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Abstract

Test-time adaptation (TTA) aims to preserve model performance under distribution
shifts. Yet, most existing methods rely on entropy minimization for confident
predictions. This paper re-examines the sufficiency of entropy minimization by an-
alyzing its dual relationship with energy. We view energy as a proxy for likelihood,
where lower energy indicates higher observability under the learned distribution.
We uncover that entropy and energy are tightly associated, controlled by the model’s
confidence or ambiguity, and show that simultaneous reduction of both is essential.
Importantly, we reveal that entropy minimization alone neither ensures energy
reduction nor supports reliable likelihood estimation, and it requires explicit dis-
criminative guidance to reach zero entropy. To combat these problems, we propose
a twofold solution. First, we introduce a likelihood-based objective grounded in
energy-based models, which reshape the energy landscape to favor test samples.
For stable and scalable training, we adopt sliced score matching—a sampling-free,
Hessian-insensitive approximation of Fisher divergence. Second, we enhance en-
tropy minimization with a cross-entropy that treats the predicted class as a target
to promote discriminability. By counterbalancing entropy and energy through the
solution of multi-objective optimization, our unified TTA, ReTTA, outperforms
existing entropy- or energy-based approaches across diverse distribution shifts.

1 Introduction

Deep learning models are increasingly ubiquitous in cutting-edge technologies such as autonomous
vehicles [21, 17] and biomedical science [1, 22]. A key assumption behind their success is that
test data comes from the same distribution as training data. However, this assumption is often
broken in practice. Test data can be subject to degeneration, referred to as covariate shifts, such as
changes in lighting due to weather conditions or unexpected noise caused by sensor degradation [14].
Unfortunately, the decision-making of models degrades due to the distribution shifts [13]. This poses
a substantial challenge for the practical deployment of pre-trained models.

Test-time adaptation (TTA) has been proposed to yield more reliable decision-making under distribu-
tion shifts. An early TTA method centered on minimizing the entropy of test data [34], assuming
models could separate classes well [11]. This key idea became the cornerstone of state-of-the-art
methods [9, 20, 26, 27, 40], fueling the evolution of TTA. These modern approaches adopt proxy
techniques in parallel, such as data filtering [26] or pseudo-labeling [10, 23, 35], because data streams
experience dynamic shifts [38] and high correlation (non-i.i.d.) [2] in practice. Still, the core principle
of minimizing entropy remains unchanged, even as many efforts are made to address the limitations
of optimizing entropy alone.
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In this study, we raise a crucial question: Is minimizing entropy truly sufficient as the core objective
for TTA? Our revisit to entropy through its dual, energy [18], which reflects the likelihood of being
in-distribution, reveals a key gap: the lack of momentum to minimize energy for better likelihood
estimation in the test domain. More recently, an energy-based TTA method [39] aims to reduce energy
overall, but it overlooks the advantages of minimizing entropy, which enhances discriminability.

This paper argues that the complete reduction of entropy and energy is crucial. However, even for data
with low confidence, achieving zero entropy is difficult, even when entropy and energy are minimized
simultaneously. Our test supports this by analyzing the distribution of entropy and energy in test data
(Figure 1). The distribution reflects whether the logit would be a confident or ambiguous prediction,
and implies discrete bands following a log-shaped curve (Figure 1(d)). Here, the lower energy and
entropy correlate with correct predictions. However, this observation also reveals that, with only the
two objectives, test data cannot transition between these bands to improve accuracy. This, in short,
signifies the need for an additional objective to guide the model toward discriminability.

This paper introduces ReTTA, a novel unified TTA based on both entropy and energy with two
objectives. The first objective is to utilize energy-based models (EBMs) [18], where the marginal
density of data is modeled by an energy function, typically defined as the LogSumExp of the model’s
logit. EBMs allow the model to reshape its likelihood in response to data [24], with training focusing
on maximizing the density by lowering the energy of test data and raising the energy of generated
samples [39]. However, sampling during EBM training can be unstable [5]. We approximate this
process using a first-order method. This reformulation allows for minimizing Fisher divergence
between the test and model distributions by aligning their scores [31]. This sampling-free objective
is well-suited for TTA. Precisely, to avoid unstable loss due to abnormal Hessian values, we adopt
sliced score matching (SSM), which provides a scalar comparative loss for TTA [33].

