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ABSTRACT

Conformal prediction has emerged as a popular technique for facilitating valid
predictive inference across a spectrum of machine learning models, under minimal
assumption of exchangeability. Recently, Hoff (2023) showed that full conformal
Bayes provides the most efficient prediction sets (smallest by expected volume)
among all prediction sets that are valid at the (1 − α) level if the model is cor-
rectly specified. However, a critical issue arises when the Bayesian model itself
may be mis-specified, resulting in prediction set that might be suboptimal, even
though it still enjoys the frequentist coverage guarantee. To address this limita-
tion, we propose an innovative solution that combines Bayesian model averaging
(BMA) with conformal prediction. This hybrid not only leverages the strengths of
Bayesian conformal prediction but also introduces a layer of robustness through
model averaging. Theoretically, we prove that the resulting prediction set will
converge to the optimal level of efficiency, if the true model is included among
the candidate models. This assurance of optimality, even under potential model
uncertainty, provides a significant improvement over existing methods, ensuring
more reliable and precise uncertainty quantification.

1 INTRODUCTION

Conformal prediction is a distribution-free uncertainty quantification method that generates predic-
tion sets with valid coverage under minimal assumptions of exchangeability (Vovk et al., 2005).
By building on existing machine learning techniques, conformal prediction uses available data
to establish valid prediction set Cα(Xn+1) for new instances Xn+1 with coverage guarantee
P (Yn+1 ∈ Cα(Xn+1)) ≥ 1 − α. Prediction sets that include the ground truth with high proba-
bility are essential for high-stakes applications, such as autonomous vehicles (Bojarski et al., 2016)
and clinical settings (Esteva et al., 2017). However, it is also preferable for the prediction sets
Cα(Xn+1)) to be efficient i.e. as small as possible, as smaller sets are more informative. Recently,
Hoff (2023) investigated the optimal efficiency of full conformal Bayes prediction sets under a cor-
rectly specified Bayesian model, showing that they yield prediction sets with the minimum expected
volume at a given target coverage level (1−α). In addition, Fong & Holmes (2021) introduced scal-
able methods for generating full conformal Bayes prediction sets applicable to any Bayesian model,
highlighting the advantages of conformal Bayesian predictions over traditional Bayesian posterior
predictive sets, especially in the presence of model misspecification.

However, constructing or selecting the correct Bayesian model to obtain optimally efficient confor-
mal prediction sets is a challenging task. Although conformal prediction sets provide finite-sample
coverage guarantees for any model, they may fail to achieve volume optimality when the underlying
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model is misspecified. This challenge underscores a broader limitation of traditional conformal pre-
diction methods, which typically rely on a fixed machine learning model to generate prediction sets
with a predetermined marginal coverage level. Given the vast array of possible predictive models
for a given problem, and the fact that conformal methods yield valid sets for all of them, identifying
the most appropriate model becomes inherently difficult. This issue of model uncertainty has long
been a persistent and underexplored problem in the conformal prediction literature.

Our Contributions: In this paper, we provide an innovative solution in the form of Conformal
Bayesian model averaging (CBMA) to the challenging issue of constructing efficient conformal
prediction sets when there is model uncertainty in the Bayesian framework. Our proposed CBMA
prediction method seamlessly combines conformity scores of each Bayesian model in order to con-
struct a single conformal prediction set. This paves the way for incorporating model averaging
procedures into conformal prediction framework which is currently lacking in the literature. To the
best of our knowledge, our CBMA approach is the first method which combines conformity scores
from diverse models to construct valid conformal prediction sets and requires no data splitting (data
efficient). Our choice of conformity scores in the form of posterior predictive densities is also opti-
mal and leads to the most efficient prediction set when the underlying Bayesian model is true (Hoff,
2023). Our CBMA method can construct full conformal prediction sets given samples for model
parameters of each model from their posterior distributions and posterior model probabilities, which
can be obtained as the output of BMA. Theoretically, we also prove the optimal efficiency achieved
by conformal prediction sets constructed using CBMA method as the sample size increases. Such
guarantee of optimal efficiency even under model uncertainty provides an improvement over exist-
ing methods. Finally, our method incorporates both data and model uncertainty into the construction
of prediction sets which enhances the reliability of the predictions.

2 PRELIMINARIES

We consider a collection of i.i.d. observations Z1:n = {(Xi, Yi)}ni=1, where each observation
(Xi, Yi) ∈ Rd × R is a covariate-response pair. We begin by summarizing full conformal predic-
tion framework (Vovk et al., 2005), conformal Bayes (Fong & Holmes, 2021) and Bayesian model
averaging (BMA) (Raftery et al., 1997).

2.1 FULL CONFORMAL PREDICTION

In the full conformal prediction method, candidate labels yn+1 are included in Cα(Xn+1) if the
resulting pair (Xn+1, yn+1) is sufficiently similar to the examples in Z1:n. A conformity score σi

σi := σ(Z1:n+1;Zi),

takes as input a set of data points Z1:n+1 = Z1:n

⋃
Zn+1 where Zn+1 = {(Xn+1, yn+1) , and

computes how similar the data point Zi is for i = 1, . . . , n+1. The key property of any conformity
score is that it must be exchangeable in the first argument, meaning the conformity core for Zi

remains unchanged under permutation of Z1:n+1. We refer a conformity score with this property as
a valid conformity score. Assuming Z1:n+1 is exchangeable, σ1:n+1 will also be exchangeable, and
its rank will be uniformly distributed among {1, . . . , n + 1} (assuming continuous σ1:n+1). This
implies that the rank of σn+1 is a valid p-value. For a given value Yn+1 = y (with Xn+1 known),
we can denote the rank of σn+1 among σ1:n+1 as

r(y) =
1

n+ 1

n+1∑
i=1

1(σi ≤ σn+1).

For miscoverage level α, the full conformal predictive set, Cα(Xn+1) = {y ∈ Y : r(y) > α},
ensures the desired frequentist coverage P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α, where P is over Z1:n+1.
A formal proof can be found in Vovk et al. (2005), Chapter 8.7 . For continuous σ1:n+1, Lei et al.
(2018), Theorem 1 show that the conformal predictive set does not significantly over-cover.

