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Abstract
We consider offline reinforcement learning (RL)
with preference feedback in which the implicit
reward is a linear function of an unknown pa-
rameter. Given an offline dataset, our objective
consists in ascertaining the optimal action for
each state, with the ultimate goal of minimiz-
ing the simple regret. We propose an algorithm,
RL with Locally Optimal Weights or RL-LOW,
which yields a simple regret of exp(−Ω(n/H))
where n is the number of data samples and H
denotes an instance-dependent hardness quantity
that depends explicitly on the suboptimality gap
of each action. Furthermore, we derive a first-
of-its-kind instance-dependent lower bound in of-
fline RL with preference feedback. Interestingly,
we observe that the lower and upper bounds on
the simple regret match order-wise in the expo-
nent, demonstrating order-wise optimality of RL-
LOW. In view of privacy considerations in prac-
tical applications, we also extend RL-LOW to
the setting of (ε, δ)-differential privacy and show,
somewhat surprisingly, that the hardness param-
eter H is unchanged in the asymptotic regime as
n tends to infinity; this underscores the inherent
efficiency of RL-LOW in terms of preserving the
privacy of the observed rewards. Given our focus
on establishing instance-dependent bounds, our
work stands in stark contrast to previous works
that focus on establishing worst-case regrets for
offline RL with preference feedback.

1. Introduction
Reinforcement Learning (RL) (Sutton and Barto, 2018) has
been widely recognized for its capacity to facilitate agents in
learning a sequence of optimal actions through iterative in-
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teractions with their environments. However, RL encounters
significant hurdles in environments that are characterized
by uncertainty or lacking explicit reward signals. To ad-
dress these shortcomings, the concept of RL with human
feedback (or RLHF) has emerged as a prominent paradigm.
Preference-based RL (PbRL) (Christiano et al., 2017; Chen
et al., 2022; Ibarz et al., 2018; Palan et al., 2019) has stood
out as one of the most widely used frameworks for RLHF. In
this regard, preference-based RL has achieved remarkable
performances in practical applications, with particular im-
portance lying in its ability to align large language models
(LLMs) with human intent, thereby mitigating the output
of toxic and dishonest information (Ouyang et al., 2022;
Ziegler et al., 2019; Glaese et al., 2022; Bai et al., 2022;
Liu et al., 2023), and improving the quality of applying to
the specific tasks (Stiennon et al., 2020; Wu et al., 2021;
Nakano et al., 2021).

In this work, we tackle the problem of offline RL with pref-
erence feedback, wherein the learning mechanism operates
solely on pre-existing (or offline) data without dynamically
engaging with the environment. Given the high cost as-
sociated with human interaction, offline RL has assumed
particular importance in the context of incorporating hu-
man feedback. The significance of this offline framework
has been justified by many previous prominent works (Shin
et al., 2023; Ouyang et al., 2022; Zhu et al., 2023; Kim et al.,
2023). For instance, within the learning process of Instruct-
GPT (Ouyang et al., 2022), a pivotal procedure involves
the training of a reward model utilizing pre-trained LLM
feature vectors, coupled with the utilization of pre-collected
human preference feedback as the training dataset. Con-
ceptually, this procedure can be construed as treating the
current prompt context as a state within a certain Markov
Decision Process (MDP), while the responses generated by
the LLM serve as actions within this process. Empirical
findings presented by Ouyang et al. (2022) demonstrate the
efficacy of this offline framework in effectively aligning
human intent with the outputs of LLMs.

However, the literature concerning theoretical analyses
within the domain of offline PbRL remains rather scant.
Previous theoretical analyses (Zhu et al., 2023; Zhan et al.,
2024) of offline PbRL predominantly focused on the worst-
case (or minimax) regret, often resulting in the derivation
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of regret upper bounds for their algorithms of the form
Õ(n−1/2), where n is the size of the offline dataset. In
this work, we adopt a different approach that is centered
on instance-dependent guarantees. In other words, we wish
to derive performance guarantees that are functions of the
specific problem instance, thus elucidating the role of fun-
damental hardness parameters. This yields complementary
insights to the existing worst-case analyses. To this end, we
design and analyze RL-LOW, a preference-based RL algo-
rithm. Our analysis of the performance RL-LOW unveils an
instance-dependent simple regret bound of exp(−Ω(n/H)),
where H is a hardness parameter. This reveals that the sim-
ple regret decays exponentially fast in the size of the dataset
n and the exponential rate of convergence has also been iden-
tified. Complementarily, by proving an instance-dependent
lower bound, we show that any algorithm will suffer from
a simple regret of at least exp(−O(n/H)). Thus, the de-
pendence of the problem on H is fundamental and cannot
be improved upon, thereby demonstrating the efficacy of
RL-LOW and the tightness of our analyses.

1.1. Related works

Preference-based RL: From the empirical viewpoint,
Christiano et al. (2017) initially demonstrated that RL sys-
tems can effectively address complex tasks like Atari games
and simulated robot locomotion by learning from human
preferences between trajectory segments. Later, numerous
researchers started to employ human preference feedback to
enhance the performance of LLMs, e.g., aligning the LLMs’
behavior with human intent (Ouyang et al., 2022; Ziegler
et al., 2019; Glaese et al., 2022; Bai et al., 2022; Liu et al.,
2023), and enhancing the efficacy of application to specific
tasks (Stiennon et al., 2020; Wu et al., 2021; Nakano et al.,
2021).

From the theoretical perspective, the existing literature re-
mains sparse in offline RL with preference feedback. Zhu
et al. (2023) elucidated the failure of the maximum likeli-
hood estimation (MLE) procedure in some scenarios. Moti-
vated by this, they theoretically prove the (near) minimax
optimality of the PESSIMISTIC MLE approach with a high
probability guarantee. In addition, Zhan et al. (2024) intro-
duced a novel paradigm for general reward functions, and
they introduce ε-bracket approximations for reward models,
accompanied by a rigorous theoretical analysis delineating
sample complexity in terms of approximation error ε and
the high-probability parameter δ.

We observe that the above theoretical investigations, while
invaluable, are not instance-dependent. Typically, the above
minimax or worst-case guarantees yield upper bounds in
the form of Õ(n−1/2) and do not depend on any problem-
specific factors (such as suboptimality gaps). Our research
stands out as a pioneering attempt in offering an instance-

dependent examination for offline RL with preference feed-
back, thereby bridging a critical gap in the existing literature.

Label-Differential Privacy: In our study, we also consider
the notion of label privacy, acknowledging that the labels
in our offline dataset originate from users, thus highlighting
the imperative to protect user privacy. Chaudhuri and Hsu
(2011) were among the pioneers in exploring the concept
of label privacy within the context of supervised learning
for binary classification. Their foundational work posits
that the sensitive information primarily resides in the labels,
while considering the unlabeled attributes as non-sensitive.
Later, the concept of label privacy has been investigated
across various machine learning paradigms, including but
not limited to PAC learning (Beimel et al., 2013) and deep
learning frameworks (Ghazi et al., 2021). This broadened
examination underscores the significance and relevance of
label privacy considerations across diverse areas of machine
learning research and applications.

More recently, Chowdhury et al. (2024) investigated the
use of label differential privacy to protect the privacy of
human labelers in the process of estimating rewards from
preference-based feedback. Chowdhury et al. (2024) derive
an upper bound for their proposed algorithm on the estima-
tion error. They show that it also decays as O(n−1/2) and
the implied constant here depends on (ε, δ), the parameters
that define differential privacy. This bound only applies in
the scenario of estimating the reward value and is not appli-
cable if we want to understand how it depends on the simple
regret of a specific instance. In our work, we consider the
effect of (ε, δ)-DP on the simple regret.

1.2. Our contributions

We summarize our main contributions as follows:

1. We establish the first-of-its-kind instance-dependent
lower bound characterized by suboptimality gaps for a given
problem instance. Our analysis reveals that this lower bound
takes the form exp(−O(n/H)), where H is a hardness pa-
rameter that is an explicit function of the suboptimality gaps.
This finding furnishes a novel, and possibly generalizable,
analytical approach for assessing algorithmic performance
within the realm of preference-based RL.

2. We design a simple algorithm RL-LOW based on the
novel concept of locally optimal weights. Our analysis
demonstrates that its expected simple regret matches the
aforementioned instance-dependent lower bound (in the ex-
ponential decay rate of the simple regret), thus revealing our
algorithm’s achievement of instance-dependent optimality.

3. We adapt RL-LOW to the (ε, δ)-differential privacy
paradigm by combining the Gaussian mechanism with
the aforementioned locally optimal weights. Our analy-
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sis demonstrates that, for large datasets, this combination
enables our algorithm to achieve differential privacy without
weakening the bound on the simple regret, underscoring the
superiority of the design and analysis of RL-LOW.

4. As a by-product of our analyses, we show that RL-LOW
achieves a worst-case bound of the form O(n−1/2). If we
translate the high-probability upper bound in Zhu et al. (Zhu
et al., 2023) to the same worst-case setting, we obtain a
bound of the form O(

√
n−1 log n). Thus, our work pro-

vides a noticeable (albeit small) improvement over the state-
of-the-art theoretical result in (Zhu et al., 2023).

2. Preliminaries and Problem Setup
Let S = {1, . . . , S} denote the state space, and A =
{1, . . . , A} denote the action set. We assume that there is
an unknown non-degenerate distribution ρ = (ρ1, . . . , ρS)
over the states, i.e., ρk > 0 for all k ∈ S. The i-th action
of state k is associated with the feature vector ϕ(k, i) ∈ Rd,
and its associated (unknown) reward is

rk,i = ⟨ϕ(k, i), θ⟩, (1)

where θ ∈ Rd is an unknown parameter vector. The
collection of all feature vectors is denoted as ϕ =
{ϕ(k, i)}k∈S,i∈A. For all k ∈ S, we denote the subop-
timaliy gap of action i ∈ A as ∆k,i = maxj∈A rk,j − rk,i.
Let (a(0), a(1)) ∈ A2 be a pair of comparisons and let s ∈ S
be a state. Then, we define a stochastic label σ, following
the Bradley–Terry–Luce (BTL) model as

P
(
σ = 1 | a(0), a(1), s

)
=

exp
(
rs,a(1)

)
exp

(
rs,a(0)

)
+ exp

(
rs,a(1)

) .
(2)

Given this model, we assume throughout that we have
access to an offline dataset, which we denote as D =

{(si, a(0)i , a
(1)
i , σi)}ni=1. Note that this dataset consists of

n tupies of states, pairs of actions for comparison, and
stochastic labels. Without loss of generality, we assume
that the comparisons are arranged such that a(0)i < a

(1)
i

for all i = 1, . . . , n, and a
(0)
i < a

(0)
j (or a

(1)
i ≤ a

(1)
j if

a
(0)
i = a

(0)
j ) for all i < j. For simplicity, we assume that

the feature vectors satisfy ϕ(k, i) ̸= ϕ(k, j) for all states
k ∈ S and all actions i ̸= j. In addition, we assume that
for each state k, the best action i∗k = argmaxj∈A rk,j is
unique. Broadly speaking, our objective is to use the offline
dataset D to estimate the best action i∗k for each state k ∈ S .
Following Zhu et al. (2023), we aim to design a (possibly
randomised) policy π that uses the dataset D to output a
set of actions {̂ik}k∈S that minimizes the simple regret1

1The term “simple regret” is referred to as “performance gap”
in some existing works (e.g., Zhu et al. (2023)).

