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ABSTRACT

The movement of data between processor and memory, not arithmetic operations,
dominates the energy cost of inference computations in deep networks. Network
compression offers opportunities for hardware design to bring weights in memory
closer to processor reducing these data movement costs. To this end, we investi-
gate the merits of a method, which we call Weight Fixing Networks (WFN). We
design the approach to realise four model outcome objectives: i) very few unique
weights, ii) low-entropy weight encodings, iii) unique weight values which are
amenable to energy-saving versions of hardware multiplication, and iv) lossless
task-performance. Some of these goals are conflicting. To best balance these
conflicts, we combine a few novel (and some well-trodden) tricks; a novel regu-
larisation term, (i, ii) a view of clustering cost as relative distance change (i, ii,
iv), and a focus on whole-network re-use of weights (i, iii). Our Imagenet exper-
iments demonstrate lossless compression using 56x fewer unique weights and a
1.9x lower weight-space entropy than SOTA quantisation approaches.

1 INTRODUCTION

The Importance of Data Movement Costs. Although there has been a significant amount of
attention exploring both algorithmic (Sze et al., 2020) and hardware-based (Chen et al., 2020)
approaches to reducing the energy costs of deep learning inference, there is often a noted disconnect
between the two (Sze et al., 2017). The most expensive energy costs lie in memory reads (Horowitz,
2014; Gao et al., 2017). For every off-chip DRAM data read, you pay the equivalent of over two
hundred 32-bit multiplications in energy costs1 (Horowitz, 2014). Algorithmic techniques that
hope to reduce energy consumption have focussed predominantly on metrics like floating-point
operations (FLOPs); intuitively, fewer FLOPs should translate into smaller energy costs from
the reduced number of multiplications and potentially, fewer parameters to read from memory.
However, it has been observed that this is a weak proxy for the energy consumed in running a deep
learning model for inference (Sze et al., 2017). Data movement costs can still be high if we do
not consider the re-use of weights, the delay between their re-use, and filter shape effects. Simply
reducing the FLOPs alone does not guarantee energy cost reductions – particularly those incurred
through data read and write activity.

Accelerator Design Considerations. These data movement costs are difficult to reduce in von
Neumann architectures (Li et al., 2015; Sebastian et al., 2020), and so there is a move towards
co-design of algorithm-hardware inference accelerators. A core consideration of accelerator design
lies in exploring dataflow mappings. These mappings determine how data used in computation is
distributed across memory components and optimised to take advantage of the re-use of weights,
matrix multiplication partial-sums (psums), and data inputs (Han et al., 2016; Chen et al., 2017;
2015; 2020). Modern deep learning accelerators also make use of hundreds of processing elements
(Chen et al., 2020) (PE’s) for computation. Each PE contains a small amount of cheap and fast
access memory to store a few pieces of information (weights, psums, inputs, etc.). A dataflow
mapping cuts down data movement costs by making the best use of each PE and ensuring that the
information they contain is recycled as much as possible. A weight/input/psum that cannot be used
quickly after its latest use will be written to storage and require a re-read later. Less re-use leads
to increased data movement costs. Consider, for example, weight-stationary dataflow, commonly
used in SOTA accelerator designs (Farshchi et al., 2019; Jouppi et al., 2017). Here the items stored
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Figure 1: WFN has more weight re-use opportunities than existing quantisation approaches which
can be used to reduce data movement costs. Left: The total number of unique parameters left after
quantisation is 56x fewer than APoT for ResNet-18 trained on the Imagenet dataset and 71x for
the ResNet-34 model. Right: The entropy of the parameters across the network is 1.9x and 1.65x
smaller when using the WFN approach over APoT.

statically in the PE are the model weights. Input data is then fed into the relevant PE’s where
multiplication is conducted locally. The ideal situation for a dataflow mapping would be to pay a
single data movement cost for each unique weight value and then reference these weight values
using indexing. The indexing costs can be kept low using an appropriate encoding scheme such as
Huffman coding and approximated by the entropy of the weight space. Thus, the indexing access
costs plus unique value access costs can be much smaller than the unquantised network (Mao &
Dally, 2016; Wu et al., 2018).

Objectives. So we ask ourselves what we could do algorithmically to maximise the benefit of
accelerator dataflows? We think an easy win is to reduce the number of unique weights a network
uses. Fewer unique weights whilst fixing the network topology and the total number of parameters
will mean that more weights are re-used more often. This additional re-use gives more opportunity
to dataflows to maintain often-used weights in PE’s. To further enhance the compressibility, it is
desirable for the distribution of the unique weights to be concentrated around a handful of values.
The high probability density weights would then be used more often and could then be reliably
stored inside PE’s, saving both the cost of overwriting these weight values and re-fetching them
when needed later. Finally, we ask what the ideal values of these weights would be. From a
computational perspective, not all multiplications are created equal. Integer powers-of-two, for
example, can be implemented as simple bit-shifts. Mapping the weights used most to these values
offers potential further energy reductions. Putting these three requirements together: few unique
weights; a low-entropy encoding with a distribution of weights highly concentrated around a tiny
subset of values; and a focus on powers-of-two values for weights — all motivated to reduce
computation costs in accelerator designs — we present our contribution.

