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ABSTRACT

The current state-of-the-art single-cell pre-trained models are greatly inspired by
the success of large language models. They trained transformers by treating genes
as tokens and cells as sentences. However, three fundamental differences between
single-cell data and natural language data are overlooked: (1) scRNA-seq data are
presented as bag-of-genes instead of sequences of RNAs; (2) Cell-cell relations are
more intricate and important than inter-sentence relations; and (3) The quantity of
single-cell data is considerably inferior to text data, and they are very noisy. In light
of these characteristics, we propose a new pre-trained model CellPLM, which takes
cells as tokens and tissues as sentences. In addition, we leverage spatially-resolved
transcriptomic data in pre-training to facilitate learning cell-cell relationships and
introduce a Gaussian mixture prior distribution as an additional inductive bias to
overcome data limitation. CellPLM is the first single-cell pre-trained transformer
that encodes cell-cell relations and it consistently outperforms existing pre-trained
and non-pre-trained models in diverse downstream tasks, with 100 times higher
inference speed on generating cell embeddings than previous pre-trained models.

1 INTRODUCTION

Next-generation sequencing technologies such as single-cell RNA sequencing (scRNA-seq) have
produced vast amounts of data, sparking a surge of interest in developing large-scale pre-trained
models for single-cell analysis (Yang et al., 2022; Gong et al., 2023; Shen et al., 2023; Cui et al.,
2023; Theodoris et al., 2023). These models seek to capture underlying structures and patterns from
unlabeled scRNA-seq data, and can be fine-tuned on specific downstream datasets to deliver accurate
predictions and nuanced insights into cellular mechanisms. Particularly, these pre-trained models
have been inspired by the success of large language models, such as BERT and GPT (Kenton &
Toutanova, 2019; Bubeck et al., 2023), and treat genes as words (tokens) and cells as sentences
to train transformers (Vaswani et al., 2017). However, we argue that these approaches may have
limitations due to the fundamental differences between single-cell data and natural language data,
which have been largely overlooked in existing literature:

First, unlike sentences, the scRNA-seq data utilized by existing pre-trained models are not sequential.
Before the training stage, RNA sequences have been identified as functional units, i.e., genes. Instead
of original sequences, data is denoted as a cell-by-gene count matrix that measures the abundance of
individual genes within each cell. This is analogous to the bag-of-words model in natural languages,
where the set of genes is fixed, and there is no sequential relationship among them.

Second, the relationship between cells is remarkably more intricate and important than that of
sentences, since cell-cell communications play an essential role in determining cell states and cell
development (Armingol et al., 2021). Additionally, within tissues, there are numerous cells from
the same or similar cell lineage, which grants them similar gene expression profiles and hence
provides valuable supplementary information for denoising and identifying cell states (Cannoodt
et al., 2016; Molho et al., 2022; Street et al., 2018). As a result, many recent methods (Wang et al.,
2021; Shao et al., 2022; Xu et al., 2023; Wen et al., 2023) have constructed cell-cell graphs to
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Figure 1: An illustration of the difference in the language models between existing single-cell
pre-trained models and CellPLM. Existing pre-trained models only consider conditional probability
between gene expressions within the same cell, while in CellPLM, gene expression distribution is
also conditioned on other cells. See details in Section 3.

advance representation learning for single-cell data. Such evidence demonstrates the importance of
the cell-cell relationship, which is neglected by existing pre-trained models.

Third, the quantity and quality of single-cell datasets are significantly lower than those of natural
language data. For comparison, the high-quality filtered English dataset extracted from Common
Crawl corpora (Wenzek et al., 2020) consists of 32 billion sentences, whereas the largest collection
of single-cell datasets, namely the Human Cell Atlas (Regev et al., 2017), includes less than 50
million cells. To make things worse, single-cell data often suffer from technical artifacts and dropout
events (Svensson et al., 2017; Qiu, 2020), as well as significant batch effects between sequencing
platforms and experiments (Tran et al., 2020; Argelaguet et al., 2021).

The aforementioned differences introduce distinct challenges that call for new pre-training strategies
tailored for single-cell data. To bridge this gap, we propose a novel single-Cell Pre-trained Language
Model (CellPLM), which addresses these challenges from the following perspective: First, As shown
in Figure 1, CellPLM proposes a cell language model to account for cell-cell relations. The cell
embeddings are initialized by aggregating gene embeddings since gene expressions are bag-of-word
features. Second, CellPLM leverages a new type of data, spatially-resolved transcriptomic (SRT)
data, to gain an additional reference for uncovering cell-cell interactions. Compared to scRNA-seq
data, SRT data provide additional positional information for cells. Both types of data are jointly
modeled by transformers. Third, CellPLM introduces inductive bias to overcome the limitation
of data quantity and quality by utilizing a Gaussian mixture model as the prior distribution in the
latent space. This design can lead to smoother and better cell latent representations (Grønbech et al.,
2020; Xu et al., 2023; Jiang et al., 2023). To the best of our knowledge, the proposed CellPLM is the
first pre-trained transformer framework that encodes inter-cell relations, leverages spatially-resolved
transcriptomic data, and adopts a reasonable prior distribution. It is evident from our experiments that
CellPLM consistently outperforms both pre-trained and non-pre-trained methods across five distinct
downstream tasks, with 100 times higher inference speed on generating cell embeddings compared
to existing pre-trained models.

2 SINGLE-CELL PRE-TRAINED MODELS

Deep learning methods for single-cell data have garnered significant research interest in recent
years (Molho et al., 2022). However, due to the distinct model architectures, the knowledge learned
by models is not transferable across tasks. To address this issue, there is an emerging effort (Yang
et al., 2022; Gong et al., 2023; Shen et al., 2023; Cui et al., 2023; Theodoris et al., 2023) from the
research community to explore the potential of a foundation model that first extracts latent knowledge
from unlabeled scRNA-seq data and subsequently generalizes this knowledge to a variety of tasks.

The first such pre-trained model for single-cell data, scBERT (Yang et al., 2022), takes genes as
tokens and leverages an efficient transformer (Choromanski et al., 2020) to encode over 16,000
gene tokens for each cell. By randomly masking a fraction of non-zero gene expression values
and predicting them based on the remaining data, scBERT effectively learns intricate relationships
between genes, leading to improved cellular representation. Later, xTrimoGene (Gong et al., 2023)
made two key enhancements to scBERT: pruning zero-expressed genes and improving expression
binning strategies by an auto-discretization strategy. These modifications notably enhance scalability
and feature resolutions. Another latest preprint, scGPT (Cui et al., 2023), introduces a variant of
masked language modeling that mimics the auto-regressive generation in natural language processing,
where the masked genes are iteratively predicted according to model’s confidence. Unlike the
aforementioned models, Geneformer (Theodoris et al., 2023) and tGPT (Shen et al., 2023) completely
abandon precise expression levels of genes. Instead, they model the rank of gene expressions and
construct sequences of genes according to their relative expression levels within each cell.
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The aforementioned models all regard genes as tokens and focus solely on modeling gene relationships
within individual cells, neglecting the intercellular information in an organism. In contrast, CellPLM
overcomes this limitation by introducing a cell language model that extends beyond single cells.
Furthermore, by leveraging the spatial information of cells acquired from SRT data, along with a
prior Gaussian mixture distribution, the model achieves unparalleled performance on a range of
downstream tasks.

3 CELL LANGUAGE MODEL BEYOND SINGLE CELLS

In this section, we introduce the concept of the cell language models and detailed implementation
of the proposed CellPLM. As illustrated in Figure 2, CellPLM consists of four modules: a gene
expression embedder, an encoder, latent space, and a decoder, which we will demonstrate in Sec-
tion 3.2. At a higher level, there are two stages in our framework: pre-training and fine-tuning. During
pre-training, the model is trained on unlabeled data with a masked language modeling objective. For
fine-tuning, the model is first initialized with the pre-trained parameters, and then all of the parameters
are fine-tuned using data and labels (if available) from the downstream datasets. We demonstrate the
pre-training and fine-tuning framework in Section 3.3 and 3.3, respectively.