2.2 FULL CONFORMAL BAYES

In the Bayesian prediction, given the model likelihood pθ(y|x) and prior on parameters, π(θ)
for θ ∈ Rp, the Bayesian posterior predictive distribution for the response at new instance
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Xn+1 = xn+1 conditioned on the observed data Z1:n represents subjective and coherent beliefs.
As noted by Draper (1995) and Fraser (2011), Bayesian predictive sets such as Highest posterior
density predictive credible sets are poorly calibrated in the frequentist sense. This has consequences
for the robustness of such approaches and trust in using Bayesian models to aid decisions. Con-
formal inference for calibrating Bayesian models was previously suggested in Vovk et al. (2005);
Wasserman (2011). In a Bayesian model, it is natural to consider the posterior predictive density as
the conformity score:

σi = p(Yi|Xi, Z1:n+1) =

∫
pθ(yi|xi)π(θ|Z1:n+1) dθ

This is a valid conformity score, σi is indeed invariant to the permutation of Z1:n+1 due to the form

of π(θ|Z1:n+1) ∝ π(θ)
n+1∏
i=1

pθ(yi|xi). This method is referred to as Conformal Bayes in Fong &

Holmes (2021).

2.3 BMA: BAYESIAN MODEL AVERAGING

In detail discussion on BMA can be found in the seminal work of Hoeting et al. (1999), Wasserman
(2000), Raftery et al. (1997). Let X ∈ Rd denote the vector consisting of all predictors under
consideration and Y ∈ R denote the response variable. In the supervised learning tasks, our goal is
to construct a predictive model for Y based on X via some model M. The Bayesian model M in
such scenario can be represented as

Y |X, θ,M ∼ pθ(y|x) ; θ|M ∼ π(θ) ,

where θ denotes the parameters of the model M, π(θ) denotes the prior on the parameters and
pθ(y|x) denotes the likelihood function under the model M.

Now suppose, we have several competitive models Mk with parameters θk ∈ Θk leading to model
space M = {M1, . . . ,MK}. The Bayesian model for each model is described as:

Y |X, θk,Mk ∼ pθk(y|x) ; θk|Mk ∼ πk(θk).

If ∆ is a quantity of interest, say predicted values at a covariate x ∈ Rd, then the expected value of ∆
given the data Z1:n is obtained by first finding the posterior expectation of ∆ under each model, and
then weighting each expectation by the posterior probability of the model in the BMA framework:

E[∆|Z1:n] =

K∑
k=1

p(Mk|Z1:n)E[∆|Z1:n,Mk].

Similarly, the posterior distribution for ∆ can be represented as a mixture distribution over all mod-
els,

p(∆|Z1:n) =

K∑
k=1

p(Mk|Z1:n)p(∆|Z1:n,Mk) (1)

where p(∆|Z1:n,Mk) is the posterior distribution of ∆ under model Mk. In equation 1 the poste-
rior probability of model Mk is given by

p(Mk|Z1:n) =
m(Z1:n|Mk)p(Mk)

K∑
k=1

m(Z1:n|Mk)p(Mk)

,

where p(Mk) is the prior probability that Mk is the true model and m(Z1:n|Mk) is the marginal
likelihood under model Mk,

m(Z1:n|Mk) =
∫ n∏

i=1

pθk(Yi|Xi)πk(θk) dθk

obtained by integrating over the prior distributions for model specific parameters. Note that all
conditional expressions in this section denotes condition on Z1:n = {(Xi, Yi)}ni=1.
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2.4 PROBLEM SETUP

Our objective is to construct a conformal prediction set Cα(Xn+1) ⊆ R that provides a range
of possible responses for a test point Xn+1 based on a collection of i.i.d. observations Z1:n =
{(Xi, Yi)}ni=1. We focus on Bayesian prediction based on the training data Z1:n. Suppose
we have K competing models for this data, denoted as M1, . . . ,MK , forming a model space
M = {M1, . . . ,MK}. For each model Mk with k = 1, 2, . . . ,K, the data likelihood is specified
as pθk(yi | xi), where θk represents the parameters of model Mk. Let πk(θk) denote the prior
distribution on the parameters θk of model Mk.

The key question is: with multiple candidate models in M, how can we combine their predictions
to create a single conformal prediction set? Additionally, we aim to construct prediction sets using a
transductive conformal approach, rather than relying on data-splitting inductive methods, which are
often less efficient in terms of information usage. We propose to average conformity scores from
each model to construct combined conformity score. This task presents several challenges including
the issue of the same dataset being utilized to train individual models, the conformity scores are
not independent. Also, note that, we need to combine conformity scores in a fashion that assigns
higher weights to the conformity scores of the true model, if it is included in the model space. Thus,
weights used for averaging should be data dependent.

2.5 RELATED WORKS

Conformal Bayes has been a topic of research interest for a long time. But some recent advances
in terms of optimal efficiency of such prediction sets and scalable methods for the construction of
full conformal sets are noteworthy. Hoff (2023) demonstrated that the log predictive densities are
the optimal conformity measure to construct conformal prediction sets (minimum expected volume)
when the underlying Bayesian model is true. Fong & Holmes (2021) recently provided a scalable
Full conformal Bayes algorithm to construct a Bayes conformal set efficiently. They also explored
the benefits of conformal Bayes prediction over Bayesian predictive sets when the model is misspec-
ified. But, the conformal prediction set they construct may be inefficient. We address this issue by
incorporating model averaging technique of Bayesian model averaging (BMA) into the conformal
framework. BMA has been proposed as a natural Bayesian solution to account for model uncertainty
(Hoeting et al., 1999; Wasserman, 2000; Raftery et al., 1997). Some recent works proposing model
aggregation strategies to combine conformal prediction sets or p-values include Gasparin & Ram-
das (2024a), Gasparin & Ramdas (2024b), and Yang & Kuchibhotla (2024). Gasparin & Ramdas
(2024b) proposed conformal set aggregation by majority vote strategy, and proved that a merged set
suffers a loss in coverage i.e. merged conformal set will have at least 1 − 2α marginal coverage if
the individual sets have 1 − α marginal coverage. Furthermore, size of such merged sets is shown
be no larger than the maximum size among the given sets. However, they do not show if the merged
set will achieve optimal efficiency under certain conditions. Yang & Kuchibhotla (2024) provide
efficiency first conformal prediction method but this approach suffers from a coverage loss in the
aggregation step. Many existing works are available for aggregating inductive conformal predic-
tors which require data splitting (Vovk, 2015; Linusson et al., 2017; Carlsson et al., 2014; Toccaceli
& Gammerman, 2019) and are based on combining p-values which may not be well-calibrated.
Linusson et al. (2020) proposed the use of out-of-bag ensemble conformal predictors. But, their
theoretical validity of coverage is only approximate and evaluated solely based on empirical studies.
Few methods attempt to merge conformal scores from various models under the assumption that
distinct data are employed to train each model (Gauraha & Spjuth, 2021), thereby constructing con-
formal sets accordingly. Overall, common limitations of existing methods include all or some of the
following: the requirement data splitting or access to hold-out set for calibration, which may not be
feasible for small sample sizes, the lack of coverage in the aggregation step, not targeted to achieve
efficient prediction sets (instead focus on efficient set aggregation which may not lead to narrower
prediction sets), and no theoretical guarantees of coverage and efficiency. To overcome these pitfalls
of the existing approaches, we propose CBMA framework which (1) provide theoretical guarantee
of efficiency of conformal prediction sets under model uncertainty, (2) allows the use of full data for
all model fits and computing conformity scores for each model as well as aggregation weights are
data and prior dependent, which are computed using the same data. Thus, there is no efficiency loss
by data splitting at any step, and (3) no coverage loss in the aggregation process.
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3 CBMA: CONFORMAL BAYESIAN MODEL AVERAGING

