
Representation Shattering in Transformers:
A Synthetic Study with Knowledge Editing

Kento Nishi 1 2 3 Rahul Ramesh 4 Maya Okawa 2 3 Mikail Khona 5

Hidenori Tanaka* 2 3 Ekdeep Singh Lubana* 2 3

Abstract
Knowledge Editing (KE) algorithms alter models’
weights to perform targeted updates to incorrect,
outdated, or otherwise unwanted factual associa-
tions. However, recent work has shown that ap-
plying KE can adversely affect models’ broader
factual recall accuracy and diminish their reason-
ing abilities. Although these studies give insights
into the potential harms of KE algorithms, e.g.,
performance evaluations on benchmarks, little is
understood about why such destructive failures
occur. Motivated by this, we define a novel syn-
thetic task in which a Transformer is trained from
scratch to internalize a “structured” knowledge
graph. The structure enforces relationships be-
tween entities of the graph, such that editing a
factual association has “trickling effects” on other
entities (e.g., altering X’s parent is Y to Z affects
who X’s siblings’ parent is). Through evaluations
of edited models on this task, we show that KE
inadvertently affects representations of entities
beyond the targeted one, distorting relevant struc-
tures that allow a model to infer unseen knowl-
edge about an entity. We call this phenomenon
representation shattering and demonstrate that it
degrades models’ factual recall and reasoning per-
formance. We further corroborate our findings in
naturalistic settings with pre-trained Llama and
Mamba models as well. Overall, our work yields
a precise mechanistic hypothesis to explain why
KE has adverse effects on model abilities.

*Equal contribution 1Harvard College 2CBS-NTT Program
in Physics of Intelligence, Harvard University 3Physics and In-
formatics Lab, NTT Research Inc. 4Computer and Information
Science, University of Pennsylvania 5Department of Physics,
Massachusetts Institute of Technology. Correspondence to:
Kento Nishi <kentonishi@college.harvard.edu>, Ekdeep Singh
Lubana <ekdeeplubana@fas.harvard.edu>, Hidenori Tanaka <hi-
denori tanaka@fas.harvard.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

(a)

Entity #125

Entity #124

Before Editing
Model
Editing

0.8

0.6

0.4

0.2

0

1.0

?
A B A B C

?
A B

?

Direct
Recall

Logical
Inference

Compositional
Inference

Performance Before Editing
Performance After Editing

0.59 0.60
0.72

Entity #125

Entity #124

Which entity is to the right of #123? (b)

After Editing

Figure 1. Representation shattering as a mechanistic hypothesis
for why knowledge editing has adverse effects on models’ gen-
eral capabilities. (a) Prior works find that editing facts, e.g., the
president of the US, can harm general abilities of LLMs (figure
reproduced from Gu et al. (2024)). (b) We introduce a synthetic
data generation process (DGP) defined by a knowledge graph con-
taining ring-shaped geometries. Training a model on this data, we
observe that the model’s internal representations mirror the ring
structure of the underlying DGP. We explain the post-edit degra-
dation of the model’s capabilities by uncovering the “shattering”
of latent representations. E.g., in the provided illustration, while
the edit successfully changes the fact (Entity #124 is to the right
of Entity #123), it also degrades model’s broader performance.

1. Introduction
Large language models (LLMs) have led to unprecedented
advances in several domains (Gemini Team, 2023; Bubeck
et al., 2023; Touvron et al., 2023; Thoppilan et al., 2022;
Chowdhery et al., 2022; Qin et al., 2023; Chen et al., 2021;
Ahn et al., 2022; Driess et al., 2023). However, the static
nature of their training pipelines implies that as our world
evolves, models’ internalized knowledge can become incor-
rect or outdated. To address this, recent work has proposed
several protocols for knowledge editing (KE), wherein the

1

Representation Shattering in Transformers with Knowledge Editing

goal is to minimally and precisely alter model weights
such that only the targeted information (and its relevant
associations) are updated, but all unrelated information re-
mains (ideally) unaffected (Mitchell et al., 2022; Meng et al.,
2022a; 2023; Dai et al., 2021; Cheng et al., 2023; De Cao
et al., 2021; Sinitsin et al., 2020).

Despite significant work on the topic, it still remains unclear
precisely what effects KE should have on a model. For
example, assume you edit the fact that “Michael Jordan
won the 1998 NBA MVP” to “Reggie Miller won the 1998
NBA MVP”, then what should the impact of such an edit
be? Should the model now believe Michael Jordan and
the Chicago Bulls never reached the NBA finals in 1998?
Should it perhaps believe Reggie Miller was on the Chicago
Bulls? Should the pop quote “Be like Mike” (Wikipedia,
2024) now become “Be like Reggie”? As Hofweber et al.
(2024); Hase et al. (2024) argue, it is difficult to design clear,
well-defined answers for such questions. Motivated by this,
recent work has started investigating precisely what effects
KE actually has on the model (Hoelscher-Obermaier et al.,
2023; Li et al., 2023b; Lynch et al., 2024). For example,
Cohen et al. (2023) demonstrate that knowledge beyond the
edited fact can often be impacted such that the model begins
to have an incoherent understanding of the world; Gupta
et al. (2024a) demonstrate unrelated facts are often forgotten
by the model post-editing; and Gu et al. (2024) show that
KE can harm broader reasoning capabilities beyond mere
factual recall. While these works clearly demonstrate the
detrimental impacts of editing on a model, they still leave
open the question precisely why such harms occur—at a
mechanistic level, how are model representations impacted
such that a broad set of knowledge and capabilities in a
model are heavily distorted once an edit occurs?

This work. To address the questions above, we aim to de-
velop a mechanistic understanding of the impact of KE on a
model’s internals. For this purpose, we argue we must solve
two problems: (i) identify how a model expresses knowl-
edge about some predefined set of entities in its representa-
tions, and (ii) investigate how this mechanism is affected as
we apply KE to alter a fact corresponding to a subset of the
entities. Instead of attacking a complicated system that may
be difficult to interpret (e.g., an off-the-shelf LLM), we take
inspiration from a multitude of recent papers that establish
synthetic abstractions of the target system and develop pre-
cise hypotheses as to why the phenomenon-in-question oc-
curs (Allen-Zhu & Li, 2023c;a;b; Okawa et al., 2023; Chan
et al., 2022; Li et al., 2023a; Lubana et al., 2024). Specifi-
cally, we define a data-generating process that yields entities
arranged in a structured knowledge graph. This structure is
defined via use of a predefined set of relations that locally
constrain how entities relate to each other (similar to parent-
child relations). Given enough entities and relations, such
local constraints manifest a broader global structure in the

knowledge graph. Performing traversal over the nodes of
this knowledge graph, we get sequences that can be used as
“strings” to train a Transformer on. As we show, this proto-
col leads to the model precisely encoding the structure of
the graph in its latent representations. However, when KE is
applied to edit either incorrectly learned facts or insert coun-
terfactual knowledge (using the method proposed by Meng
et al. (2022a)), we find latent representations are heavily
distorted and the graph structure completely destroyed—we
call this phenomenon representation shattering. Inter-
estingly, this phenomenon manifests in proportion to how
far the proposed edit moves a given node from its current
location to a new location in the graph (defined via edge
distance). We thus hypothesize representation shattering un-
derlies the detrimental effects of KE on a pretrained model’s
factual and reasoning capabilities at broad. Overall, we
make the following contributions in this work.

• Structured Knowledge Graphs as a Toy Setting for
Investigating Impact of KE. We propose use of a struc-
tured knowledge graph wherein entities (nodes) are con-
nected to each other via predefined local constraints (rela-
tions) that manifest into a broader, global structure in the
graph (see Sec. 3). Training Transformers on strings (path
traversals) from the graph, we find model representations
precisely encode the global structure of the graph. This
allows us to assess the impact of KE at a more mecha-
nistic level, since distorting a fact now has global effects
that can be precisely (and, in fact, visually) delineated by
analyzing the model representations.

• Representation Shattering as a Mechanistic Hypothe-
sis to Explain Detrimental Effects of KE. We find KE
distorts latent representations for entities in the graph such
that the global geometry learned during pretraining is, at
times, completely destroyed—we call this phenomenon
representation shattering and hypothesize it underlies
the detrimental effects of KE on model capabilities ob-
served in prior work (see Sec. 4 and Fig. 1). As we show,
the extent of harm on latent representations turns out to
be correlated to the amount an edit alters the graph from
its original organization into the new, desired one.

• Investigations with Off-the-Shelf LLMs. Using pre-
trained Llama and Mamba models, we provide evidence
for our claims about representation shattering in more nat-
uralistic settings. For one, we find real-world analogues
to our synthetic knowledge graph structures (i.e., days of
the week) yield similar shattering phenomena in Llama
and Mamba models to what we observe in our toy setup
(see Sec. 4.5). Additionally, we further reinforce the gen-
erality of our findings with preliminary replications of
representation shattering under more complex knowledge
graph geometries, such as trees (i.e. countries and their
cities, Appx. H.3).

2

Representation Shattering in Transformers with Knowledge Editing

2. Related Work
Knowledge Editing. Several protocols for knowledge edit-
ing (KE) have been proposed in recent work. Early work de-
fined meta-learning based approaches (Sinitsin et al., 2020;
De Cao et al., 2021; Mitchell et al., 2022) and established
the broader desiderata for what properties a KE protocol
should satisfy; e.g., ensuring facts unrelated to the target
one are not hampered via the editing protocol. Building
on work aimed at understanding how Transformers encode
knowledge in their internals (Geva et al., 2020), modern
KE protocols focus on defining closed-form operations that
involve (i) localizing knowledge to specific components in a
model (e.g., MLP layers) and (ii) defining operations to alter
a factual association by assuming the fact is represented in
a localized manner (Meng et al., 2022a; 2023).

Evaluations of Knowledge Editing Methods. As argued
by Hase et al. (2024); Hofweber et al. (2024), the problem
of KE is relatively ill-defined. Consequently, it is unclear
that when we edit knowledge within a model, what effects
said edits should have on other facts it may have internalized
during training. Prior work has hence taken an alternative
approach, primarily focusing on developing an empirical
understanding of what the phenomenology of KE protocols
is: e.g., if an edit is performed, how are counterfactual state-
ments or unrelated facts affected. These works generally
show that KE in fact has extreme detrimental effects on a
model, e.g., hampering both its broader internalized knowl-
edge and its reasoning abilities (Hase et al., 2023; Cohen
et al., 2023; Hoelscher-Obermaier et al., 2023; Gupta et al.,
2024a; Gu et al., 2024). While the primary methodology
used in such papers is to perform empirical benchmarking
of a model that has undergone editing, we instead focus
on a mechanistic analysis of how editing alters a model’s
representations (albeit primarily in a toy synthetic task) to
yield the undesirable effects on model abilities.