(averaged over all S states), defined as

Rn =
∑
k∈S

ρk
(
rk,i∗k − rk,̂ik

)
. (3)

Let N ∈ RS×A×A be a tensor that collects the propor-
tions of each comparison in the dataset D. In particular,
Nk,i,j := 1

n

∑n
ι=1 1{sι = k, a

(1)
ι = i, a

(2)
ι = j} is the

proportion of the number of times actions i and j have been
compared under state k. A problem instance, denoted as v,
is completely characterised by the tuple (ρ,S,A, ϕ,N, θ).
In the following, we index instance-specific parameters with
the instance v to indicate their dependence on v; this will
be omitted when the instance is clear from the context. In
addition, we write Pπv (resp. Eπv ) to denote the probability
measure (reps. the expectation) induced under policy π and
under the instance v. Other assumptions are as follows.

Assumption 2.1. (Bounded reward) There exists a finite
and known constant L such that for any k ∈ S and i ∈ A, it
holds that |⟨ϕ(k, i), θ⟩| ≤ L.

In previous works (Zhu et al., 2023), the authors assume
that the norms of the feature vectors ϕ(k, i) and parameter
vector θ are separately bounded. This clearly implies that
Assumption 2.1 is satisfied, but Assumption 2.1 is weaker
as it is a bound on the rewards.

Definition 2.2. (Consistent instance) A problem instance
v = (ρ,S,A, ϕ,N, θ) is consistent if for all (k, i, j) ∈
S ×A2, it holds that ϕ(k, i)− ϕ(k, j) ∈ Span{ϕ(k′, i′)−
ϕ(k′, j′) : (k′, i′, j′) ∈ S ×A2 and Nk′,i′,j′ > 0}.

We say an instance v is inconsistent if it is not consistent.
In the following, we will be only concerned with those in-
stances that are consistent as the following result shows that
it is impossible to design a policy that achieves vanishing
simple regret for inconsistent instances.

Proposition 2.3. (Impossibility result) For any inconsistent
instance v = (ρ,S,A, ϕ,N, θ), there exists an instance
v′ = (ρ,S,A, ϕ,N, θ′) such that for all policies π

lim inf
n→∞

{
Eπv [Rn] + Eπv′ [Rn]

}
> 0. (4)

3. The Proposed Algorithm: RL-LOW

In this section, we describe our computationally and sta-
tistically efficient algorithm for offline RL with preference
feedback based on the novel idea of locally optimal weights
for estimating the relative reward of each pair of actions.
This algorithm, called RL-LOW, is simple and is presented
formally in Algorithm 1. Before we describe its components,
we introduce some notations.

First, we denote Bk,i,j as the empirical success rate with the
comparison of actions i and j, i.e., for k ∈ S and i, j ∈ A
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Algorithm 1 Reinforcement Learning with Locally Optimal
Weights (RL-LOW)

Input: Dataset D = {(si, a(1)i , a
(2)
i , σi)}ni=1 and feature

maps ϕ = {ϕ(k, i)}k∈S,i∈A .
Output: The estimated best action îk ∈ A of each state

k ∈ S.
1: Compute the sample proportions Nk,i,j ←

1
n

∑n
ι=1 1{sι = k, a

(1)
ι = i, a

(2)
ι = j}.

2: For k ∈ S and i, j ∈ A such that Nk,i,j > 0, com-
pute the success rate of each pair of comparisons using
Eqn. (5).

3: Clip the success rate using the knowledge of L and
using Eqn. (6).

4: For each state k ∈ S and distinct actions i, j ∈ A
with i < j, compute the locally optimal weights
(w

(k,i,j)
k′,i′,j′)k′∈S,i′,j′∈A using Eqn. (7).

5: Compute the empirical relative reward r̂k,i,j for each
k ∈ S, i, j ∈ A using Eqn. (8).

6: return For each k ∈ S, let îk ∈ {i ∈ A : r̂k,i,j ≥
0,∀j ̸= i}; resolve ties uniformly.

with Nk,i,j > 0,

Bk,i,j :=
1

nNk,i,j

n∑
ι=1

σι1{sι = k, a(1)ι = i, a(2)ι = j},

(5)
and Bk,j,i := 1−Bk,i,j . If Nk,i,j = Nk,j,i = 0, we define
Bk,i,j = Bk,j,i = 0. Subsequently, certain empirical suc-
cess rates may exhibit magnitudes that are either excessively
large or small. We clip them by means of the following
operation: BCLP

k,i,j = CLIPL(Bk,i,j), where

CLIPL(a) =


exp(2L)

1+exp(2L) a > exp(2L)
1+exp(2L)

1
1+exp(2L) a < 1

1+exp(2L)

a otherwise
. (6)

In accordance with Assumption 2.1, the implicit rewards
are bounded by L. Consequently, within our BTL model
framework, the success rate of each comparison necessarily
falls within the interval

[
1

1+exp(2L) ,
exp(2L)

1+exp(2L)

]
. We exploit

this in (6) to ensure that the implementation of our clip
operation is consistent with the model’s dynamics. We are
now ready to introduce the notion of locally optimal weights,
which plays a central role in the estimation of the rewards.

Definition 3.1. (Locally Optimal Weight) For an con-
sistent instance v, let Uk,i,j = {u ∈ RS×A×A :
ϕ(k, i) − ϕ(k, j) =

∑
k′∈S,i′,j′∈A uk′,i′,j′(ϕ(k

′, i′) −
ϕ(k′, j′)) and uk′,i′,j′ = 0 if Nk′,i′,j′ = 0}. We say that
w(k,i,j) = (w

(k,i,j)
k′,i′,j′)k′∈S,i′,j′∈A is a set of locally optimal

weights for (k, i, j) ∈ S ×A2 with i ̸= j if

w(k,i,j) ∈ argmin
u∈Uk,i,j

{ ∑
k′∈S,i′,j′∈A:Nk′,i′,j′>0

(uk′,i′,j′)
2

Nk′,i′,j′

}
.

(7)

The weights in Eqn. (7) are described as “locally optimal”
because they are customized to each (k, i, j) tuple. Hence,
w(k,i,j) is local to (k, i, j). This is a novelty in the design
of our algorithm.

By the definition of the consistency of an instance (cf. Def-
inition 2.2), there exists a subset β ⊂ S × A2 such that
ϕ(k, i)−ϕ(k, j) ∈ Span{ϕ(k′, i′)−ϕ(k′, j′) : (k′, i′, j′) ∈
β}. Hence, there exists a locally optimal weight for every
pair of actions given a consistent instance. In addition,
w(k,i,j) can be calculated efficiently by its analytic form
(see details in Appendix C).

Equipped with the definition of locally-optimal weights, we
now provide an estimate of the relative reward for state
k ∈ S and pair of action (i, j) ∈ A2 with i ̸= j as follows:

r̂k,i,j =
∑

k′∈S,i′∈A,j′∈A

w
(k,i,j)
k′,i′,j′ log

( BCLP
k′,i′,j′

1−BCLP
k′,i′,j′

)
. (8)

The term (uk′,i′,j′ )
2

Nk′,i′,j′
in Eqn. (7) is a proxy for the variance

introduced by the pair of actions (i′, j′) in state k′ when
associated with the coefficient uk′,i′,j′ in the linear combina-
tion of the definition of Uk,i,j . Our objective is to minimize
the cumulative variance proxy for (k, i, j), thus enhanc-
ing the precision of the estimate of the relative reward for
(k, i, j) for the purposes of establishing the tightest possible
concentration result for subGaussian random variables (see
Appendix E).

Finally, for any k ∈ S, let îk ∈ Îk := {i ∈ A : r̂k,i,j ≥
0,∀ j ̸= i} be any estimate of the best action under state k.
It is natural to wonder whether îk exists, i.e., whether the
set Îk is empty. The following proposition answers this in
the affirmative.

Proposition 3.2. For any consistent instance v and using
estimate of the best action under each state k as prescribed
by RL-LOW, we have |Îk| ≥ 1, i.e., îk exists.

3.1. Upper Bound of RL-LOW

In this section, we provide an instance-dependent upper
bound of the simple regret for Rl-LOW. In addition, we also
provide a worst-case upper bound as a by-product. First, we
define an instance-dependent hardness parameter H(v). Let

H(v) := max
k∈S,i∈A:i ̸=i∗k

γk,i
∆2
k,i

, (9)
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where

γk,i :=
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

(w
(k,i,i∗k)
k′,i′,j′ )

2

Nk′,i′,j′
.

The parameter γk,i exhibits a positive correlation with the
variance proxy of the relative empirical reward r̂k,i,i∗k . Con-
sequently, the ratio γk,i

∆2
k,i

in the definition of H(v) serves as
a quantitative measure of the difficulty that the empirical
reward of a suboptimal action i surpasses that of i∗k in state
k.

Theorem 3.3. (Instance-Dependent Upper Bound) For
any consistent instance v, under RL-LOW, we have for all
sufficiently large n,

ERL-LOW
v [Rn] ≤ exp

(
− n

Cup ·H(v)

)
, (10)

where Cup is a universal constant.2

From Theorem 3.3, it is evident that the upper bound de-
cays exponentially fast and the exponent is a function of
an instance-dependent hardness term H(v). This is the
first instance-dependent analysis in offline reinforcement
learning with preference feedback.

It is natural to wonder why we do not devise an instance-
dependent analysis of or modification to PESSIMISTIC MLE
which was developed by Zhu et al. (2023). Note that PES-
SIMISTIC MLE is designed to perform well with high prob-
ability and not necessarily in expectation. In particular, the
regret bound of PESSIMISTIC MLE holds with probabil-
ity at least 1 − δ. Hence, to ensure the regret is less than
exp(−Ω(n/H(v))), one should set the failure probability δ
to be exp(−Θ(n/H(v))), which is not possible as H(v) is
unknown to the algorithm (since θ is also unknown).