In this section, we describe our CBMA approach to construct conformal predictive sets. For each
model Mk in the model space M = {M1, . . . ,MK}, we consider Bayesian prediction using train-
ing data Z1:n for an outcome of interest Yi ∈ R and covariates Xi ∈ Rd. Given a model likelihood
pθk(yi|xi) and prior on parameters, πk(θk) for θk ∈ Θk, the posterior predictive distribution for the
response at a new Xn+1 = xn+1 takes on the form

pMk
(y|xn+1, Z1:n) =

∫
pθk(y|xn+1)πk(θk|Z1:n) dθk,

where πk(θk|Z1:n) is the Bayesian posterior and πk(θk|Z1:n) ∝ πk(θk)
n∏

i=1

pθk(yi|xi). We first fit

K candidate models using BMA. Following Fong & Holmes (2021), full conformal Bayes prediction
sets are constructed using posterior predictive densities as conformity measures:

σMk
i = pMk

(Yi|Xi, Z1:n+1)

This is a valid conformity score, σMk
i is indeed invariant to the permutation of Z1:n+1 due to the

form of π(θ|Z1:n). For each model Mk, we employ the Add-One-In importance sampling strategy
as described by Fong & Holmes (2021) once we obtain posterior samples θ1:Tk ∼ πk(θk|Z1:n) for a
large T using MCMC. Specifically, for Yn+1 = y and θ1:Tk ∼ πk(θk|Z1:n), we can compute:

σ̂Mk
i = p̂Mk

(Yi|Xi, Z1:n+1) =

T∑
t=1

w̃k
(t)p

θ
(t)
k

(Yi|Xi), (2)

where weights w̃k
(t) are of the form

w
(t)
k = p

θ
(t)
k

(y|xn+1), w̃k
(t) =

w
(t)
k

T∑
t=1

w
(t)
k

.

We can also compute posterior model probabilities p(Mk|Z1:n) based on the observations Z1:n so
that we don’t need to refit the models.

Finally, we aggregate individual model conformity scores σMk
i to construct a weighted combination

σCBMA
i defined as:

σCBMA
i =

K∑
k=1

qk(Z1:n, Zn+1)σ
Mk
i , (3)

where

qk(Z1:n, Zn+1) =
p(Mk|Z1:n)pMk

(y|xn+1, Z1:n)
K∑

k=1

p(Mk|Z1:n)pMk
(y|xn+1, Z1:n)

. (4)

The aggregation weights are proportional to the posterior probabilities of the models and predictive
posterior density of new test instance (y, xn+1) conditioned on the observed data Z1:n. Note that,
we can easily obtain both the terms using posterior samples for parameters based on Z1:n and BMA
also provides posterior model probabilities in the output. Now combined score σCBMA

i can be
computed as

σ̂CBMA
i =

K∑
k=1

p̂(Mk|Z1:n)

(
1
T

T∑
t=1

w
(t)
k

)
σ̂
Mk
i

K∑
k=1

p̂(Mk|Z1:n)
1
T

T∑
t=1

w
(t)
k

. (5)

Note that because of the data dependent weights q(Z1:n, Zn+1) in the construction of σCBMA
i , it is

not clear if it is a valid conformity score in order to construct conformal prediction set. In Lemma
1, we show that σCBMA

i is indeed a conformity measure satisfying the exchangeability criterion.
Then, we construct full conformal prediction sets with coverage guarantee. We call this method as
Conformal Bayesian model averaging (CBMA). We summarize our method in Algorithm 1.
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Algorithm 1 CBMA: Conformal Bayesian Model averaging
Input: Observed data is Z1:n; test point Xn+1; Specify miscoverage level α ; for every model
Mk ∈ M, Model likelihood pθk(y|x) and prior πk(θk).
Output: Return CBMA

α (Xn+1), Individual sets CMk
α (Xn+1)

(Run the usual BMA)
for k ∈ 1 : K do

Obtain posterior samples θ1:Tk ∼ πk(θk|Z1:n) through MCMC
Compute p̂(Mk|Z1:n)

end for
for y ∈ YGrid do

Compute σMk
1:n and σMk

n+1 using (2).
Store the rank, rk(y) , of σMk

n+1 among σMk
1:n+1.

Compute σCBMA
1:n and σCBMA

n+1 , using (3) and (4).
Store the rank, rBMA(y) , of σCBMA

n+1 among σCBMA
1:n .

end for
Return: Set CCBMA

α (Xn+1) = {y ∈ YGrid : rCBMA(y) > α}; Individual Sets CMk
α (Xn+1) =

{y ∈ YGrid : rk(y) > α}

4 THEORETICAL PROPERTIES

In the Lemma 1, we show that aggregated score σCBMA
i in (7) is indeed a valid conformity score.