Explaining Models via Synthetic Tasks. To disentangle
the failures of KE methods from the failures of the mod-
els themselves, we argue for use of a more controllable
and interpretable setup. Such a setup can help identify a
concrete hypothesis for why KE has undesirable effects
on the model, which we can then analyze in naturalistic
settings by designing more precisely defined experiments.
This methodology of designing toy, control tasks to inves-
tigate hypotheses for phenomenology of a neural network
has yielded promising results in recent years, providing,
e.g., a concrete hypothesis for how chain-of-thought reason-
ing aids model capabilities (Prystawski et al., 2024; Feng
et al., 2023), models for emergent capabilities (Okawa et al.,
2023; Lubana et al., 2024), existence of multidimensional
representations (Engels et al., 2024), and failure modes for
compositional generalization (Zhou et al., 2023).

3. Formalzing Knowledge Editing
Epistemology has grappled with the nature of knowledge for
centuries (Chappell, 2005). In this work, we adopt a humble
yet precise definition of knowledge based on structured
knowledge graphs. A knowledge graph is used to represent
how facts, entities, and relations are interlinked, giving rise
to notions of consistency, coherency, and reasoning across
different pieces of information. Using these definitions, we
will define a synthetic data generation process on knowledge
graphs that enables a systematic study of knowledge editing
in Transformers.

3.1. Knowledge Graphs

A knowledge graph consists of a collection of entities X =
{xi}ni=1, and a collection of facts F that relate different
entities. For example, a graph defined on entities X =
{“Alice”, “Bob”, “Carol”} can encode the fact “Alice is the
advisor of Bob” using the relation “advisor”, represented as
(“Alice”, “advisor”, “Bob”).

Definition 3.1 (Knowledge graph). Formally, a knowledge
graph G = (X,R, F) consists of nodes X , relations R, and
facts F , where each fact f = (xi, r, xj) ∈ F is defined by
a relation r ∈ R between two entities xi, xj ∈ X .

A relation sub-graph corresponds to a sub-graph con-
structed by only considering facts that use relation r. For
example, Gadvisor is a sub-graph that specifies all facts for
the relation “advisor”. Every knowledge graph contains a
collection of facts that can be inferred from the graph.

Related pieces of information such as “Alice’s advisor was
Bob” and “Bob’s advisor was Carol” can be composed to
form cohesive statements such as “Alice’s advisor’s advisor
was Carol. To capture such statements, we define composi-
tions of relations. The composition of relations are essential
to capture ripple effects that occur in the knowledge graph
after an edit (Cohen et al., 2023) to a relation in R.

Definition 3.2 (Composition of relations). A composi-
tion of relations r⃗ = (r1, r2, · · · , rk) ∈ Rk with re-
spect to knowledge graph G is defined such that for ev-
ery fact f = (xi, r⃗, xj), there exists a collection of facts
{(xi, ri, xi+1)}ki=1 for which x1 = xi and xk+1 = xj . In
other words, any fact defined on the composition of relations
has a corresponding set of facts defined on relations from R.
Furthermore, the set of facts form a path in the knowledge
graph such that the sequence of relations in the path are
r1, r2, · · · rk.

3.2. Cyclic Graphs: Description of Entities/Relations

We mainly study knowledge graphs where every relation
sub-graph is a set of disjoint cyclic graphs, i.e., for every
entity xi and relation r, there exists exactly one entity xj

such that (xi, r, xj) ∈ F . We specifically choose a cyclic

3

Representation Shattering in Transformers with Knowledge Editing

JanFeb

Mar

Apr

May
Jun

Jul Aug Sep
Oct

Nov

Dec
Mon

Tue
Wed

Thu Fri
Sat

Sun

Figure 2. Isomap projections of representations in Llama-3.1-
405B (Fiotto-Kaufman et al., 2024). The geometry of the data—
for example, the cyclic nature of months or days—is often reflected
in the representations learned by language models. Similar repre-
sentations can also be found in other models like GPT-2-Small and
Mistral 7B (Engels et al., 2024).

geometry as a global constraint on the graph structure since
cycles are a common pattern that relate entities in natural
language domains; e.g., see Fig. 2, where we show a 2D
projection of representations from Llama-3.1-405B corre-
sponding to months of a year and days of the week naturally
organize in a cyclic fashion. For supplementary explorations
of geometries of concepts other than cycles (i.e. trees), refer
to Appx. H.3.

Knowledge editing methods, e.g., ROME (Meng et al.,
2022a) and MEMIT (Meng et al., 2023), target a set of
entities for which predefined facts are to be edited, while
using another retain set of facts about said entities to help
ensure relations beyond the targeted ones are not altered.
A test set of facts are then used to evaluate how well the
method worked. Motivated by this, we define a knowledge
graph with 2048 entities (denoted by 1-2048) over which
we define 3 cyclic orders (order I, II and III). The cyclic
orders are generated using random permutations of the en-
tities. We create 8 relations for each cyclic order totaling
to 24 relations. The 8 relations correspond to the 1-hop,
2-hop, 3-hop and 4-hop neighbors in the clockwise and
anti-clockwise directions in the cycle. The relations are
named after a combination of the cyclic order (I, II, III),
the neighbor’s distance (between 1-4) and the neighbor’s
direction (Clockwise, Anti-clockwise). For instance, the re-
lation “I C2” denotes the 2-hop neighbor in the clockwise
direction, with respect to cyclic order I. The 1-hop neighbor
relation graphs (both clockwise and anti-clockwise) contain
a single cycle, 2-hop relation graphs consist of 2 cycles, the
3-hop relation graph contains 1 cycle, while the 4-hop rela-
tion graph contains 4 cycles. The k-hop neighbor relations
are related to each other by design, so any edit to one k-hop
relation should be consistent with all other k-hop relations.
An edit corresponds to changing a fact in the knowledge
graph and can also be interpreted as changing an edge in the
relation graph. For an illustrative example, see Fig. 3.

Depending on the fact being edited, the 3 cyclic orders are
used to define the edit sub-graph, the retain sub-graph, and
the test sub-graph. We need 3 cyclic orders because knowl-
edge editing methods target edit sub-graph relations; the

1.I_C1 = 5
1.I_C2 = 3→2
1.I_A1 = 6
1.I_A2 = 7
…

1
5

2

3
4

8

7

6

1
6

5

3
8

7

2

4

1
4

5

6
3

7

2

8

Edit sub-graph:
Cyclic Order I

Retain sub-graph:
Cyclic Order II

Test sub-graph:
Cyclic Order III

1.II_C1 = 6
1.II_C2 = 5
1.II_A1 = 4
1.II_A2 = 2
…

1.III_C1 = 4
1.III_C2 = 5
1.III_A1 = 8
1.III_A2 = 2
…

1 I_C1 5 I_A2 6 II_C2 4 III_C4 7 I_A1 8 II_C2 II_C1 4 …

Randomly trace a sequence of connected entities through the three cyclic orders:

Hold out some relations for testing!

1
5

2

3
4

8

7

6

1
6

5

3
8

7

2

4

1
4

5

6
3

7

2

8

Edit
knowledge

Retain
knowledge

Reserved
for eval

Distance = 1

1.I_C2 = 2
“2 hops clockwise from entity 1
in cyclic order I is entity 2”

Compose relations!

Figure 3. Synthetic data generation process with a cyclic knowl-
edge graph. The entities (nodes) are arranged according to 3
different cyclic orders. Each entity (node) has relations (directed
edges) pointing to 8 other entities in each cyclic order which totals
to 24 relations across all 3 orders. The relations correspond to 1-4
hop neighbors in the clockwise and anti-clockwise directions. We
select a random path on the knowledge graph using all 24 relations
to generate a prompt (shown above). The relations follow the nam-
ing convention of ⟨cyclic-order⟩ ⟨direction⟩⟨hops⟩, i.e. II A3 is
the relation corresponding to the three-hop anti-clockwise neigh-
bor in the second cyclic order. In cyclic order I, the above figure
denotes an edit for a relation between Entity 1 to Entity 3 (red) to
a relation between Entity 1 to Entity 2 (green). The distance of the
edit is 1, as defined with respect to cyclic order I.

facts based on these edit relations are then tested to check
if a knowledge edit was successful. Meanwhile, the retain
sub-graph relations are used by the knowledge editing
algorithm to minimize changes to unrelated relations, but
no edits are made to facts that use these relations. Finally,
the test sub-graph relations are used to define facts that
are neither directly edited, nor used by the knowledge edit-
ing algorithm. The relations are used to evaluate whether
unrelated facts remain unchanged after a knowledge edit.
We note that relations for all 3 sub-graphs are seen during
pre-training and this distinction between the cyclic orders
is made only during model editing. Finally, the distance of
an edit (shown in Fig. 3) is defined as the shortest distance
between the original and edited entity in the cyclic order.

3.3. Experimental Setup

Data generation process. We generate a sequence of alter-
nating entities and relations resembling x1r⃗1x2r⃗2x3r⃗3 . . . ,
where any consecutive triplet of entity, relation, and en-
tity xirixi+1 from the sequence is a fact (xi, r⃗i, xi+1)
in the knowledge graph. The composition of relations

4

Representation Shattering in Transformers with Knowledge Editing

r⃗i = ri1ri2ri3 . . . is a sequence of 1 or more relation tokens,
while xi is a single entity token. Every token is sampled
using a uniform probability over all the permissible choices
(see Alg. 1). For example, a plausible sequence for the
example in Fig. 3 is “1 I C4 4 III A2 8 III A3 3
II C2 7”, which is an alternating sequence of entities and
k-hop relations. As previously noted, relations belonging
to all three cyclic orders are included in the data genera-
tion process; the distinction between edit, retain, and test
relations is only relevant to knowledge editing on a trained
model. Furthermore, we remark that this sampling process
is identical to traversing random walks on the knowledge
graph, similar to previous works (Prystawski et al., 2024;
Khona et al., 2024). Additional details of the generation
process are documented in Appx. A and Appx. B.

Training setup. We train a Transformer model using next-
token prediction on the synthetic data generated from the
above data generation process. For all experiments (un-
less stated otherwise), we use a 2-layer nanoGPT Trans-
former (Karpathy, 2021). For additional details about the
toy model, see Appx. D. For experiments with real-world
LLMs, see Sec. 4.5.

Evaluation (seen facts). We assess the model’s ability to
remember facts seen during training, both before and after
an edit. Specifically, to check if the model has learned the
fact (xi, r⃗, xj), we prompt it with an entity xi and a relation
r⃗, expecting it to produce xj as the next token. In practice,
the model outputs can vary across prompts: we account
for this by averaging the softmax probabilities across 5
randomly sampled sequences of the form ctx xir⃗ and using
the output token with the highest probability. Herein, ctx
xi denotes a randomly sampled sequence that ends in xi.

Evaluation (unseen facts). We also evaluate the model on
two other criteria. (1) Compositional inference. In addi-
tion to facts seen in the training data, we evaluate the model
on compositions of relations. The model must preserve ge-
ometric structures of the data in order to compositionally
generalize after a knowledge edit. (2) Logical inference. A
key feature of reasoning in natural language is logical infer-
ence. For example, if Alice is said to be the advisor of Bob,
then Bob is an advisee of Alice (even if it is not explicitly
stated). Our data generation process has similar relations,
such as clockwise and anti-clockwise 1-hop neighbors. By
“holding out” one direction for some such pairs of relations
from being observed verbatim in the training dataset, i.e.,
the relation may only appear compositionally, we can assess
the degree to which the model internalizes properties among
related relations. We can also evaluate if editing a fact for a
relation changes the fact for other related relations, i.e., we
check if the model’s knowledge is logically self-consistent
after an edit. Precise prompt formats for both (1) and (2)
are documented in Appx. C.