We further provide a worst-case upper bound for RL-LOW
as follows.

Proposition 3.4. (Worst-Case Upper Bound) For any con-
sistent instance v and for all n ≥ 1,

ERL-LOW
v [Rn]≤

∑
k,i:i ̸=i∗k

ρk(
√
γk,i+γ̃k,i)

Cwup
√
n

(11)

where

γ̃k,i=
∑

k′,i′,j′:Nk′,i′,j′>0

|w(k,i,i∗k)
k′,i′,j′ |√
Nk′,i′,j′

(12)

and Cwup > 0 is a universal constant.

2In this paper, our universal constants depend on L, which is
known and fixed throughout.

We note that in Zhu et al. (2023), the high probability up-
per bound is of the form O

(√
n−1 log(1/δ)

)
. Hence, if

we desire a bound in expectation, we obtain, through the
law of total probability, a bound of the form E[Rn] =
O
(√

n−1 log(1/δ) + δ
)
. Minimizing this bound over δ

yields E[Rn] = O
(√

n−1 log n
)
, which is slightly inferior

to our upper bound O(n−1/2).

4. Instance-Dependent Lower Bound
In this section, we derive the first-of-its-kind instance-
dependent lower bound on offline RL with preference feed-
back. Before we present our bound, we present some aux-
iliary lemmas that are potentially instrumental in deriving
lower bounds on other preference-based RL problems.

Given any instance v, we let P (n)
v denote the joint distribu-

tion of the associated labels {σi}ni=1. The following lemma
provides an estimate of the Kullback–Leibler (KL) diver-
gence between instances v and v′ that share the same param-
eters except for the latent vector θ that defines the reward
in (1).

Lemma 4.1. For any instance v = (ρ,S,A, ϕ,N, θ) and
v′ = (ρ,S,A, ϕ,N, θ′), it holds that

2n exp(−4Rmax) ≤
DKL(P

(n)
v ∥P (n)

v′ )

D̃(v, v′)
≤ 2n exp(2Rmax)

(13)

where

D̃(v, v′) =
∑

k∈S,i,j∈A

Nk,i,j(⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩)2,

(14)

and Rmax = maxk∈S,i∈A max{|⟨ϕ(k, i), θ⟩|, |⟨ϕ(k, i), θ′⟩|}
is the maximum absolute reward in these two instances.

This lemma demonstrates that when the rewards are
bounded, the weighted sum of squared differences of the
relative rewards can be used to approximate the KL di-
vergence between the distributions of two instances. The
approximation is precisely D̃(v, v′) defined in (14). Fur-
thermore, for any z ∈ Rd, η ∈ R and consistent in-
stance v = (ρ,S,A, ϕ,N, θ), we let Alt(v, z, η) be the
set of instances that share the same instance parameters
except for θ and satisfies ⟨z, θ′ − θ⟩ = η for all v′ =
(ρ,S,A, ϕ,N, θ′) ∈ Alt(v, z, η). The following lemma
states a useful property that relates the Alt set to the “ap-
proximate KL divergence” D̃.

Lemma 4.2. Let G be an arbitrary orthonormal ba-
sis of Span{ϕ(k′, i′) − ϕ(k′, j′) : (k′, i′, j′) ∈ S ×
A2 and Nk′,i′,j′ > 0}. Also let [w]G denote the column
vector that represents w under basis G (Meyer, 2000, Chap-
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ter 4). Define the matrix

V :=
∑

k∈S,i,j∈A

Nk,i,j [ϕ(k, i)−ϕ(k, j)]G [ϕ(k, i)−ϕ(k, j)]⊤G .

(15)
Then for any consistent instance v = (ρ,S,A, ϕ,N, θ),
η ∈ R, and z ∈ Span{ϕ(k′, i′) − ϕ(k′, j′) : (k′, i′, j′) ∈
S ×A2 and Nk′,i′,j′ > 0},

min
v′∈Alt(v,z,η)

D̃(v, v′) =
η2

∥[z]G∥2V −1

. (16)

Lemma 4.2 provides an estimate of the KL divergence be-
tween instance v and v′ ∈ Alt(v, z, η). This, in turn, pro-
vides a convenient means to apply the ubiquitous change of
measure technique to derive the lower bound.

In addition, let (̄i, k̄) be the state-action pair that attains
maximum in the definition of hardness in Eqn. (9). Define
the subset of instances

Q =

{
v consistent :

γk̄,̄i
∆2
k̄,̄i

≥ 4
γk,i
∆2
k,i

∀ (k, i) ̸= (k̄, ī) and i ̸= i∗k

}
. (17)

We are now ready to state our lower bound.

Theorem 4.3. (Instance-Dependent Lower Bound) For any
instance v = (ρ,S,A, ϕ,N, θ) ∈ Q, there exists another
instance v′ = (ρ,S,A, ϕ,N, θ′) with H(v) ≤ H(v′) ≤
8H(v) such that for all sufficiently large n,

inf
π

{
Eπv [Rn] + Eπv′ [Rn]

}
≥ exp

(
− n

Clo ·H(v)

)
,

where Clo > 0 is a universal constant.

The alternative instance v′ that appears in Theorem 4.3
is judiciously chosen to be v′ ∈ Alt(v, ϕ(k̄(v), ī(v)) −
ϕ(k̄(v), i∗

k̄
(v)), 2∆k̄(v),̄i(v)(v)). In particular, it is designed

so that the optimal action i∗
k̄

under state k of instance v will
become suboptimal under instance v′, and its suboptimality
gap is at least ∆k̄(v),̄i(v)(v) under v′.

Theorem 4.3 is an instance-dependent lower bound for all
instances in the set Q. The condition that defines Q in
Eqn. (17) ensures that the hardness quantities H(v) and
H(v′) have the same order. Since instances in Q cover
all possible hardness values H(v) (i.e., for every hardness
values h > 0, there exists an instance in Q of hardness h),
we conclude that for any consistent instance v and (small)
ϵ ∈ (0, 1), there does not exist any policy π that achieves

Eπv [Rn] = exp

(
− Ω

( n

H(v)1−ϵ

))
. (18)

In this sense, the exponential decay rate of the simple regret
of RL-LOW presented in Theorem 3.3 is asymptotically
tight (or optimal) and the exponential dependence on the
hardness parameter H(v) is necessary, fundamental, and
cannot be improved upon.

5. Extension to (ε, δ)-Differential Privacy (DP)
In this section, we extend our algorithm RL-LOW to
be amenable to (ε, δ)-differential privacy. To formalize
our results, we provide the definition of (ε, δ)-DP, follow-
ing Dwork et al. (2014). We say that two sets of preference
labels, σ := {σi}ni=1 and σ′ := {σ′

i}ni=1 are neighboring if
there exists s ∈ [n] such that σs ̸= σ′

s and σj = σ′
j for all

j ̸= s.
Definition 5.1. (Differential Privacy) Fix any label-free
dataset {(si, a(1)i , a

(2)
i )}ni=1. A (randomized) policy M :

{0, 1}n → AS (that takes as inputs a set of labels and
outputs a set of actions, one for each state) satisfies (ε, δ)-
DP if for all neighboring labels σ := {σi}ni=1 and σ′ :=
{σ′

i}ni=1,

P(M(σ) ∈ Z) ≤ eε P(M(σ′) ∈ Z) + δ ∀Z ⊂ AS .
(19)

Note that Definition 5.1 primarily concerns protecting the
privacy of users’ labels. In particular, the DP mechanism
guarantees that any alteration in a user’s label must not
substantially affect the output of our algorithm. Other-
wise, there exists a risk that a user’s label might be inferred
through the algorithm’s output. Our definition of differential
privacy (DP) aligns with that of (Chowdhury et al., 2024).

We now adapt our RL-LOW to (ε, δ)-DP by using the
Gaussian mechanism (Dwork et al., 2014). Firstly, we intro-
duce the private version of the empirical success rate (analo-
gous to Bk,i,j in (5)) which we denote as ∀ k ∈ S, (i, j) ∈
A2 with Nk,i,j > 0,

B̃k,i,j :=
1

nNk,i,j

n∑
ι=1

σι1{sι=k, a(1)ι = i, a(2)ι =j}+ξ̃k,i,j

where ξ̃k,i,j is an independent (across k, i, and j) Gaussian
noise with zero mean and variance 2 log(1.25/δ)

(εnNk,i,j)2
, and we let

B̃k,j,i := 1 − B̃k,i,j . If Nk,i,j = Nk,j,i = 0, we define
B̃k,i,j = B̃k,j,i = 0. Again, analogously to the operation
in (6), we clip B̃k,i,j to form

B̃CLP
k,i,j = CLIPL(B̃k,i,j) (20)

Similarly to Eqn. (8), the perturbed estimated relative re-
wards are given as follows

r̃k,i,j =
∑

k′∈S,(i′,j′)∈A2

w
(k,i,j)
k′,i′,j′ log

( B̃CLP
k′,i′,j′

1− B̃CLP
k′,i′,j′

)
, (21)
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Figure 1: Comparison of RL-LOW and DP-RL-LOW to PESSIMISTIC MLE (Zhu et al., 2023) on average simple regret
and standard deviation (shaded area). In the left figure, we set δ = 0.2 and ε = 2.0 for DP-RL-LOW. In the right figure,
we set n = 300 for all policies, and ε does not apply to RL-LOW.

where w(k,i,j) is defined in Definition 3.1. Finally, the
empirical best action is îk ∈ Ĩk := {i ∈ A : r̃k,i,j ≥
0,∀ j ̸= i}. A similar argument as Proposition 3.2 shows
that îk exists; see details in Appendix C for the details. The
algorithm described above is a differentialy private version
of the RL-LOW policy and hence, it is named DP-RL-
LOW.

DP-RL-LOW with the carefully chosen variance of ξk,i,j
fulfils the requirement of (ε, δ)-DP.

Proposition 5.2. Given privacy parameters ε, δ > 0, DP-
RL-LOW satisfies (ε, δ)-DP.

The proof of Proposition 5.2 follows exactly along the lines
of the proof of Dwork et al. (2014, Theorem A.1) and is
omitted. We next upper bound the expected simple regret of
DP-RL-LOW.