Weight Fixing Networks. Our work’s overarching objective is to transform a network comprising
many weights of any value (limited only by value precision) to one with the same number of
weights but just a few unique values. Rather than selecting the unique weights a priori, we let
the optimisation guide the process in an iterative cluster-then-train approach. In each iteration,
we cluster an ever-increasing subset of weights to one of a few cluster centroids. We map the
pre-trained network weights to these cluster centroids, which are the pool of unique weights. The
training stage follows standard gradient descent optimisation to minimise performance loss with
two key additions. Firstly, only an ever decreasing subset of the weights are free to be updated.
And secondly, we use a new regularisation term to penalise weights in proportion to their nearest
clusters’ relative distance. We iteratively cluster subsets of weights to their nearest cluster centre,
as has been demonstrated successfully previously (Zhou et al., 2017). The way we determine which
subset to move is a core component of our contribution which leads to the superior compression
results we achieve.

Small Relative Distance Change. Rather than selecting subsets with small Euclidean distances
to cluster centres, or those that have small magnitude (Zhou et al., 2017), we make the simple
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Figure 2: We explore adding relative vs absolute noise to each of the layers (x-axis). The layer index
indicates which layer was selected to have noise added. Each layer index is a separate experiment
with the 95% confidence intervals shaded.

observation that the relative – as opposed to absolute – weight change matters. The distance
a weight is moved when quantised is dependent on the distance between the weight wi and its
new value wi + δwi. When the new value is zero — as is the case for pruning methods —
then the magnitude of the weight is the distance. Yet, this is not the case more generally. We
demonstrate the importance of optimising quantisation for small relative changes with simple
empirical observations. Using a pre-trained ResNet-18 model, we test adding relative vs absolute
noise to the layers’ weights and measure the accuracy change. For relative noise we set a noise level
β and adjust all weights wi in a layer l as: wli ← wli+N (0, β|wli|). The standard deviation of noise
added is determined by the original value wli. We contrast this with absolute noise experiments,
where we instead set wli ← wli +N (0, β|wl|) where |wl| corresponds to the mean absolute weight
value in layer l. We run each layer-β combination experiment multiple times – to account for
fluctuation in the randomised noise – and present the results in Figure 1. Even though the mean
variation of noise added is the same, noise relative to the original weight value (multiplicative noise)
is much better tolerated than absolute (additive noise). Since moving weights to quantisation centres
is analogous to adding noise, we translate these results into our approach and prioritise weights
that have small relative distances to be clustered first. We find avoiding significant quantisation
errors requires ensuring that |δwi|

|wi| is small for all weights. If this is not possible, then performance
could suffer. In this case, we create an additional cluster centroid in the vicinity of an existing
cluster to reduce this relative distance. Our work also challenges the almost universal trend in the
literature (Yuhang Li, Xin Dong, 2020; Jung et al., 2019; Zhang et al., 2018a; Zhou et al., 2016;
Yamamoto, 2021; Oh et al., 2021) of leaving the first and last layers either at full precision or 8-bit;
we attempt a full network quantisation. The cost of not quantising the first layer – which typically
requires the most re-use of weights due to the larger resolution of input maps – and the final linear
layer – which often contains the largest number of unique weight values – is too significant to ignore.

With multiple stages of training and clustering, we finish with a significantly reduced set of unique
weights. The regularisation term encourages high probability regions in the weight distribution and
a lower-entropy weight-space. The initial choice of cluster centroids as powers-of-two helps us
meet our third objective – energy-saving multiplication. Overall we find four distinct advantages
over the works reviewed:

• We assign a cluster value to all weights — including the first and last layers.

• We emphasise a low entropy encoding with a regularisation term, achieving entropies
smaller than even those seen using 3-bit quantisation approaches – over which we report
superior performance.

• We require no additional layerwise scaling; the unique weights are shared across all layers.
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• WFN substantially reduces the number of unique parameters in a network when compared
to existing SOTA quantisation approaches.

2 RELATED WORK

Clip and Scale Quantisation. Typical quantisation approaches reduce the number of bits used to
represent components of the network. Quantisation has been applied to all parts of the network
with varying success; the weights, gradients, and activations have all been attempted (Hubara
et al., 2016; Lee et al., 2017; Jung et al., 2019; Yang et al., 2019; Shkolnik et al.; Zhou et al.,
2016). Primarily, these approaches are motivated by the need to reduce the energy costs of the
multiplication of 32-bit floating-point numbers. This form of quantisation uses a rounding function
and scaling factor (sf ) in making value adjustments where a weight wi is mapped to a new value
w′i = sf ∗ round(wi) for some predetermined rounding function. The scaling factor (determined
by a clipping range) can be learned channel-wise (Jacob et al., 2018; Zhang et al., 2018c), or more
commonly, layerwise with separate formulations. This results in different channels/layers having
a diverse pool of mapping values for the network weights/activations/gradients. Quantisation can
be performed without training — known as post-training quantisation, or with added training steps
– called quantisation-aware training (QAT). Retraining incurs higher initial costs but results in
superior performance. A clipping+scaling quantisation example relevant to our own is the work of
(Zhou et al., 2017), where the authors restrict the layerwise rounding of weights to powers-of-two.
The use of powers-of-two has the additional benefit of energy-cheap bit-shift multiplication. A
follow-up piece of work (Yuhang Li, Xin Dong, 2020) suggests additive powers-of-two (APoT)
instead to capture the pre-quantised distribution of weights better.