3.4. Representation Shattering

In this work, we explore the hypothesis that knowledge edit-
ing methods distort the geometry of the representations of
entities in the knowledge graph. We argue that this distortion
can give us insight into why knowledge editing degrades
the general capabilities of a model. More precisely, in the
following sections, we investigate the following hypothesis.
Hypothesis 3.3 (Representation shattering). Language
models embed related entities on a manifold in their internal
representations. KE methods distort this manifold in order
to insert new facts or alter old ones, i.e., they shatter model
representations. The extent of representation shattering
increases with the distance between the old fact and the
desired new fact on the manifold.

To quantify the extent of representation shattering, we define
a precise metric to capture the amount of distortion of the
representations:

R(D∗) =
||D∗ −D∅||F
||D∅||F

, (1)

where ||D||F is the Frobenius norm of D, D∅ is the pair-
wise distance matrix of the entities computed using the
unedited model, and D∗ is the pairwise distance matrix
computed using the edited model. D∗ and D∅ are both
n × n matrices over n entities, and entry Dij is the Eu-
clidean distance between the representation vectors of xi

and xj . The matrices are computed over only entity tokens
(relation tokens are excluded).

Note that R(D∗) is permutation-sensitive by design: a zero
value indicates that every entity token preserves its loca-
tion in representation space. Isomorphic geometries (e.g.,
wherein representations of two entity tokens swap positions
in the manifold) still yield nonzero R(D∗) values, because
the relative positions of entities (as identified by their re-
spective pre-assigned tokens) must have been distorted to
achieve the edit(s).

4. Uncovering Representation Shattering
We study knowledge editing methods like ROME (Meng
et al., 2022a), MEMIT (Meng et al., 2022b), PMET (Li et al.,
2024), and AlphaEdit (Fang et al., 2024) in this work. While
in the main paper we primarily present results with ROME
(see Appx. E.1 for a short primer), we provide results with
other methods in Appx. G.1.1 and Appx. G.1.2. We also
verify the assumptions made by these methods in Appx. G.2.

We perform two different types of edits: corrective edits
and counterfactual edits. Corrective edits are applied to
facts which the model recalls incorrectly after training. A
counterfactual edit introduces a new fact, i.e., it changes
fact (xi, r, xj) to fact (xi, r, xk) where xj ̸= xk. Such an
edit introduces inconsistencies in the knowledge graph.

5

Representation Shattering in Transformers with Knowledge Editing

(a) Unedited (b) Corrective (c) Counterfactual
Cyclic
Order

Acc. Sub-
Graph

⟨∆Acc.⟩ Distance-d Edit ⟨∆Acc.⟩
d=1 d=2 d=3 d=4

Direct
Recall

I 98.34 Edit -21.95 -01.49 -67.01 -77.07 -77.94
II 93.71 Retain -22.64 -01.91 -66.70 -75.49 -75.42
III 99.37 Test -21.83 -01.75 -67.00 -76.12 -77.90

Logi.
Infer.

I 98.16 Edit -22.24 -01.44 -67.22 -77.14 -78.02
II 93.95 Retain -22.50 -01.83 -66.88 -75.67 -75.67
III 99.40 Test -22.03 -01.80 -67.31 -76.27 -78.23

Comp.
Infer.

I 88.15 Edit -29.60 -05.32 -73.15 -80.35 -80.63
II 79.31 Retain -31.92 -05.32 -71.21 -78.70 -78.87
III 93.50 Test -31.70 -06.69 -74.88 -81.38 -80.62

Table 1. The direct recall, logical inference, and compositional
inference accuracies before and after KE. Results are for ROME;
see Appx. G.1.1 for other methods. (a) The performance of our
model (before editing) across the three cyclic orders (I, II, and
III). Not only does our model perform well on direct recall,
but it also generalizes to both logical and compositional infer-
ence tasks. This suggests that the model’s internal representations
extend beyond simple memorization and capture the underlying
global structure that relates entities. (b) Changes in model accuracy
after applying corrective knowledge edits. Each ⟨∆Acc.⟩ result is
averaged across multiple edits, and each row labeled edit/retain/test
is averaged across each of the cyclic orders taking turns, i.e., play-
ing the roles of the edit, retain, and test sub-graphs. We find
that corrective knowledge edits negatively affect the model’s ac-
curacy both on related and unrelated facts. These results align
with the findings on LLMs (Gu et al., 2024; Gupta et al., 2024a).
(c) ⟨∆Acc.⟩ for edit, retain, and test sub-graphs after applying
counterfactual edits. Intentionally introducing inconsistencies into
the model’s knowledge via counterfactual KE can significantly
degrade model capabilities. Furthermore, the greater the induced
inconsistency (scaling the counterfactual edit distance d from 1-4),
the more severe the resulting performance degradation.

Overall, we show the following. (1) Transformers trained on
knowledge graphs recall facts, perform logical inferences,
and compositional inferences. However, both corrective
and counterfactual edits degrade the model on all three
fronts (Sec. 4.1). (2) Transformers learn a representation
that reflects the underlying geometry of the data. Knowledge
edits “shatter” this representation, which serves as an expla-
nation for the degradation in accuracy after KE (Sec. 4.2).
(3) Counterfactual edits with larger distance display a larger
degree of shattering (Sec. 4.4). (4) These phenomena occur
in pretrained language models, indicating representation
shattering can explain the degradation seen in model abili-
ties after KE (Sec. 4.5).

4.1. Knowledge Editing can Degrade Model Accuracy

We evaluate the effects of counterfactual and corrective
edits on three fronts. Direct recall accuracy calculates the
accuracy of facts seen during training. Logical inference
accuracy measures the accuracy on a subset of held out
relations that can be inferred from other relations, i.e., the k-

2500 6000 9000 24000 150000

100

4

6

Tr
ai

n
Lo

ss

103 104 105

4

625
00

60
00

90
00

24
00

0

15
00

00

//

//0.0 0.2 0.4 0.6 0.8 1.0

Train Step
0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)
Figure 4. Transformers learn representations that mirror the
geometry of the underlying data. (a) The representations—or
output of the second attention layer—for the input xr⃗ for different
entities x and fixed relation r⃗ are visualized using Isomap. The
model learns the cyclic ordering to represent all the facts. For visu-
alizations of representations at various other model components
and relation prompts, please see Appx. G.4 and Appx. G.5. (b) To
improve the visual fidelity of the projected representations when
comparing post-edit models to the unedited model, we pre-process
the Isomap neighborhood graphs using the outputs of the Trans-
former model. For more details, see Appx. F.

hop anti-clockwise neighbors can be inferred directly from
the k-hop clockwise neighbors. Compositional inference
accuracy measures the accuracy on a held out subset of
compositions of two relations. Both logical inference and
compositional inference measure the accuracy on samples
that would be considered out-of-distribution.

We report scores for all three metrics in Tab. 1. The model’s
logical and compositional inference accuracies are close to
the direct recall accuracy, which implies that the model gen-
eralizes outside of the training data before KE. However,
after KE, all accuracies decrease, with a more severe
decrease for counterfactual edits (they introduce inconsis-
tencies between facts).

4.2. Model Representations Capture Data Geometry

The model achieves high compositional and logical infer-
ence accuracies before knowledge editing, indicating that
it captures the global structure of the data and does not
merely memorize all the facts seen during training. We
see this reflected in the internal representation of the model
(output of the second attention layer), which we visual-
ize using Isomap (Tenenbaum et al., 2000). Isomap pre-
serves geodesic distances along the manifold, which is es-
sential for visualizing non-linear geometries—e.g., rings
and torii (Chaudhuri et al., 2019; Khona & Fiete, 2022).
Meanwhile, PCA, being linear, can collapse or stretch such
structures. This makes us prefer Isomap for our analysis,
since faithful projections of the original topology turn out to
be critical for interpreting how KE affects global geometry.
We use PCA as well when linearity suffices (see Appx. G.2.2
and Appx. G.3).

In Fig. 4a, we plot how the Isomap embeddings of the inter-

6

Representation Shattering in Transformers with Knowledge Editing

Sub-Graph d = 1 d = 2 d = 3 d = 4

Edit 01.80 21.93 26.22 27.90
Retain 01.80 20.84 25.32 27.28
Test 01.84 21.89 26.52 28.68

Table 2. Mean R(D∗) for counterfactual edits, averaged across
each sub-graph type. We observe higher degrees of representation
shattering for greater counterfactual edit distances (d). Results
are for ROME; other methods also reproduce this relationship
(Appx. G.1.2).

nal representations for the input with one entity and relation
(xr⃗) evolves over the course of training. The different data
points correspond to different values of the entity x, for a
fixed relation r⃗ and the points in the plot are colored by the
cyclic ordering. We see that the representation manifold
resembles the cyclic ordering of the entities, particularly
towards the end of training. In addition, we confirm that
the model correctly internalizes the independence of the
cyclic orders I, II, and III in its representations (see
Appx. G.3 for a visualization).

4.3. Corrective KE Shatters Representation Geometry

We assess how the representation changes after applying
a corrective knowledge edit—i.e., applying KE to a fact
that the model learned incorrectly during training. While
one would expect the performance of the model to increase
after a corrective edit, we find the opposite: a corrective
edit results in a drop in all accuracies (see Tab. 1). These
results align with previous empirical findings showing that
reasoning capabilities degrade after corrective edits (Gu
et al., 2024; Cohen et al., 2023).

We visualize the representations of 3 different models using
the techniques described in Sec. 4.2 and Fig. 4b. The 3
models are obtained after applying 3 different edits and are
selected to have high (★), intermediate (▲), and low (✖)
direct recall accuracies. In Fig. 5, we observe that the model
with the highest accuracy (★) has a representation that pre-
serves the geometry of the data after the edit. However, as
the model accuracy decreases, the representations also dis-
play a greater degree of distortion, no longer capturing the
geometry of the data; in other words, the model is affected
by representation shattering. Beyond visual inspection, this
trend is also quantified in Fig. 5c, which shows a strong
negative relationship between the distortion metric R(D∗)
(Eq. 1) and model accuracy (r2 = 0.905).

4.4. Shattering Scales with Counterfactual Edit Distance

Counterfactual editing, wherein ones adds new facts that
were unseen during training, is commonly used for evalu-
ating KE protocols (Meng et al., 2022a; 2023; Gupta et al.,
2024a; Hoelscher-Obermaier et al., 2023). We consider 25
different counterfactual edits corresponding to every single

counterfactual edit distance, where the counterfactual edit
distance (or CE distance) is the distance between the entity
in the old fact and new fact as measured in the cyclic order.
Fig. 3 illustrates an example where the counterfactual edit
has an edit distance of 1. In Fig. 6, we see that increasing
the distance of the counterfactual edit results in a drop
in accuracy and an increasing in the extent of shattering.
This relationship is numerically supported by R(D∗), as
shown in Tab. 2: shattering increases as counterfactual edit
distance increases. In other words, when a new fact changes
one entity to another, the extent of shattering increases as
the distance between the old and new entity increases. As
a naturalistic parallel, if the entities are different months,
accuracy is higher when we edit “December” to “November”
as opposed to “July”.