Our proof of Lemma 1 relies on an alternative representation for σCBMA
i which can be interpreted

as the posterior predictive density under the hierarchical Bayesian model:

Y |X, θk,Mk ∼ pθk(y|x) θk|Mk ∼ πk(θk) ; Mk ∼ p(Mk). (6)

Lemma 1 The aggregated score σCBMA
i can be rewritten as

σCBMA
i =

K∑
k=1

p(Mk|Z1:n+1)pMk
(Yi|Xi, Z1:n+1) =

K∑
k=1

p(Mk|Z1:n+1)σ
Mk
i . (7)

This is the posterior predictive density under the hierarchical model (6) and hence, is a valid confor-
mity measure. Here p(Mk|Z1:n+1) is the posterior model probability of Mk conditional on Z1:n+1.

Proof: We provide the details of obtaining alternative representation in (7) for aggregated scores
given in (3) in Appendix A.1. Hierarchical model (6) is fully Bayesian with two kinds of parameters:
the parameters θk of each of the model Mk and the models Mk’s themselves. Thus, we note that for
i.i.d. observations Z1:n+1 = {(Yi, Xi)}n+1

i=1 from the hierarchical model (6) are exchangeable. Also,
the conformity measure considered is the posterior predictive density function, which is invariant
to the permutation of Z1:n+1. This follows by observing that the likelihood under each model is
n+1∏
i=1

pθk(Yi|Xi) is invariant under the permutations of Z1:n+1. Thus, this is a valid conformity

measure.

Once we have established σCBMA
i as a valid conformity measure, we can define the conformal

prediction set as

rCBMA(y) =

n+1∑
i=1

1(σCBMA
i ≤ σCBMA

n+1 )

n+ 1
, CCBMA

α (Xn+1) = {y ∈ Y : rCBMA(y) > α}. (8)

Theorem 1 Assume that Z1:n+1 = {(Yi, Xi)}n+1
i=1 are exchangeable, and the conformity measure

σCBMA
i as in (7) is invariant to the permutation of Z1:n+1. We then have

P
(
Yn+1 ∈ CCBMA

α (Xn+1)
)
≥ 1− α,
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where, Cα(Xn+1) is defined in (8) and P is over Z1:n+1. Moreover, if the conformity measures
{σCBMA

i }ni=1 are almost surely distinct, then we have

P
(
Yn+1 ∈ CCBMA

α (Xn+1)
)
≤ 1− α+

1

n+ 1
.

Our next result demonstrates the convergence of CBMA prediction sets to the conformal prediction
sets based on the true model as the sample size increases, if the true model is included in the model
space M. The intuition behind this result is grounded in the established observation that BMA
approaches the true model as the sample size n becomes large, provided the true model is within the
considered model space (Le & Clarke, 2022). This convergence ensures that the CBMA prediction
sets become increasingly accurate and reliable, mirroring the properties of conformal prediction sets
derived from the true model. The detailed proof of this result is provided in the Appendix A.2.

Theorem 2 Suppose true model Mtrue is in the model space M = {Mi}ki=1. Under the hypoth-
esis of Theorem 3 in Le & Clarke (2022), as n → ∞, under Mtrue, we have qk(Z1:n, Zn+1) → 1
in probability when Mk = Mtrue and qk(Z1:n, Zn+1) → 0 in probability when Mk ̸= Mtrue.
Thus, for any i, the conformity score σCBMA

i converges in probability to conformity score σMtrue
i

under true model. Furthermore, let VCBMA(Xnew, Z1:n) denote the volume of the CBMA prediction
set and Vtrue(Xnew, Z1:n) denote the volume of the optimal conformal prediction set under the true
model Mtrue. Then, limn→∞ |EVCBMA(Xnew, Z1:n)− EVtrue(Xnew, Z1:n)| = 0.

Remark 1 Theorem 2 implies that, as the sample size n becomes large, our CBMA prediction set
will be similar to conformal Bayes prediction set based on true model. Thus, the expected volume
of the CBMA prediction set converges to the expected volume of the conformal Bayes prediction set
based on the true model. It is important to note that the expected volume of the conformal prediction
set under the true model is optimal in terms of minimum expected volume (Hoff, 2023). Therefore,
as n grows, our CBMA prediction set becomes as efficient as the optimal conformal prediction set
derived from the true model. This convergence ensures that the CBMA prediction set not only aligns
with the true model but also maintains efficiency, making it a powerful tool for practical applications
where model uncertainty is present.

Remark 2 In the case of small sample sizes, inferring the true model for the data generation process
is challenging and often impossible. In such scenarios, our method can enhance the performance of
predictions by leveraging the improved predictive power of BMA. Note that BMA has been shown to
outperform individual models in terms of log scores (Raftery et al., 1997).

Remark 3 When the true model is not in the model space, we note that qk(Z1:n, Zn+1) → 1 in
probability as n → ∞ for Mk∗ such that DKL(pMtrue

||pMk∗ ) = inf
k=1,...,K

DKL(pMtrue
||pMk

),

where DKL(·||·) denotes the Kullback-Leibler (KL) divergence. This follows from general posterior
concentration results (White, 1982; Berk, 1966; Ramamoorthi et al., 2015). Thus, if model space is
large enough to contain a model in the KL divergence neighborhood of the true model, our CBMA
approach will construct near-optimal conformal prediction sets.

5 SIMULATION STUDY

We evaluate the performance of our conformal Bayesian model averaging prediction method in two
experimental settings: (i) when true model is a part of the model space, and (ii) when true model is
not included in the model space. In the former case, our numerical results show that the performance
of our methodology is similar to that of conformal Bayes and Bayes predictive sets based on true
model. This is in accordance with the results obtained by Fong & Holmes (2021) and Hoff (2023) but
our method also incorporates model uncertainty adding an extra layer of robustness to the predictive
inference and elevate reliability. In the second scenario, we note that our methodology leads to
construction of valid prediction sets with smaller average size as compared to conformal Bayes
prediction sets and Bayesian sets for individual models. This demonstrates the advantage offered by
our proposed method over conformal Bayes by Fong & Holmes (2021). The details of our simulation
experiments are given in the Appendix A. All codes and results are provided in the supplementary
material.
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5.1 QUADRATIC MODEL

We draw independent and identically distributed (i.i.d.) samples xi ∼ Unif(0, 1), for i = 1, . . . , n.
The response y is then generated through following model:

yi = β0 + β1xi + β2x
2
i + ϵi ;

β0 ∼ N (0, 0.25) , β1 ∼ N (1, 0.25) , β2 ∼ N (0.5, 0.25) , ϵ ∼ N (0, 0.2).