Theorem 5.3. (Instance-Dependent Upper Bound for DP-
RL-LOW) Given any consistent instance v, for all suffi-
ciently large n,

EDP-RL-LOW
v [Rn]

≤ exp

(
− CDP ·

( n

H(v)
∧
( n

H
(ε,δ)
DP (v)

)2))
,

where CDP > 0 is a universal constant, and

H
(ε,δ)
DP (v)= max

k∈S,i∈A:i ̸=i∗k

√
log( 1.25δ )γDP

k,i
√
ε∆k,i

(22)

and

γDP
k,i =

∑
k′,i′,j′∈A:Nk′,i′,j′>0

(
w

(k,i,i∗k)
k′,i′,j′

Nk′,i′,j′

)2

.

Consequently,

lim sup
n→∞

1

n
logEDP-RL-LOW

v [Rn] ≤ −
CDP

H(v)
. (23)

The limiting statement in (23) implies that DP-RL-LOW
has the same order of the exponential decay rate as its non-
differentially privacy counterpart RL-LOW when n is suffi-
ciently large; in particular, n > (H

(ε,δ)
DP (v))2/H(v) suffices

to nullify the effect of the privacy requirement. In other
words, in the sense of the exponent, privacy comes “for free”
for sufficiently large offline datasets.

6. Numerical Simulations
In this section, we present some numerical simulations
of our algorithm RL-LOW and and its differentially pri-
vate counterpart DP-RL-LOW. We compare them to the
state-of-the-art (non-private algorithm) PESSIMISTIC MLE
developed by Zhu et al. (2023). We conduct the experi-
ments on a synthetic dataset. Specifically, we set the num-
ber of states S = 2, the number of actions A = 10, the
dimensionality of the data d = 5, the unknown param-
eter vector θ = [1, 1, 1, 1, 1]⊤, and the state distribution
ρ = [0.4, 0.6]. The feature vector of each action is gener-
ated as follows: For the i-th action of state k ∈ {1, 2}, we
first uniformly generate a d-dimentional vector ϕ′(k, i) with
all non-negative elements and ∥ϕ′(k, i)∥1 = 1. Then, for
each state k ∈ {1, 2}, we set the feature vector of i-th action
as ϕ(k, i) = ϕ′(k, i)− 0.01(i− 1)θ. That is, in both state 1
and 2, the best action is the first action, and the suboptimal-
ity gap of the i-th action is 0.05i. In addition, for both states
k ∈ {1, 2} and i < j, we set Nk,i,j = 1

A(A−1) , i.e., the
proportions of comparisons for this instance are uniform. In

7
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the simulation, we use ⌈Nk,i,jn⌉ as the number of samples
involved in the comparison between actions i and j under
state k.

As for the hyperparameters of PESSIMISTIC MLE, we fol-
low the default setting of Zhu et al. (2023, Section 3). In
addition, PESSIMISTIC MLE only works under the assump-
tion that ⟨1, θ⟩ = 0 (Zhu et al., 2023, Assumption 2.1).
Therefore, when running the experiments of PESSIMISTIC
MLE, we further set d = 6, θ = [1, 1, 1, 1, 1,−5] and the
6-th element of each feature vector is set to 0. Then, this
new instance is mathematically equivalent to the original
instance and additionally satisfies (Zhu et al., 2023, Assump-
tion 2.1) which is needed for PESSIMISTIC MLE.

The simulation results are shown in Figure 1. We run each
experiment 200 times, and report the average and standard
deviation. From Figure 1 (left), we observe that RL-LOW is
inferior to PESSIMISTIC MLE for small n. However, since
RL-LOW is instance-dependent optimal in the exponential
decay rate and in its dependence on the hardness parameter
H(v), the experimental findings depicted in Figure 1 (left)
corroborate the empirical superiority of our proposed RL-
LOW algorithm over PESSIMISTIC MLE for n sufficiently
large (n > 150 suffices). This observation underscores the
efficacy of our novel algorithmic design based on locally
optimal weights. Furthermore, from Figure 1 (left), we also
observe that as the sample size n increases, the performance
of DP-RL-LOW converges to that of RL-LOW, consistent
with our theoretical findings in Theorem 5.3.

Lastly, as shown in Figure 1 (right), it is evident that achiev-
ing comparable performance between RL-LOW and DP-
RL-LOW may necessitate substantially larger sample sizes
n when considering small privacy parameters of ε and δ.
This observation is again consistent with our theoretical
findings in Theorem 5.3.

7. Concluding Remarks
This paper addresses the problem of offline RL with prefer-
ence feedback, aiming to determine the optimal action for
each state to minimize the simple regret. We introduced a
novel algorithm, RL-LOW, which achieves a simple regret
of exp(−Ω(n/H(v)), where n represents the number of
data samples and H(v) characterizes an instance-dependent
hardness parameter related to the suboptimality gaps of
each action. Additionally, we established a first-of-its-kind
instance-dependent lower bound for offline RL with pref-
erence feedback, demonstrating the order-wise optimality
of RL-LOW (in the exponential decay rate) through the
matching of lower and upper bounds on the simple regret.
To address privacy concerns, we extended RL-LOW to
be amenable to (ε, δ)-differential privacy, revealing that
the hardness parameter H(v) remains unchanged in the

asymptotic regime as n tends to infinity. This underscores
RL-LOW’s effectiveness and robustness in preserving the
privacy of observed rewards. Our focus on establishing
instance-dependent bounds sets this work apart from pre-
vious research that focuses primarily on worst-case regret
analyses in offline RL with preference feedback.

Some interesting directions for future research include
extending our work to incorporate general reward func-
tions (Zhan et al., 2024). In particular, a natural question
concerns whether or not there exist an algorithm that is
instance-dependent and order-optimal for general reward
functions?
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Supplementary Material for
“Order-Optimal Instance-Dependent Bounds for Offline Reinforcement Learning

with Preference Feedback”

A. Useful facts
In this section, we collate some useful facts that will be used in the subsequent proofs.

Definition A.1 (SubGaussian norm). A random variable X is subGassian if it has a finite subGaussian norm denoted as
∥X∥ψ2 and defined as

∥X∥ψ2 = inf

{
c > 0 : E

[
exp

(
X2

c2

)]
≤ 2

}
< +∞.

Definition A.2 (Variance proxy). The variance proxy of a subGaussian random variable X is denoted as ∥X∥2vp and defined
as

∥X∥2vp := inf
{
s2 > 0 : E [exp((X − E[X])t)] ≤ e

s2t2

2 , ∀ t > 0
}
.

Lemma A.3 (Linear combination of subGaussian random variables). Let X1, . . . , Xn be independent subGaussian random
variables, where the variance proxy of Xi is σ2

i . Then, for any a1, . . . , an ∈ R, the random variable
∑n
i=1 aiXi is a

subGaussian random variable with variance proxy σ2 =
∑n
i=1 a

2
iσ

2
i .

Lemma A.4. (Tail bound of subGassian random variables) Suppose X is subGaussian with variance proxy σ2. Then, for
any ϵ > 0, we have

Pr(X − E[X] ≥ ϵ) ≤ exp
(
−ϵ2/

(
2σ2
))

,

and
Pr(X − E[X] ≤ −ϵ) ≤ exp

(
−ϵ2/

(
2σ2
))

,

Lemma A.5. (Adapted from Vershynin (2018, Proposition 2.5.2)) For any subGaussian random variable X ,

∥X∥vp ≤ C∥X∥ψ2 ,

where C ≤ 6
√
2e · (3

√
log 2 + 1). If E[X] = 0, then we have

∥X∥ψ2 ≤
√
6∥X∥vp.

B. Proof of Proposition 2.3
Lemma B.1. For any inconsistent instance v = (ρ,S,A, ϕ,N, θ), there exists (k, i) ∈ S ×A with i ̸= i∗k such that

ϕ(k, i)− ϕ(k, i∗k) /∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk′,i′,j′ > 0, (k′, i′, j′) ∈ S ×A2}.

Proof. We prove this result by contradiction. Fix any inconsistent instance v = (ρ,S,A, ϕ,N, θ). Assume that for all
(k, i) ∈ S ×A with i ̸= i∗k, it holds

ϕ(k, i)− ϕ(k, i∗k) ∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk,i,j > 0, (k′, i′, j′) ∈ S ×A2}. (24)

By the fact that ϕ(k, i)− ϕ(k, j) = (ϕ(k, i)− ϕ(k, i∗k))− (ϕ(k, j)− ϕ(k, i∗k))), Eqn. (24) implies that for any (k, i, j) ∈
S ×A×A with i ̸= j, it holds

ϕ(k, i)− ϕ(k, j) ∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk,i,j > 0, (k′, i′, j′) ∈ S ×A2}, (25)

which is a contradiction to that v is inconsistent. This completes the proof of Lemma B.1.

Proof of Proposition 2.3. Fix any inconsistent instance v = (ρ,S,A, ϕ,N, θ). By Lemma B.1, there exists (k, i) ∈ S ×A
with i ̸= i∗k such that

ϕ(k, i)− ϕ(k, i∗k) /∈ Span{ϕ(k′, i′)− ϕ(k′, j′) |Nk′,i′,j′ > 0, (k′, i′, j′) ∈ S ×A2}.
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That is, there exists a vector z ∈ Rd such that

⟨z, ϕ(k, i)− ϕ(k, i∗k)⟩ = −2⟨θ, ϕ(k, i)− ϕ(k, i∗k)⟩

and for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0,

⟨z, ϕ(k′, i′)− ϕ(k′, j′)⟩ = 0.

Finally, we let θ′ = θ + z, and instance v′ = (ρ,S,A, ϕ,N, θ′). By the fact that ⟨θ, ϕ(k′, i′)− ϕ(k′, j′)⟩ = ⟨θ′, ϕ(k′, i′)−
ϕ(k′, j′)⟩ for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0 we get that for all n ≥ 1

DKL(P
(n)
v , P

(n)
v′ ) = 0.

Therefore, we get that P (n)
v is equal to P

(n)
v′ . In addition, by definition of Rn, we get that

Eπv [Rn] + Eπv′ [Rn]

= Eπv

[∑
k∈S

ρk

(
max
j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ⟩

)]
+ Eπv′

[∑
k∈S

ρk

(
max
j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ

′⟩
)]

(a)
= Eπv

[∑
k∈S

ρk

(
max
j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ⟩+max

j∈A
⟨ϕ(k, j)− ϕ(k, îk), θ

′⟩
)]

(26)

≥ ρkmin
i∈A

[
max
j∈A
⟨ϕ(k, j)− ϕ(k, i), θ⟩+max

j∈A
⟨ϕ(k, j)− ϕ(k, i), θ′⟩

]
,

where (a) follows from the fact that P (n)
v is equivalent with P

(n)
v′ .