Summarizing these experiments, we find that for a given
subject entity, edits with larger CE distances imply greater
displacement in the representation manifold and higher
R(D∗)—in reverse, higher R(D∗) implies a larger CE dis-
tance. This manipulation approximates an intervention on
representation geometry itself, and this offers compelling ev-
idence for a causal link between shattering and performance
loss. This is consistent with our mechanistic explanation,
though we do not claim formal proof.

4.5. Representation Shattering Generalizes to LLMs

Finally, we investigate whether our findings generalize to
large Transformers trained on naturalistic data. We consider
concepts with a cyclic order, in particular months of the year,
and apply counterfactual edits to Llama 3 (Grattafiori et al.,
2024) and Mamba S4 (Gu & Dao, 2023) (see Appx. H.1).
We additionally explore non-cyclic geometries, specifically
tree-structured concepts, in Appx. H.3.

In previous evaluations of KE algorithms on real-world
LLMs, degradations in model performance were most
consistently detectable for batched, sequential edits (Gu
et al., 2024; Yoon et al., 2024). Therefore, we carry out our
LLM experiments using MEMIT (Meng et al., 2023), the
successor to ROME which adds support for batch editing
(see Appx. E.2 for a short primer). Using MEMIT, we
insert counterfactual month-order associations at varying
edit distances and note how model performance and repre-
sentations are affected. As for the prompts used for editing,
we take inspiration from existing work by Engels et al.
(2024) and use the following template: “{Month} is
followed {offset} months later by the
month of {}”. Here, Month is uniformly sampled from
{January, · · · ,December}, and offset is uniformly
sampled from {eight,nine,ten}. For edits with a
counterfactual edit distance of d, we modify the answer
to be d months earlier than the true correct answer (for
d ∈ {1, 2, 3}). For example, the ground truth answer

7

Representation Shattering in Transformers with Knowledge Editing

60 45 30 15
0

 Direct (%)
60

45
30

15
0

 Lo
gic

 (%
)

80
60
40
20

0

 C
om

p.
 (%

)
(a)

R(D*) = 0.149 R(D*) = 0.064 R(D*) = 0.022

(b)

50 0
Mean Acc. (%)

0.00

0.05

0.10

0.15

R(
D

*)

y = 0.002x + 0.009
r2 = 0.905

(c)

Figure 5. Representation shattering strongly correlates with a degradation in accuracy. (a) We plot the change in direct recall, logical
inference, and compositional inference accuracies for different edits models, edited on different facts. We find all 3 accuracies to be
strongly correlated. We select 3 edited models that span the range of accuracies, which is denoted by ✖, ▲and ★ in the plot. (b) We plot
the representations using a variant of Isomap (see Appx. F) with the entities colored by the cyclic order. We observe a clear trend where
larger drop in accuracy directly correlates with a greater degree of representation shattering, i.e., the geometric structure of the data is
destroyed after the edit. (c) We plot the mean drop in accuracy against the representation shattering metric R(D∗) as defined in Eq. 1.
Greater representation shattering is strongly correlated with more severe accuracy degradation (r2 = 0.905).

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
C1

 (
Ed

it
)

Unedited
0.015

CE Dist = 1
0.104

CE Dist = 2
0.138

CE Dist = 3
0.169

CE Dist = 4

II_
C1

 (
Re

ta
in

) 0.013 0.065 0.119 0.132

III
_C

1
(T

es
t) 0.015 0.062 0.108 0.148

Figure 6. Counterfactual edits with larger edit distance result
in larger drop in accuracy and greater degree of represen-
tation shattering. We apply counterfactual knowledge edits to
overwrite a correctly learned fact (1154.I C1=567) with in-
consistent counterfactual associations. We then plot the accuracy
after the counterfactual edit for different edit distances and the
corresponding low-dimensional embedding of the representation
obtained using a modified version of Isomap (see Appx. F). The
numerical quantity in the upper right of each manifold visualiza-
tion is the R(D∗) value measuring the degree of representation
shattering with respect to the manifold of the unedited model. Both
visually and numerically, we find that a counterfactual edit with
larger edit distance requires a significant distortion to the represen-
tation geometry to learn the new fact.

to the prompt “January is followed eight
months later by the month of {}” should be
“September”; counterfactual edits may look like changing
the output to “August” (d = 1), “July” (d = 2), or
“June” (d = 3). For each specific counterfactual edit
distance d, we have (twelve months)× (three offsets) = 36
total edits—we apply these edits sequentially in batches of
size 4 using MEMIT, taking care to use consistent sample
orders and batch orders across all runs for fair comparisons.

unedited d = 1 d = 2 d = 3
0.20

0.15

0.10

0.05

0.00

 A
cc

. (
%

)

(a) MMLU-Redux, Llama 3 8B Instruct, post-MEMIT

(b)

Figure 7. Representation shattering also occurs in a real LLM
(Llama 3 8B Instruct). We apply KE (MEMIT) with counterfac-
tual prompts to modify the cyclic order of calendar months in the
Llama 3 8B Instruct model. After editing, we evaluate the model’s
ability to perform reasoning on the MMLU-Redux benchmark and
visualize the model’s representations for each month. (a) As the
counterfactual edit distance grows, the model’s reasoning abilities
gradually decrease. (b) Coinciding with the degredation in reason-
ing performance, the gradual shattering of the ring structure in the
model’s intermediate representations occurs as the counterfactual
edit distance is increased (activations were collected at the layer
19 output; see Appx. H.2 for other extraction points). For similar
results with Mamba S4 (Gu & Dao, 2023), refer to Appx. H.1. For
experiments with concepts organized in a non-circular geometry,
refer to Appx. H.3.

To quantify model performance before and after editing,
we adopt the MMLU-Redux reasoning benchmark (Gema
et al., 2024) with the ZeroEval prompting framework (Lin,
2024) to elicit chain-of-thought reasoning.

In Fig. 7a, we examine how the reasoning performance of
Llama 3 8B Instruct is affected by KE in relation to the
counterfactual edit distance. We find that as the edit dis-
tance increases, there is a gradual decline in the model’s
reasoning accuracy. Furthermore, Fig. 7b shows the latent
representations for the 12 months, extracted from an inter-
mediate layer post-editing. As the edit distance is varied
from 1 to 3, the degree of representation shattering also

8

Representation Shattering in Transformers with Knowledge Editing

increases. This result demonstrates that our insights from
synthetic data, i.e. the representation shattering hypothesis,
can generalize to larger models trained on naturalistic data.

5. Conclusion
In this work, we introduced a synthetic framework to an-
alyze the side effects of knowledge editing in transform-
ers, identifying “representation shattering” as a key factor
behind performance degradation. Specifically, we show
preserving representational structures underlying a model’s
knowledge is crucial to avoiding negative consequences of
knowledge editing: distortion of such structures impacts a
model’s broader capabilities. To arrive at this hypothesis,
we design a controlled framework that allows investigations
into models modified by knowledge editing protocols, offer-
ing clear representation-level explanations for why knowl-
edge editing can harms models’ broader capabilities that
generalize to real-world models like Llama 3. While the use
of simplified tasks and models can limit the scope of our
conclusions, since larger, more complex real-world models
may exhibit additional dynamics that our framework does
not capture, we believe that testing knowledge editing pro-
tocols on setups similar to our synthetic knowledge graph
will significantly aid the process of designing better editing
protocols. Failing even such simple, albeit systematically
defined settings, likely implies the editing protocol should
not be readily trusted or applied at scale.

Additionally, our study aligns with a broader theoretical
framework: (1) Transformers store factual associations in
key-value pairs within MLP layers (Geva et al., 2020; Meng
et al., 2022a), corroborated by our synthetic model analysis.
(2) Parameter sharing and superposition cluster unrelated
facts in overlapping subspaces (Geva et al., 2020; Henighan
et al., 2023), making them vulnerable to unintentional inter-
ference. (3) Entities and relations often form structured man-
ifolds (e.g., cycles, hierarchies), which aid compositional
inference (Engels et al., 2024). (4) KE methods (ROME,
MEMIT, etc.) enact local weight updates that deform these
manifolds, causing representation shattering for unedited
facts residing in shared sub-regions. Points (1)-(4) together
lead us to believe that the fragility of KE arises from the
entangled, compressed nature of factual storage, rather than
just from the task of knowledge retention in and of itself.

More broadly, our study suggests that mitigating the pitfalls
of KE may require fundamentally rethinking the popular
“localize-then-edit” paradigm. Indeed, the field has already
begun moving in this direction: promising methods include
Retrieval Augmentation (Lewis et al., 2020; Borgeaud et al.,
2022), Lifelong Model Editing (Wang et al., 2024), and
Synthetic Document Finetuning (Wang et al., 2025). We
hope that our work can help guide the design of further
improvements to KE approaches.

Impact Statement
This paper introduces a scientific framework to analyze the
phenomenon of representation shattering in Transformer
models during Knowledge Editing. We believe the insights
uncovered in this work will form a foundational step toward
developing more robust and interpretable knowledge edit-
ing techniques, ultimately advancing the reliability of AI
systems for societal benefit.

Contributions
KN and ESL conceived the project direction and designed
the primary experimental setup, with inputs from RR and
MK. The representation shattering hypothesis was proposed
by KN, ESL, and HT. KN led experiments on the synthetic
knowledge graph domain. RR, KN, and ESL wrote the
paper. Conceptual figures were designed by HT, with inputs
from KN and MO. KN and MO conceived the natural data
setup for confirming the hypothesis and ran experiments
therein. KN wrote the appendix. ESL and HT supervised
the project.

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Fu, C., Gopalakrishnan, K., Hausman,
K., et al. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691,
2022.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part
3.1, knowledge storage and extraction. arXiv preprint
arXiv:2309.14316, 2023a.

Allen-Zhu, Z. and Li, Y. Physics of language mod-
els: Part 3.2, knowledge manipulation. arXiv preprint
arXiv:2309.14402, 2023b.

Allen-Zhu, Z. and Li, Y. Physics of language models: Part 1,
context-free grammar. arXiv preprint arXiv:2305.13673,
2023c.

Anderson, J. A. A simple neural network generating an
interactive memory. Mathematical biosciences, 14(3-4):
197–220, 1972.

Bau, D., Liu, S., Wang, T., Zhu, J.-Y., and Torralba, A.
Rewriting a deep generative model. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, pp. 351–369.
Springer, 2020.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International

9

Representation Shattering in Transformers with Knowledge Editing

conference on machine learning, pp. 2206–2240. PMLR,
2022.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
transformers. Advances in Neural Information Processing
Systems, 35:18878–18891, 2022.

Chappell, S.-G. Plato on knowledge in the theaetetus. 2005.

Chaudhuri, R., Gerçek, B., Pandey, B., Peyrache, A., and
Fiete, I. The intrinsic attractor manifold and population
dynamics of a canonical cognitive circuit across waking
and sleep. Nature neuroscience, 22(9):1512–1520, 2019.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Cheng, S., Zhang, N., Tian, B., Chen, X., Liu, Q., and Chen,
H. Editing Language Model-based Knowledge Graph
Embeddings, December 2023. URL http://arxiv.
org/abs/2301.10405.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Cohen, R., Biran, E., Yoran, O., Globerson, A., and Geva,
M. Evaluating the Ripple Effects of Knowledge Editing
in Language Models, December 2023. URL http://
arxiv.org/abs/2307.12976.