We consider three models: Model 1 (M1) represents the true model, Model 2 (M2 : yi = β0 +
β1xi + ϵi) is a linear model derived by omitting the quadratic term from Model 1, and Model 3
(M3 : yi = β0 + β2x

2
i + ϵi) includes only an intercept and a quadratic term. In this experiment, we

set the miscoverage level α = 0.20. We use 40% of the total sample size n as the test set with the
remaining 60% forming the training set. The summary of the results of the different prediction sets
is given in Table 1 (for sample sizes n = 100 and n = 200), provided in A.4.1.

We observe that, all conformal prediction sets (which are intervals here) achieves the target cover-
age in all cases. Also, as observed by Fong & Holmes (2021), conformal Bayes prediction sets have
shorter lengths as compared to their corresponding Bayesian prediction sets, for both true and mis-
specified models. Our proposed CBMA method provides prediction sets which have similar average
lengths as that of conformal Bayes based on true model. Note that CBMA also incorporates model
uncertainty as opposed to conformal Bayes, hence, leads to reliable predictive inference and pro-
vides more precise uncertainty quantification. Furthermore, as shown in Figure 1, CBMA achieves
optimal mean length, equal to CB under model M1, even at smaller sample sizes n = 100, 200,
demonstrating practical utility of our CBMA approach.

Figure 1: Quadratic model: Comparison of CBMA and CBM1 for different sample sizes.

5.2 APPROXIMATION USING HERMITE POLYNOMIALS

In this section, we consider a data generating mechanisms similar to Lu & Su (2015). Let Xi ∼
Weibull(1, 1) are i.i.d. The data is generated from the following model

Yi = θ
exp{Xi}

1 + exp{Xi}
+ ϵi.

Here, we consider ϵi = (0.01+Xi)ζi and ζi ∼ N (0, 1). This is a scenario of heteroskedasticity. In
this study, we employ Hermite polynomials to approximate the unknown function θ exp{Xi}

1+exp{Xi} . We
build a model space consisting of K models with the covariates Xij , j = 1, 2, . . .,

Xij = (Xi − X̄)j−1 exp

{
− (Xi − X̄)2

2s2X

}
, j = 1, 2, . . . ,
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where X̄ and s2X represent the sample mean and standard deviation of the set Xi, respectively. In our
simulation experiment, we set 1−α = 0.8. We use 40% of the total sample size as the test set, with
the remaining 60% forming the training set (ntrain = 0.60× n). The number of models considered
is K = 11. We consider nested model sequence, i.e. for k = 1, . . . ,K, model Mk includes
covariates Xi1, . . . , Xik. We summarize our results based on E = 50 experiments for samples size
n = 100 in Figure 2 and Figure 5 (in A.4.2). The results for other studies for n = 100, θ = 10 and
n = 50, θ = 1 are reported in Table 5 and Table 6 in Appendix A.4.2. We note that our CBMA
method provides sets (here, prediction sets are in the form of intervals) for which average length is
smaller than all other prediction sets. Also, note that, most of Bayes prediction sets overcover and
hence have larger sizes. Conformal Bayes as well as our CBMA prediction sets have valid target
coverage. But, on average, CBMA prediction sets have shorter length than CB prediction sets. These
results demonstrates the empirical efficiency of CBMA prediction sets over CB prediction sets.

Figure 2: Approximation using Hermite polynomials: Comparison of mean length for prediction
sets obtained with different methods: CBMA (proposed method), BMA, individual Bayes prediction
sets (in red), and individual conformal Bayes (CB) prediction sets (in blue). Here, we report results
based on E = 50 number of experiments. We have set the target coverage as (1−α) = 0.80, sample
size n = 100 and θ = 1.

5.3 REAL DATA EXAMPLE: CALIFORNIA HOUSING DATA

We demonstrate our method using the California Housing dataset. The dataset is available in sklearn,
and consists of n = 20640 subjects, where the continuous response variable denotes the median
house value for California districts, expressed in hundreds of thousands of dollars (100, 000), and
d = 8 covariates, including median income and median house age in block group, average number of
rooms per household, block group population. This dataset was derived from the 1990 U.S. census.
We first draw random samples of sizes n = 50, 100 or 150 from this dataset for our study. We then
standardize all covariates and the response to have mean 0 and standard deviation 1. We consider
four different models for these experiments by considering only two covariates in the model. Thus,
the models we consider are

Mk : y = β0 + β1Xk + β1Xk+1 + ϵ , k = 1, 2, 3, 4.

The priors we consider on the parameters are βi ∼ N(0, 5), ϵ ∼ N+(0, 1), half-normal distribution.
Among all four models, M1 seems more appropriate as it contains important covariates median
income and median house age in block group, as opposed to other covariates. We fit these four
models to obtain MCMC samples from the posterior distribution and compute marginal likelihoods
for each model. To check coverage, we repeatedly divide our dataset into a training and test dataset
for 50 repeats, with 40% of the dataset in the test split. We adopt the setup for simulations simi-
lar to Fong & Holmes (2021) in their section 4.1, so that we can compare the performance of our
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CBMA method with individual conformal Bayes. We set the miscoverage level at α = 0.2. To
illustrate the time complexity, we note that, for n = 150, the average times for constructing con-
formal Bayes prediction sets were 0.806(0.004), 0.793(0.002), 0.786(0.002) and 0.794(0.003) for
four models, Bayes credible sets took average times of 0.447(0.003), 0.444(0.002), 0.441(0.002)
and 0.449(0.004). Further, to construct Bayes credible sets using BMA, average additional time
was 0.091(0.005) and our CBMA method, additional average time was 0.128(0.007). We report
average lengths and coverages of various prediction sets (prediction intervals in this case) in Figure
3 and 6. We note that, as suggested earlier, model M1 fits data well as compared to other three
models, we expect to have conformal Bayes prediction sets based on this model will be the shortest
among all four models. As indicated by our Theorem 2 and Remark 3, our CBMA intervals achieves
the shortest lengths as the sample size becomes sufficiently large enough. In our results, we can see
CBMA achieves shortest lengths even at finite sample size of n = 150. All conformal Bayes ap-
proaches as well as CBMA achieves, on average, the target coverage of 1− α = 0.80. On the other
hand, Bayes models over cover in almost all cases.