Weight Sharing Quantisation. Other formulations of quantisation do not use clipping and scaling
factors (Stock et al., 2020; Tartaglione et al., 2021; Wu et al., 2018). Instead, they adopt clustering
techniques to cluster the weights and fix the weight values to their assigned group cluster centroid.
These weights are stored as codebook indices, allowing for compressed representation methods
such as Huffman encoding to squeeze the network further. Unlike clipping+scaling quantisation
techniques, and like ours, these methods share the pool of weights across the entire network. The
work by (Wu et al., 2018) is of particular interest since both the motivation and approach are related
to ours. Here the authors use a spectrally relaxed k-means regularisation term to encourage the
network weights to be more amenable to clustering. In their case, they focus on a filter-row code-
book inspired by the row-stationary dataflow used in some accelerator designs (Chen et al., 2017).
However, their formulation is explored only for convolution, and they restrict clustering to groups
of weights (filter rows) rather than individual weights due to computational limitations as recalibrat-
ing the k-means regularisation term is expensive during training. Similarly (Stock et al., 2020; Fan
et al., 2021), focus on quantising groups of weights into single codewords rather than the individual
weights themselves. Weight-sharing approaches similar to ours include (Ullrich et al., 2017). The
authors use the distance from an evolving Gaussian mixture as a regularisation term to prepare the
clustering weights. Although it is successful with small dataset-model combinations, the complex
optimisation — particularly the additional requirement for Inverse-Gamma priors to lower-bound
the mixture variance to prevent mode collapse— limits the method’s practical applicability due to
the high computational costs of training. In our formulation, the weights already fixed no longer
contribute to the regularisation prior, reducing the computational overhead.

3 METHOD

Quantisation. Consider a network N parameterised by N weights W = {w1, ..., wN}. Quantising
a network is the process of reformulating N ′ ← N where the new network N ′ contains weights
which all take values from a reduced pool of k cluster centres C = {c1, ..., ck} where k � N .
After quantisation, each of the connection weights in the original network is replaced by one of the
cluster centres wi ← cj , W ′ = {w′i|w′i ∈ C, i = 1, · · · , N}, |W ′| = k, where W ′ is the set of
weights of the new network N ′, which has the same topology as the original N .
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Method Outline. WFN is comprised of T fixing iterations where each iteration t ∈ T has a
training and a clustering stage. The clustering stage is tasked with partitioning the weights into two
subsets W = W t

fixed ∪ W t
free. W

t
fixed is the set of weights fixed at one of the cluster centre

values ck ∈ C. The weights wi ∈ W t
f ixed are not updated by gradient decent in this, nor any

subsequent training stages, these weights are fixed. In contrast, the free-weights denoted by W t
free

remain trainable during the next training stage. With each subsequent iteration t we increase the
proportion of weights that take on fixed cluster centre values pt such that p0 < p1 . . . < pT , where

pt =
|W t

fixed|
|W | . By iteration T , all weights will be fixed to one of the cluster centres making pT = 1.

The training stage combines gradient descent based error correction along with a tight-cluster
regularisation term and is tasked with maintaining lossless performance as we fix more of the
weights to cluster centres.

Clustering Stage. In the clustering stage, we work backwards from our goal of minimising the rel-
ative distance travelled for each of the weights to determine which values cluster centres ci ∈ C
should take. Given a weight wi ∈ W and cluster centre cj ∈ C we use a distance function
D(wi, cj) = |wi − cj | and the original weight value wi to define a relative distance measure
Drel(wi, cj) =

D(wi,cj)
|wi| . Normalising by wi ensures that distance is measured proportionally to

the original weight value, rather than in absolute terms. To use this in determining the cluster cen-
tres, we enforce a threshold δ on this relative distance, Drel(wi, cj) ≤ δ for small δ. We can then
define the cluster centres cj ∈ C which make this possible using a simple recurrence relation. As-
sume we have a starting cluster centre value cj , we want the neighbouring cluster value cj+1 to be
such that if a network weight wi is between these clusters wi ∈ [cj ,

cj+1+cj
2 ] then Drel(wi, cj) ≤ δ.

Plugging in cj+1+cj
2 and cj into Drel and setting it equal to δ we have:

| cj+1+cj
2

− cj |
cj+1+cj

2

= δ, (1)

this leads to a recurrence relation:

cj+1 = cj(
1 + δ

1− δ ), 0 < δ < 1, (2)

that provides the next cluster centre value given the previous one. With this, we can generate all
the cluster centres given some boundary conditions. Starting with some value c0, we generate
c1 which is then used to generate c2 and so on. We introduce the lower-bound cluster threshold
c0 = δ0, which we use to generate the cluster centres and any absolute weight value that is less
than δ0 is assigned the cluster value 0. This lower bound serves two purposes: firstly, it reduces
the number of proposal cluster centres which would otherwise increase exponentially in density
around zero, and additionally, the zero-valued weights will allow sparsity-leveraging hardware to
avoid operations that use these weights, reducing the computational overhead. As an upper-bound,
we stop the recurrence once a cluster centre is larger than the maximum weight in the network,
maxj |cj | ≤ maxi |wi|, wi ∈W, cj ∈ C.

