this section, are all based

on the non-degenerate parameter combinations.

Table EC.1 Non-degenerate parameter combinations (specified by “×”)

µ2 = 1.5 µ2 = 2 µ2 = 2.5 µ2 = 3
µ1/µ2 µ1/µ2 µ1/µ2 µ1/µ2

Tmax
m

Tmax
w

Tmax
m

.25 .5 1 2 4 .25 .5 1 2 4 .25 .5 1 2 4 .25 .5 1 2 4

0.5
80%

100% ×
125% × × × ×

1
80% × × × × × × ×
100% × × × × × × × × ×
125% × × × × × × × × × × × × ×

2
80% × × × × × × × × × × × × × × ×
100% × × × × × × × × × × × × × × × ×
125% × × × × × × × × × × × × × × × × × ×

4
80% × × × × × × × × × × × × × × × × × × ×
100% × × × × × × × × × × × × × × × × × × × ×
125% × × × × × × × × × × × × × × × × × × × ×

Table EC.2 presents the descriptive statistics for the percentage of throughput loss due to

introduction of a mobile-ordering application in experiments in which opting not to offer an

app outperforms the three omni-channel prioritization policies in the single-server setting

(MWO,WMO, and WOM) with respect to throughput. The percentage of throughput loss

is calculated as:

% throughput loss =
No-app throughput−Maximum throughput of omni-channel policies

No-app throughput
× 100.

Table EC.2 Summary statistics for % throughput loss

Average Std. dev. Min 1st quartile Median 3rd quartile Max

12.41% 10.95% 0.00% 2.60% 10.62% 19.85% 40.27%

Table EC.3 provides the number and percentage of cases in which each policy is optimal

with respect to throughput (with ties broken in favor of highest social welfare, whenever

possible), at all fixed levels of the five parameters µ2, µ1/µ2, α, T
max
m , and Tmax

w /Tmax
m .
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Table EC.3 Effect of parameters on the optimal policy

µ2 µ1/µ2

1.5 2 2.5 3 0.25 0.5 1 2 4

No app 40 24 17 15 1 6 14 24 51

14.8% 7.1% 4.4% 3.6% 0.7% 2.5% 4.7% 6.7% 13.4%

MWO 2 2 0 0 0 1 0 0 3

0.7% 0.6% 0.0% 0.0% 0.0% 0.4% 0.0% 0.0% 0.79%

WMO 26 19 9 9 8 13 12 17 13

9.6% 5.6% 2.3% 2.1% 5.7% 5.4% 4.0% 4.7% 3.4%

WOM 59 178 285 345 60 113 186 240 268

21.9% 52.4% 73.1% 82.1% 42.9% 47.1% 62.0% 66.7% 70.5%

MWO&WMO 143 117 79 51 71 107 88 79 45

(Tie) 53.0% 34.4% 20.3% 12.1% 50.7% 44.6% 29.3% 21.9% 11.8%

# of instances 270 340 390 420 140 240 300 360 380

α

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

No app 10 13 15 14 12 9 8 7 5 3

7.0% 9.2% 10.6% 9.9% 8.5% 6.3% 5.6% 4.9% 3.5% 2.1%

MWO 0 2 0 0 1 0 1 0 0 0

0.0% 1.4% 0.0% 0.0% 0.7% 0.0% 0.7% 0.0% 0.0% 0.0%

WMO 2 7 6 11 12 8 11 6 0 0

1.4% 4.9% 4.2% 7.8% 8.5% 5.6% 7.8% 4.2% 0.0% 0.0%

WOM 57 62 64 69 80 88 98 108 120 121

40.1% 43.7% 45.1% 48.6% 56.3% 62.0% 69.0% 76.1% 84.5% 85.2%

MWO&WMO 73 58 57 48 37 37 24 21 17 18

(Tie) 51.4% 40.9% 40.1% 33.8% 26.1% 26.1% 16.9% 14.8% 12.0% 12.7%

# of instances 142 142 142 142 142 142 142 142 142 142

Tmax
m Tmax

w /Tmax
m

0.5 1 2 4 0.8 1 1.25

No app 24 41 18 13 22 22 52

48.0% 14.1% 3.7% 2.2% 5.4% 4.8% 9.5%

MWO 0 1 1 2 0 0 4

0.0% 0.3% 0.2% 0.3% 0.0% 0.0% 0.7%

WMO 5 17 18 23 10 22 31

10.0% 5.9% 3.7% 3.9% 2.4% 4.8% 5.6%

WOM 2 168 314 383 312 295 260

4.0% 57.9% 64.1% 64.9% 76.1% 64.1% 47.3%

MWO&WMO 19 63 139 169 66 121 203

(Tie) 38.0% 21.7% 28.4% 28.6% 16.1% 26.3% 36.9%

# of instances 50 290 490 590 410 460 550
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EC.6. Notation Table

Table EC.4: Notation

α ≜ Adoption rate; α≡ λm/Λ

aP ≜ Allocation (class-specific mean sojourn time pair)
under service policy P; a≡ (EP[Tw],EP[Tm])