Further, by the definition of v and v′, we get that

min
i∈A

[
max
j∈A
⟨ϕ(k, j)− ϕ(k, i), θ⟩+max

j∈A
⟨ϕ(k, j)− ϕ(k, i), θ′⟩

]
> 0,

and recall that ρk > 0. This completes the proof of Proposition 2.3

C. The existence of îk in RL-LOW and DP-RL-LOW

We first provide analytical solutions of w(k,i,j) and γk,i,i∗k .

Lemma C.1. Fix any consistent instance v = (ρ,S,A, ϕ,N, θ). Recall the definitions of w(k,i,j) and γk,i,i∗k in Eqn. (7)
and Eqn. (9), respectively. Then, for any (k, i) ∈ S ×A with i ̸= i∗k,

γk,i,i∗k = ∥[ϕ(k, i∗k − ϕ(k, i)]G∥2V −1 (27)

and for any (k, i, j) ∈ S ×A2 with i ̸= j,

w
(k,i,j)
k′,i′,j′ = Nk′,i′,j′ [ϕ(k

′, i′)− ϕ(k′, j′)]⊤G V
−1[ϕ(k, i)− ϕ(k, j)]G (28)

where V and G are as defined in Lemma 4.2.

Proof of Lemma C.1. Fix any (k, i, j) ∈ S × A2 with i ̸= j. By definition, the optimization problem of Eqn. (7) is
equivalent to

min
u∈RS×A×A

∑
k′∈S,i′,j′∈A:Nk′,i′,j′>0

(uk′,i′,j′)
2

Nk′,i′,j′
(29)
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subject to
[ϕ(k, i)− ϕ(k, j)]G =

∑
k′∈S,i′,j′∈A:Nk′,i′,j′>0

uk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]G .

The Lagrangian of the above constrained optimization problem is

L(u, λ) =
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

(uk′,i′,j′)
2

Nk′,i′,j′
+ λ⊤

(
[ϕ(k, i)− ϕ(k, j)]G

−
∑

k′∈S,i′,j′∈A:Nk′,i′,j′>0

uk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]G

)
,

for u ∈ RS×A×A and λ ∈ R|G|. Then, by solving dL
dλ = 0 and dL

duk′,i′,j′
= 0 for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0,

we obtain that the minimum of (29) is
λ = −2V −1[ϕ(k, i)− ϕ(k, j)]G

and
uk′,i′,j′ = Nk′,i′,j′ [ϕ(k

′, i′)− ϕ(k′, j′)]⊤G V
−1[ϕ(k, i)− ϕ(k, j)]G (30)

for all (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0. That is, for any (k, i) ∈ S ×A with i ̸= i∗k,

γk,i,i∗k = ∥[ϕ(k, i∗k)− ϕ(k, i)]G∥2V −1 (31)

This completes the desired proof.

Then, we are ready to prove Proposition 3.2

Proof of Propostion 3.2. By Lemma C.1, we get that under RL-LOW, for any (k, i, j, j2) ∈ S ×A3,

r̂k,i,j + r̂k,j,j2

=
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]⊤G V

−1[ϕ(k, i)− ϕ(k, j)]G log
( BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)

+
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]⊤G V

−1[ϕ(k, j)− ϕ(k, j2)]G log
( BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)

=
∑

(k′,i′,j′)∈S×A2

Nk′,i′,j′ [ϕ(k
′, i′)− ϕ(k′, j′)]⊤G V

−1[ϕ(k, i)− ϕ(k, j2)]G log
( BCLP

k′,i′,j′

1−BCLP
k′,i′,j′

)
= r̂k,i,j2 , (32)

which implies that |Îk| ≥ 1 under RL-LOW. This completes the proof of Proposition 3.2.

Following the same lines as the proof of Propostion 3.2, we get the corollary below.

Corollary C.2. For any consistent instance v and using the estimate of the best action under each state k as prescribed by
RL-LOW-DP, we have îk exists.

D. Proof of Lower Bound
Before we prove the lower bound, we first give a useful corollary. The following corollary is a direct result of Pinsker’s
inequality.

Corollary D.1. Fix any C ∈ (0, 1
2 ). For any p, q ∈ (0, 1) with min(p, 1− p) ≥ C and min(q, 1− q) ≥ C, we have

2(p− q)2 ≤ dKL(p, q) ≤
2

C
(p− q)2

where dKL(p, q) denotes the KL divergence between the Bernoulli distributions with parameters of p and q.

12
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Then, we prove Lemma 4.1 that reveals the KL divergence between instances. Recall that given any instance v, we let P (n)
v

denote the distribution of (σi)ni=1. The following lemma gives an estimation of the KL divergence between instance v and
v′ that share the same parameters but θ.
Lemma 4.1. For any instance v = (ρ,S,A, ϕ,N, θ) and v′ = (ρ,S,A, ϕ,N, θ′), it holds that

2n exp(−4Rmax) ≤
DKL(P

(n)
v ∥P (n)

v′ )

D̃(v, v′)
≤ 2n exp(2Rmax) (33)

where

D̃(v, v′) =
∑

k∈S,i,j∈A

Nk,i,j(⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩)2, (34)

and where Rmax = maxk∈S,i∈A max{|⟨ϕ(k, i), θ⟩|, |⟨ϕ(k, i), θ′⟩|} is the maximum absolute reward in these two instances.

Proof. Fix any consistent instance v = (ρ,S,A, ϕ,N, θ). By the chain rule of the KL divergence, we have

DKL(P
(n)
v ∥P

(n)
v′ )

= n
∑

k∈S,i,j∈A

Nk,i,jdKL

(
exp(⟨ϕ(k, i), θ⟩)

exp(⟨ϕ(k, i), θ⟩) + exp(⟨ϕ(k, j), θ⟩)
,

exp(⟨ϕ(k, i), θ′⟩)
exp(⟨ϕ(k, i, θ′⟩) + exp(⟨ϕ(k, j), θ′⟩)

)
= n

∑
k∈S,i,j∈A

Nk,i,jdKL(Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩),Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩)) (35)

where Sig(·) represents the Sigmoid function. By the fact that −2Rmax ≤ ⟨ϕ(k, i)− ϕ(k, j), θ⟩ ≤ 2Rmax and −2Rmax ≤
⟨ϕ(k, i)− ϕ(k, j), θ′⟩ ≤ 2Rmax and that dSig(x)

dx = exp(−x)
(exp(−x)+1)2 , we further get that

|Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩)− Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩)|
≤ |⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩| (36)

and

|Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩)− Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩)|
≥ exp(−2Rmax)|⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩|. (37)

Then, by Corollary D.1, we get that Eqn. (36) and Eqn. (37) imply that

dKL(Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩),Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩))
≤ 2 exp(2Rmax)|⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩|2 (38)

and

dKL(Sig(⟨ϕ(k, i)− ϕ(k, j), θ⟩),Sig(⟨ϕ(k, i)− ϕ(k, j), θ′⟩))
≥ 2 exp(−4Rmax)|⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩|2. (39)

Finally, combining Eqn. (35), Eqn. (38) and Eqn. (39), we complete the proof of Lemma 4.1.

Then, recall that we denote D̃(·, ·) as the approximation of KL divergence between instance v and v′ that share the same
parameter except θ, i.e., for any v = (ρ,S,A, ϕ,N, θ) and v = (ρ,S,A, ϕ,N, θ′),

D̃(v, v′) :=
∑

k∈S,i,j∈A

Nk,i,j(⟨ϕ(k, i)− ϕ(k, j), θ − θ′⟩)2.

13
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In addition, recall that for any z ∈ Rd, η ∈ R and consistent instance v = (ρ,S,A, ϕ,N, θ), we denote Alt(v, z, η) as the
set of instances that share the same parameter except θ and satisfy

⟨z, θ′ − θ⟩ = η

for all v′ = (ρ,S,A, ϕ,N, θ′) ∈ Alt(v, z, η).

We are ready to prove Lemma 4.2 that reveals a useful property for Alt(·) and D̃(·)
Lemma 4.2. Let G be an arbitrary orthonormal basis of Span{ϕ(k′, i′)−ϕ(k′, j′) : (k′, i′, j′) ∈ S ×A2 and Nk′,i′,j′ > 0}.
Also let [w]G denote the column vector that represents w under basis G (Meyer, 2000, Chapter 4). Define the matrix

V :=
∑

k∈S,i,j∈A

Nk,i,j [ϕ(k, i)− ϕ(k, j)]G [ϕ(k, i)− ϕ(k, j)]⊤G .

Then for any consistent instance v = (ρ,S,A, ϕ,N, θ), η ∈ R, and z ∈ Span{ϕ(k′, i′) − ϕ(k′, j′) : (k′, i′, j′) ∈
S ×A2 and Nk′,i′,j′ > 0},

min
v′∈Alt(v,z,η)

D̃(v, v′) =
η2

∥[z]G∥2V −1

. (40)

and the minimum of (40) is attained in v′ = (ρ,S,A, ϕ,N, θ′) with

θ′ = θ − η

∥[z]G∥2V −1

V −1z.

Proof. By definition, we equivalently write down the optimization problem of Eqn. (40) as follows.

min
x∈Rd

∑
k∈S,i,j∈A

Nk,i,j(⟨[ϕ(k, i)− ϕ(k, j)]G , [x]G⟩)2 (41)

subject to
⟨x, z⟩ = η.

The Lagrangian of the above constrained optimization problem is,

L(x, λ) =
∑

k∈S,i,j∈A

Nk,i,j(⟨[ϕ(k, i)− ϕ(k, j)]G , [x]G⟩)2 + λ(⟨x, z⟩ − η).

By solving dL
dλ = 0 and dL

dxi
= 0 for all i ∈ [d], we attain the minimum of Eqn. (41) atλ = 2η

∥[z]G∥2
V −1

x = − η
∥[z]G∥2

V −1
V −1z+ g,

where g is any vector that is orthogonal with vector space Span{ϕ(k′, i′)−ϕ(k′, j′) : (k′, i′, j′) ∈ S×A2 and Nk′,i′,j′ > 0},
which implies

L(z, λ) =
η2

∥[z]G∥2V −1

.

This completes the desired proof.

Lemma D.2. Fix any v = (ρ,S,A, ϕ,N, θ) ∈ Q. Let

v′ = (ρ,S,A, ϕ,N, θ′) ∈ argmin
u∈Alt(v,ϕ(k̄(v),̄i(v))−ϕ(k̄(v),i∗

k̄(v)
),2∆k̄(v),̄i(v)(v))

D̃(v, u).