The second objective is to achieve complete entropy minimization (EM) by incorporating a dis-
criminative objective that guides the model’s prediction toward a single class. To this end, we use
cross-entropy, targeting the most probable class, which we define as the targeted class convergence
(TCC) loss. By combining EM loss with SSM and TCC, we form the unified ReTTA loss. Here,
entropy and energy optimization should be handled carefully because the lack of supervision can
hinder convergence, especially given the unpredictable nature of distribution shifts. To address the
challenge of balancing entropy and energy optimization, we propose a self-adjusting coefficient,
where energy optimization is adaptively adjusted relative to EM, regardless of the type of distribution
shift. Extensive experimental evaluations demonstrate that ReTTA outperforms TTA approaches that
rely solely on entropy or energy optimization.

Our contributions are summarized as follows:

• We confirm that minimizing entropy alone is insufficient for estimating the test distribution’s
likelihood, emphasizing the necessity for simultaneous entropy and energy minimization in
TTA. We address this with a sampling-free energy adaptation loss (SSM), which, combined
with EM, directly maximizes likelihood.

• We establish that successful TTA requires energy reduction and convergence to the lowest
entropy. We propose the targeted class convergence (TCC) loss, using cross-entropy, and
integrate it with EM and SSM in a novel unified EM objective, ReTTA.

• We propose a self-adjusting coefficient to counterbalance the optimization of entropy and en-
ergy, effectively addressing challenges such as unpredictable distribution shifts. Evaluations
demonstrate that ReTTA adaptively works on various corruption data and performs well.

2 Related Work

Test-time adaptation (TTA). TTA aims to improve model generalizability under distribution shifts.
This is achieved by updating model parameters using test data, without access to the training dataset.
Numerous TTA techniques have been proposed, including pseudo-labeling [23, 10, 35], calibration of
normalization layers [8, 28, 38, 27], consistency-based regularization [30], prototype alignment [15],
low-rank mixtures of experts [19], and energy adaptation [39]. Among these, EM [34, 26, 27, 20, 9]
remains a widely adopted objective, encouraging confident predictions during adaptation. However,
Boudiaf et al. [2] highlight the failure of EM when the test stream lacks diversity. More recently,
Choi et al. [3] point out the limitations of relying solely on EM in such unpredictable scenarios,
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emphasizing the importance of energy. Building upon these insights, we offer a new perspective by
showing why EM, while useful, is insufficient on its own. Additionally, we explore the energy-entropy
relationship and argue that, to improve the effectiveness of entropy minimization, it is essential to
reduce energy and boost the model’s discriminability concurrently.

Energy-based models (EBMs). EBMs [18] are a class of non-normalized probabilistic models with
an intractable normalizing constant. They use stochastic approximations to estimate this constant,
offering flexibility in parameterization and enabling the modeling of a wide range of distributions [12].
Through these approximations, EBMs generate data via energy functions, without relying on an
explicit neural network. This flexibility has led to applications in tasks such as image generation [4, 6],
domain adaptation [41, 37], and domain generalization [7, 36]. Recently, energy-based methods for
TTA have focused on reducing energy within the model’s distribution to enhance generalizability [38].
However, the method ignores the direction of energy alignment and requires multiple sampling
iterations due to the intractable constant. While adaptive energy adaptation [3] attempts to address
these issues, it relies on heuristics and mini-batch configurations. In contrast, our work introduces
a more scalable approach through Sliced Score Matching (SSM) [33], providing a sampling-free
objective that improves TTA while avoiding the problems [5] in training EBMs.

3 Analytical Motivation and Observation in Entropy Minimization

Preliminaries. Let the source dataset Ds be sampled from the training data distribution pspx, yq,
and the target dataset Dt from the test data distribution ptpx, yq. A discriminative model fθ : RD ÞÑ

RK , parameterized by θ, which maps data x P RD to K real-valued outputs, is trained by maximizing
the log-posterior log ppθ|Dsq for the source dataset. During testing, the model fθ infers the label yt
for unseen test (target) data xt from the K classes by marginalizing over the parameters θ as:

ppyt|xt;Dsq “

ż

ppyt|xt; θqppθ|Dsqdθ, (1)

where pxt, ytq P Dt. Covariate shift occurs due to the shift in the marginal distribution of data, i.e.,
pspxq ‰ ptpxq. When covariate shifts exist, the joint distribution also differs, i.e., pspx, yq ‰ ptpx, yq,
which compromises inference in Eq. 1 by causing a mismatch in likelihoods and leads to degraded
accuracy. As a workaround, many TTA methods [20, 26, 27, 34] attempt to update the parameters θ
applying EM. In Section 3.1 and 3.2, we discuss what is missing in the EM during TTA.