Dai, D., Dong, L., Hao, Y., Sui, Z., Chang, B., and Wei,
F. Knowledge neurons in pretrained transformers. arXiv
preprint arXiv:2104.08696, 2021.

De Cao, N., Aziz, W., and Titov, I. Editing factual knowl-
edge in language models. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing, 2021.

Driess, D., Xia, F., Sajjadi, M. S., Lynch, C., Chowdhery,
A., Ichter, B., Wahid, A., Tompson, J., Vuong, Q., Yu, T.,
et al. Palm-e: An embodied multimodal language model.
arXiv preprint arXiv:2303.03378, 2023.

Engels, J., Liao, I., Michaud, E. J., Gurnee, W., and
Tegmark, M. Not All Language Model Features Are

Linear, May 2024. URL http://arxiv.org/abs/
2405.14860.

Fang, J., Jiang, H., Wang, K., Ma, Y., Wang, X., He,
X., and Chua, T.-s. Alphaedit: Null-space constrained
knowledge editing for language models. arXiv preprint
arXiv:2410.02355, 2024.

Feng, G., Gu, Y., Zhang, B., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought: a
theoretical perspective. arXiv preprint arXiv:2305.15408,
2023.

Fiotto-Kaufman, J., Loftus, A. R., Todd, E., Brinkmann,
J., Juang, C., Pal, K., Rager, C., Mueller, A., Marks,
S., Sharma, A. S., Lucchetti, F., Ripa, M., Belfki, A.,
Prakash, N., Multani, S., Brodley, C., Guha, A., Bell, J.,
Wallace, B., and Bau, D. NNsight and NDIF: Democratiz-
ing access to foundation model internals. arXiv preprint
arXiv:2407.14561, 2024.

Gema, A. P., Leang, J. O. J., Hong, G., Devoto, A., Mancino,
A. C. M., Saxena, R., He, X., Zhao, Y., Du, X., Madani,
M. R. G., Barale, C., McHardy, R., Harris, J., Kaddour,
J., van Krieken, E., and Minervini, P. Are we done with
mmlu?, 2024.

Gemini Team. Gemini: a family of highly capable multi-
modal models. arXiv preprint arXiv:2312.11805, 2023.

Geva, M., Goldberg, Y., and Berant, J. Transformer feed-
forward layers are key-value memories. In Proceedings
of the 2020 Conference on Empirical Methods in Natural
Language Processing, 2020.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Gu, J.-C., Xu, H.-X., Ma, J.-Y., Lu, P., Ling, Z.-H., Chang,
K.-W., and Peng, N. Model editing harms general abilities
of large language models: Regularization to the rescue.
arXiv preprint arXiv:2401.04700, 2024.

Gupta, A., Rao, A., and Anumanchipalli, G. Model Editing
at Scale leads to Gradual and Catastrophic Forgetting, Jan-
uary 2024a. URL http://arxiv.org/abs/2401.
07453.

Gupta, A., Sajnani, D., and Anumanchipalli, G. A
unified framework for model editing. arXiv preprint
arXiv:2403.14236, 2024b.

10

http://arxiv.org/abs/2301.10405
http://arxiv.org/abs/2301.10405
http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2307.12976
http://arxiv.org/abs/2405.14860
http://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2401.07453
http://arxiv.org/abs/2401.07453

Representation Shattering in Transformers with Knowledge Editing

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A.
Does Localization Inform Editing? Surprising Differ-
ences in Causality-Based Localization vs. Knowledge
Editing in Language Models, October 2023. URL http:
//arxiv.org/abs/2301.04213.

Hase, P., Hofweber, T., Zhou, X., Stengel-Eskin, E., and
Bansal, M. Fundamental problems with model editing:
How should rational belief revision work in llms? arXiv
preprint arXiv:2406.19354, 2024.

Henighan, T., Carter, S., Hume, T., Elhage, N., Lasenby,
R., Fort, S., Schiefer, N., and Olah, C. Superposition,
memorization, and double descent. Transformer Circuits
Thread, 6:24, 2023.

Hoelscher-Obermaier, J., Persson, J., Kran, E., Konstas, I.,
and Barez, F. Detecting Edit Failures In Large Language
Models: An Improved Specificity Benchmark, June 2023.
URL http://arxiv.org/abs/2305.17553.

Hofweber, T., Hase, P., Stengel-Eskin, E., and Bansal,
M. Are language models rational? the case of co-
herence norms and belief revision. arXiv preprint
arXiv:2406.03442, 2024.

Karpathy, A. NanoGPT, 2021. Github link. https://
github.com/karpathy/nanoGPT.

Khona, M. and Fiete, I. R. Attractor and integrator networks
in the brain. Nature Reviews Neuroscience, 23(12):744–
766, 2022.

Khona, M., Okawa, M., Hula, J., Ramesh, R., Nishi, K.,
Dick, R., Lubana, E. S., and Tanaka, H. Towards
an understanding of stepwise inference in transform-
ers: A synthetic graph navigation model. arXiv preprint
arXiv:2402.07757, 2024.

Kohonen, T. Correlation matrix memories. IEEE transac-
tions on computers, 100(4):353–359, 2009.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459–9474, 2020.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H.,
and Wattenberg, M. Emergent World Representations:
Exploring a Sequence Model Trained on a Synthetic Task,
2023a.

Li, X., Li, S., Song, S., Yang, J., Ma, J., and Yu, J. Pmet: Pre-
cise model editing in a transformer. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 18564–18572, 2024.

Li, Z., Zhang, N., Yao, Y., Wang, M., Chen, X., and Chen,
H. Unveiling the Pitfalls of Knowledge Editing for Large
Language Models, November 2023b. URL http://
arxiv.org/abs/2310.02129. arXiv:2310.02129
[cs].

Lin, B. Y. ZeroEval: A Unified Framework for Evaluating
Language Models, July 2024. URL https://github.
com/WildEval/ZeroEval.

Lubana, E. S., Kawaguchi, K., Dick, R. P., and Tanaka,
H. A percolation model of emergence: Analyzing trans-
formers trained on a formal language. arXiv preprint
arXiv:2408.12578, 2024.

Lynch, A., Guo, P., Ewart, A., Casper, S., and Hadfield-
Menell, D. Eight methods to evaluate robust unlearning
in llms. arXiv preprint arXiv:2402.16835, 2024.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locating
and editing factual associations in GPT. Advances in
Neural Information Processing Systems, 35, 2022a.

Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y., and
Bau, D. Mass-editing memory in a transformer. arXiv
preprint arXiv:2210.07229, 2022b.

Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y., and
Bau, D. Mass-Editing Memory in a Transformer, Au-
gust 2023. URL http://arxiv.org/abs/2210.
07229.

Mitchell, E., Lin, C., Bosselut, A., Finn, C., and Manning,
C. D. Fast Model Editing at Scale, June 2022. URL
http://arxiv.org/abs/2110.11309.

Okawa, M., Lubana, E. S., Dick, R. P., and Tanaka,
H. Compositional abilities emerge multiplicatively:
Exploring diffusion models on a synthetic task.
https://openreview.net/forum?id=ZXH8KUgFx3, 2023.

Prystawski, B., Li, M., and Goodman, N. Why think step by
step? reasoning emerges from the locality of experience.
Advances in Neural Information Processing Systems, 36,
2024.

Qin, Y., Liang, S., Ye, Y., Zhu, K., Yan, L., Lu, Y., Lin, Y.,
Cong, X., Tang, X., Qian, B., et al. Toolllm: Facilitating
large language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789, 2023.

Sharma, A. S., Atkinson, D., and Bau, D. Locating and
editing factual associations in mamba. 2024.

Sinitsin, A., Plokhotnyuk, V., Pyrkin, D., Popov, S., and
Babenko, A. Editable neural networks. arXiv preprint
arXiv:2004.00345, 2020.

11

http://arxiv.org/abs/2301.04213
http://arxiv.org/abs/2301.04213
http://arxiv.org/abs/2305.17553
https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT
http://arxiv.org/abs/2310.02129
http://arxiv.org/abs/2310.02129
https://github.com/WildEval/ZeroEval
https://github.com/WildEval/ZeroEval
http://arxiv.org/abs/2210.07229
http://arxiv.org/abs/2210.07229
http://arxiv.org/abs/2110.11309

Representation Shattering in Transformers with Knowledge Editing

Tenenbaum, J. B., Silva, V. d., and Langford, J. C. A
global geometric framework for nonlinear dimensionality
reduction. science, 290(5500):2319–2323, 2000.

Thoppilan, R., De Freitas, D., Hall, J., Shazeer, N., Kul-
shreshtha, A., Cheng, H.-T., Jin, A., Bos, T., Baker, L.,
Du, Y., et al. Lamda: Language models for dialog appli-
cations. arXiv preprint arXiv:2201.08239, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, P., Li, Z., Zhang, N., Xu, Z., Yao, Y., Jiang, Y.,
Xie, P., Huang, F., and Chen, H. Wise: Rethinking the
knowledge memory for lifelong model editing of large
language models. CoRR, abs/2405.14768, 2024. URL
https://arxiv.org/abs/2405.14768.

Wang, R., Griffin, A., Treutlein, J., Perez, E.,
Michael, J., Roger, F., and Marks, S. Modifying
llm beliefs with synthetic document finetuning.
https://alignment.anthropic.com/2025/
modifying-beliefs-via-sdf/, 2025. An-
thropic Alignment Science blog post.

Wikipedia. Be Like Mike, 2024. Wikipedia Link. https:
//en.wikipedia.org/wiki/Be_Like_Mike.

Yoon, J., Gupta, A., and Anumanchipalli, G. Is bigger edit
batch size always better?–an empirical study on model
editing with llama-3. arXiv preprint arXiv:2405.00664,
2024.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O.,
Susskind, J., Bengio, S., and Nakkiran, P. What algo-
rithms can transformers learn? a study in length general-
ization. arXiv preprint arXiv:2310.16028, 2023.

12

https://arxiv.org/abs/2405.14768
https://alignment.anthropic.com/2025/modifying-beliefs-via-sdf/
https://alignment.anthropic.com/2025/modifying-beliefs-via-sdf/
https://en.wikipedia.org/wiki/Be_Like_Mike
https://en.wikipedia.org/wiki/Be_Like_Mike

Representation Shattering in Transformers with Knowledge Editing

A. Setup Details
A.1. Source Code

Please find the source code for our experiments at github.com/KentoNishi/KE-ICML-2025.