3.1 CELL LANGUAGE MODEL

Due to the recent achievements of large language models (Bubeck et al., 2023), several studies have
drawn inspiration from natural language processing in an attempt to establish a foundation model for
single-cell analysis. These studies consider genes as tokens and train transformers on them, aiming to
model the conditional probability between gene expressions. Concretely, previous pre-trained models
are trained on scRNA-seq data, which are stored in the format of a cell-by-gene matrix X ∈ RN×k,
where N is the number of cells, and k is the number of distinct gene types. The value of Xi,j denotes
the count of gene j observed in cell i, also known as gene expression. The pre-training goal of these
models is to estimate a conditional probability distribution, which can be formulated as:

p
(
Xi,j |{Xi,o}o∈O(i)

)
, j ∈ U(i), (1)

where i refers to the i-th cell and O(i) is the set of observed genes in cell i whose expressions are
known; U(i) denotes the set of unobserved genes in cell i whose expression will be predicted by the
model, typically referring as masked genes. If we consider genes as words, this objective is analogous
to the language model in computational linguistics (Bengio et al., 2000), and thus can be named a
“gene language model”. In this way, the model is trained to capture the intrinsic relations between
genes, which can provide prior knowledge for downstream analysis.

However, in Eq. (1), the distribution of unobserved gene expressions only depends on genes within
the same cell, while disregarding the information of other cells within the same tissue, which does not
align with the inherent nature of biology. Therefore, in CellPLM, we provide a different perspective
to model scRNA-seq data by treating cells as tokens:

p
(
Xi,j |{Xu,v}(u,v)∈MC

)
, (i, j) ∈ M, (2)

where we denote M as the set of masked gene expressions in X, and MC is the complement, i.e., the
set of unmasked expressions. The distribution of a masked entry Xi,j depends on both the observed
genes in cell i and genes from other cells that are not masked. We hereby name it as “cell language
model”, which models the distribution of cellular features beyond single cells. By estimating the
conditional probability distribution in Eq. (2), CellPLM is trained to capture the intricate relationships
that exist between not only genes but also cells.

From a biology perspective, there are particularly two types of inter-cell relations that can be
beneficial to CellPLM. First, within tissues, there are numerous cells from the same or similar cell
lineage, which mutually provide valuable supplementary information for denoising and identifying
cell states (Cannoodt et al., 2016; Molho et al., 2022; Street et al., 2018). The other type of
relations, cell-cell communications, plays an essential role in determining cell development and
cell states (Armingol et al., 2021). Existing analysis methods (Hou et al., 2020; Jin et al., 2021;
Raredon et al., 2019) have already explored the cell-cell communications on the cell type or cluster
levels, while CellPLM aims to capture the intricate “language” of cell-cell communications between
single cells. Overall, CellPLM presents a novel cell language model that aligns well with biological
principles and holds great potential to enhance downstream tasks by extracting valuable cellular
knowledge from unlabeled single-cell data.
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Figure 2: An illustration of the pre-training framework of CellPLM. CellPLM is pre-trained with
cell-level masked language modeling task. The model consists of four modules: a gene expression
embedder, a transformer encoder, a Gaussian mixture latent space, and a batch-aware decoder.

3.2 MODEL ARCHITECTURE

Gene Expression Embedder. The first module in CellPLM model is a gene expression embedder,
which projects input gene expressions into a low-dimensional cellular feature space. In light of the
nature that scRNA-seq is profiled as bag-of-genes features, CellPLM learns an embedding vector
for each type of gene and then aggregates these gene embeddings according to their expression
levels in each cell. Formally speaking, for gene j ∈ {1, ..., k}, a randomly-initialized learnable
embedding vector hj ∈ Rd is assigned, where d is the hidden dimension of the encoder layers. The
gene expression embedding matrix E ∈ RN×d is then generated by aggregating gene embeddings
according to their expressions:

Ei =

k∑
j=1

Xi,jhj , (3)

where Ei is the i-th row vector of E, corresponding to the gene expression embedding for cell
i. Note that the gene expression matrix X is a sparse matrix since the zero-rate of scRNA-seq
can be up to 90% (Jiang et al., 2022). In addition, unmeasured genes (per sequencing platforms)
also lead to zero entries in X. Therefore, when implementing Eq. (3), CellPLM leverages sparse
operations, which significantly improves memory and computational efficiency. In addition, following
the convention (Stuart et al., 2019), we preprocessed X with library size normalization and log1p
transformation before inputting the model.

Transformer Encoder. The proposed CellPLM follows an encoder-decoder structure, where the
encoder is based on transformers (Vaswani et al., 2017). The transformer model was originally
developed for processing textual data. It leverages multi-head self-attention mechanisms to capture
relationships between input tokens and incorporates positional encoding to represent the token
positions. In CellPLM, by considering cells as tokens, we can readily apply the transformer model to
capture intercellular relationships. When applying the transformer, we consider the embedding at l-th
layer H(l) ∈ RN×d as a set of N tokens, where N is the total number of cells in a tissue sample, and
d is the hidden dimension. By stacking L transformer layers, CellPLM gradually encodes cellular
and inter-cellular information into cell embeddings, formulated as:

H(l) = TransformerLayer(l)(H(l−1)). (4)

In practice, N can scale up to ten thousand, which is out of the capacity of an ordinary transformer.
Therefore, we adopt an efficient variant of transformers with linear complexity (i.e., Flowformer (Wu
et al., 2022)) for the implementation of transformer layers.

To further inform inter-cellular relations, we incorporate spatial positional information of individual
cells from a novel type of data, spatially-resolved transcriptomic (SRT) data. Specifically, SRT data
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consists of two parts. One is a gene expression matrix X ∈ RN×k same as scRNA-seq data, and
the other part is a 2D coordinate matrix C ∈ RN×2. The coordinates denote the center position of
each cell within a field-of-view (FOV) where the cells are located (an illustration can be found in
Appendix A). This feature helps locate the microenvironment surrounding each cell, providing an
additional reference for identifying cell lineage and cell communications, which were introduced in
Section 3.1. To encode this extra positional information, we leverage the idea of positional encodings
(PE) in transformers. Since sinusoidal PE achieves competitive performance and has lower complexity
on SRT data (Wen et al., 2023), we generate a 2D sinusoid PE for cells in SRT data, denoted as
P ∈ RN×d, where Pi is the d dimensional PE vector for cell i (see details in Appendix B). For
scRNA-seq data, a randomly initialized d-dimensional vector p′ is shared among all cells, in order to
be unified with SRT data. The initial cell embeddings are now formulated as H(0) = E+P, where
E is the expression embeddings from Eq. (3) and P is the positional embeddings.

Gaussian Mixture Latent Space. One of the highlights of CellPLM is the design of probabilistic
latent space. Prior studies have employed variational autoencoders for single-cell analysis, which
typically assumes an isotropic Gaussian distribution as the prior distribution of the latent space (Lopez
et al., 2018; Xu et al., 2021). While this approach can effectively remove batch effects, it may also
result in a loss of information regarding the underlying biological structure of cell groups. To address
this limitation, CellPLM incorporates the concept of Gaussian mixture variational encoder (Dilok-
thanakul et al., 2016; Yang et al., 2019; Xu et al., 2023), which utilizes a mixture of Gaussians to
capture the information of distinct functional groups of cells. Formally, for i ∈ {1, . . . , N}, the
generative model of cell i can be formulated as:

p(yi;π) = Multinomial(π),

p (zi | yi) =

L∏
i=1

N
(
µyi,l

,diag
(
σ2

yi,l

))
,

pθdec (xi | zi) = N
(
µzi

, σ2I
)
,

(5)

where yi ∈ RL represents the one-hot latent cluster variable and π is its prior; yi,l denotes the
l-th entry of yi; µyl

∈ Rdz and σ2
yl

∈ Rdz×dz denote the mean and variance of the l-th Gaussian
component, respectively; and µzi ∈ Rk and σ2I ∈ Rk×k denote the posterior mean and variance of
expression xi, respectively. In this work, we assume that σ2 is a constant and the posterior mean is
parameterized by µzi = fdec(zi; θdec).