3.1 Rethinking Entropy Minimization

The mitigation of the covariate shift is key to the success of TTA. Specifically, given the model
parameterized by θ, which estimates the source distribution pspx, yq, one promising approach is to
update θ to maximize the likelihood of ptpxq when test data is observed, i.e., pspxq » ptpxq.

In this regard, we account for ppxq as the sum of its factorized component y, i.e., ppxq “
ř

y ppx, yq.
However, at test time, the label y is unknown. TTA approaches treat the probable classes as potential
labels, assuming that the model, having once maximized the log-likelihood on the source domain,
has strong discriminative power [11]. Therefore, the probable classes are determined by the model’s
output probabilities p, which is computed by applying the Softmax to the logits:

ppxq “
“

ppy “ 1|x; θq, . . . , ppy “ K|x; θq
‰

; ppy|x; θq “
exppfθpxqrysq

ř

k exppfθpxqrksq
, (2)

where ppxq P RK and fθpxq represents the logit of the data x. Here, we note whether the likelihood
of the data, marginalized over these probable classes, is maximized by minimizing the entropy of
the Softmax p. To this end, it is necessary to introduce a quantity that quantifies how the data likely
belongs to the marginal distribution parameterized by θ. We use the energy [18, 39], Eθpxq, which
maps data or its logit to a deterministic scalar by summing over the probable classes, as defined by:

Eθpxq :“ ´ log
ÿ

k
exppfθpxqrksq. (3)

This log partition function, also defined as Eθpzq “ ´LogSumExppzq with z “ fθpxq, indicates that
a larger negative value represents more likely (or highly observable) data under the distribution pθpxq.

Now, we focus on the relationship between energy and entropy. We note that they form a conjugate
pair, exhibiting a duality that helps us understand the trajectory of energy during minimizing entropy.
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(a) No adaptation (b) EM (c) ReTTA (ours) (d) Energy-entropy band

Figure 1: Distribution of test data based on energy and entropy values, and visualization of energy-
entropy bands. (a) No adaptation: inference without TTA. (b) EM: results from the state-of-the-art EM
method [27]. (c) ReTTA (ours): unified TTA integrating EM with the two objectives from Section 4
(1,350 more correct samples than EM). To observe this phenomenon, ResNet-50 (BN) is applied to
the contrast corruption (severity 5) from ImageNet-C [14], following [27]. (d) Energy–entropy band:
energy-entropy curves with respect to the number of classes K and the secondary logit Z.

Lemma 1 (Conjugate Relation). Suppose z represents the model’s logit, and g denotes the gradient
of the concave function Eθ with respect to the logit z. The concave conjugate of Eθpzq is defined
as E˚

θ pgq “ minztgT z ´ Eθpzqu. Then, the gradient g corresponds negatively to the Softmax, i.e.,
g “ ∇zEθpzq “ ´ppxq, and the conjugate function E˚

θ pgq becomes the negative entropy of ppxq:

E˚
θ pgq “ Hppq “ ´ppxqT logppxq. (4)

Eq. 4 holds in reverse when considering the conjugate of negative entropy (for clarity, we use “entropy”
to refer to negative entropy). Thus, both functions exhibit bi-duality, with each being the conjugate of
the other. Building on the bi-duality, we consider the following Fenchel duality.
Lemma 2 (Fenchel-Moreau Theorem). Primal function Eθpzq and its conjugate function E˚

θ pgq

exhibit bi-duality. The primal function can be completely recovered from its conjugate function E˚
θ pgq

as Eθpzq “ mingtgT z ´ E˚
θ pgqu. Therefore, energy and entropy satisfy the following relationship:

Eθpzq “ min
p

t´pT z ´ Hppqu. (5)

Analytical motivation. The duality in Eq. 5 provides valuable insight. When entropy is minimized,
Hppq Ñ 0, the model’s output p becomes a one-hot vector. Accordingly, the product pT z approaches
the logit of the most confident class k˚, i.e., Eθpzq “ ´zk˚ , which corresponds to the overall energy.
In other words, minimizing entropy does not provide a clear momentum to reduce the overall energy.
In short, EM updates model parameters to increase confidence for the confident classes in test data,
but lacks an objective to maximize the likelihood of the marginal distribution.