aP
∗

≜ An arbitrary Pareto optimal allocation;
more precisely, the allocation under (an arbitrary Pareto optimal policy) P∗

b ≜ Buffer size at Stage 1; queue length of Stage 1 at which all walk-ins balk

b∗ ≜ Equilibrium threshold for walk-ins

B ≜ Strict upper bound on the buffer size at Stage 1

B ≜ Repeated backward transition matrix used in matrix-analytic methods

bd(O) ≜ Boundary of the achievable region

C ≜ Cost per unit time spent waiting in the system

χw, χm ≜ Throughput rate for walk-in(χw) and mobile (χm) customers

∆w, ∆m ≜ Change in pw (∆w) and pm (∆m) in one step of the algorithm for
determining equilibria with mixed walk-in strategies under WMO

ei ≜ i-th unit vector

E ≜ Total net change of throughput due to information uncertainty

Ew, Em ≜ Net change of throughput due to individual walk-in (Ew) and mobile (Em)
information uncertainty

EP ≜ Expectation operator under policy P

EP
(b,pm) ≜ Expectation operator under strategy profile (b, pm) and policy P

EP
(pw,pm) ≜ Expectation operator under strategy profile (pw, pm) and policy P

EP[T ] ≜ Overall mean response time; EP[T ]≡ (λwEP[Tw] +λmEP[Tm])/Λ

EP[W ] ≜ Mean value of overall work in the system

EP[W2] ≜ Mean value of overall work in Stage 2

EP[Ww], EP[Wm] ≜ Mean values of the work due to walk-ins (EP[Ww])
and work due to mobiles (EP[Wm]) in the system

F0, F ≜ Initial (F0) and repeated (F) forward transition matrices
used in matrix-analytic methods

fb(·) ≜ Mobiles’ mean sojourn time as a function of pm with index b; fb(·)≡EP
(b,·)[Tm]

Fw, Fm ≜ CDF of patience levels for walk-ins (Fw) and mobiles (Fm)

G ≜ G-matrix used in matrix-analytic methods; G(ℓ, k)≡ pℓ→k

γi ≜ an auxiliary value defined by
pmλm +λw, if i= 0; µ1 + pmλm +λw, if 1≤ i≤ b− 1; µ1 + pmλm, if i= b

I ≜ Identity matrix

I(i) ≜ Time interval corresponding to a tagged walk-in’s sojourn at Stage 1
until they arrive to Stage 2

K(i) ≜ Random quantity of mobile customers that arrived during I(i)
L0, L ≜ Initial (L0) and repeated (L) local transition matrices

used in matrix-analytic methods

Λ ≜ Total arrival rate for all customers; Λ≡ λw +λm

λw, λm ≜ Arrival rates of walk-in (λw) and mobile (λm) customers

L(i, j) ≜ Number of customers in Stage 2 (including the tagged walk-in) at time of
the tagged walk-in’s arrival to Stage 2, given that N1 = i and N2 = j
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L(i, j, k) ≜ Number of customers present in Stage 2 at the end of I(i),
given that K(i) = k and initially N2 = j

M ≜ Mobile task at Stage 2

Mρ(t) ≜ Number of customers in an M/M/1 system under load ρ∈ (0,∞) at time t

µ1 ≜ Service rate at Stage 1

µ2 ≜ Service rate at Stage 2

N1, N2 ≜ Number of customers in Stage 1 (N1) and Stage 2 (N2)

N2,w ≜ Number of walk-ins at Stage 2 (i.e., number of W tasks)

Nw, Nm ≜ Number of walk-ins (Nw) and mobiles (Nm)

νi ≜ an auxiliary value defined by pmλm +λw +µ2, if i= 0;
µ1 + pmλm +λw +µ2, if 1≤ i≤ b− 1; µ1 + pmλm +µ2, if i= b

O ≜ Achievable region of allocations; O≡ {tP ∈R2
+ : P∈P}

O∗ ≜ Pareto frontier; O∗ ≡ (O\Vi)∩bd(O), for i∈ {1,2}
O ≜ Walk-in task at Stage 1

P ≜ Arbitrary service policy

P∗ ≜ Arbitrary Pareto optimal policy

⟨P1,P2⟩(θ) ≜ Random mixture of policies P1 (w.p. θ) and P2 (w.p. 1− θ)
P ≜ Policy space: the set of all possible policies

P∗ ≜ Pareto space; P∗ ≡ {P∗| ̸ ∃P∈P : tP ≻ tP∗}
PP
(b,pm) ≜ Probability operator under strategy profile (b, pm) and policy P