Generating the Proposed Cluster centres. Putting this together, we have a starting point c0 = δ0,
a recurrence relation to produce cluster centres given c0 that maintains a relative distance change
when weights are moved to their nearest cluster centre, and a centre generation stopping condition
cj ≤ maxi∈W |wi|, cj ∈ C. We use the δ0 value as our first proposed cluster centre c0 with the
recurrence relation generating a proposed cluster set of size s. Since all these values will contain
only positive values, we join this set with its negated version along with a zero value to create a
proposal cluster set CS = {a( 1+δ1−δ )

jδ0 | j = 0, 1 · · · s; a = +1, 0,−1} of size 2s+ 1.
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Figure 3: The accuracy vs model size trade-off can be controlled by the δ parameter. All experiments
shown are using the ImageNet dataset, accuracy refers to top-1.

To account for the zero threshold δ0 and for ease of notation as we advance, we make a slight
amendment to the definition of the relative distance function Drel(wi, cj) :

D+
rel(wi, cj) =

{
D(wi,cj)

|wi|
, if |wi| ≥ δ0

0, otherwise
(3)

Reducing k with Additive Powers-of-two Approximations. Although using all of the values
in CS as centres to cluster the network weights would meet the requirement for the relative
movement of weights to their closest cluster to be less than δ, it would also require a large number
of k = |CS | clusters. In addition, the values in CS are also of full 16-bit precision, and we
would prefer many of the weights to be powers-of-two for ease of multiplication in hardware.
With the motivation of reducing k and encouraging powers-of-two clusters whilst maintaining
the relative distance movement where possible, we look to a many-to-one mapping of the values
of CS to further cluster the cluster centres. Building on the work of others (Zhou et al., 2017;
Yuhang Li, Xin Dong, 2020), we map each of the values ci ∈ CS to their nearest power-of-two,
round(ci) = sgn(ci)2

blog2(ci)e and, for flexibility, we further allow for additive powers-of-two
rounding. With additive powers-of-two rounding, each cluster value can also come from the sum of
powers-of-two values (b-bit) up to order ω where the order represents the number of powers-of-two
that can contribute to the approximation2. As an example, given ck = 0.45, ck ∈ CS , an ω = 1
approximation would round ck to its nearest power-of-two c1k = 1

21 = 0.5 whereas an order ω = 2

approximation is c2k = 1
21 −

1
24 = 0.4375. A higher-order grants a better approximation, but at the

cost of more cluster centroids overall and requires ω bit-shifts + additions in hardware. We give
full details of the algorithm to map the proposal set CS to the ω-order approximation C̃ω in the
Appendix.

Minimalist Clustering. We are now ready to present the clustering procedure for a particular it-
eration t, which we give the pseudo-code for in Algorithm 1. We start the iteration with ω = 1

and a set of weights not yet fixed W t
free. For the set of cluster centres C̃ω of order ω, let

cω∗ (i) = minc∈C̃ω D
+
rel(wi, c) be the one closest to weight wi. nωk =

∑
i I[cωk = cω∗ (i)] counts

the number of weights assigned to cluster centre cωk ∈ C̃ω , where the indicator function I[x] is
1 if x is true and 0 otherwise. Let k∗ = argmaxk n

ω
k so that cωk∗ is the modal cluster. For the

cluster k∗ let permutation π of {1, . . . , N} that maps wi 7→ w′π(i), be such that the sequence
(w′1(k

∗), w′2(k
∗), . . . , w′N (k∗)) is arranged in ascending order of relative distance from the clus-

ter cωk∗ . In other words, D+
rel(w

′
i(k
∗), cωk∗) ≤ D+

rel(w
′
i+1(k

∗), cωk∗), for i = 1, . . . , (N − 1). We
choose n to be the largest integer such that:

n∑
i=1

D+
rel(w

′
i(k
∗), cωk∗) ≤ nδ, and

n+1∑
i=1

D+
rel(w

′
i(k
∗), cωk∗) > (n+ 1)δ, (4)