Then, it holds {
⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩ = 2∆k,i(v) for (k, i) = (k̄(v), ī(v))

|⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩| ≤ 1
2∆k,i(v) ∀i ̸= i∗k(v) and (k, i) ̸= (k̄(v), ī(v))

(42)

14
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Consequently, 
i∗k(v) = i∗k(v

′) ∀k ̸= k̄(v)

k̄(v) = k̄(v′)

i∗
k̄(v′)

(v′) = ī(v)

(43)

Proof. Fix any v and v′ as in Lemma D.2. By the definition of v′, we can immediately obtain the first inequality of Eqn. (42),
i.e.,

⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩ = 2∆k,i(v) for (k, i) = (k̄(v), ī(v)). (44)

Then, we will use proof by contradiction to prove the second inequality of Eqn. (42).

Assume that there exists (k̃, ĩ) ∈ S ×A with for all ĩ ̸= i∗
k̃

and (k̃, ĩ) ̸= (k̄(v), ī(v)) such that

|⟨ϕ(k̃, i∗
k̃
)− ϕ(k̃, ĩ), θ − θ′⟩| >

∆k̃,̃i(v)

2
(45)

Then, we let v′′ = (ρ,S,A, ϕ,N, θ′′), where

θ′′ = θ +
(θ − θ′)2∆k̃,̃i(v)

⟨ϕ(k̃, i∗
k̃
)− ϕ(k̃, ĩ), θ − θ′⟩

,

which implies that v′′ ∈ Alt(v, ϕ(k̃, ĩ)− ϕ(k̃, ĩ∗k), 2∆k̃,̃i(v)). Note that from Lemma 4.2, we have

D̃(v, v′) =
4∆k̄(v),̄i(v)(v)

2

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗
k̄(v)

)]G∥2V −1

, (46)

where V and G are as defined in Lemma 4.2. In addition, by definition, we also can get that

D̃(v, v′′) =

(
2∆k̃,̃i(v)

⟨ϕ(k̃, i∗
k̃
)− ϕ(k̃, ĩ), θ − θ′⟩

)2

· D̃(v, v′)

(a)
< 16D̃(v, v′)

(b)
<

16∆k̄(v),̄i(v)(v)
2

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗
k̄(v)

)]G∥2V −1

(c)
<

64

γk̄(v),̄i(v)(v)
(47)

where (a) follows from Eqn. (45) and (b) follows from Eqn. (46), and (c) follows from Lemma C.1.

Similarly, from Lemma 4.2, we get that

min
u∈Alt(v,ϕ(k̃,̃i)−ϕ(k̃,i∗

k̃
),2∆k̃,̃i(v))

D̃(v, u) =
4∆k̃,̃i(v)

2

∥[ϕ(k̃, ĩ)− ϕ(k̃, i∗
k̃
)]G∥2V −1

=
4

γk̃,̃i(v)
(48)

By the fact that v′′ ∈ Alt(v, ϕ(k̃, ĩ)− ϕ(k̃, i∗
k̃
)) as well as Eqn. (24) and Eqn. (25), we further get that

4

γk̃,̃i(v)
<

64

γk̄(v),̄i(v)(v)
.

That is, 16γk̃,̃i(v) > γk̄(v),̄i(v)(v), which contradicts the fact that v ∈ Q.

15



Order-Optimal Instance-Dependent Bounds for Offline Reinforcement Learning with Preference Feedback

Hence, for all (k, i) ∈ S ×A with ∀ĩ ̸= i∗
k̃

and (k, i) ̸= (k̄(v), ī(v)), we have

|⟨ϕ(k, i∗k(v))− ϕ(k̄(v), ī(v)), θ − θ′⟩| ≥ 2∆k,i(v)

Consequently, we have 
i∗k(v) = i∗k(v

′) ∀k ̸= k̄(v)

k̄(v) = k̄(v′)

i∗
k̄(v′)

(v′) = ī(v)

This completes the proof of Lemma D.2.

Lemma D.3. Fix any v = (ρ,S,A, ϕ,N, θ) ∈ Q. Let

v′ = (ρ,S,A, ϕ,N, θ′) ∈ argmin
u∈Alt(v,ϕ(k̄(v),̄i(v))−ϕ(k̄(v),i∗

k̄(v)
),2∆k̄(v),̄i(v)(v))

D̃(v, u).

Then, it holds
H(v) ≤ H(v′) ≤ 8H(v).

Proof. Fix any v and v′ as in Lemma D.2. Note that from Lemma D.2, we get that instance v and instance v′ share the same
optimal action for the state k ̸= k̄ and the optimal action of state k̄(v) is ī(v) under the instance v′, i.e., i∗

k̄(v′)
(v′) = ī(v)

and i∗k(v) = i∗k(v
′) for all k ̸= k̄(v). Then, by definition, the hardness of instance v′ is

H(v′) = max
k∈S,i∈A:i ̸=i∗k(v′)

γk,i(v
′)

∆2
k,i(v

′)

(a)
= max

{
max

k∈S,i∈A:i̸=i∗k(v
′),k ̸=k̄(v)

γk,i(v)

∆2
k,i(v

′)
, max
i∈A:i̸=ī(v),k=k̄(v)

γk,i(v
′)

∆2
k,i(v

′)

}
where (a) follows the fact that i∗k(v) = i∗k(v

′) for all k ̸= k̄(v) and both instances v and v′ share the same parameters of ϕ
and N , which implies γk,i(v) = γk,i(v

′) for all k ̸= k̄(v).

Then, by the fact that |⟨ϕ(k, i∗k(v)) − ϕ(k, i), θ − θ′⟩| ≤ 1
2∆k,i(v) for all i ̸= i∗k(v) and (k, i) ̸= (k̄(v), ī(v)) from

Lemma D.2, we get that

max
k∈S,i∈A:i ̸=i∗k(v′),k ̸=k̄(v)

γk,i(v)

∆2
k,i(v

′)
≤ max
k∈S,i∈A:i ̸=i∗k(v′),k ̸=k̄(v)

4γk,i(v)

∆2
k,i(v)

≤ 4H(v) (49)

Further, by the fact that ⟨ϕ(k, i∗k(v))− ϕ(k, i), θ − θ′⟩ = 2∆k,i(v) for (k, i) = (k̄(v), ī(v)) Lemma D.2, we get that

max
i∈A:i ̸=ī(v),k=k̄(v)

γk,i(v
′)

∆2
k,i(v

′)

= max

{
γk̄(v),̄i(v)(v)

∆2
k̄(v),̄i(v)

(v)
, max
i∈A:i̸=ī(v),i̸=i∗

k̄(v)
(v)

γk̄(v),i(v
′)

∆2
k̄(v),i

(v′)

}

= max

{
H(v), max

i∈A:i̸=ī(v),i̸=i∗
k̄(v)

(v)

γk̄(v),i(v
′)

∆2
k̄(v),i

(v′)

}
(a)
= max

{
H(v), max

i∈A:i ̸=ī(v),i̸=i∗
k̄(v)

(v)

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i)]G∥2V −1

∆2
k̄(v),i

(v′)

}
(50)

where (a) follows from Lemma C.1, V and G are as defined in Lemma 4.2. Similarly, by the fact that |⟨ϕ(k, i∗k(v)) −
ϕ(k, i), θ − θ′⟩| ≤ 1

2∆k,i(v) ∀i ̸= i∗k(v) and (k, i) ̸= (k̄(v), ī(v)), we obtain for i ∈ A with i ̸= ī(v), i ̸= i∗
k̄(v)

(v)

∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i)]G∥2V −1

∆2
k̄(v),i

(v′)
≤

4∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i)]G∥2V −1

(∆k̄(v),i(v) ∨∆k̄(v),̄i(v))
2
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=
4∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗

k̄(v)
(v)) + ϕ(k̄(v), i∗

k̄(v)
(v))− ϕ(k̄(v), i)]G∥2V −1

(∆k̄(v),i(v) ∨∆k̄(v),̄i(v))
2

≤
4(∥[ϕ(k̄(v), ī(v))− ϕ(k̄(v), i∗

k̄(v)
(v))]G∥2V −1 + ∥[ϕ(k̄(v), i∗k̄(v)(v))− ϕ(k̄(v), i)]G∥2V −1

(∆k̄(v),i(v) ∨∆k̄(v),̄i(v))
2

≤ 8H(v). (51)

Finally, combining Eqn. (49), Eqn. (50) and Eqn. (51), we complete the proof of Lemma D.3.

With the ingredients of the above lemmas, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Fix any v = (ρ,S,A, ϕ,N, θ) ∈ Q and

v′ = (ρ,S,A, ϕ,N, θ′) ∈ argmin
u∈Alt(v,ϕ(k̄(v),̄i(v))−ϕ(k̄(v),i∗

k̄(v)
),2∆k̄(v),̄i(v)(v))

D̃(v, u).

By Lemma D.3, we get that H(v′) ≤ H(v) ≤ 8H(v′). By Lemma 4.2, we get that

D̃(v, v′) =
∥[ϕ(k̄(v), i∗

k̄
(v))− ϕ(k̄(v), ī(v))]G∥2V −1

4∆2
k̄(v),̄i(v)

(v)

=
1

4H(v)
,

where G and V are as defined in Lemma 4.2. Further, by Lemma 4.1 and Lemma D.2, we get that for any n > 0

DKL(P
(n)
v ∥P

(n)
v′ ) ≤ 2 exp(2L) · nD̃(v, v′)

=
n

2 exp(−2L)H(v)
. (52)

Then, we let ∆̄ be the minimum suboptimality of state k̄(v) in both instances v and v′, i.e.,

∆̄ = min
i∈A

[
max
j∈A
⟨ϕ(k̄(v), j)− ϕ(k̄(v), i), θ⟩+max

j∈A
⟨ϕ(k̄(v), j)− ϕ(k̄(v), i), θ′⟩

]
By the definitions of v and v′, we can obtain that ∆̄ > 0. Then, we get that for any policy π

Eπv [Rn] + Eπv′ [Rn] ≥ ρk̄(v)∆̄(1−DTV(P
(n)
v , P

(n)
v′ )) (53)

(a)

≥ 1

2
ρk̄(v)∆̄ exp(−DKL(P

(n)
v ∥P

(n)
v′ ))

(b)

≥ 1

2
ρk̄(v)∆̄ exp

(
− n

2 exp(−2L)H(v)

)
,

where DTV(·, ·) denotes the total variance distance, and (a) follows from Bretagnolle–Huber inequality (Tsybakov, 2009,
Lemma 2.6) and (c) follows from Eqn. (52). Finally, for all sufficiently large n, we have

Eπv [Rn] + Eπv′ [Rn] ≥ exp

(
− n

Clo ·H(v)

)
,

which completes the proof of Theorem 4.3.
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E. Proof of Upper bound
Lemma E.1. Let Yn be a random variable sampled from the Binomial distribution with n trials and probability of success
p ∈ [1− β, β] for β ∈ ( 12 , 1). Then,

|E(f(Xn))− f(E(Xn))| ≤
3

(1− β)4
√
n

where Xn = Yn

n and

f(x) =


log( x

1−x ) if x ∈ (1− β, β)

log( β
1−β ) if x ≥ β

log( 1−ββ ) if x ≤ 1− β.