To estimate the posterior of zi and yi, we parameterize the inference process with neural networks,
which is detailed in Appendix D. On top of that, a log-evidence lower bound (ELBO) can be derived
from this generative model for the optimization purpose (Dilokthanakul et al., 2016). However, as
mentioned in Section 3.1, our pre-training framework incorporates a cell language model, where
parts of the input gene expression matrix X are masked. This will result in a modified objective. To
formalize the problem, recall that previously we defined the masked set as M. On top of that, we
denote M ∈ RN×k as a mask indicator matrix such that

Mi,j =

{
1 if (i, j) ̸∈ M,
0 if (i, j) ∈ M.

Let X̃ ∈ RN×k be the masked gene expression matrix given by the element-wise multiplication
X̃ = M⊙X. The objective of cell language model with Gaussian mixture prior, i.e., a denoising
variational lower bound (Im Im et al., 2017), can be formulated as:

LCellLM =Eq(Z,Y|X̃)Ep(X̃|X)

[
ln

pθ(X,Z,Y)

qη(Z,Y | X̃)

]
(6)

=Eqηenc (Z|X̃)Ep(X̃|X) [log pθdec(X | Z)]︸ ︷︷ ︸
Lrecon

−Eqηπ (Y|Z)

[
KL

(
qηenc(Z | X̃)∥p(Z | Y)

)]
︸ ︷︷ ︸

Lcond

− Eqηenc (Z|X̃) [KL (qηπ
(Y | Z)∥p(Y))]︸ ︷︷ ︸

LY

.

Similar to previous works (Dilokthanakul et al., 2016), we refer to the three terms in Eq. (6) as
reconstruction term Lrecon, conditional prior term Lcond and Y prior term LY. The approximation
and estimation of the denoising variational lower bound are specified in Section 3.3.
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Batch-aware Decoder. The decoder in CellPLM operates by decoding each cell individually, given
that the tissue context has already been encoded into the latent space by the encoder. The decoder’s
purpose is twofold: to reconstruct masked features and to help remove batch effects from the latent
space. In order to accomplish this goal, the decoder stacks several feed-forward layers (FFLayers)
atop the input of latent variables z, and a batch embedding, denoted as b ∈ Rdz . Specifically, for
each cell, the batch embedding is loaded from a learnable lookup table as b = LookUp(b), where b
is the label indicating the specific tissue sample (or FOV for SRT data) from which the cell has been
drawn. By feeding the batch label to the decoder, a batch-effect-free latent space can be achieved, as
empirically evidenced in scVI (Lopez et al., 2018). The decoder can thus be formulated as:

h(0) = z+ b, h(l) = FFLayer(l)(h(l−1)),

where l indicates the number of the layer, h(l) is the hidden vector of layer l ∈ (1..L − 1), and L
is the total number of fully connected layers. The dimension of the last layer is different from the
previous layers because the last layer is considered as an output layer, with hL ∈ Rk, where k is the
size of gene sets in the gene expression matrix X ∈ RN×k.

3.3 MODEL PRE-TRAINING & FINE-TUNING

Pre-training. The pre-training of CellPLM follows a cell language modeling objective, as demon-
strated in Eq. (6). Specifically, given a batch of cell tokens as input, we first decide which cells should
be masked. Instead of completely masking these cell tokens, we selectively mask a certain percentage
of the gene expressions within them. This allows the model to recover underlying correlations
between cells, as proposed in a recent preprint, SpaFormer (Wen et al., 2023). A significant concern
in CellPLM is the disparity in the number of genes measured by different sequencing platforms.
Notably, the gap between scRNA-seq and SRT can be substantial, ranging from 1,000 to 30,000.
Taking this into consideration, CellPLM only masks the expression of genes that are measured in
each dataset, implying that the reconstruction loss is calculated exclusively on these measured genes.
When optimizing the denoising variational lower bound in Eq. (6), we apply reparameterization trick
and Monte Calo sampling, as proposed in VAE (Kingma & Welling, 2014). Furthermore, under the
independent Gaussian assumption, we reformulate and estimate the reconstruction term Lrecon in
Eq. (6) with a mean squared error (MSE). Therefore, the pre-training loss function of CellPLM can
be formulated as:

LMSE =
∥∥∥M⊙

(
H(L) − (1−M)⊙X

)∥∥∥2
F
,Lpretrain = LMSE + Lcond + LY, (7)

where ⊙ signifies element-wise multiplication, H(L) ∈ RN×k is the output from the decoder, X and
M are the ground-truth gene expression matrix and the mask indicator matrix respectively, as defined
above. Lcond and LY are derived from Eq. (6).

Task-specific Fine-tuning. When fine-tuning CellPLM, the model is first initialized with the pre-
trained parameters. In downstream tasks that require gene expressions as output, the pre-trained
decoder can be directly leveraged, and the batch embedding is set to the mixture of all pre-training
batches. Otherwise, the decoder will be replaced with a task-specific head. The entire model is then
fine-tuned with task-specific loss functions, which helps align the general knowledge of the model to
the specific downstream task. For example, in the spatial transcriptomic imputation task, the entire
pre-trained model can do zero-shot inference. It can also be fine-tuned on a query SRT dataset and
a reference scRNA-seq dataset, where two datasets are sampled from the same type of tissue. In
this case, the loss function remains the same as Eq.(7). After fine-tuning on these datasets, CellPLM
fits the data distribution of the target tissue and can readily perform imputation. The design and
implementation of heads and loss functions for other downstream tasks are elucidated in Appendix F.

4 EXPERIMENT

CellPLM is first pre-trained on more than 9 Million scRNA-seq cells and 2 Million SRT cells, with
the masked language modeling objective, demonstrated in Section 3.3. The model consists of over 80
million parameters and the pre-training was finished in less than 24 hours on a GPU server with 8
Nvidia Tesla v100 16GB cards. The hyperparameters, datasets, and reproducibility information for
pre-trained models are detailed in Appendix E.
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In the following sections, we evaluate the performance of CellPLM on various downstream tasks,
including zero-shot clustering, scRNA-seq denoising, spatial transcriptomic imputation, cell type
annotation, and perturbation prediction. With the selected tasks, we aim to answer the following
research questions:

RQ1: Is CellPLM capable of transferring pre-train knowledge to a brand new dataset?

RQ2: Does CellPLM provide better cell representations than other pre-trained and non-pre-trained
models?

RQ3: Does CellPLM succeed in jointly modeling scRNA-seq and SRT data?

4.1 PRELIMINARY STUDY: ZERO-SHOT CLUSTERING

CellPLM
(ARI = 0.867, NMI = 0.823)

PCA
(ARI = 0.843, NMI = 0.812)

scGPT
(ARI = 0.836, NMI = 0.818)

Geneformer
(ARI = 0.461, NMI = 0.586)

Major cell type

(a) Clustering Performance

CellPLMPCA

scGPTGeneformer

Patient

(b) Batch Correction

Figure 3: CellPLM readily removes patient batch effect and provides accurate cell clustering results
without fine-tuning.

Geneformer scGPT CellPLM

428.24 129.19 0.85

Table 1: Inference time(s) for querying 48, 082 cells on an A100 40GB GPU. Preprocessing functions
and decoders are not included in this test. Due to GPU memory capacity, the batch size of Geneformer
and scGPT is set to 256 and 64 respectively, while the batch size of CellPLM is 48, 082.

To evaluate the transferability of the pre-trained model, we extract cell embeddings from the pre-
trained encoder on a public dataset from Li et al. (2020), which is not included in pre-train data. In
addition to CellPLM, we include three baselines, i.e., PCA, Geneformer (Theodoris et al., 2023)
and scGPT(Cui et al., 2023). PCA refers to the first 512 PCs of log-normalized expressions from
4500 highly variable genes (the number of PCs equals the embedding size of scGPT and CellPLM).
This is a common embedding method on scRNA-seq data. Geneformer and scGPT are two recently
published pre-trained models that are capable of generating cell embeddings. Figure 3a illustrates how
well the embeddings are aligned with curated cell type labels, and Figure 3b demonstrates models’
ability to remove technical artifacts and mix biological signals from different experiments. Notably,
the clustering result of CellPLM’s embedding achieves the highest ARI and NMI with respect to
the ground-truth cell type labels. From the visualization, it is also clear that CellPLM possesses
smoother latent space than others, which is attributed to our Gaussian mixture prior distribution for
pre-training. We also notice that CellPLM is over 100 times faster than other pre-trained models
that conduct self-attention among gene tokens, as shown in Table 1. Overall, this preliminary study
addresses RQ1 and RQ2, and indicates that CellPLM can readily transfer pre-trained knowledge to
new datasets in removing batch effect and generating high-quality cell embeddings, at extraordinarily
high inference speed.