2The notion of an order has been identified recently in work parallel to ours (Oh et al., 2021), where the
term word is used instead, i.e. two-word directly translates into an ω = 2.
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and define {w′1, w′2, . . . , w′n} to be the set of weights to be fixed at this stage of the iteration.
These are the weights that can be moved to the cluster centre cωk∗ without exceeding the average
relative distance δ of the weights from the centre. The corresponding weight indices from the
original network N are in {π−1(1), . . . , π−1(n)}, and called fixednewin the algorithm. If there
are no such weights that can be found, i.e., for some cluster centre l∗, the minimum relative dis-
tance D+

rel(w
′
1(l
∗), cl∗) > δ, the corresponding set fixednew is empty. In this case, there are no

weights that can move to this cluster centre without breaking the δ constraint and we increase order
ω ← ω + 1 to compute a new cωk∗ , repeating the process until |fixednew| > 0. Once the condition
|fixednew| > 0 is satisfied, we fix the identified weights {w′1, w′2, . . . , w′n} to their corresponding
cluster centre value cωk∗ and move them into W t+1

fixed. We continue the process of identifying cluster
centres and fixing weights to these centres until |W t+1

fix | ≥ Npt, at which point the iteration t is
complete and the training stage of iteration t + 1 begins. Our experiments found that a larger δ
has less impact on task performance during early t iterations and so we reduce δ linearly with each
increasing t ∈ T (full details in the Appendix). We will show later that, with a small δ, over 75% of
the weights can be fixed with ω = 1 and over 95% of weights with ω ≤ 2.

Training Stage. Despite the steps taken to minimise the impact of the clustering stage, without
retraining, performance would suffer. To negate this, we perform gradient descent to adjust the
remaining free weightsW t

free. This allows the weights to correct for any loss increase incurred after
clustering where training aims to select values W t

free that minimise the usual loss (cross-entropy in
our case) whilst Wfixed remain unchanged.

Cosying up to Clusters. Having the remaining W t
free weights closer to the cluster centroids C

post-training makes clustering less damaging to performance. We coerce this situation by adding a

regularisation term — given in Equation 5 — to the retraining where p(cj |wi) = e
−D+

reg(wi,cj)∑k
l e
−D

+
reg(wi,cl)

.

The idea is to penalise the free-weights W t
free proportionally to their distance away from the

clusters to which they are most likely to be assigned — i.e. the closest. Clusters that are unlikely
to be weight wi’s nearest — and therefore final fixed value — do not contribute much to the
penalisation term. We balance this regularisation term against the cross-entropy training loss with
the γ hyper-parameter, which we fix to be a α proportion of the other loss term γ = α

Lcross entropy

Lreg
.

We note that the γ term is detached from the computational graph and treated as a constant
(otherwise the Lreg term would cancel).

Lreg = γ

N∑
i∈Wfree

k∑
j

D+
reg(wi, cj)p(cj |wi) (5)

4 EXPERIMENT DETAILS

We apply WFN to fully converged models trained on the CIFAR-10 and ImageNet datasets. Our
pre-trained models are all publicly available with strong baseline accuracies3: Resnet-(18,34,50)
(Wu et al., 2017), MobileNetV2 (Sandler et al., 2018) and, GoogLeNet (Chollet, 2017). We run ten
weight-fixing iterations for three epochs, increasing the percentage of weights fixed until all weights
are fixed to a cluster. In total, we train for 30 epochs per experiment using the Adam optimiser
(Kingma & Ba, 2015) with a learning rate 2× 10−5. We use grid-search to explore hyper-parameter
combinations using ResNet-18 and MobileNetV2 models with the CIFAR-10 dataset and find
that the regularisation weighting α = 0.4 works well across all experiments reducing the need
for further hyper-parameter tuning as we advance. The distance threshold δ gives the practitioner
control over the compression-performance trade-off (see Figure 3), and so we report a range of
values. We give full details of the experiments along with the results of a hyper-parameter ablation
study using CIFAR-10 in the Appendix.

3CIFAR-10 models : https://github.com/kuangliu/pytorch-cifar, ImageNet models: torchvision
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Figure 4: Far left: We increase the number of weights in the network that are fixed to cluster centres
with each fixing iteration. Middle left: Here, we show how decreasing the δ threshold increases the
number of cluster centres, but only towards the last few fixing iterations, which helps keep the
weight-space entropy down. Middle right: The majority of all weights are order 1 (powers-of-
two), the increase in order is only needed for outlier weights in the final few fixing iterations. Far
right: The weight distribution (top-15 most used show) is concentrated around just four values. All
of these charts are produced with ResNet-18 models trained on the ImageNet dataset.

5 RESULTS

Accuracy (%) Accuracy (%)
Model Method Top-1 Top-5 CR Model Method Top-1 Top-5 CR

ResNet-18 Baseline 68.9 88.9 1.0 ResNet-34 Baseline 73.3 90.9 1.0
LQ-Net 68.2 87.9 7.7 LQ-Net 71.9 90.2 8.6
APoT 69.9 89.2 10.2 APoT 73.4 91.1 10.6
LSQ 70.2+ 89.4+ 9.0* LSQ 73.4+ 91.4+ 9.2*

WFN (δ = 0.015) 67.3 87.6 13.4 WFN(δ = 0.015) 72.2 90.9 12.6
WFN (δ = 0.01) 69.7 89.2 12.3 WFN (δ = 0.01) 72.6 91.0 11.1

WFN (δ = 0.0075) 70.3 89.1 10.2 WFN (δ = 0.0075) 73.0 91.2 10.3
ResNet-50 Baseline 76.1 92.8 1.0 GoogLeNet Baseline 69.7 89.6 1.0

LQ-Net 74.2 91.6 5.9 Deep k-Means 69.4 89.7 3.0
APoT 75.8 92.7 9.0 GreBdec 67.3 88.9 4.5
LSQ 75.8+ 92.7+ 8.1* KQ 69.2 - 5.8

WFN (δ = 0.015) 75.1 92.1 10.3 WFN(δ = 0.015) 70.5 89.9 9.0
WFN (δ = 0.01) 75.4 92.5 9.8 WFN (δ = 0.01) 70.5 90.0 8.4

WFN (δ = 0.0075) 76.0 92.7 9.5 WFN (δ = 0.0075) 70.9 90.2 8.4

Table 1: A comparison of WFN against other quantisation and weight clustering ap-
proaches. The WFN pipeline is able to achieve higher compression ratios than the works
compared whilst matching or improving upon baseline accuracies.