(54)

Proof of Lemma E.1. For simplicity of notation, we let x0 := E(Xn), which implies x0 = p ∈ [1 − β, β]. Then, by the
smoothness of f(·) on [1−β, β], we obtain the equivalent expression of f(·) from the Taylor expansion of f(·) on [1−β, β],

f(x) =


f(x0) + f ′(x0) · (x− x0) +

1
2f

′′(ξx) · (x− x0)
2 if x ∈ [1− β, β]

f(x0) + f ′(x0) · (β − x0) +
1
2f

′′(ξβ) · (β − x0)
2 if x > β

f(x0) + f ′(x0) · (1− β − x0) +
1
2f

′′(ξβ) · (1− β − x0)
2 if x < 1− β,

(55)

where ξx ∈ (min(x, x0),max(x, x0)) only depends on x and x0 in the Talor expansion.

By using the fact that f ′(x0) · (β − x0) = f ′(x0) · (β − x) + f ′(x0) · (x− x0) and f ′(x0) · (1− β − x0) = f ′(x0) · (1−
β − x) + f ′(x0) · (x− x0), we obtain from Eqn. (55) that

|E(f(Xn))− f(E(Xn))|
≤ sup
x∈(1−β,β)

|f ′′(x)| ·Var(Xn) + |f ′(x0)| · E([Xn − β]+) + |f ′(x0)| · E([1− β −Xn]+) (56)

where Var(·) represents the variance of the random variable · and [x]+ = max{x, 0}.

In addition, we note that

E([Xn − β]+) ≤
∫ 1

β

(x− β)P(Xn ≥ x) dx

(a)

≤
∫ 1

β

(x− β) exp(−2n(x− x0)
2) dx

(b)

≤
∫ 1

β

(x− β) exp(−n(x− β)2) dx

≤
∫ 1

β

1√
n
dx

=
1− β√

n
, (57)

where (a) follows from the fact Xn is a subGaussian random variable with variance proxy 1
4n , and (b) follows from the fact

that (x− β) exp(−n(x− β)2) ≤ 1√
n

. Similarly, we also can get that

E([1− β −Xn]+) ≤
1− β√

n
. (58)

Finally,

|E(f(Xn))− f(E(Xn))|
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(a)

≤ sup
x∈(1−β,β)

|f ′′(x)| ·Var(Xn) + |f ′(x0)| · E([Xn − β]+) + |f ′(x0)| · E([1− β −Xn]+)

(b)

≤ 1

(1− β)4
·Var(Xn) + f ′(x0) · E([Xn − β]+) + f ′(x0) · E([1− β −Xn]+)

(c)

≤ 1

(1− β)4
· 1
n
+ f ′(x0) · E([Xn − β]+) + f ′(x0) · E([1− β −Xn]+)

(d)

≤ 1

(1− β)4
· 1
n
+

1

(1− β)2
· E([Xn − β]+) +

1

(1− β)2
· E([1− β −Xn]+)

(e)

≤ 1

(1− β)4
· 1
n
+

1

(1− β)2
· 2√

n

≤ 3

(1− β)4
√
n
, (59)

where (a) follows from Eqn. (56), (b) follows from Var(Xn) ≤ 1
n , (c) follows from f ′′(x) = 2x−1

(x−1)2x2 for x ∈ (β, 1− β),
(d) follows from f ′(x) = 1

x−x2 for x ∈ (β, 1− β), and (e) follows from Eqn. (57) and Eqn. (58).

Lemma E.2. Let Yn be a random variable sampled from the binomial distribution with parameters n > 0 and p ∈ [1−β, β]
for β ∈ ( 12 , 1). Let Xn = Yn

n . Then, f(Xn) is subGaussian with

∥f(Xn)∥2vp ≤
C

n
,

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and f(·) is defined in Eqn. (54).

Proof. By the definition of Xn, we get that

∥Xn − p∥2vp ≤
1

4n
.

Then, by Lemma A.5, we get that

∥Xn − p∥2ϕ2
≤ 3

2n
.

By the fact that |f ′(x)| ≤ 1
(1−β)2 for x ∈ (1− β, β) and f ′(x) = 0 for x ∈ (0, 1− β)

⋃
(β, 1) , we get that

∥f(Xn)− f(p)∥2ϕ2
≤ 3

2n(1− β)4
. (60)

Similarly, from Lemma A.5, we further get that

∥f(Xn)− f(p)∥2vp ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2n(1− β)4
. (61)

Note that by definition, we have ∥f(Xn)− f(p)∥2vp = ∥f(Xn)∥2vp, which completes the proof of Lemma E.2.

With the ingredients of the above lemmas, we are ready to prove the upper bound of our algorithms

Proof of Theorem 3.3. Fix any consistent instance v and dataset size n under RL-LOW. By Lemma E.2 and Lemma A.3,
we get that r̂k,i∗k,i is subGaussian with variance proxy as

∥r̂k,i∗k,i∥
2
vp ≤

Cγk,i
n

, (62)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and β = exp(2L)
1+exp(2L) .

In addition, by Lemma E.1, we get that for any (k′, i′, j′) ∈ S ×A×A with Nk′,i′,j′ > 0,

|ERL-LOW
v [f(Bk′,i′,j′)]− f(ERL-LOW

v [Bk′,i′,j′ ])| ≤
3

(1− β)4
√
n ·Nk′,i′,j′

,
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which implies for any (k, i) ∈ S ×A with i ̸= i∗k,∣∣∣∣∣∣
∑

k′∈S,i′∈A,j′∈A

w
(k,i∗k,i)
k′,i′,j′ E

RL-LOW
v [f(Bk′,i′,j′)]− f(ERL-LOW

v

[
r̂k,i∗k,i

]
)

∣∣∣∣∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

3|w(k,i∗k,i)
k′,i′,j′ |

(1− β)4
√
n ·Nk′,i′,j′

. (63)

That is,

∣∣ERL-LOW
v

[
r̂k,i∗k,i

]
− rk,i∗k,i

∣∣ ≤ ∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′>0

3|w(k,i∗k,i)
k′,i′,j′ |

(1− β)4
√
n ·Nk′,i′,j′

(64)

=
3γ̃k,i

(1− β)4
√
n
, (65)

where we denote rk,i,j := rk,i − rk,j .

Note that by the definition of Rn we have

Rn ≤
∑

(k,i)∈S×A:i ̸=i∗k

1{r̂k,i∗
k
,i≤0} · ρk∆k,i (66)

≤
∑

(k,i)∈S×A:i ̸=i∗k

[(
1{r̂k,i∗

k
,i≤ERL-LOW

v

[
r̂k,i,i∗

k

]
−∆k,i/2}

∨ 1{|ERL-LOW
v

[
r̂k,i∗

k
,i

]
−∆k,i|≥∆k,i/2}

)
· ρk∆k,i

]
(67)

By Lemma A.4 and Eqn. (62), we get that for any (k, i) ∈ S ×A with i ̸= i∗k,

PRL−LOW
v

(
r̂k,i∗k,i ≤ ERL-LOW

v

[
r̂k,i∗k,i

]
−∆k,i/2

)
≤ exp

(
−
2n∆2

k,i

Cγk,i

)
, (68)

and by Eqn. (65) we get that
|ERL-LOW
v

[
r̂k,i∗k,i

]
− rk,i∗k,i| ≤ ∆k,i/2

for all n >
18γ̃2

k,i

(1−β)8∆k,i
. That is, for all sufficiently large n, we have

ERL-LOW
v [Rn] ≤

∑
k∈S,i∈A:i ̸=i∗k

ρk∆k,i exp

(
−
2n∆2

k,i

Cγk,i

)
,

which further implies that for all sufficiently large n, we have

ERL-LOW
v [Rn] ≤ exp

(
− n

Cup ·H(v)

)
.

This completes the proof of Theorem 3.3.

In addition, we present the proof of Proposition 3.4 as follows.

Proof of Proposition 3.4. Note that by the definition of Rn we have

Rn ≤
∑

(k,i)∈S×A:i ̸=i∗k

1{r̂k,i∗
k
,i≤0} · ρk∆k,i
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(a)

≤
∑

(k,i)∈S×A:i ̸=i∗k

ρk

[
1
{∆k,i<

6γ̃k,i

(1−β)4
√

n
}
· 6γ̃k,i
(1− β)4

√
n

+ 1{|ERL-LOW
v

[
r̂k,i,i∗

k

]
−rk,i,i∗

k
|≤∆k,i/2}

·∆k,i

]
where β = exp(2L)

1+exp(2L) , and (a) follows from Eqn. (65).

Hence, by Eqn. (68), we have

ERL-LOW
v [Rn]≤

∑
(k,i)∈S×A:i ̸=i∗k

ρk

[
6γ̃k,i

(1− β)4
√
n
+ exp

(
−
2n∆2

k,i

Cγk,i

)
∆k,i

]
(69)

≤
∑

(k,i)∈S×A:i ̸=i∗k

ρk

[
6γ̃k,i

(1− β)4
√
n
+

√
Cγk,i
2n

]
(70)

=
1√
n

∑
(k,i)∈S×A:i ̸=i∗k

ρk

[
6γ̃k,i

(1− β)4
+

√
Cγk,i
2

]
(71)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 .

This completes the desired proof.

F. Theoretical analysis of DP-RL-LOW

Lemma F.1. Fix any ε > 0 and δ > 0. Let Yn be a random variable sampled from the binomial distribution with number of
trials n ∈ N and probability of success p ∈ [1− β, β] for β ∈ ( 12 , 1). Then,

|E(f(X̃n))− f(E(X̃n))| ≤
3

(1− β)4
√
2n

+
4
√
log(1.25/δ)

(1− β)4(εn)
,

where X̃n = Yn

n + ξ̃n, and ξ̃n is an independent Gaussian noise with zero mean and variance of 2 log(1.25/δ)
(εn)2 , and f(·) is

defined in (54).