Figure 3: California Housing data: comparison of mean lengths of intervals using Bayes prediction,
conformal Bayes (CB) for all four models, CBMA and BMA for different sample sizes.

6 CONCLUSIONS

In this work, we identified a challenging issue with the traditional conformal prediction framework:
selecting a model in advance in order to construct conformal prediction sets may result in suboptimal
prediction sets. In addressing this issue of model uncertainty within the conformal prediction frame-
work, we offer a natural Bayesian solution by integrating Bayesian model averaging in conformal
prediction framework. Our proposed CBMA framework seamlessly amalgamates conformity scores
from individual Bayesian models to construct a unified conformal prediction set, thus introducing the
incorporation of model averaging procedures— a notable advancement currently overlooked from
current literature on conformal prediction theory. Additionally, we present an efficient algorithm for
constructing CBMA prediction sets, which essentially represent full conformal predictions. Theo-
retically, we establish the optimal efficiency of our CBMA prediction sets as sample sizes increase,
underpinning the efficacy of our approach. Overall, our method holds particular value in real-world
scenarios where model uncertainty is a prevalent concern, providing a robust solution within the
conformal prediction framework.

However, our approach does have limitations due to the inherent characteristics of MCMC algo-
rithms. The error in these sampling methods can affect prediction sets constructed using CBMA. As
noted in Fong & Holmes (2021), we can also expect some robustness to conformal sets as they are
based on ranks and not actual values. Furthermore, since we are averaging over multiple models,
we expect that the errors in one of the models’ training can be masked on averaging.
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A APPENDIX

A.1 PROOF OF LEMMA 1:

(Representation for the conformity measure σCBMA
i in (7) ) Under hierarchical Bayesian model in

(6), the posterior predictive density for new text point (y, xn+1) can be obtained as follows:

p(Yi|Xi, Z1:n+1) =

K∑
k=1

p(Mk|Z1:n+1)pMk
(Yi|Xi, Z1:n+1)

=

K∑
k=1

m(Z1:n+1|Mk)p(Mk)
K∑

k′=1

m(Z1:n+1|Mk′)p(Mk′)

pMk
(Yi|Xi, Z1:n+1)

=

K∑
k=1

m(Z1:n+1|Mk)p(Mk)pMk
(Yi|Xi, Z1:n+1)

K∑
k=1

m(Z1:n+1|Mk)p(Mk)

=

K∑
k=1

p(Mk)
m(Z1:n|Mk)
m(Z1:n|Mk)

m(Z1:n+1|Mk)pMk
(Yi|Xi, Z1:n+1)

K∑
k=1

p(Mk)
m(Z1:n|Mk)
m(Z1:n|Mk)

m(Z1:n+1|Mk)

=

K∑
k=1

p(Mk)pMk
(y|xn+1, Z1:n)m(Z1:n|Mk)pMk

(Yi|Xi, Z1:n+1)

K∑
k=1

p(Mk)pMk
(y|xn+1, Z1:n)m(Z1:n|Mk)

=

K∑
k=1

p(Mk|Z1:n)pMk
(y|xn+1, Z1:n)pMk

(Yi|Xi, Z1:n+1)

K∑
k=1

p(Mk|Z1:n)pMk
(y|xn+1, Z1:n)

.

A.2 PROOF OF THEOREM 2:

Theorem 3 in Le & Clarke (2022) establishes conditions under which the posterior model probabil-
ities converge to their true values. Below, we summarize key assumptions necessary for proving the
theorem, which are also detailed in Le & Clarke (2022).

1. For each k = 1, . . . ,K, let θk ∈ Θk, an open subset of Rdk .

2. The densities pθk(yi|xi) are measurable in y for all θk, x and continuous in θk. All second
partial derivatives of pθk(yi|xi) w.r.t. θk exist and are continuous for all x, y, and maybe
passed under the integral sign in

∫
pθk(yi|xi)dy.

3. There exists a function K(·) such that EθkK(Y ) < ∞ and each element of the matrix(
∂2

∂θk,l∂θk,j
log pθk(yi|xi)

)
l,j=1,...,dj

is absolute value by K(y) uniformly for θk in an open

neighbourhood of θk,0.

4. Assume that, for any xi,

Ii(θk,0|xi) =

(
−Eθk,0

∂2

∂θk,l∂θk,j
log pθk(yi|xi)

)
l,j=1,...,dk

is continuous on an open set around the true value θk,0 and is positive definite at θk,0.

5. For any θk,0 ∈ Θk and any xi, pθk(yi|xi) = pθk,0
(yi|xi) a.e. in y implies θk = θk,0.
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6. The average (1/n)
∑

Ii(θk,0|xi) is invertible for any n and the dk− vector Ψ(θk,0|x, y) =(
∇θk log pθk,0

(yi|xi)
)T

satisfies∑
E∥ 1

n

(∑
Ii(θk,0|xi)

)−1/2

Ψ(θk,0|x, Y )∥3 = o

(
1

n3/2

)
.

7. Priors πk(θk) are continuous for θk ∈ Θk.

Under these conditions, the posterior model probabilities satisfy

p(Mk|Z1:n+1) → 1 or 0 in probability as n → ∞,

when Mk corresponds to the true model Mtrue or an incorrect model, respectively. This result
directly implies

σCBMA
i → σMtrue

i , in probability, as n → ∞.

Consequently, the conformal Bayesian model averaging (CBMA) prediction set indicator satisfies

1(y ∈ CCBMA
α (Xn+1)) → 1(y ∈ CMtrue

α (Xn+1)) in probability as n → ∞.

Thus, the CBMA algorithm (Algorithm 1) produces prediction sets that asymptotically converge to
the conformal Bayes prediction set CMtrue

α (Xn+1) based on the true model Mtrue.

A.3 EXPERIMENTS

A.4 COMPLEXITY OF CONSTRUCTING CBMA INTERVALS

Given the posterior samples and posterior model probabilities, obtaining individual models’ confor-
mity scores has a complexity of O(ngrid × posterior samples × ntrain) (Fong & Holmes, 2021). The
aggregation step (requires dot product of K weights and K conformity scores) has a linear overhead
of O(K), where K is the number of models.