* Estimated from the LSQ paper model size comparison graph, we over-estimate to be as fair as possible.
+ Open-source implementations have so far been unable to replicated the reported results: https://github.com/hustzxd/LSQuantization.

We begin by comparing WFN for a range of δ values against a diverse set of quantisation ap-
proaches that have comparable compression ratios (CR) in Table 5. The 3-bit quantisation methods
we compare include: LSQ (Esser et al., 2020), LQ-Net (Zhang et al., 2018b) and APoT (Yuhang
Li, Xin Dong, 2020). We additionally compare with the clustering-quantisation methods using the
GoogLeNet model: Deep-k-Means (Wu et al., 2018) whose method is similar to ours, KQ (Yu et al.,
2020), and GreBdec (Yu et al., 2017). Whilst the results demonstrate WFN’s lossless performance
with SOTA CR, this is not the main motivation for the method. Instead, we are interested in how
WFN can reduce the number of unique parameters in a network and corresponding weight-space
entropy which together give the potential benefit of future accelerator designs to reduce data move-
ment costs. We note to the interested reader there are additional theoretical reasons for pursuing low
weight-space entropy networks (Hinton & van Camp, 1993; Grünwald, 2000; Hansen & Yu, 2001),
but our primary focus is from the perspective of reducing accelerator data movement costs. Captur-
ing the benefit of algorithmic developments to reduce data movement costs in accelerator designs
is non-trivial due to the significant dependency on architecture memory hierarchy, communication
orchestration costs and the dataflow mapping used (Sze et al., 2020; Kwon et al., 2019; Sakr et al.,
2017). Some active works attempt to provide robust estimations in bridging the gap between esti-
mation and actual energy costs. This estimates energy efficiencies for various accelerator mappings
(Kwon et al., 2019), or fixes the mapping and estimates the energy costs on a particular accelera-
tor (Yang et al., 2017). However, this support is limited to specific fixed architecture designs and
does not account for the referenced weight-sharing that we introduce. Instead, we rely on analytical
model metrics such as the one proposed by (Wu et al., 2018), itself a subset of measurements con-
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Model Method Top-1 Entropy Param Count Rep(N ′) Model Size
ResNet-18 Baseline 68.9 23.3 10756029 1.000 46.8MB

APoT (3bit) 69.9 5.77 9237 0.283 4.56MB
WFN (δ = 0.015) 67.3 2.72 90 0.005 3.5MB
WFN (δ = 0.01) 69.7 3.01 164 0.007 3.8MB

WFN (δ = 0.0075) 70.3 4.15 193 0.018 4.6MB
ResNet-34 Baseline 73.3 24.1 19014310 1.000 87.4MB

APoT (3bit) 73.4 6.77 16748 0.296 8.23MB
WFN (δ = 0.015) 72.2 2.83 117 0.002 6.9MB
WFN (δ = 0.01) 72.6 3.48 164 0.002 7.9MB

WFN (δ = 0.0075) 73.0 3.87 233 0.004 8.5MB
ResNet-50 Baseline 76.1 24.2 19915744 1.000 97.5MB

WFN (δ = 0.015) 75.1 3.55 125 0.002 9.3MB
WFN (δ = 0.01) 75.4 4.00 199 0.002 10.0MB

WFN (δ = 0.0075) 76.0 4.11 261 0.003 10.2MB

Table 2: A full metric comparison of WFN Vs. APoT. For readiblity Rep(N ′) is given relative to
baseline. Note, APoT did not release the ResNet-50 model save which is why it is not compared
here.

ducted by (Sakr et al., 2017), in terms of the number Nw of operations that each of the |W ′| unique
weights of bit-width Bw is involved in. The low-entropy encoding that we aspire to is motivated by
the accelerator designs (Moons & Verhelst, 2016; Han et al., 2016) that seeks to exploit the Huff-
man encoding possible for the network index set. Hence, the index for each weight wi ∈W ′ can be
represented with a bit-width of Bwi and we can account for the number Nwi of times they are used
in an inference computation. Thus, instead of the representational cost Nw|W ′|Bw of (Sakr et al.,
2017) for the final network N ′, we use as metric:

Rep(N ′) =
∑

wi∈W ′
NwiBwi (6)