ϕP
(b,pm)(i, j) ≜ Limiting probability associated with state (i, j) in the (N1,N2,w) CTMC

under strategy profile (b, pm) and policy P; ϕP
(b,pm)(i, j)≡ PP

(b,pm)(N1 = i,N2,w = j)

πP
(b,pm)(i, j) ≜ Limiting probability associated with state (i, j) in the (N1,N2) CTMC

under strategy profile (b, pm) and policy P; πP
(b,pm)(i, j)≡ PP

(b,pm)(N1 = i,N2 = j)

πTS
(b,pm)(i, j) ≜ Two-server limiting probability πP

(b,pm)(i, j) under P∈ {WM,FCFS,MW}
π⃗j ≜ Vector of limiting probabilities when for N1 = i∈ {0, . . . , b} when N2 = j

π(b,pm)(i, j) ≜ Limiting probabilities under both MWO and WMO

pℓ→k ≜ Probability that we specifically end up in state (k,m− 1)
before reaching state (k′,m− 1) for any k′ ̸= k from state (l,m) under WM

pm ≜ Mobiles’ joining probability

p∗m ≜ Mobiles’ joining probability under equilibrium

ψWOM
(b,pm)(i, j) ≜ Steady-state probability that a mobile arriving to a mobile-less system

under WOM sees (N1 = i,N2,w = j); ψWOM
(b,pm)(i, j) = PWOM

(b,pm)(N1 = i,N2 =N2,w = j)

P (u, v,w;ρ) ≜ P (Mρ(tv) =w|Mρ(0) = u), probability that the system occupancy of
an M/M/1 system under load ρ> 0 transitions from u to w
after exactly v further arrivals

pw ≜ Walk-ins’ mixed joining strategy which is a vector of length b

p∗
w ≜ Walk-ins’ mixed joining strategy under equilibrium

R ≜ Benefit obtained by walk-ins from receiving service

R ≜ Rate matrix (R-matrix) used in matrix-analytic methods

ρ ≜ Load in an M/M/1 system

ρw, ρm ≜ fractions of the time spent serving walk-ins (ρw) and mobiles (ρm)

S ≜ Generalized walk-in strategy space; S ≡
⋃∞

b=0

∏b−1

i=0 (0,1]

SWP
(b,pm) ≜ Social welfare under policy P under strategy profile (b, pm)

SWP
(pw,pm) ≜ Revised social welfare formula when walk-ins applying mixed strategies

τℓ ≜ Expected “hitting time” associated with the trip from state (ℓ,m) where
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m≥ 1, until the first time we reach state (k,m− 1) for any k ∈ {0,1, . . . , b}
tn ≜ Time of the n-th Poisson arrival to an M/M/1 system since time 0

Tw, Tm ≜ Sojourn time of a walk-in (Tw) or mobile (Tm) customer

Tmax
w , Tmax

m ≜ Patience level for walk-in (Tmax
w ) and mobile (Tmax

m ) customers

Tmax
w (i) ≜ Average patience level of walk-in customers who join when N1 = i

Tmax
m ≜ Average patience level of mobiles who join

U ≜ Waiting time of a mobile who arrives when there are no other mobiles

Ũ(s) ≜ The Laplace transform of the random variable U ; Ũ(s)≡EWOM
(b,pm) [e

−sU ]

Ui,j ≜ The time it takes for a system currently in a state (N1,N2,w) = (i, j)
to be empty of all its walk-ins, without regard for any mobile arrivals;
Ui,j ∼ (U |N1 = i,N2,w = j )

Ũi,j(s) ≜ Laplace transform of Ui,j; Ũi,j(s)≡EWOM
(b,pm) [e

−sUi,j ]

V ≜ Sojourn time of a mobile who enters an empty system; V ∼ (Tm|N1 =N2 = 0)

Ṽ (s) ≜ Laplace transform of V ; Ṽ (s)≡EWOM
(b,pm) [e

−sV ]

W ≜ Walk-in task at Stage 2

W ≜ The work in the system

ξi ≜ An auxiliary value defined by
pmλm +λw +µ2, if 0≤ i≤ b− 1; pmλm +µ2, if i= b

X ≜ Total throughput

Y (i, j) ≜ Expected workload that a walk-in will encounter at Stage 2 once it
arrives there given that N1 = i and N2 = j when it arrived to Stage 1

YK(i, j) ≜ Truncation of the first summation (by summing from k= 0 to K
instead of k= 0 to ∞) in the expression of Y (i, j)

Z(i, j) ≜ Time it takes to reach a state where N2,w = 0 from state (N1,N2,w) = (i, j)
under WM, given (b, pm);
Z(i, j)∼ inf{s≥ 0: N2,w(t+ s) = 0|N1(t) = i,N2,w(t) = j}, ∀t≥ 0

≻ ≜ Dominance relation on allocations

⌢ ≜ Vector concatenation operator