A.4.1 QUADRATIC MODEL

We now examine the experimental results for the quadratic model, as discussed in Section 5. Figure
4 presents the posterior model probabilities (PMP) for all three models under consideration across
E = 50 repetitions with a sample size of n = 100. The results indicate that Model 1 frequently
attains the highest posterior model probability. However, Model 2 also exhibits a substantial number
of instances where it achieves a higher PMP. This variability suggests that pre-selecting either Model
1 or Model 2 for constructing conformal prediction sets may lead to suboptimal uncertainty quantifi-
cation. In contrast, our CBMA method leverages predictions from multiple models, ensuring a more
comprehensive integration of model uncertainty. This leads to more efficient and reliable uncertainty
quantification. Additionally, Table 2 presents descriptive statistics from these repeated experiments.
Notably, CBMA prediction set lengths exhibit a symmetric distribution, whereas CB.M1 prediction
sets display a negatively skewed length distribution. This suggests that CBMA results in smaller
prediction sets in many instances compared to CB.M1, enhancing efficiency without compromising
coverage.

EXECUTION TIMES:

Given the posterior samples obtained from MCMC, we evaluate the computational efficiency of
constructing Conformal Bayes (CB) prediction sets and Bayes prediction sets. Table 3 reports the
mean execution times (with standard errors in parentheses) for constructing these intervals across
different models and sample sizes. Additionally, Table 4 presents the execution times for CBMA and
BMA methods. Notably, CBMA incurs higher computational costs compared to BMA, reflecting
the additional complexity introduced by model averaging in the conformal framework. However,
these times remain negligible relative to the broader MCMC sampling process, making CBMA a
computationally feasible approach for uncertainty quantification.
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Figure 4: Posterior model probabilities (PMP) for all three models considered in our experiment
with quadratic model with sample size n = 100.

Table 1: Quadratic model: Comparison of coverage and length for prediction sets obtained with
different methods: CBMA (proposed method), BMA, individual Bayes prediction sets BayesM1,
BayesM2, BayesM3, individual conformal Bayes prediction sets CBM1, CBM2, CBM3. Here, we
report mean and standard error (SE) based on E = 50 number of experiments. We have set the
target coverage as (1− α) = 0.80.

Method CBMA BMA BayesM1 BayesM2 BayesM3 CBM1 CBM2 CBM3
Coverage

n = 100
Mean 0.800 0.811 0.813 0.803 0.804 0.801 0.799 0.804
SE 0.010 0.010 0.010 0.010 0.009 0.010 0.011 0.010

n = 200
Mean 0.807 0.811 0.813 0.813 0.805 0.812 0.815 0.805
SE 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.008

Length
n = 100
Mean 0.535 0.537 0.537 0.545 0.579 0.534 0.547 0.577
SE 0.008 0.007 0.007 0.007 0.009 0.008 0.009 0.010

n = 200
Mean 0.522 0.522 0.522 0.532 0.558 0.524 0.536 0.559
SE 0.006 0.004 0.004 0.005 0.006 0.006 0.007 0.007

A.4.2 APPROXIMATION USING HERMITE POLYNOMIALS

The results of studies for n = 100, 50, θ = 10 and n = 50, θ = 1 are reported in Table 5 and Table
6. We note that CBMA sets have shorter lengths on average in all these experiments.
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Table 2: Descriptive statistics for average lengths of prediction sets obtained with different methods:
CBMA, BMA, individual Bayes prediction sets Bayes M1, Bayes M2, Bayes M3, individual
conformal Bayes prediction sets CB M1, CB M2, CB M3. Here, we report Median, Mean, Standard
error (SE), Lower and upper quartiles (Q1 and Q3), Inter-Quantile range (IQR) based on T = 50
number of experiments. We have set α = 0.1.

Prediction CBMA BMA Bayes M1 Bayes M2 Bayes M3 CB M1 CB M2 CB M3

n = 100
Median 0.684 0.697 0.695 0.715 0.739 0.702 0.688 0.736

Q1 0.64 0.651 0.652 0.666 0.706 0.643 0.64 0.666
Q3 0.736 0.738 0.74 0.756 0.788 0.735 0.755 0.782
IQR 0.096 0.087 0.088 0.09 0.082 0.092 0.115 0.116

Mean 0.686 0.697 0.696 0.709 0.745 0.687 0.696 0.732
SE 0.01 0.008 0.008 0.009 0.008 0.009 0.01 0.011

n = 200
Median 0.676 0.676 0.675 0.69 0.706 0.671 0.681 0.709

Q1 0.643 0.644 0.647 0.664 0.683 0.64 0.646 0.681
Q3 0.711 0.699 0.699 0.711 0.745 0.711 0.71 0.74
IQR 0.068 0.055 0.052 0.047 0.062 0.071 0.064 0.059

Mean 0.673 0.676 0.675 0.691 0.714 0.672 0.682 0.708
SE 0.007 0.006 0.006 0.006 0.007 0.007 0.006 0.008

Model n = 100 n = 200
CBM1 11.198 (0.071) 25.470 (0.067)
CBM2 11.631 (0.075) 28.040 (0.222)
CBM3 11.637 (0.140) 25.950 (0.222)
BayesM1 4.425 (0.038) 8.380 (0.040)
BayesM2 4.641 (0.037) 9.496 (0.113)
BayesM3 4.661 (0.061) 8.956 (0.110)

Table 3: Mean times (SE) for CB and Bayes prediction intervals for models (M1,M1,M1).

Model n = 100 n = 200
CBMA 0.02397 (0.0014346) 0.09902 (0.0039647)
BMA 0.00077 (0.0000435) 0.00123 (0.0000492)

Table 4: Additional mean times (SE) for CBMA and BMA prediction intervals .

A.5 REAL DATA EXAMPLE: CALIFORNIA HOUSING DATA

Figure 6 presents the mean coverage probabilities for different methods, with a confidence level of
1 − α = 0.8. The results indicate that Bayes prediction intervals overcover, providing overly con-
servative intervals. In contrast, Conformal Bayes (CB) and CBMA consistently achieve the target
coverage, ensuring both reliability and efficiency. Additionally, CBMA, by integrating model uncer-
tainty, results in more adaptive and stable prediction intervals compared to individual CB models.