The authors of the APoT have released the quantised model weights and code, and we use the
released model-saves4 of this SOTA model to compare the entropy, Rep(N ′), unique parameter
count, model size and accuracy in Table 2. Our work outperforms APoT in weight-space entropy,
unique parameter count and weight representational cost by a large margin. Taking the ResNet-18
experiments as an example, the reduction to just 164 weights compared with APoT’s 9237
demonstrates the effectiveness of WFN. This is in part due to our full-network quantisation (APoT,
as aforementioned, does not quantise the first, last and batch-norm parameters), but even when
we discount these advantages and look at weight subsets ignoring the first, last and batch-norm
layers WFN uses many times fewer parameters and half the weight-space entropy. We provide a
further breakdown of these results in the Appendix (Table 4). Finally, let us examine how WFN
achieves the substantial reduction in weight-space entropy. In Figure 4 we see that not only do the
resultant WFN networks have very few unique weights, but the weight distribution is such that the
vast majority of all of the weights are a small handful of powers-of-two values (order 1) and the
other unique weights (outside of the top 4) are of low frequency and added only in the final fixing
iterations.

6 CONCLUSION

We have presented WFN, a compression pipeline that can successfully compress whole neural
networks. A single network codebook, focusing on reducing entropy of the weight-space coupled
with the number of unique weights in the network. The WFN process produces highly compressible
and potentially hardware-friendly representations of networks using just a few unique weights
without performance degradation. Although the results demonstrate strong compression ability,
few unique parameters, and low weight-space entropy, the true potential of the method is that it
will gives accelerator designers more scope for weight re-use, keeping most/all weights close to
computation, reducing the energy-hungry data movement costs.

4https://github.com/yhhhli/APoT Quantization
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A APPENDIX

A.1 THE WFN OVERVIEW ALGORITHM

Algorithm 1: Clustering Npt weights at the tth iteration.

1 while |W t+1
fix | ≤ Npt do

2 ω ← 0
3 fixednew ← [ ]
4 while fixednew is empty do
5 Increase the order ω ← ω + 1

6 List the cluster centres in C̃ω with smallest distances to each wi ∈W t+1
free

7 Set the cluster centre with the most weights assigned as cω∗ (i)
8 Sort the weights wi ∈W t+1

free by their distance to cω∗ (i)
9 do

10 Append to fixednew the wi ∈W t+1
free with next smallest distance

11 while The mean D+
rel(w ∈ fixednew, cω∗ (i)) ≤ δ

12 Fix the all the weights in fixednew to cluster centre cω∗ (i)

A.2 DETAILS OF THE POWERS-OF-TWO APPROXIMATION ALGORITHM

We map our proposal set CS to a ω-order approximation where each of the clusters ck ∈ CS are
written as ω powers-of-two (Eq 7). We do so using Algorithm 2. Figure 5 demonstrates how the
values of CS are rounded given different orders.

ck =

ω∑
j=1

rj , rj ∈ {−
1

2b
, . . . ,− 1

2j+1
,− 1

2j
, 0,

1

2j
,

1

2j+1
, . . .

1

2b
} (7)

Algorithm 2: Determining possible clusters

1 Input: The full precision proposal set: CS , allowable relative distance: δ, pow2 rounding
function: round(x) = sgn(x)2blog2(x)e

2 Output: An order ω precision cluster set: C̃ω

3 C̃ω ← [ ]

4 for ck ∈ CS do
5 c′k = round(ck)
6 for i = 0→ ω do
7 δck ← ck − c′k
8 if |δck | ≥ δck then
9 c′k ← c′k + round(δck)

10 end
11 end
12 C̃ω ← C̃ω ∪ {c′k}
13 end

A.3 REDUCING δ

To account for the observation that smaller relative distances are well tolerated in the early stages
but less so as the final weights are quantised (high t), δ linearly. For any given t ∈ T we use
δt = δ(T − t+ 1) as our threshold.
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Figure 5: Approximating clusters in CS with different orders

A.4 EXPERIMENT DETAILS

We give a full breakdown of the parameters used across all experiments ran in Table 3.

Model Data Opt LR T Epochs per T Batch size γ α
ResNet-18 ImageNet Adam 2e-4 10 3 128 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.2, 0.4}
ResNet-34 ImageNet Adam 2e-4 10 3 64 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.4}
ResNet-50 ImageNet Adam 2e-4 10 3 64 {0.05, 0.025, , 0.015, 0.01, 0.0075, 0.005} {0.4}
GoogLeNet ImageNet Adam 2e-4 10 3 64 {0.01, 0.0075, 0.015} {0.4}
ResNet-18 CIFAR-10 Adam 3e-4 10 {3, 5, 10} 512 {0.01, 0.02, 0.03, 0.04, 0.05} {0.0, 0.1, 0.2, 0.4, 0.8}
MobileNet CIFAR-10 Adam 2e-4 10 {3, 5, 10} 512 {0.01, 0.02, 0.03, 0.04, 0.05} {0.0, 0.1, 0.2, 0.4, 0.8}

Table 3: Full set of hyper-parameters explored for each model-dataset combination.

A.5 HYPER-PARAMETER EXPLORATION

We conducted a hyper-parameter search on both the ResNet-18 and MobileNet (Figures 6, 7). We
find similar results across models when selecting hyper-parameters, and additionally, we observe
that as we increase the regularisation term weighting, a weight-space entropy reduction. Further,
we found that negating this term altogether α = 0 has the surprising effect of increasing the
resultant entropy values and causes an accuracy performance drop, demonstrating the utility of the
regularisation term.