Proof of Lemma F.1. For simplicity of notation, we let x0 := E(X̃n), which implies x0 = p ∈ [1 − β, β]. Again, by the
smoothness of f(·) on [1− β, β], we get the Taylor expansion of f(·) on [1− β, β],

f(x) =


f(x0) + f ′(x0) · (x− x0) +

1
2f

′′(ξx) · (x− x0)
2 if x ∈ [1− β, β]

f(x0) + f ′(x0) · (β − x0) +
1
2f

′′(ξβ) · (β − x0)
2 if x > β

f(x0) + f ′(x0) · (1− β − x0) +
1
2f

′′(ξβ) · (1− β − x0)
2 if x < 1− β,

(72)

where ξx ∈ (min(x, x0),max(x, x0)) that only depends on x and x0 in the Talor expansion.

Similarly, by the fact that f ′(x0) · (β − x0) = f ′(x0) · (β − x) + f ′(x0) · (x − x0) and f ′(x0) · (1 − β − x0) =
f ′(x0) · (1− β − x) + f ′(x0) · (x− x0), we can get from (72),

|E(f(X̃n))− f(E(X̃n))|
≤ sup
x∈(1−β,β)

|f ′′(x)|Var(X̃n) + |f ′(x0)| · E([X̃n − β]+) + |f ′(x0)| · E([1− β − X̃n]+) (73)

where Var(·) represents the variance and [x]+ = max{x, 0}.

In addition, we note that

E([X̃n − β]+) ≤
∫ 1

β

(x− β)P(X̃n ≥ x) dx
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(a)

≤
∫ 1

β

(x− β) exp(− (x− x0)
2

2( 1
4n + 2 log(1.25/δ)

(εn)2 )
) dx

≤
∫ 1

β

(x− β) exp

(
−
(
2n(x− x0)

2 ∧ (x− x0)
2(εn)2

4 log(1.25/δ)

))
dx

=

∫ 1

β

(x− β) exp

(
−(x− x0)

2

(
2n ∧ (εn)2

4 log(1.25/δ)

))
dx

≤
∫ 1

β

(x− β) exp

(
−(x− β)2

(
2n ∧ (εn)2

4 log(1.25/δ)

))
dx

(b)

≤
∫ 1

β

√
1

2n ∧ (εn)2

4 log(1.25/δ)

dx

=
1− β√

2n ∧ (εn)2

4 log(1.25/δ)

, (74)

where (a) follows from the fact that X̃n is subGaussian with variance proxy 1
4n + 2 log(1.25/δ)

(εn)2 , and (b) follows from the fact

that x exp(−x2y) <
√

1
y for any y > 0. Similarly, we also can get that

E([1− β −Xn]+) ≤
1− β√

2n ∧ (εn)2

4 log(1.25/δ)

. (75)

Finally,

|E(f(X̃n))− f(E(X̃n))|
(a)

≤ sup
x∈(1−β,β)

|f ′′(x)|Var(X̃n) + |f ′(x0)| · E([X̃n − β]+) + |f ′(x0)| · E([1− β − X̃n]+)

(b)

≤ 1

(1− β)4
·
(
1

n
+

2 log(1.25/δ)

(εn)2

)
+ f ′(x0) · E([Xn − β]+) + f ′(x0) · E([1− β −Xn]+)

(c)

≤ 1

(1− β)4
·
(
1

n
+

2 log(1.25/δ)

(εn)2

)
+ f ′(x0) ·

2√
2n ∧ (εn)2

4 log(1.25/δ)

(d)

≤ 1

(1− β)4
·
(
1

n
+

2 log(1.25/δ)

(εn)2

)
+

1

(1− β)2
· 2√

2n ∧ (εn)2

4 log(1.25/δ)

≤ 3

(1− β)4
√
2n

+
4
√
log(1.25/δ)

(1− β)2(εn)
+

2log(1.25/δ)

(1− β)4(εn)2
(76)

≤ 3

(1− β)4
√
2n

+
4

(1− β)4
·

(√
log(1.25/δ)

(εn)
∨ log(1.25/δ)

(εn)2

)
(e)

≤ 3

(1− β)4
√
2n

+
4
√
log(1.25/δ)

(1− β)4(εn)

where (a) follows from Eqn. (73), (b) follows from the fact that Var(X̃n) ≤ 1
n + 2 log(1.25/δ)

(εn)2 and that f ′′(x) = 2x−1
(x−1)2x2 ,

(c) follows from Eqn. (74) and Eqn. (75), (d) follows from the fact that f ′(x) = 1
x−x2 , and (e) follows the fact that

|E(f(X̃n))− f(E(X̃n))| ≤ 4
(1−β)4 and that

√
x ≥ x for any x ∈ (0, 1]

Lemma F.2. Fix any ε > 0 and δ > 0. Let Yn be a random variable sampled from the binomial distribution with number of
trials ∈ N and probability of success p ∈ [1− β, β] for β ∈ ( 12 , 1). Let X̃n = Yn

n + ξ̃n, and ξ̃n is an independent Gaussian
noise with zero mean and variance of 2 log(1.25/δ)

(εn)2 . Then, f(X̃n) is subGaussian with
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∥f(X̃n)∥2vp ≤ C ·
(
1

n
+

8 log(1.25/δ)

(εn)2

)
,

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and f(·) is defined in (54).

Proof. By the definition of Xn, we get that

∥X̃n − p∥2vp ≤
1

4n
+

2 log(1.25/δ)

(εn)2
.

Then, by Lemma A.5, we get that

∥X̃n − p∥2ϕ2
≤ 3

2n
+

12 log(1.25/δ)

(εn)2
.

By the fact that |f ′(x)| ≤ 1
(1−β)2 , we get that

∥f(X̃n)− f(p)∥2ϕ2
≤
(

3

2n
+

12 log(1.25/δ)

(εn)2

)
· 1

(1− β)4
. (77)

Similarly, from Lemma A.5, we further get that

∥f(X̃n)− f(p)∥2vp ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1− β)4

(
1

n
+

8 log(1.25/δ)

(εn)2

)
. (78)

Note that by definition, we have ∥f(X̃n)− f(p)∥2vp = ∥f(X̃n)∥2vp, which completes the proof of Lemma E.2.

Proof of Theorem 5.3. Fix any consistent instance v and n > 0 under DP-RL-LOW. By lemma E.2 and lemma A.3, we get
that r̃k,i∗k,i is subGaussian with variance proxy to be,

∥r̃k,i∗k,i∥
2
vp ≤ C ·

(
γk,i
n

+
8γDP
k,i log(1.25/δ)

(εn)2

)
, (79)

where C ≤ (6
√
2e · (3

√
log 2 + 1))2 · 3

2(1−β)4 and β = exp(2L)
1+exp(2L) .

In addition, by Lemma F.1, we get that for any (k′, i′, j′) ∈ S ×A2 with Nk′,i′,j′ > 0,∣∣∣EDP-RL-LOW
v

[
f(B̃k′,i′,j′)

]
− f

(
EDP-RL-LOW
v

[
B̃k′,i′,j′

])∣∣∣
≤ 3

(1− β)4
√
2nNk′,i′,j′

+
4
√
log(1.25/δ)

(1− β)4(εnNk′,i′,j′)
, (80)

which implies for any (k, i) ∈ S ×A with i ̸= i∗k,∣∣∣∣∣∣
∑

k′∈S,i′∈A,j′∈A

w
(k,i∗k,i)
k′,i′,j′ E

DP-RL-LOW
v [f(Bk′,i′,j′)]− f(EDP-RL-LOW

v [Bk′,i′,j′ ])

∣∣∣∣∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′ ̸=0

|w(k,i∗k,i)
k′,i′,j′ |

(
3

(1− β)4
√
2nNk′,i′,j′

+
4
√

log(1.25/δ)

(1− β)4(εnNk′,i′,j′)

)
. (81)

Recall that we denote rk,i∗k,i = rk,i∗k − rk,i. Then, from Eqn. (81), we get∣∣EDP-RL-LOW
v

[
r̃k,i∗k,i

]
− rk,i∗k,i

∣∣
≤

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′ ̸=0

|w(k,i,j)
k′,i′,j′ |

(
3

(1− β)4
√
2nNk′,i′,j′

+
4
√
log(1.25/δ)

(1− β)4(εnNk′,i′,j′)

)
(82)
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≤ 3γ̃k,i
(1− β)4

√
n
+

4γ̃DPk,i
√
log(1.25/δ)

(1− β)4(εn)
, (83)

where γ̃DP
k,i :=

∑
k′∈S,i′∈A,j′∈A:Nk′,i′,j′ ̸=0

|w
(k,i∗k,i)

k′,i′,j′ |
Nk′,i′,j′

Note that by the definition of Rn, under DP-RL-LOW we have

Rn ≤
∑

(k,i)∈S×A:i ̸=i∗k

1{r̃k,i∗
k
,i<0} · ρk∆k,i (84)

≤
∑

(k,i)∈S×A:i ̸=i∗k

[(
1{r̃k,i∗

k
,i≤EDP-RL-LOW

v

[
r̃k,i∗

k
,i

]
−∆k,i/2}

∨ 1{|EDP-RL-LOW
v

[
r̃k,i∗

k
,i

]
−rk,i∗

k
,i|≤∆k,i/2}

)
· ρk∆k,i

]
(85)

By Lemma A.4 and (79), we get that for any (k, i) ∈ S ×A with i ̸= i∗k,

PDP−RL−LOW
v

(
r̃k,i∗ki, ≤ EDP-RL-LOW

v

[
r̃k,i∗k,i

]
−∆k,i/2

)
≤ exp

(
−

2∆2
k,i

C · (γk,i/n+ 8γDP
k,i log(1.25/δ)/(εn)

2)

)
, (86)

and by (83) we get that
|EDP-RL-LOW
v

[
r̃k,i∗k,i

]
− rk,i∗k,i| ≤ ∆k,i/2

for all n >
12γ̃2

k,i

(1−β)8∆2
k,i

+
8γ̃DP

k,i

√
log(1.25/δ)

(1−β)4(ε∆k,i)
. That is, for all sufficiently large n, we have

ERL-LOW
v (Rn) ≤

∑
k∈S,i∈A:i ̸=i∗k

ρk∆k,i exp

(
−

2∆2
k,i

C(γk,i/n+ 8γDP
k,i log(1.25/δ)/(εn)

2)

)
,

which further implies that for all sufficiently large n, there exists a global constant CDP, we have

ERL-LOW
v (Rn) ≤ exp

−CDP ·

 n

H(v)
∧

(
n

H
(ε,δ))
DP (v)

)2
 .

This completes the proof of Theorem 5.3
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