7



Published as a conference paper at ICLR 2024

4.2 TASK 1: SCRNA-SEQ DENOISING

Given that single-cell RNA-Seq protocols capture only a subset of the mRNA molecules within
individual cells, the resulting measurements exhibit substantial technical noise (Grün et al., 2014).
Therefore, we consider denoising power as the most desired and essential property for a single-cell
foundation model. The goal of the denoising task is to estimate the true expression level of each gene
in each cell from a noisy observation. To assess the denoising efficacy of CellPLM, we conduct an
evaluation on two single-cell RNA-Seq datasets, i.e., PBMC 5K and Jurkat from 10x Genomics (lin,
a). These two datasets were excluded from pre-training. Following the setting of scGNN (Wang
et al., 2021), we apply a random flipping process to a subset of non-zero entries, transforming
them into zeros to simulate the dropout effects. We compare CellPLM against a broad range
of contemporary approaches, including DeepImpute (Arisdakessian et al., 2019), scGNN2.0 (Gu
et al., 2022), SAVER (Huang et al., 2018), DCA (Eraslan et al., 2019), scVI (Lopez et al., 2018),
MAGIC (Van Dijk et al., 2018), scImpute (Li & Li, 2018) and scGPT (Cui et al., 2023). We
evaluate scRNA-seq denoising performance based on two popular regression metrics, i.e., Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE), to measure the degree of similarity
between predicted gene expression and the actual ones. More details pertaining to these methods, the
fine-tuning of CellPLM, and the evaluation metrics can be found in Appendix F.1.

It is evident that the fine-tuned CellPLM consistently exhibits superior performance compared
to all baseline models on both datasets. Note that even under the zero-shot setting, CellPLM
shows satisfactory results that surpass the majority of baselines (6 out of 8) on each dataset. These
observations answer the question of RQ1 and RQ2. As a powerful denoising model, CellPLM can
serve as a foundation for other downstream analyses.

PBMC 5K Jurkat
Model RMSE (↓) MAE (↓) RMSE (↓) MAE (↓)

DeepImpute 1.168 ± 0.018 1.051 ± 0.025 0.786 ± 0.006 0.557 ± 0.003
scGNN 2.0 1.376 ± 0.015 1.237 ± 0.019 1.001 ± 0.016 0.917 ± 0.021
GraphSCI 1.068 ± 0.007 0.924 ± 0.009 0.659 ± 0.030 0.481 ± 0.024
SAVER 0.884 ± 0.001 0.748 ± 0.001 0.569 ± 0.001 0.472 ± 0.001

DCA 0.775 ± 0.002 0.621 ± 0.002 0.423 ± 0.001 0.351 ± 0.001
scVI 0.777 ± 0.005 0.623 ± 0.004 0.416 ± 0.001 0.344 ± 0.002

MAGIC 0.793 ± 0.001 0.639 ± 0.001 0.424 ± 0.001 0.351 ± 0.002
scImpute 1.170 ± 0.003 1.002 ± 0.001 0.624 ± 0.002 0.529 ± 0.001

scGPT (fine-tuned) 0.901 ± 0.001 0.565 ± 0.001 0.711 ± 0.001 0.498 ± 0.001

CellPLM (zero-shot) 0.854 ± 0.001 0.692 ± 0.000 0.517 ± 0.001 0.426 ± 0.000
CellPLM (from scratch) 0.761 ± 0.009 0.571 ± 0.011 0.395 ± 0.003 0.320 ± 0.003
CellPLM (fine-tuned) 0.725 ± 0.001 0.551 ± 0.001 0.391 ± 0.001 0.320 ± 0.001

Table 2: (Task 1) The scRNA-seq denoising performance on the PBMC 5K and Jurkat datasets.

4.3 TASK 2: SPATIAL TRANSCRIPTOMIC IMPUTATION

Spatially resolved transcriptomics has revolutionized single-cell analysis by incorporating physical
locations along with gene expression, leading to exciting breakthroughs. However, as a tradeoff for
the highly detailed spatial resolution, spatial transcriptomic data at the cellular level typically cover
less than 1, 000 genes, which poses challenges in data analysis. To assess the potential benefits of
the pre-trained model in the given task, we evaluate CellPLM on two spatial transcriptomic datasets
at single-cell resolution, i.e., Lung2 and Liver2 from lin (b) (the whole study is not included in
our pre-train data). Following the setting of baselines including SpaGE (Abdelaal et al., 2020),
stPlus (Shengquan et al., 2021), gimVI (Lopez et al., 2019) and Tangram (Biancalani et al., 2021),
we impute the unmeasured genes of the SRT dataset utilizing a scRNA-seq dataset as reference. We
identify the testing gene set in SRT data by stratified sampling according to gene sparsity (Avşar
& Pir, 2023) and hold out those genes in the fine-tuning stage. To evaluate the accuracy of spatial
transcriptomic imputation, we employ the Pearson correlation coefficient (Corr) and cosine similarity
(Cosine) to measure the degree of similarity between the predicted spatial gene expressions and the
corresponding ground-truth expression values. Details of the implementation and the evaluation
metrics are presented in Appendix F.2.

Remarkably, the fine-tuned CellPLM takes the lead on both datasets, effectively addressing the
research question RQ1 and RQ3. However, when training from scratch on these datasets, CellPLM
hardly converges. This indicates the pre-training information is necessary for CellPLM to impute the
SRT data.
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Lung2 Liver2
Model Corr (↑) Cosine (↑) Corr (↑) Cosine (↑)

SpaGE 0.227 ± 0.011 0.352 ± 0.015 0.253 ± 0.014 0.376 ± 0.005
stPlus 0.177 ± 0.021 0.360 ± 0.014 0.224 ± 0.010 0.399 ± 0.012
gimVI 0.130 ± 0.010 0.325 ± 0.010 0.163 ± 0.019 0.338 ± 0.010

Tangram 0.123 ± 0.005 0.285 ± 0.008 0.168 ± 0.024 0.309 ± 0.008

CellPLM (zero-shot) 0.119 ± 0.024 0.327 ± 0.011 0.141 ± 0.013 0.322 ± 0.145
CellPLM (from scratch) 0.058 ± 0.020 0.370 ± 0.013 0.024 ± 0.039 0.352 ± 0.011
CellPLM (fine-tuned) 0.318 ± 0.015 0.481 ± 0.011 0.328 ± 0.011 0.481 ± 0.010

Table 3: (Task 2) The results of spatial tanscriptomic imputation on the Lung2 and Liver2 datasets.

4.4 TASK 3: CELL TYPE ANNOTATION

Cell type annotation is another important task in single-cell analysis as it enables the identification
and characterization of distinct cell populations within a tissue or organism. The objective of this task
is to classify the type of cells from query datasets according to the annotations in reference datasets.
Here we follow the suggestion of Cui et al. (2023) to include hPancreas (Chen et al., 2023) and
Multiple Sclerosis (MS) (Schirmer et al., 2019) datasets. More details about the datasets, baseline
methods, the fine-tuning of CellPLM can be found in Appendix G.

MS hPancreas
F1 (↑) Precision (↑) F1 (↑) Precision (↑)

CellTypist 0.667 ± 0.002 0.693 ± 0.001 0.708 ± 0.023 0.736 ± 0.025,
ACTINN 0.628 ± 0.012 0.634 ± 0.009 0.705 ± 0.005 0.709 ± 0.006

SingleCellNet 0.637 ± 0.001 0.700 ± 0.001 0.739 ± 0.006 0.761 ± 0.004
TOSICA* 0.578 0.664 0.656 0.661

scBERT* (fine-tuned) 0.599 0.604 0.685 0.699
scGPT* (fine-tuned) 0.703 0.729 0.718 0.735

CellPLM (from scratch) 0.709 ± 0.007 0.732 ± 0.015 0.689 ± 0.034 0.682 ± 0.037
CellPLM (fine-tuned) 0.766 ± 0.007 0.803 ± 0.008 0.749 ± 0.010 0.753 ± 0.010

Table 4: (Task 3) The results of cell type annotation on MS and hPancreas dataset. “*" indicates
results directly taken from Cui et al. (2023).