A.2. Pseudo-Code

Let U(.) define the uniform distribution over the input. Let X be the set of entities, R the set of relations and F the set of
facts, defining a knowledge graph G = (X,R, F).

function generateSequence()
xp ∼ U(X) from a uniform distribution over the entities.
S = [xp]
entity flag← False

// Create a sequence of alternating entities and relations
while len(S) < context size do

if (entity flag) then
// Add an entity that completes a valid fact
Set xn such that (xp, r⃗, xn) is a fact in the knowledge graph G.
S.append(xn)
xp ← xn

end
else

// Add a composition of relations
K ∼ U({1, 2}). r⃗ = []
for (i in 1 to K) do

r ∼ U(R)
S.append(r)
r⃗.append(r)

end
Set xn such that (xs, r⃗, xn) is a fact in the knowledge graph G.

end
entity flag← ¬ (entity flag)

end
S = S[:context size]
return S

Algorithm 1: Generate a single sequence containing a collection of facts.

B. Data Generation Process Details
For this study, we use the following hyperparameters for our data generation process.

• Number of entities: 2048
• Number of example sequences: 108

• Maximum composition length: 2
• Maximum entities per sequence: 8

Additionally, only when generating the training dataset, the DGP may drop sequences which contain one direction of a
pair of conjugate facts with fixed probability p. That is, for any entity xi and relations r, r′, suppose the fact (xi, r, xj)
always implies (xj , r

′, xi) (i.e. r = I C1 and r′ = I A1). The DGP may hold out one of these facts from the training data
(with probability p). Even if (xj , r

′, xi) is absent, one can still learn the conjugacy of r and r′ and the existence of xi and
xj via other examples; however, failure to infer this relation indicates the model has rote memorized relations rather than
understanding the global structure. To be abundantly clear, “held-out” refers to specific facts, not entire relation tokens. In
practice, we set the probability p = 2

3 .

13

http://github.com/KentoNishi/KE-ICML-2025

Representation Shattering in Transformers with Knowledge Editing

C. Prompt Formats
• Compositional Inference: The model is given a chain of relations (e.g., xi r1 r2) and must produce xk, with (xi, r1, xj)

and (xj , r2, xk) seen separately in training but not composed. Input: ctxxi r⃗ where r⃗ = r1r2.
• Logical Inference: The model is asked about a fact (xj , r

′, xi) where (xi, r, xj) was seen but r′ was withheld. If the
model understands relation symmetry, it can infer the inverse.

D. Model Architecture
Our Transformer model is a fork of the open-source nanoGPT repository (https://github.com/karpathy/
nanoGPT). The design is inspired by GPT, and the architecture is a decode-only Transformer with a causal self-attention
mask. Our hyperparameter values are as follows.

• Batch size: 256
• Context length: 16
• Optimizer: Adam
• Learning rate: 6 · 10−4

• Training epochs: 1.5 · 105
• Decay iterations: 1.5 · 105
• Momentum: β1 = 0.9, β2 = 0.95
• Activation function: GeLU
• Block size: 16
• Embedding dimensions: 24
• Heads: 12

As for tokenization, we assign every entity and relation a unique token and use standard next-token prediction with cross-
entropy loss. targetn is the 1-shifted version of the training sequence accounting for the padding token, and xn are the logit
outputs of the model at the nth timestep.

L(xn, target n) = − log
(exp(βxn, target n)∑#tokens

v=0 exp(βxn,v)

)
= − log

(
softmax(βxn)target n︸ ︷︷ ︸

prob(target n)

)

E. Knowledge Editing Methods
E.1. Rank-One Model Editing (ROME)

E.1.1. ALGORITHM DEFINITION

Rank-One Model Editing (ROME), proposed by Meng et al. (2022a), is a popular knowledge editing algorithm used on
LLMs. Their contributions are two-fold: first, through “causal tracing,” they find that early and mid-layer MLP modules of
transformer models are implicated in encoding factual associations (see Appx. G.2.1). Second, interpreting feed-forward
layers as linear associative memories encoding key-value pairs, ROME applies a rank-one update to the MLP weights.

Notationally, for a factual association (xi, r, xj), the key is the entity xi while the value is xj . In each feed-forward layer,
the hidden state h

(l−1)
i at layer l − 1 is transformed into a key k by the weight matrix W

(l)
fc , and the corresponding value v

is retrieved by the matrix W
(l)
proj :

h
(l)
i = W

(l)
projσ

(
W

(l)
fch

(l−1)
i

)
where σ(·) denotes the activation function.

To modify the factual association (xi, r, xj) in the model, ROME computes a new key-value pair (k∗,v∗), representing the
entity xi and the new target entity x∗

j . ROME then applies a rank-one update to the weight matrix W
(l∗)
proj at a specific layer

l∗ to encode this new fact:

14

https://github.com/karpathy/nanoGPT
https://github.com/karpathy/nanoGPT

Representation Shattering in Transformers with Knowledge Editing

Ŵ
(l∗)
proj = W

(l∗)
proj + λ

(
C−1k∗)⊤ where λ =

v∗ −W
(l∗)
projk

∗

(C−1k∗)
⊤
k∗

Here, C is the uncentered covariance matrix of the key vectors k, estimated by sampling tokens from a representative
dataset.

The key vector k∗ corresponds to the entity xi in the factual association (xi, r, x
∗
j). The vector is computed by averaging

the MLP output for xi over multiple randomly generated contexts:

k∗ =
1

N

N∑
j=1

σ
(
W

(l∗)
fc γ

(
a
(l∗)
i + h

(l−1)
i

))

where γ(·) is a normalization function, and a
(l∗)
i is the attention output at layer l∗.

The value vector v∗ is optimized to maximize the model’s probability of predicting the target entity x∗
j given the subject xi

and relation r. This is done by minimizing the following objective:

L(z) =
1

N

N∑
j=1

(
− logP

(
x∗
j |xi, r

)
+DKL (PG (xi|p′) ||PG (xi|p′))

)
The first term maximizes the probability of the target entity x∗

j , while the second term controls for “essence drift” to retain
information about xi. This is done by sampling inputs p′ for which the model’s outputs should not change during the edit.

E.1.2. IMPLEMENTATION

In our implementation of ROME tailored to our model, we apply the edit at layer 1 as it is the only available early-site layer
in our model configuration. The covariance matrix C is estimated by randomly sampling 105 inputs from the validation
dataset. This provides a representative set of key vectors for computing the rank-one update. To solve for the key vector
k∗, we sample 105 random context sequences, with sequence lengths varying between 2 and 10 tokens. The value solver
follows a similar procedure by sampling 102 context sequences selected in the same manner as the key solver. The value
optimization is performed using the Adam optimizer, with hyperparameters lr = 10−3 and weight decay = 10−4. The value
solver optimizes between 5 and 500 iterations, stopping when the predicted token is replaced by x∗

j . The KL divergence
weight is set to 3 during optimization.

E.2. Mass-Editing Memory in a Transformer (MEMIT)

E.2.1. ALGORITHM DEFINITION

The Mass-Editing Memory in a Transformer (MEMIT) algorithm proposed by Meng et al. (2023) generalizes ROME (Meng
et al., 2022a) to inject many factual associations at once. Rather than modifying a single layer for a single key-value pair,
MEMIT identifies multiple MLP layers (via causal tracing) which encode facts. For each fact (xi, r, x

∗
j), a small residual δi

is computed to increase P (x∗
j | xi, r). These δi vectors are then batched and distributed across the identified layers. In each

layer ℓ, let K and M respectively stack the new keys and target values derived from {δi}. Extending ROME, the weight
update for layer ℓ is

∆(ℓ) =
(
M−W

(ℓ)
proj K

)
K⊤

(
C + KK⊤

)−1

,

where C is the uncentered covariance matrix of preexisting keys in layer ℓ.

E.2.2. IMPLEMENTATION

For our experiments with Llama 3 8B Instruct and Mamba 2.8B, we simply apply public implementations with off-the-shelf
hyperparameters (Gupta et al., 2024a;b; Sharma et al., 2024).

15

Representation Shattering in Transformers with Knowledge Editing

F. Visualization Methods
In Fig. 4, we demonstrated the emergence of cyclic representations within the model by extracting representations and
generating 3D Isomap projections. While the visualizations support the notion that cyclical representations are present in the
model, changes in the projections can be difficult to intuitively interpret due to the overlap of differently colored segments of
the manifold. For example, below is a recreation of Fig. 6 using raw Isomap projections.

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
C1

 (
Ed

it
)

Unedited
0.015

CE Dist = 1
0.104

CE Dist = 2
0.138

CE Dist = 3
0.169

CE Dist = 4

II_
C1

 (
Re

ta
in

) 0.013 0.065 0.119 0.132

III
_C

1
(T

es
t)

0.015 0.062 0.108 0.148

Figure 8. An equivalent version of Fig. 6 using the unprocessed Isomap projection renderings. Representation shattering is still visible in
the flattening and clustering of points in the manifold as the counterfactual edit distance increases.

The coinciding ring segments are an artifact of the lossy projection of high-dimensional cyclical representations into a
low-dimensional space: when dimensionality reduction to 3D is applied, the high-dimensional cyclical structure gets
“squished” into a torus. To enhance the visual perceptibility of the representation shattering phenomenon, we additionally
implement a pre-processing step to constrain the construction of the Isomap neighbors graph using the model’s output
predictions. More concretely, when visualizing the post-edit manifold for a particular edit (xi, r, x

∗
j), we adopt the following

procedure:

1. Construct a set S0 of entities by prompting the unedited model for all immediate neighbors of xi in the cycle order of r
(i.e. by getting outputs for xir

′ for all r′ in the same cycle order as r).
2. Apply the knowledge edit.
3. Construct a set S1 of entities by collecting outputs from the edited model for all sir where si ∈ S0.
4. Constrain the Isomap pair-wise distance matrix to members of S1.

This procedure remains faithful in comparing the pre-edit model to the post-edit model, as it relies solely on model
predictions and does not introduce any ground-truth priors.

16

Representation Shattering in Transformers with Knowledge Editing

G. Additional Synthetic DGP Experiments
G.1. Alternative Editing Methods and Models

G.1.1. MODEL ACCURACY

In Tab. 1, we evaluate the effects of corrective and counterfactual edits with ROME with respect to changes in the
model’s direct recall accuracy, logical inference accuracy, and compositional inference accuracy. The results give several
key insights: corrective knowledge edits negatively affect the model’s accuracy both on related and unrelated facts,
intentionally introducing inconsistencies into the model’s knowledge via counterfactual KE can significantly degrade
model capabilities, and greater induced inconsistency (scaling the counterfactual edit distance d from 1-4) causes greater
performance degradation. Now, we reinforce these findings by repeating the same edits and evaluations with additional KE
methods: namely MEMIT (Meng et al., 2023), AlphaEdit (Fang et al., 2024), and PMET (Li et al., 2024). We present our
results in Tab. 3.