Furthermore, we compare our CBMA set aggregation step with majority vote conformal set aggrega-
tion method proposed by Gasparin & Ramdas (2024b). While this method is designed to effectively
aggregate sets while preserving the coverage guarantee, it does not necessarily aim to minimize the
size of the merged set. In contrast, our CBMA approach offers the additional advantage of allow-
ing the weights in the aggregation step to be learned directly from the same data, addressing a key
limitation of existing model aggregation methods. We conducted a direct evaluation by comparing
the lengths of CBMA-aggregated intervals to those obtained from the majority vote strategy using
individual conformal Bayes prediction sets. For this comparison, we applied Corollary 4.1 from
Gasparin & Ramdas (2024b), accounting for the dependency among our individual sets. In our
example, the mean ratios of the lengths of intervals from the majority vote procedure relative to
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Figure 5: Approximation using Hermite polynomials: Comparison of mean coverage for prediction
sets obtained with different methods: CBMA (proposed method), BMA, individual Bayes prediction
sets (in red), and individual conformal Bayes (CB) prediction sets (in blue). Here, we report results
based on E = 50 number of experiments. We have set the target coverage as (1−α) = 0.80, sample
size n = 100 and θ = 1.

Figure 6: California Housing data: comparison of mean coverages of intervals using Bayes predic-
tion, conformal Bayes (CB) for all four models, CBMA and BMA for different sample sizes. Here,
we set 1− α = 0.8.

those from CBMA were observed to be 1.0765 (0.0253), 1.1196 (0.0151), and 1.1458 (0.0133) for
sample sizes n = 50, n = 100, and n = 150, respectively. These results shows that our CBMA
approach gives shorter intervals as compared to majority vote aggregation strategy.
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Table 5: Approximation using Hermite polynomials: Comparison of coverage and length for
prediction sets obtained with different methods: CBMA (proposed method), BMA, individual
Bayes prediction sets (BayesM1-BayesM11), and individual conformal Bayes prediction sets
(CBM1-CBM11). Here, we report mean and standard error (SE) based on E = 50 number of
experiments. We have set the target coverage as (1− α) = 0.80 and θ = 1.

Method
Length Coverage

n=100 n=50 n=100 n=50
Mean SE Mean SE Mean SE Mean SE

BayesM1 3.485 0.118 3.574 0.144 0.858 0.011 0.862 0.014
BayesM2 3.492 0.121 3.574 0.146 0.858 0.011 0.854 0.013
BayesM3 3.410 0.118 3.537 0.148 0.858 0.011 0.856 0.013
BayesM4 3.384 0.118 3.461 0.142 0.856 0.01 0.853 0.013
BayesM5 3.348 0.116 3.389 0.141 0.853 0.01 0.846 0.013
BayesM6 3.333 0.116 3.344 0.139 0.848 0.01 0.845 0.013
BayesM7 3.297 0.115 3.290 0.137 0.844 0.01 0.838 0.014
BayesM8 3.208 0.108 3.240 0.143 0.837 0.011 0.827 0.015
BayesM9 3.138 0.103 3.182 0.141 0.837 0.011 0.828 0.016
BayesM10 3.087 0.099 3.131 0.141 0.830 0.010 0.829 0.016
BayesM11 3.039 0.094 3.067 0.141 0.830 0.010 0.829 0.015

CBM1 2.689 0.097 2.864 0.128 0.801 0.011 0.819 0.017
CBM2 2.693 0.098 2.857 0.131 0.806 0.012 0.811 0.016
CBM3 2.689 0.101 2.883 0.132 0.799 0.012 0.808 0.016
CBM4 2.667 0.094 2.877 0.137 0.798 0.012 0.819 0.015
CBM5 2.679 0.095 2.884 0.136 0.795 0.012 0.816 0.015
CBM6 2.705 0.093 2.867 0.120 0.797 0.012 0.818 0.015
CBM7 2.703 0.095 2.873 0.120 0.796 0.013 0.818 0.015
CBM8 2.691 0.094 2.823 0.121 0.794 0.013 0.818 0.016
CBM9 2.694 0.093 2.763 0.115 0.798 0.012 0.821 0.016

CBM10 2.704 0.094 2.740 0.112 0.799 0.012 0.822 0.015
CBM11 2.692 0.092 2.753 0.114 0.800 0.012 0.818 0.014
BMA 3.122 0.103 3.130 0.134 0.831 0.011 0.829 0.014

CBMA 2.634 0.091 2.683 0.118 0.792 0.013 0.808 0.015
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Table 6: Approximation using Hermite polynomials: Comparison of mean Coverage and
Length for prediction sets obtained with different methods: CBMA (proposed method), BMA,
individual Bayes prediction sets (BayesM1 − BayesM11) , individual conformal Bayes pre-
diction sets CBM1, . . . , CBM11. We have set the target coverage as (1 − α) = 0.8. Here,
θ = 10,K = 11, n = 100.

Method Length Coverage
Mean SE Mean SE

B1 4.958 0.101 0.861 0.01
B2 3.780 0.121 0.862 0.011
B3 3.634 0.121 0.856 0.011
B4 3.499 0.122 0.855 0.01
B5 3.465 0.121 0.852 0.01
B6 3.432 0.121 0.847 0.01
B7 3.406 0.120 0.843 0.01
B8 3.282 0.109 0.835 0.011
B9 3.189 0.103 0.835 0.011
B10 3.141 0.099 0.834 0.011
B11 3.094 0.096 0.831 0.011
CB1 3.989 0.083 0.812 0.011
CB2 2.922 0.091 0.805 0.010
CB3 2.726 0.092 0.798 0.011
CB4 2.708 0.094 0.803 0.011
CB5 2.707 0.091 0.799 0.011
CB6 2.703 0.088 0.800 0.011
CB7 2.722 0.090 0.799 0.011
CB8 2.722 0.090 0.800 0.011
CB9 2.716 0.090 0.801 0.011

CB10 2.733 0.098 0.801 0.012
CB11 2.718 0.098 0.800 0.012
BMA 3.163 0.099 0.834 0.010

CBMA 2.683 0.089 0.799 0.011
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