The empirical results presented in Table 4 indicate that CellPLM learns a well-represented and gener-
alizable cellular embedding, achieving considerably large improvement on the cell type annotation
task. This again confirms our positive answer to the research questions RQ1 and RQ2.

In addition to these major results, we also conduct analysis and experiments on the gene level.
The results show that CellPLM learns meaningful gene representations and can benefit genetic
perturbation prediction. Due to space limits, we leave these discussions in Appendix H.2 and F.3.
Finally, to verify the effectiveness of our proposed transformer encoder and the mixture of Gaussian
latent distribution, we conduct a series of ablation studies, presented in Appendix I. Through the
ablation studies, we confirm that our CellPLM model can capture the relationships between cells via
the transformer encoder and enhance the performance of downstream tasks, generating more robust
and useful cell representations through appropriate prior distributions.

5 CONCLUSION

In this work, we propose cell language model, a novel paradigm of single-cell pre-trained model,
which aligns well with the fundamental characteristics of single-cell data. This has led to CellPLM,
the first pre-trained transformer framework that encodes inter-cell relations, leverages spatially-
resolved transcriptomic data and adopts a reasonable prior distribution. Our experiments on various
downstream tasks demonstrate the power of CellPLM, which has great potential to facilitate future
research in single-cell biology.
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Reproducibility Statement: All the data we used in this study are publicly available data. The
data sources are specified in the appendix. The checkpoint of our pre-trained is released on our
Github1 repository, as well as the source codes for fine-tuning and zero-shot experiments. All the
hyperparameters are specified either in the script files or in the appendix.
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Appendix for CellPLM: Pre-training of Cell Language Model
Beyond Single Cells

A SPATIALLY-RESOLVED TRANSCRIPTOMIC DATA

Recently, spatial transcriptomic technologies are developed to spatially resolve transcriptomics
profiles Ståhl et al. (2016); Merritt et al. (2020). With spatial transcriptomics data, researchers
can learn the spatial context of cells and cell clusters within a tissue Burgess (2019). The major
technologies/platforms for spatial transcriptomics are Visium by 10x Ståhl et al. (2016), GeoMx
Digital Spatial Profiler (DSP) Merritt et al. (2020) by NanoString and CosMx Spatial Molecular
Imager (SMI) by NanoString, MERFISH, Vizgen, Resolve, Rebus, and molecular cartography. 10x
Visium does not profile at single-cell resolution, and while GeoMx DSP is capable of single-cell
resolution through user-drawn profiling regions, the scalability is limited. The most recent platform,
CosMx Spatial Molecular Imager (SMI) He et al. (2022), can profile consistently at single-cell and
even sub-cellular resolution. CosMx SMI follows much of the initial protocol as GeoMx DSP, with
barcoding and ISH hybridization. However, the SMI instrument performs 16 cycles of automated
cyclic readout, and in each cycle, the set of barcodes (readouts) are UV-cleaved and removed. These
cycles of hybridization and imaging yield spatially resolved profiling of RNA and protein at single-
cell (∼ 10µm) and subcellular (∼ 1µm) resolution. In this work, we use two published and one
unpublished dataset produced by the CosMx platform. In order to obtain the cellular level gene
expression, CellPose Stringer et al. (2021) software is applied to conduct cell segmentation.

To give a concrete example, we provide a sample field-of-view (FOV) in Fig. 4. Pre-selected types of
RNA molecules are captured by the molecular imager, which are denoted as white dots in the figures.
Colors in the first sub-figure indicate the protein molecules that are stained. These proteins contribute
to the cell segmentation process, which results in the second sub-figure. The final output from the
pipeline consists of the position of each cell and a cell-by-gene count matrix, which is produced by
counting the number of RNA molecules within each cell. The difference between scRNA-seq and
SRT data is further demonstrated in Fig. 5.

(a) Visualization of molecular image. (b) Visualization of cell segmentation.

Figure 4: (a) A sample image of protein and RNA molecules. (b) A sample image of segmented cells.

Figure 5: An illustration of the difference between scRNA-seq and SRT data.

15



Published as a conference paper at ICLR 2024

B 2D SINUSOID POSITIONAL ENCODINGS

Since 2D sinusoidal PE achieves a competitive performance and has a lower complexity on SRT
data Wen et al. (2023), in our transformer encoer, we generate a sinusoidal PE for cells in SRT data,
formulated as:

PE(x,y,2i) = sin
(
x/100004i/d

)
,PE(x,y,2i+1) = cos

(
x/100004i/d

)
,

PE(x,y,2j+d/2) = sin
(
y/100004j/d

)
,PE(x,y,2j+1+d/2) = cos

(
y/100004j/d

)
,

(8)

where d is the total dimension of positional encoding, i, j ∈ [0, d/4) specify a specific feature
dimension. Let C̃ ∈ RN×2 be a normalized coordinate matrix, where we normalize and truncate
coordinates in C to integers ranging in [0, 100). x, y then refer to the spatial coordinates from C̃,
e.g., x = C̃t,0 and y = C̃t,1 for cell t. In this way, we generate a PE matrix P ∈ RN×d for every
cell in SRT data, where Pi is the PE vector for cell i. Meanwhile, for scRNA-seq data, a randomly
initialized d-dimensional vector p′ is shared among all cells, which also results in a placeholder PE
matrix P.

C BROADER IMPACT

Our method lies in an emerging and important application area, single-cell analysis. Especially,
we leverage a novel type of single-cell data, Spatially Resolved Transcriptomics (SRT). SRT is a
rapidly developing technology that allows scientists to map the gene expression of individual cells in
their tissue environment. It combines traditional imaging techniques with transcriptome analysis to
provide a spatially resolved, high-resolution view of gene expression in complex tissues. Essentially,
single-cell technologies and SRT allow researchers to see where specific genes are being expressed
within a tissue sample, which can help them better understand cellular interactions and the function
of specific genes in complex biological systems.

We evaluate our method on various downstream tasks and the empirical results demonstrate the
practical value of our method. Specifically, scRNA-seq Denoising improves the data quality of
scRNA-seq data, which often suffer from technical artifacts and dropout events Svensson et al. (2017);
Qiu (2020), as well as significant batch effects between sequencing platforms and experiments Tran
et al. (2020); Argelaguet et al. (2021). SRT imputation helps to obtain more precise cell state profiles
for SRT data, while also resulting in more accurate integration and clustering between SRT data and
scRNA-seq data. Perturbation prediction has great clinical value to aid in drug design and disease
mechanism research.

While our work offers a significant contribution to the field of single-cell analysis, there are potential
negative societal impacts that are important to consider: one of the primary potential negative societal
impacts is privacy and data security. Single-cell analysis involves working with sensitive genetic
information which, if mishandled, could lead to breaches in privacy and the misuse of personal
data. Another potential negative impact is over-reliance on automated analysis. The complexity of
single-cell data requires careful interpretation, and the risk of false-positive or false-negative results
may be elevated due to computational errors or algorithmic biases. It is crucial to remember that these
tools should serve as aids to human understanding and decision-making rather than replacements.

As single-cell technologies continue to evolve, it is critical that we continue to consider and address
these broader societal impacts. Moving forward, it is crucial that our work is coupled with ongoing
discussions on best practices in data management, privacy protection, and equitable access to
technology. This includes strengthening collaborations with ethicists, policymakers, and regulatory
bodies to navigate these complex issues.