KE Method Test type Corrective edits ⟨∆Acc.⟩ for Counterfactual edits
Sub-Graph ⟨∆Acc.⟩ d = 1 d = 2 d = 3 d = 4

ROME

Direct recall
Edit -21.95 -01.49 -67.01 -77.07 -77.94
Retain -22.64 -01.91 -66.70 -75.49 -75.42
Test -21.83 -01.75 -67.00 -76.12 -77.90

Logical
inference

Edit -22.24 -01.44 -67.22 -77.14 -78.02
Retain -22.50 -01.83 -66.88 -75.67 -75.67
Test -22.03 -01.80 -67.31 -76.27 -78.23

Compositional
inference

Edit -29.60 -05.32 -73.15 -80.35 -80.63
Retain -31.92 -05.32 -71.21 -78.70 -78.87
Test -31.70 -06.69 -74.88 -81.38 -80.62

MEMIT

Direct recall
Edit -09.51 -01.64 -57.98 -67.04 -68.72
Retain -07.08 -01.78 -48.68 -57.23 -58.52
Test -06.54 -01.19 -51.85 -63.96 -70.26

Logical
inference

Edit -09.58 -01.61 -58.16 -67.31 -69.10
Retain -06.73 -01.64 -48.45 -57.55 -58.66
Test -06.67 -01.37 -52.37 -64.65 -70.99

Compositional
inference

Edit -11.43 -01.85 -57.79 -67.82 -71.79
Retain -08.34 -00.68 -53.05 -62.71 -64.09
Test -10.47 -03.30 -53.36 -66.81 -73.42

AlphaEdit

Direct recall
Edit -06.05 -01.45 -54.68 -64.01 -63.48
Retain -04.68 -01.69 -43.72 -52.36 -53.63
Test -03.75 -00.92 -47.53 -59.57 -66.09

Logical
inference

Edit -06.13 -01.42 -54.93 -64.42 -63.91
Retain -04.37 -01.55 -43.58 -52.74 -53.93
Test -03.85 -01.03 -48.05 -60.38 -66.83

Compositional
inference

Edit -07.75 -01.72 -55.82 -66.42 -68.35
Retain -05.99 -00.08 -50.19 -59.62 -61.57
Test -07.03 -02.75 -51.14 -64.14 -70.95

PMET

Direct recall
Edit -03.97 -01.34 -48.27 -50.80 -54.72
Retain -02.78 -01.61 -35.54 -39.18 -46.36
Test -02.01 -00.98 -43.40 -44.29 -52.67

Logical
inference

Edit -04.02 -01.32 -48.48 -51.05 -55.06
Retain -02.47 -01.47 -35.40 -39.39 -46.60
Test -02.10 -01.11 -44.07 -44.76 -53.32

Compositional
inference

Edit -05.60 -01.37 -49.89 -55.65 -60.62
Retain -03.09 -00.23 -42.24 -47.87 -53.78
Test -04.56 -02.95 -47.00 -50.95 -58.98

Table 3. Results of Tab. 1, replicated using MEMIT (Meng et al., 2023), AlphaEdit (Fang et al., 2024), and PMET (Li et al., 2024).
Overall, recent methods succeeding ROME are slightly less damaging to model accuracy. However, all evaluated methods nonetheless
cause undesirable performance degradations in similar ways to ROME (especially for increased counterfactual edit distances). This
suggests that KE methods, despite their differences in approaches, often suffer from similar shortcomings in terms of negatively impacting
model performance.

17

Representation Shattering in Transformers with Knowledge Editing

G.1.2. REPRESENTATION SHATTERING METRIC

In Tab. 2, we showed that increasing the distance of the counterfactual edit results in an increase in the extent of shattering,
as numerically captured by R(D∗). In similar spirit to Appx. G.1.1, we seek to verify whether this relationship between
counterfactual edit distance and representation shattering holds for methods other than ROME, i.e. MEMIT (Meng et al.,
2023), AlphaEdit (Fang et al., 2024), and PMET (Li et al., 2024). We present our results in Tab. 4.

Method Sub-Graph d = 1 d = 2 d = 3 d = 4

ROME
Edit 01.80 21.93 26.22 27.90
Retain 01.80 20.84 25.32 27.28
Test 01.84 21.89 26.52 28.68

MEMIT
Edit 01.89 08.58 09.32 08.78
Retain 01.86 07.31 07.66 07.50
Test 01.85 07.49 08.35 07.70

AlphaEdit
Edit 01.86 07.77 08.44 07.68
Retain 01.85 06.51 06.89 06.99
Test 01.83 06.89 07.60 06.99

PMET
Edit 01.83 06.55 06.44 06.41
Retain 01.84 05.45 05.42 05.85
Test 01.83 06.14 05.75 06.31

Table 4. Results from Tab. 2, replicated using the alternative knowledge editing methods of MEMIT (Meng et al., 2023), AlphaEdit (Fang
et al., 2024), and PMET (Li et al., 2024). These successors to ROME achieve lower amounts of representation shattering overall,
coinciding with their more favorable performance in Appx. G.1.1. However, the relationship between greater counterfactual edit distance
d and greater representation shattering R(D∗) still robustly holds for all methods. This result again shows that various KE methods
struggle in similar ways: specifically, the greater the inconsistency between the model’s original knowledge and the edited fact, the greater
the resulting distortion upon the model’s representations.

18

Representation Shattering in Transformers with Knowledge Editing

G.2. Validation of KE Algorithms’ Assumptions

The knowledge editing methods we test across our experiments—namely ROME (Meng et al., 2022a), MEMIT (Meng et al.,
2023), AlphaEdit (Fang et al., 2024), and PMET (Li et al., 2024)—make assumptions about the mechanisms by which
language models store factual associations in their learned weights. Here, we verify those assumptions to ensure that our
application of KE to our synthetic experimental setup is in fact appropriate.

G.2.1. CAUSAL TRACING OF FACTUAL ASSOCIATIONS

ROME (Meng et al., 2022a) and its follow-up derivatives rely on “causal tracing” to locate facts within the parameters of
large pretrained autoregressive transformer models. This is essentially causal mediation analysis applied to the internal states
of transformer models, with scores attributing each state’s contribution toward a correct factual prediction. KE methods
build upon the finding that, early/middle MLP layers play a decisive role in recalling key-value facts about the subject (Meng
et al., 2022a). Below, we investigate whether this finding also generalizes to our toy model by performing causal tracing.

mlp1 mlp2
Restoration MLP Layer

In
di

re
ct

 E
ffe

ct

0.00

0.16

Figure 9. The average “Indirect Effect” of MLP output states (for the last subject token) on the final fact output elicited from the model,
computed across 100 randomly sampled prompts. While our model only has two layers, causal tracing attributes higher scores to the first
MLP layer rather than the second. This aligns with the findings of Meng et al. (2022a) who showed that early and mid-layer MLPs play a
larger role in factual recall than later sites. We therefore target the first layer MLPs for our knowledge editing experiments.

19

Representation Shattering in Transformers with Knowledge Editing

G.2.2. TRANSFORMER MLPS AS LINEAR ASSOCIATIVE MEMORY

Prior works view the W
(l)
proj matrix of the MLP layer within the Transformer architecture as linear associative memory.

Under this perspective, the MLP layers act as key-value stores for vector keys and corresponding vector values (Kohonen,
2009; Anderson, 1972; Geva et al., 2020; Bau et al., 2020). Below, we qualitatively investigate whether this observation also
holds for facts learned by our toy model.

(a.i) Key (b.i) Key (c.i) Key

(a.ii) Value (b.ii) Value (c.ii) Value

(a) 420.I C2=15420.I C2=15420.I C2=15 (b) 1650.I C3=151650.I C3=151650.I C3=15 (c) 1234.II C2=20071234.II C2=20071234.II C2=2007

Figure 10. Inputs (keys) and outputs (values) of the layer 1 MLP module, projected to 2D with PCA. Gray corresponds to randomly
sampled prompts across all possible facts, red to randomly sampled prompts for a specific fact, and blue to the average position of the red
points. Comparing (a) and (b), we find that fact prompts which resolve to the same final target entity in the same subgraph (i.e., entity 15)
share similar keys and values. Meanwhile, a completely different fact (like 1234.II C2=2007) is stored as a clearly
distinct key-value pair. These patterns support the key-value framework as compatible with our synthetic setup.

20

Representation Shattering in Transformers with Knowledge Editing

G.3. Independence of Cyclic Orders

In our evaluations, we make edits to various relations under the assumption that the Transformer internalizes the independence
of the cyclic orders (I, II, and III). Here, we ask: do the model’s internal representations truly reflect this? We answer
this question by inspecting the representations for the output of the multi-head attention output in layer 2 at the last token
position using PCA. Unlike in previous sections where we focused on a fixed relation r and varied xi for inputs of the form
· · ·xir, we now vary both xi and r and color-code each projection by the cyclic order to which the relation r belongs. We
present the resulting projections in Fig. 11, and find that prompts eliciting knowledge for each cyclic order are clustered
closely together in the latent space—this is further evidence that the model internalizes the properties of the underlying
knowledge graph.

Cyclic Order I
Cyclic Order II
Cyclic Order III

Figure 11. PCA of representations extracted from the output of the multi-head attention output in layer 2 at the last token position,
color-coded by the cyclic order of the last relation token.

21

Representation Shattering in Transformers with Knowledge Editing

G.4. Manifolds for Various Representation Extraction Points

We repeat our representation visualizations analysis for all relations at different layers in the model and at different sequence
positions, finding the structured representations are found at specific token positions. See Fig. 12.

attn1
@ last entity token (-2)

mlp1 gelu
@ last entity token (-2)

mlp1 cproj
@ last entity token (-2)

attn2
@ last entity token (-2)

mlp2 gelu
@ last entity token (-2)

mlp2 cproj
@ last entity token (-2)

attn1
@ last relation token (-1)

mlp1 gelu
@ last relation token (-1)

mlp1 cproj
@ last relation token (-1)

attn2
@ last relation token (-1)

mlp2 gelu
@ last relation token (-1)

mlp2 cproj
@ last relation token (-1)

Figure 12. 3D Isomap projections for representations extracted from various token positions and points in the model. The cyclical
representation manifolds can only be observed for the last relation token position (−1th token), and not at the last entity token position
(−2th token). This intuitively makes sense because the last relation token informs the model about which cycle order the current input is
querying for. We primarily use the “attn2 last relation token” representations throughout this work because it is the earliest point at which
a well-structured cyclical manifold can be observed beyond the point of the ROME intervention (which is at “mlp1 cproj”).

22

Representation Shattering in Transformers with Knowledge Editing

G.5. Manifolds for All Relations

In Fig. 13, we provide isomap projections of representations extracted for all relations from our model. We show highly
structured representations are formed within the model, indicating the model is truly learning the data-generating process
and not merely memorizing information.

I_C1 I_A1 I_C2 I_A2 I_C3 I_A3 I_C4 I_A4

II_C1 II_A1 II_C2 II_A2 II_C3 II_A3 II_C4 II_A4

III_C1 III_A1 III_C2 III_A2 III_C3 III_A3 III_C4 III_A4

Figure 13. Isomap projections for representations for all relations, extracted from the output of the multi-head attention output in layer 2
at the last token position. We find that all relations are represented by a cyclical representation manifold. This shows that the model is not
falling back on memorization for any relations—rather, it represents all of its knowledge in consistent, ring-like manifolds.

23

Representation Shattering in Transformers with Knowledge Editing

G.6. Counterfactual Editing

G.6.1. DISTRIBUTION OF DEGREDATIONS FOR COUNTERFACTUAL EDITS

The plots in Fig. 14 correspond to the counterfactual editing results presented in Sec. 4.4 and Tab. 1.