A.6 LAYERWISE BREAKDOWN

In Figure 8 we examine how the parameter count and layer-parameter entropy change with each
layer for both the WFN and APoT approaches. We find both gains over the unquantised layers of
APoT, but also that the entropy and parameter count in the convolutional layers (those quantised by
APoT) are similar.

A.7 A FULL METRIC COMPARISON

In Table 4 we give the full metric breakdown comparing WFN to the state-of-the-art APoT work.
We calculate the unique parameter count and entropy values for subsets of the weights. No BN
corresponds to all weights other than those in the batch-norm layers, and No BN-FL is the set of
weights not including the first-last and batch-norm layers. It’s clear here that WFN outperforms
APoT even when we discount the advantage gained of taking on the challenge of quantising all
layers.

A.8 PRUNING EXPERIMENTS

To explore how WFN interacts with pruning we conduct a simple set of experiments. Instead of
starting the WFN process with all weights un-fixed we randomly select p% of the weights to be
pruned in each layer. We then run WFN as before starting with pt = p, reducing the number
of T iterations. The results, shown in Figure 9, are conducted with a ResNet-18 and CIFAR-10
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Figure 6: Experiments exploring the hyper-parameter space with MobileNet model trained on the
CIFAR-10 dataset. Columns; Left: varying the regularisation ratio α, middle: varying the distance
change value δ, Right: whether we fix the batch-norm variables. Rows; top: top-1 accuracy test-set
CIFAR-10, Middle: total number of network weights, bottom: entropy of the weights.

Full Network No BN No BN-FL
Model Method Top-1 Entropy Param Count Entropy Param Count Entropy Param Count Model Size

ResNet-18 Baseline 68.9 23.3 10756029 23.3 10748288 23.3 10276369 46.8MB
APoT (3bit) 69.9 5.77 9237 5.76 1430 5.47 274 4.56MB

WFN (δ = 0.015) 67.3 2.72 90 2.71 81 2.5 81 3.5MB
WFN (δ = 0.01) 69.7 3.01 164 3.00 153 2.75 142 3.8MB

WFN (δ = 0.0075) 70.3 4.15 193 4.13 176 3.98 162 4.6MB
ResNet-34 Baseline 73.3 24.1 19014310 24.1 18999320 24.10 18551634 87.4MB

APoT (3bit) 73.4 6.77 16748 6.75 16474 6.62 389 8.23MB
WFN (δ = 0.015) 72.2 2.83 117 2.81 100 2.68 100 6.9MB
WFN (δ = 0.01) 72.6 3.48 164 3.47 132 3.35 130 7.9MB

WFN (δ = 0.0075) 73.0 3.87 233 3.85 191 3.74 187 8.5MB
ResNet-50 Baseline 76.1 24.2 19915744 24.2 19872598 24.20 18255490 97.5MB

WFN (δ = 0.015) 75.1 3.55 125 3.50 105 3.42 102 9.3MB
WFN (δ = 0.01) 75.4 4.00 199 3.97 169 3.88 163 10.0MB

WFN (δ = 0.0075) 76.0 4.11 261 4.09 223 4.00 217 10.2MB

Table 4: A full metric comparison of WFN Vs. APoT. We compare the unique parameter count and
entropy of all parameters in the full network, as well as the same measures but not including the
batch-norm layers (No BN) and the parameters not including the batch-norm and first and last layers
(No BN-FL).

combination, painting a mixed picture. On the one hand, WFN and pruning at lower levels (< 50%)
is well tolerated and provide two benefits, a lower weight-space entropy and fewer weight-fixing
iterations. On the other hand, full-precision networks can tolerate much higher ranges of pruning so
there it would seem that a certain amount of synergy between the two approaches is present but this
is tempered compared to full precision networks.

It’s important to note that WFN already has a form of pruning built-in with the δ0 value balancing
the emphasis on pruning over quantisation.

15



Under review as a conference paper at ICLR 2022

0.88

0.89

0.90

0.91

0.92

0.93

Ac
cu

ra
cy

ResNet18-Cifar10

50

100

150

200

250

|W
fix

|

0.0 0.1 0.2 0.4 0.8
0.475

0.500

0.525

0.550

0.575

0.600

0.625

H
(W

)

0.01 0.02 0.03 0.04 0.05 False True
Inc BN

Figure 7: Experiments exploring the hyper-parameter space with ResNet18 model trained on the
CIFAR-10 dataset. Columns; Left: varying the regularisation ratio α, Middle: varying the distance
change value δ, Right: whether we fix the batch-norm variables. Rows; Top: top-1 accuracy test-set
CIFAR-10, middle: total number of network weights, bottom: entropy of the weights.
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Figure 8: We compare WFN with a traditional quantisation set-up (APoT) with varying bit-widths
applied to a ResNet18 model trained on the ImageNet dataset. The top chart shows the layerwise
unique parameter count where WFN has consistently fewer unique parameters per layer.
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Figure 9: How does WFN and random pruning at initialisation interact?
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