D DENOISING VARIATIONAL LOWER BOUND FOR MASKED LANGUAGE
MODELING

One of the highlights of CellPLM is the design of probabilistic latent space. Prior studies have
employed variational autoencoders for single-cell analysis, which typically assumes an isotropic
Gaussian distribution as the prior distribution of the latent space (Lopez et al., 2018; Xu et al., 2021).
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While this approach can effectively remove batch effects, it may also result in a loss of information
regarding the underlying biological structure of cell groups. To address this limitation, CellPLM
incorporates the concept of Gaussian mixture variational encoder (Dilokthanakul et al., 2016; Yang
et al., 2019; Xu et al., 2023), which utilizes a mixture of Gaussians to capture the information of
distinct functional groups of cells. Formally, for i ∈ {1, . . . , N}, the generative model of cell i can
be formulated as:

p(yi;π) = Multinomial(π),

p (zi | yi) =

L∏
i=1

N
(
µyi,l

,diag
(
σ2

yi,l

))
,

pθdec (xi | zi) = N
(
µzi

, σ2I
)
,

(9)

where yi ∈ RL represents the one-hot latent cluster variable and π is its prior; yi,l denotes the
l-th entry of yi; µyl

∈ Rdz and σ2
yl

∈ Rdz×dz denote the mean and variance of the l-th Gaussian
component, respectively; and µzi ∈ Rk and σ2I ∈ Rk×k denote the posterior mean and variance of
expression xi, respectively. In this work, we assume that σ2 is a constant and the posterior mean is
parameterized by µzi = fdec(zi; θdec).

To estimate the posterior of zi and yi, we parameterize the inference process with neural networks.
Specifically, we assume that the cluster variables y are independent of the expression xi condition on
latent variables zi. The inference model can be formulated as:

qηµ,ησ (zi | xi) = N
(
µ̂i,diag

(
σ̂2

i

))
,

qηπ
(yi | zi) = Multinomial(π̂i),

(10)

where the estimations are given by

hi = fenc(xi; ηenc),

µ̂i = fµ (hi; ηµ) ,

log
(
σ̂2

i

)
= fσ (hi; ησ) ,

π̂i = fπ (zi; ηπ) .

(11)

Here fenc(·; ηenc) represents the transformer encoder, fµ(·; ηµ), fσ(·; ησ) and fπ(·; ηπ) are neural
networks. A log-evidence lower bound (ELBO) can be derived from this generative model for
the optimization purpose (Dilokthanakul et al., 2016). However, as mentioned in Section 3.1, our
pre-training framework incorporates a cell language model, where parts of the input gene expression
matrix X are masked. This will result in a modified objective. To formalize the problem, recall
that previously we defined the masked set as M. On top of that, we denote M ∈ RN×k as a mask
indicator matrix such that

Mi,j =

{
1 if (i, j) ̸∈ M,
0 if (i, j) ∈ M.

Let X̃ ∈ RN×k be the masked gene expression matrix given by the element-wise multiplication
X̃ = M⊙X. The objective of cell language model with Gaussian mixture prior, i.e., a denoising
variational lower bound (Im Im et al., 2017), can be formulated as:

LCellLM =Eq(Z,Y|X̃)Ep(X̃|X)

[
ln

pθ(X,Z,Y)

qη(Z,Y | X̃)

]
(12)

=Eqηenc (Z|X̃)Ep(X̃|X) [log pθdec(X | Z)]︸ ︷︷ ︸
Lrecon

−Eqηπ (Y|Z)

[
KL

(
qηenc(Z | X̃)∥p(Z | Y)

)]
︸ ︷︷ ︸

Lcond

− Eqηenc (Z|X̃) [KL (qηπ
(Y | Z)∥p(Y))]︸ ︷︷ ︸

LY

.

E PRE-TRAINING SETTINGS

E.1 HYPERPARAMETER SETTINGS

We pre-trained CellPLM model with the hyperparameters specified in Table 5.
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CellPLM

encoder hidden dim 1024
encoder layers 4

latent dimension 512
decoder hidden dim 1024

decoder layers 2
model dropout 0.2
cell mask rate 0.75
gene mask rate 0.25
learning rate 2e-4
weight decay 1e-8
num of cluster

(for GMM) 16

total parameter 82,402,543

Table 5: Hyperparameters for pretraining CellPLM model.

Source Datasets

HTCA HTAN_HTAPP, HTAN_Stanford, HTAN_Vanderbilt, HTAN_BU

HCA

cxg_PBMCs, EGAS00001004571_PBMCs, eQTLAutoimmune,
covid19autoimmunityPBMCs, VanDerWijst-Human-10x5pv1,
cxg_Airways, COMBAT2022, TabulaSapiens,
PAN.A01.v01.raw_count.20210429.PFI.embedding,
GTEx_8_tissues_snRNAseq_atlas_071421.public_obs

GEO

GSE139324, GSE136246, GSE179994,GSE131907,
GSE171145, GSE139555, GSE156728_CD4,
GSE148071, PMID_34663877, Qian_et_al_2020_LC,
GSE176021, GSE156728_CD8

Other Atlas (deduplicated) MalteEtAl_LungAtlas, TICAtlas

Table 6: List of dataset and data sources. External links will be included in our github repo.

E.2 DATASETS FOR PRE-TRAINING

The dataset for pre-training contains 11.4 million cells from scRNA-seq and SRT data.
scRNA-seq data consist of 4.7 million cells from human tumor cell atlas (HTCA, https:
//humantumoratlas.org/), 1.4 million cells from human cell atlas (HCA, https://
www.humancellatlas.org/), and 2.6 million cells from Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/). All of them are public available data, elucidated
in table 6. A more detailed list and external links will be disclosed in our GitHub repository. Note that
although our CellPLM is capable to handle various input feature sets, when we concatenated these
scRNA-seq datasets, we used inner join by default of Anndata package. As a result, all scRNA-seq
datasets only contain a 13, 500 common gene set. We will address this issue and increase the size of
the gene set in future versions of CellPLM.

The SRT datasets we used are publicly available on Nanostring official website:
https://nanostring.com/products/cosmx-spatial-molecular-imager/
nsclc-ffpe-dataset/, where 2.7 million cells and 1, 000 genes are measured. Both
scRNA-seq and SRT data are preprocessed with library size normalization and log1p transformation,
following the convention in Stuart et al. (2019),

F ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide more experimental details about fine-tuning, baselines, and evaluation
metrics under each downstream task.
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F.1 SCRNA-SEQ DENOISING

Downstream Task Datasets. In scRNA-seq denoising task, we evaluate CellPLM on two datasets,
i.e., PBMC 5K and Jurkat from 10x Genomics lin (a). It is worth noting that during the prepossessing
stage, we performed sub-setting on both datasets to ensure that all the genes were included in the gene
set of pre-training data. Additionally, any genes with zero counts were removed from the analysis.
We list the statistics of them in Table 7.

Table 7: scRNA-seq denoising datasets

5K PBMC Jurkat

Number of genes 33,538 32,738
Number of cells 5,247 3,258

Num genes picked 7,197 7,618

Evaluation Metrics. Following the setting of scGNN Wang et al. (2021), scGNN2.0 Gu et al. (2022)
and DeepImpute Arisdakessian et al. (2019), we performed synthetic dropout simulation with missing
at random (MAR) setting. While scGNN only considered a simple scenario, i.e., randomly flipped
10% of the non-zero entries to zeros, DeepImpute applied cell-wise mask with masking probability
given by a multinomial distribution. Specifically, we adapted the setting from DeepImpute with
exponential kernel. For cell i that contains at least 5 expressed genes, the probability that one non-zero
count xi,j is masked during the training process is given by Exp(0, 20):

pi,j =
1

20
e−

x
20 ,

qi,j =
pi,j∑Ji

j=0 pi,j
,

where Ji is the number of non-zero counts within cell i. We masked 10% of the non-zero counts
according to {qi,j}Ji

j=0 and evaluate model performance on the masked entries. We calculate the
root mean squared error (RMSE) and mean absolute error (MAE) between the predicted values and
ground truth.