1.0 0.8 0.6 0.4 0.2 0.0
Direct Recall Accuracy

0

5

10

15

20

CE Distance = 1

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 2

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 3

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 4 Edit
Retain
Test

1.0 0.8 0.6 0.4 0.2 0.0
Logical Inference Accuracy

0

5

10

15

20

CE Distance = 1

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 2

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 3

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 4 Edit
Retain
Test

1.0 0.8 0.6 0.4 0.2 0.0
Compositional Inference Accuracy

0

2

4

6

8

10

CE Distance = 1

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 2

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 3

1.0 0.8 0.6 0.4 0.2 0.0

CE Distance = 4 Edit
Retain
Test

Figure 14. Distribution of post-edit accuracy degredations for direct recall, logical inference, and compositional inference in relation to the
counterfactual edit distances. A significant shift can be observed between CE distances of 1 and 2, showing the point at which detrimental
representation shattering can occur.

24

Representation Shattering in Transformers with Knowledge Editing

G.6.2. ADDITIONAL VISUALIZATIONS

In Fig. 6, we showcase an example of the change in accuracies and representation manifolds when applying a counterfactual
edits (specifically for fact 1154.I C1). For a more representative view, we additionally provide more examples of
counterfactual edits (with both raw and pre-processed versions side-by-side, as described in Appx. F).

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

III
_C

3
(T

es
t)

0.016 0.040 0.167 0.215

I_
C3

 (
Ed

it
)

Unedited
0.016

CE Dist = 1
0.027

CE Dist = 2
0.099

CE Dist = 3
0.127

CE Dist = 4

II_
C3

 (
Re

ta
in

) 0.017 0.029 0.132 0.165

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

III
_C

3
(T

es
t) 0.016 0.040 0.167 0.215

I_
C3

 (
Ed

it
)

Unedited
0.016

CE Dist = 1
0.027

CE Dist = 2
0.099

CE Dist = 3
0.127

CE Dist = 4

II_
C3

 (
Re

ta
in

) 0.017 0.029 0.132 0.165

Figure 15. Counterfactual editing visualizations for 1623.I A2.

0.0

0.5

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
A1

 (
Re

ta
in

) 0.015 0.306 0.281 0.226

II_
A1

 (
Ed

it
)

Unedited
0.014

CE Dist = 1
0.384

CE Dist = 2
0.346

CE Dist = 3
0.288

CE Dist = 4

III
_A

1
(T

es
t)

0.016 0.400 0.343 0.328

0.0

0.5

1.0

Ac
cu

ra
cy

 (%
)

Direct Recall
Logical Inference
Compositional Inference

I_
A1

 (
Re

ta
in

) 0.015 0.306 0.281 0.226

II_
A1

 (
Ed

it
)

Unedited
0.014

CE Dist = 1
0.384

CE Dist = 2
0.346

CE Dist = 3
0.288

CE Dist = 4

III
_A

1
(T

es
t) 0.016 0.400 0.343 0.328

Figure 16. Counterfactual editing visualizations for 1121.II C1.

25

Representation Shattering in Transformers with Knowledge Editing

H. Additional Naturalistic LLM Experiments
H.1. Knowledge Editing on Mamba

In Sec. 4.5, we investigate whether the representation shattering hypothesis generalizes to large Transformers trained on
naturalistic data. We consider the cyclic order of the months of the year and apply counterfactual edits to Llama 3 8B
Instruct (Grattafiori et al., 2024) and found that as we vary the edit distance from 1 to 3, the degree of representation
shattering increases. To further probe the robustness of our claims with respect to model size and model architecture, we
additionally explore KE with Mamba (Gu & Dao, 2023). Mamba is a structured state space sequence model, and we use
the Mamba-2.8B variant for this experiment. For consistency with the Llama experiments, we use the MEMIT editing
method adapted appropriately to work with the Mamba architecture (as per Sharma et al. (2024)). For the counterfactual
edit prompts, we use the same prompts as in Sec. 4.5 (i.e. “{Month} is followed {offset} months later
by the month of {}”).

We present the resulting manifold visualizations and R(D∗) values in Fig. 17. We find that the relationship between the
counterfactual edit distance and the extent of representation shattering can be reproduced in Mamba 2.8B, much like in
Llama 3 8B Instruct. As a side note, we note that benchmarking Mamba 2.8B on MMLU-Redux (Gema et al., 2024) was not
achievable since Mamba 2.8B is not instruction-tuned; nonetheless, the gradual shattering of representations in Mamba 2.8B
induced by larger counterfactual edit distances suggests that the representation shattering hypothesis is generally applicable
across different model types and architectures.

Unedited CE Dist = 1 CE Dist = 2 CE Dist = 3

Figure 17. Fig. 7, replicated using Mamba 2.8B (Gu & Dao, 2023). Like in Llama 3 8B Instruct, the ring structure shatters for larger
counterfactual edit distances (activations were collected at the layer 38 output; see Appx. H.2 for other extraction points). This result
demonstrates that our findings are not limited to specific models and can be extended to various architectures.

26

Representation Shattering in Transformers with Knowledge Editing

H.2. LLM Representation Extraction Points

To measure and visualize representation shattering in Sec. 4.5 and Appx. H.1, we extracted intermediate representations
from Llama 3 8B Instruct and Mamba 2.8B at the output of layers 19 and 38, respectively. We chose these layers because
they were the earliest points in each model for which cyclic representations could be observed at the last token position (as
shown in Fig. 18 and Fig. 19).

Llama 3 8B Instruct

Layer 17 Layer 18 Layer 19 Layer 20 Layer 21

Figure 18. Representations extracted for the months of the year in Llama 3 8B Instruct, at the outputs of layers 17-21. We select layer 19
for our analysis of representation shattering because it is the earliest layer at which a clear cyclic structure is observed.

Mamba 2.8B

Layer 36 Layer 37 Layer 38 Layer 39 Layer 40

Figure 19. Representations extracted for the months of the year in Mamba 2.8B, at the outputs of layers 36-40. We select layer 38 for our
analysis of representation shattering because it is the earliest layer at which a clear cyclic structure is observed.

27

Representation Shattering in Transformers with Knowledge Editing

H.3. Knowledge Editing with Naturalistic Trees

In our experiments, we primarily focus on synthetic knowledge graphs with cyclical structures. While the simplicity of
cycles is desirable for our synthetic experiments, real human knowledge and language can exhibit more complex structures.
For example, geographical ground-truths can be expressed in a tree structure, with entities like cities/countries/continents
having relations with other cities/countries/continents, i.e. xi = Paris, r = located in country, xj = France.

Here, we ask: does the representation shattering hypothesis hold for more realistic tree-shaped knowledge graphs in more
complex LLMs? To answer this question, we take inspiration from the classic “The Eiffel Tower is located in the city
of Rome” example of counterfactual knowledge editing (Meng et al., 2022a). For our purposes, we edit the country
associations of major cities. In particular, we consider the following five countries: France, Spain, Italy, Germany, and the
United Kingdom. Then, we also consider the five most populous cities of each country, totaling 25 cities: Paris, Marseille,
Lyon, Toulouse, Nice, Madrid, Barcelona, Valencia, Sevilla, Zaragoza, Rome, Milan, Naples, Turin, Palermo, Berlin,
Hamburg, Munich, Köln, Frankfurt am Main, London, Birmingham, Liverpool, Glasgow, and Sheffield. The knowledge
graph involving these city-country pairs contains facts such as (xi = Paris, r = located in country, xj = France). The
ground-truth arrangements of the cities and countries form a tree (Fig. 20a).

From the latent space of LLMs, however, it is difficult to extract clean tree-like geometries. When we project the
representations for tokens corresponding to the country and city names using Isomap, the result does not yield a discernible
tree shape (Fig. 20b). Despite the exact structure of the latent space not being clear, the notion of “distance” in the manifold
can still be applied. For example, in Fig. 20b, Spain is closer to France than is the United Kingdom; therefore, the edit “Paris
is a city in the country of Spain” has a smaller counterfactual edit distance than does the edit “Paris is a city in the country
of the United Kingdom.” Fig. 21a and Fig. 21b show the representation manifold Isomaps after applying the edits “Paris
is a city in the country of Spain” and “Paris is a city in the country of the United Kingdom,” respectively, using ROME
on GPT-2 XL. First, we find that both counterfactual edits cause the representations for all cities and countries to collapse
inward. Moreover, the edit to “the United Kingdom” causes a greater distortion than the edit to “Spain,” as is evident both
by visual inspection and by the numerical representation shattering quantity R(D∗).

(a)

ItalyGermanyNiceLondonLiverpool

Lyon

Berlin

Köln

Sheffield

Marseille

Milan

Sevilla

Munich

Valencia

Hamburg

Turin
Madrid

Toulouse

Rome

Naples

Birmingham

Palermo

BarcelonaGlasgow

Paris
FranceSpain

United Kingdom

Unedited Model

Subject (Paris)
Original Association (France)
Spain
United Kingdom

(b)

Figure 20. (a) The ground-truth tree representing the 5 countries and its 25 cities. The correct factual association for the prompt “Paris is a
city in the country of...” is France. In this example, we consider the counterfactual edits “Paris is a city in the country of Spain” and “Paris
is a city in the country of the United Kingdom”. (b) Isomap projections of representations for the selected countries and cities. We find
that, on this model’s representation manifold, editing Paris to be in Spain constitutes a smaller counterfactual edit distance than does
editing Paris to be in the United Kingdom.

28

Representation Shattering in Transformers with Knowledge Editing

ItalyGermany
NiceLondon

Liverpool

United Kingdom

Lyon

Berlin

Köln

Sheffield

Marseille

Milan

Sevilla

Munich

Valencia

HamburgTurinMadrid

Toulouse

Rome

Naples
Birmingham

PalermoBarcelona

Glasgow

Paris
France
Spain

0.121Paris is a city in the country of Spain

Subject (Paris)
Original Association (France)
Target Association (Spain)

(a)

Italy
Spain

Germany

Nice
London

Liverpool

LyonBerlin

Köln

Sheffield

Marseille

Milan

Sevilla
Munich

Valencia
HamburgTurinMadrid

Toulouse

Rome

Naples
Birmingham

Palermo
Barcelona

Glasgow
Paris

France

United Kingdom

0.156Paris is a city in the country of the United Kingdom

Subject (Paris)
Original Association (France)
Target Association (United Kingdom)

(b)

Figure 21. Isomap projections of latent representations after applying a counterfactual edit. (a) “Paris is a city in the country of Spain.” (b)
“Paris is a city in the country of the United Kingdom.”

To take a step in verifying whether this finding is generalizable, we applied counterfactual edits to each of the 25 selected
cities. For each city, we computed the country which constitutes the “closest” and “furthest” counterfactual edit distance on
the model’s representation manifold. After applying the two counterfactual edits, we computed R(Dfarthest

∗) and R(Dclosest
∗).

Across the 25 cities, the average ratio R(Dfarthest
∗)/R(Dclosest

∗) was 1.1483. In other words, when changing a city’s parent
country, editing to a close country on the representation manifold yields less shattering than editing to a country which sits
far away on the manifold.

These preliminary results align with our main hypothesis: KE methods distort language models’ representations in order to
insert new facts or alter old ones (i.e. representation shattering), and the extent of representation shattering increases with
the distance between the old fact and the desired new fact on the manifold.

29