Baselines (1) DeepImpute Arisdakessian et al. (2019) employed a strategy of dividing genes into sub-
sets and constructing deep neural networks to impute scRNA-seq data. We implemented DeepImpute
with default settings in DANCE Ding et al. (2022) package. (2) scGNN2.0 Gu et al. (2022) incorpo-
rated a feature autoencoder, a cluster autoencoder and a graph attention autoencoder for simultaneous
imputation and clustering. scGNN2.0 is implemented by DANCE package with default settings.
(3) GraphSCI Rao et al. (2021) combined autoencoders with graph convolution networks among a
gene-gene similarity graph. We accommodated the implementation of GraphSCI in DANCE package.
(4) SAVER Huang et al. (2018) leveraged Poisson LASSO regression to model the scRNA-seq counts
with Poisson–gamma mixture. We utilized R package SAVER to illustrate the performance of it. (5)
DCA Eraslan et al. (2019) introduced an autoencoder framework based on zero inflated negative
binomial (ZINB) distribution. We applied DCA to aforementioned datasets with its Python pacakge.
(6) MAGIC Van Dijk et al. (2018) utilized Markov affinity to capture gene-gene relationship and
impute missing gene expression. We adapted its Python package to access the performance of it. (7)
scImpute Li & Li (2018) developed a Gamma and Gaussian mixture model to identify dropout values.
We revealed the performance of scImpute with its R pacakge.

Fine-tuning. Since denoising task requires model to recover the gene expression matrix, we can
directly get the zero shot performance of CellPLM by specifying the gene set of target dataset.
Additionally, we fine-tuned CellPLM by replacing the pre-trained decoder with a MLP head and
initializing encoder with pre-trained weights. Additionally, for methods require model selection on
validation set, we performed another 10% simulation dropout and treat masked entries as validation
set. The fine-tuned CellPLM was trained on MSE reconstruction loss, while the best model was
selected by evaluating MSE on validation set.

F.2 SPATIAL TANSCRIPTOMIC IMPUTATION

Downstream Task Datasets. To evaluate spatial tanscriptomic imputation models at single-cell
resolution, we collected two samples from MERSCOPE FFPE Human Immuno-oncology Data lin
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(b). Specifically, we chose "Lung cancer 2" and "Liver cancer 2" as our samples, and subsequently
referred to them as "Lung2" and "Liver2" respectively. The Lung2 and Liver2 datasets were subsetted
to align with the gene set of the pre-training data. Additionally, we removed the fields of view (FOVs)
that contained fewer than 100 cells and retained only the first 100 FOVs from both datasets. Note
that all baselines require reference scRNA-seq datasets to impute the unseen genes of SRT data, we
collected GSE131907 Kim et al. (2020) and GSE151530 Ma et al. (2021) for lung cancer and liver
cancer, respectively. The statistics of all datasets are illustrated in Table 8.

Table 8: Spatial tanscriptomic imputation datasets.

Lung2 Liver2 GSE131907 GSE151530

Number of genes 500 500 29,634 18,667
Number of cells 836,739 598,141 208,506 56,721

Num genes picked 462 446 All ALL
Num cells picked 40,114 20,629 All All

Evaluation Metrics. Following the evaluation pipeline proposed by Avşar et al. Avşar & Pir (2023),
we selected target genes of SRT data with stratified sampling according to gene sparsity. Specifically,
we grouped genes into four categories: low sparse, moderate sparse, high sparse, and very-high
sparse. Empirically, the boundaries were defined as [x < 75, 75 ≤ x < 90, 90 ≤ x < 95, 95 ≤ x] to
approximate the Gaussian mean and standard deviation slices. Subsequently, we randomly selected
25 genes from each sparsity group and remove them from training data. After training the models,
we calculate the evaluation metrics on the target genes. Namely, we compute the root mean squared
error (RMSE), Pearson’s correlation coefficient (PCC) and cosine similarity (Cosine) between the
ground truth values and the corresponding imputed values in a gene-wise approach.

Baselines. (1) SpaGE Abdelaal et al. (2020) relied on domain adaptation to map scRNA-seq data onto
SRT data and utilized a k-nearest-neighbor (k-NN) graph to predict unseen genes. We implemented
SpaGE with default settings on both datasets. (2) stPlus Shengquan et al. (2021) developed an
autoencoder framework for learning cell embeddings and imputing SRT genes using a weighted
k-NN approach. The performance of stPlus is accessed by its Python package. (3) gimVI Lopez
et al. (2019) introduced a variational autoencoder based model with protocol-specific treatments on
scRNA-seq data and SRT data. We applied the scvi-tools lin (c) Python package with default settings
to evaluate the performance of gimVI. (4) Tangram Biancalani et al. (2021) utilized a deep learning
approach to learn the spatial alignment of scRNA-seq data based on a reference SRT dataset with
consistent spatial maps. We evaluated Tangram with its Python package.

Fine-tuning. Similar to scRNA-seq denoising, the spatial tanscriptomic imputation task requires the
ouput of the model to be the gene expression. Thus, we directly fine-tune CellPLM on the pre-trained
weights while specifying the input genes and target genes. The last two batches were hold out for
validation.

Visualization of attention. One essential multi-cell task is cell-cell communication (CCC) infer-
ence, where CCC mainly represents biochemical signaling through ligand-receptor binding across
cells (Cang et al., 2023). Our CellPLM applies self-attention mechanism on cell level, from which
we can study the interaction strength given by cell attention matrix. As a preliminary study, we
extract the attention matrix between cells from a random chosen field of view (FOV) in Cosmx Liver
dataset. The attention matrix is treated as CCC scores, and we visualize the results following the
stream plot setting in Cang et al. (2023). As shown in the Figure 6 in our supplementary PDF, there
are some strong trends on the left side and right side of the FOV, suggesting further exploration
of specific signaling pathways for the included cells. This case study showcase the potential of
our CellPLM model in cell-cell communication research. We hope our model can facilitate more
insightful biological research in the future.

F.3 PERTURBATION PREDICTION

The perturb-seq technology has been established to examine the gene expression response at the
single-cell level when subjected to pooled perturbations (Dixit et al., 2016). By comparing the gene
expression before and after perturbation, downstream analysis of differential expression (DE) enables
the identification of genes that play a crucial role in disease progression. To assess the potential
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Figure 6: Visualization of attention matrix demonstrate cell-cell communication.

benefits of CellPLM in gene-level tasks, we conduct experiments to predict the expression value of
genes after perturbation. Following the setting of GEARS (Roohani et al., 2022), we partition the
perturbations into training, validation, and test sets, ensuring that none of the test perturbations are
encountered during the optimization process.

Two perturbation datasets are employed for evaluation: (1) the Adamson Perturb-Seq dataset (Adam-
son et al., 2016), consisting of 87 one-gene perturbations; and (2) the Norman Perturb-Seq
dataset (Norman et al., 2019), containing 131 two-gene perturbations and 105 one-gene pertur-
bations. To evaluate the performance of perturbation prediction, we employ Root Mean Square
Error (RMSE) to measure the degree of similarity between the non-zero ground-truth expression
values and corresponding predicted gene expressions. In addition, following previous settings in
GEARS (Roohani et al., 2022), we also present the RMSE calculated on the top 20 deferentially-
expressed genes.

We compare the performance between CellPLM and two baselines, i.e., a recent preprint GEARS
method (Roohani et al., 2022), and scGen (Lotfollahi et al., 2019). The results in Figure 7 imply that
CellPLM achieves the lowest RMSE values across all settings.

Adam. All Adam. DE Norman.0 All Norman.0 DE Norman.1 All Norman.1 DE0.00

0.05

0.10

0.15

0.20

0.25

0.30

RM
SE

CellPLM
GEARS
scGEN

Figure 7: (Task 3) The RMSE performance (↓) on Adamson Perturb-Seq and the Norman Perturb-Seq
datasets. The Norman Perturb-seq dataset consists of two settings: one-gene perturbations and
two-gene perturbations, denoted as Norm.0 and Norm.1, respectively.

Downstream Task Datasets. We included the Adamson Perturb-Seq dataset Adamson et al. (2016)
for one-gene perturbations and the Norman Perturb-Seq dataset Norman et al. (2019) for two-gene
perturbations. We followed the preprocess pipeline of GEARS Roohani et al. (2022) and both datasets
were then gene-wise subsetted to fit in the gene set of pre-training data. The statistics are summaried
in Table 9.
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Table 9: Perturbation prediction datasets.

Adamson Norman

Number of genes 5,060 5,045
Number of cells 68,603 91,205

Num genes picked 3,246 2,353
Num one-gene pert. 87 105
Num two-gene pert. – 131

Evaluation Metrics. Following the setting of GEARS Roohani et al. (2022), we applied data split
such that the testing perturbation are unseen during the training process. Specifically, For Adamson
dataset, we randomly hold out 25% of the perturbations for testing and 10% of the perturbations
within the training set for validation. For Norman dataset, two settings for two-gene perturbations
are implemented for evalutation purpose: 1/2 unseen and 2/2 unseen. We excluded all two-gene
combinations in which at least one of the individual genes involved in the combination belonged
to the unseen set. Finally, we evaluate the performance by calculating the root mean squared error
(RMSE) between the predictions and the true values within the testing set.

Baselines. (1) GEARS Roohani et al. (2022) utilized gene co-expression knowledge graph and
Gene Ontology-derived knowledge graph to model the influence of perturbations. We followed
the recommended parameter settings within its Python package to access the performance. (2)
scGen Lotfollahi et al. (2019) built a conditional variational autoencoders and incoporated vector
arithmetics to model phenomena response. We implemented scGen with its Python package on both
datasets.

Fine-tuning. For one perturbation, we set the input of perturbed genes to be −100 to mimic the
gene perturbation action. During the fine-tuning process, we substituted the original batch-aware
decoder with a simplified MLP decoder. Additionally, we initialized the remaining components of
CellPLM with pre-trained weights. The final model was chosen to be the best-performed model on
the validation set.

G CELL TYPE ANNOTATION

Cell type annotation is a crucial step in single-cell analysis as it enables the identification and
characterization of distinct cell populations within a tissue or organism. This information is crucial
for understanding the functional diversity, developmental trajectories, and disease relevance of
different cell types, providing insights into biological processes and facilitating targeted therapeutic
approaches.

Downstream Task Datasets. We assess the performance of CellPLM on the task of cell type
annotation on hPancreas (Chen et al., 2023) and Multiple Sclerosis (MS) (Schirmer et al., 2019),
which are suggested by Cui et al. (2023). The hPancreas dataset contains five scRNA-seq datasets of
human pancreas cells, divided into reference and query sets with annotations, including 13 cell types
and 11 cell types, respectively. The Multiple Sclerosis dataset (M.S.), sourced from EMBL-EBI,
includes 9 healthy control and 12 M.S. samples. 3,000 highly variable genes were retained.

Evaluation Metrics. We evaluate cell type annotation performance based on two standard classifica-
tion metrics, Macro Precision and Macro F1 score.

Baselines. To benchmark the performance of CellPLM, we compare it with both pre-trained models
including scGPT Cui et al. (2023), scBERT Yang et al. (2022), as well as non-pre-trained SOTA
models including ACTINN Ma & Pellegrini (2020), CellTypist Domínguez Conde et al. (2022),
SingleCellNet Tan & Cahan (2019), and TOSICA Chen et al. (2023). For baseline methods, we
adhere to their provided guidelines and utilize the default parameter setting. The performance metrics
reported for scBERT, TOSICA and scGPT in this task are directly obtained from scGPT papers.

Fine-tuning. For CellPLM model, we attach a feed forward layer to the pre-trained encoder and
latent space and tune the downstream model on the downstream dataset with a standard cross entropy
loss.
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H ADDITIONAL VISUALIZATION

H.1 COMPARISON BETWEEN CellPLM AND SCVI

As a supplement to the zero-shot clustering experiments in Section 4.1, we add an additional
comparison with scVI (Lopez et al., 2018) on the same dataset. As shown in Figure 8, CellPLM
successfully outperforms scVI without any training or fine-tuning, while the latter was trained on this
specific dataset.

CellPLM
(ARI = 0.867, NMI = 0.823)

scVI
(ARI = 0.843, NMI = 0.823)

PatientMajor cell type

Figure 8: Visualization and comparison between CellPLM (zero-shot) and scVI on the clustering
task.

H.2 VISUALIZATION OF GENE EMBEDDINGS

In order to examine whether gene interactions can be encoded in CellPLM, we present a visualization
of pre-trained gene embeddings from the gene expression embedded (i.e., hj in Eq. 3) in Figure 9.
From the visualization, the gene embeddings maintain some latent structures. To further verify the
effectiveness of the latent structure, we highlight a specific family of genes, HLA genes. There are
multiple classes of genes in HLA gene family (Cruz-Tapias & Anaya, 2021). For example, HLA
class I genes (e.g., HLA-A, -B, and -C) present endogenous peptides to responding CD8+ T Cells
while the class II (e.g., HLA-DR, -DP, and –DQ) process exogenous peptides for presentation to
CD4+ helper T Cells. From the UMAP visualization, HLA gene embedding clusters perfectly match
the functionality and characteristics of those genes.

I ABLATION STUDY

To further verify the contribution of each component in CellPLM model, we add three new ablation
studies on two representative tasks to examine the effectiveness of proposed latent distribution
and transformer encoder, presented in Table 10. In each setting, we change one component in the
model architecture and go through the whole pre-train and fine-tune pipeline to get the downstream
performance. Specifically,

1. First, when we replace the proposed mixture of gaussian prior distribution with a gaussian
prior distribution (noted as “w/o Mixture of Gaussian", commonly used in previous methods
like scVI), the performance significantly drops on all datasets, indicating that an unsuitable
prior distribution can greatly hurt the performance. A regular Gaussian distribution cannot
accommodate the highly heterogeneous data present in the pre-train dataset, which were
collected from different people, organs, and sequencing platforms.
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Figure 9: Visualization of gene embeddings in the pre-trained CellPLM demonstrate that CellPLM
successfully captures gene interactions in the initial gene embeddings. For example, HLA Class I
genes and HLA Class II perfectly form two clusters in the gene embedding space.

2. Second, we removed the latent distribution in its entirety, noted as “w/o latent distribution",
i.e., we converted from a VAE-like probabilistic generative model to a deterministic masked
auto-encoder. The performance consistently falls between the original one and the first
ablation. On one hand, this supports our motivation of using probabilistic models with
Gaussian mixture prior distribution. The latent distribution helps model the uncertainty
of the data and address the high noise inherent in transcriptomic data, which results in a
robust cell representation. On the other hand, the selection of prior distribution is very
important because an improper prior (e.g., regular Gaussian) can be even worse than no
latent distribution.

3. Lastly, we replace the transformer encoder with an MLP encoder (noted as “w/o trans-
former"), keeping the same number of layers and hidden dimension (the total parameters
reduce from 85M to 50M). The performance significantly drops on spatial imputation task,
while the gap is relatively small on cell-type classification task. This aligns with our intuition,
as spatial transcriptomic data provide spatial location information, enabling the model to
better identify and utilize the relationships between cells. In contrast, the cell type annotation
dataset does not provide spatial location information, which makes the benefits gained from
the transformer encoder more limited.

Overall, through a series of ablation studies, we have verified that our CellPLM model can capture the
relationships between cells via the transformer encoder and enhance the performance of downstream
tasks, generating more robust and useful cell representations through appropriate prior distributions.
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Cell-type Classification
MS hPancreas

f1 precision f1 precision
CellPLM 0.766 ± 0.007 0.803 ± 0.008 0.749 ± 0.010 0.753 ± 0.010

w/o Mixture of Gaussian 0.737 ± 0.042 0.766 ± 0.069 0.711 ± 0.025 0.701 ± 0.025
w/o Latent Distribution 0.750 ± 0.024 0.809 ± 0.032 0.733 ± 0.034 0.731 ± 0.033

w/o Transformer Encoder 0.750 ± 0.050 0.794 ± 0.074 0.751 ± 0.010 0.750 ± 0.012
Spatial Imputation

Lung Liver
corr cosine corr cosine

CellPLM 0.318 ± 0.015 0.481 ± 0.011 0.328 ± 0.011 0.481 ± 0.010
w/o Mixture of Gaussian 0.258 ± 0.011 0.449 ± 0.005 0.232 ± 0.013 0.433 ± 0.008
w/o Latent Distribution 0.262 ± 0.011 0.449 ± 0.008 0.246 ± 0.017 0.428 ± 0.012

w/o Transformer Encoder 0.244 ± 0.016 0.443 ± 0.008 0.250 ± 0.032 0.440 ± 0.021

Table 10: Ablation studies on latent distribution and transformer encoder.
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