3.2 Observation for Energy and Entropy Relationship

In this section, we examine another problem of minimizing entropy alone. We confirm this by visually
observing how the energy and entropy of test data change under the influence of EM. Figure 1(a)
shows that, when TTA is not applied, test data exhibit high entropy and energy, with the distribution
concentrated around these high values. When EM works (Figure 1(b)), test data converge toward a
region where entropy approaches zero, with energy moving toward larger negative values.

Intriguingly, the distribution of test data with respect to energy and entropy suggests a log-shaped
relation, with their outermost curve acting as an upper bound. Here, we view this curve as a new
perspective for understanding the tight interaction between energy and entropy. Specifically, as we
found, by applying restricting conditions to the model’s logits, we can define a function capable of
interpreting the distribution of energy and entropy.
Theorem 1. Suppose the logit of the model fθ is defined over K classes, where k classes are assigned
a primary logit z˚, with strong influence, and the remaining K ´ k classes share a singular logit Z
with minimal influence. Then, the closed-form equation for the energy-entropy relationship based on
the conditioned logits is given by:

HpEθq “ ´p1 ´ CpkqeEθ q log

ˆ

1 ´ CpkqeEθ

k

˙

´ CpkqeEθ pZ ` Eθq, (6)
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where Eθ P R´ denotes the energy, and H P r0, logKs represents the entropy. Cpkq is a variable
defined by Cpkq “ pK ´ kqeZ .

From Figure 1(d), Eq. 6 shows that the energy-entropy relationship forms “bands,” which represent
sets of closely spaced function values that the conditioned logits can occupy, depending on the
discrete value of the remaining classes k. These bands thus make it easy to infer the possible values
of the logit for the test data. For instance, Figure 1(b) shows that if multiple primary logits exist
(i.e., k “ 2, 3) with distinct values, the data can be distributed across the bands, or when the logits
are singular, the data will lie on each band. Here, we note one phenomenon: test data near the
zero-entropy and low-energy band (k “ 1) appear to be corrected.

Motivation. Our motivation stems from the fact that minimizing entropy alone makes it difficult
for the Softmax of the logits to converge to the zero-entropy region of the band, k “ 1. This difficulty
arises from the non-zero probabilities in the Softmax, which cause different convergences for the
logits of each class [3]. This issue becomes particularly apparent in TTA, where the model observes
and updates the data once during inference [34]. Therefore, an additional goal should be to guide the
logits toward the k “ 1 band explicitly, where entropy approaches zero.

4 Methodology

Building on both motivations, we present two TTA objectives in conjunction with EM: (1) maximizing
the likelihood of marginal distribution, and (2) guiding the logits of xt toward a zero-entropy region.

Energy-based models. We model the marginal distribution using EBMs [18]. Specifically, we
define the joint distribution over test data xt and a possible class yt based on the model’s logit as
pθpxt, ytq “ exppfθpxtqrytsq{Zpθq, where Zpθq denotes the normalizing constant [12]. Marginaliz-
ing out the class variable yt, we obtain the marginal distribution over xt:

pθpxtq :“
expp´Eθpxtqq

Zpθq
, (7)

where the energy Eθpxtq follows Eq. 3. The normalizing constant Zpθq “
ş

xt
expp´Eθpxtqqdxt is

intractable, which poses a challenge in optimizing the log-likelihood of pθpxtq: maxθ Ept
rlog pθpxtqs.

We revisit this challenge in Section 4.1 and introduce a proxy objective for stable parameter updates.

4.1 Sliced Score Matching Loss

The derivative of the expected log-density Eptrlog pθpxtqs encourages the model to decrease the
energy of the test data while increasing the energy of confabulations (samples generated by the
model). Formally, the derivative is given by:

∇θEpt
rlog pθpxtqs “ Epθ

r∇θEθpxtqs ´ Ept
r∇θEθpxtqs. (8)

The first expectation term Epθ
r¨s in Eq. 8 involves generating samples (confabulations) from the

model distribution pθpxtq, typically achieved through a Markov Chain Monte Carlo (MCMC) method,
e.g., Gibbs sampling. Among various MCMC techniques, Langevin dynamics is widely adopted as a
representative gradient-based sampling approach [5, 16, 39]:

xi`1
t “ xi

t ´
µ2

2
∇xt

Eθpxi
tq ` µϵ, ϵ „ N p0, IDq, (9)

where the Markov chain is initialized from the test data, i.e., x0
t “ xt. Here, µ controls the step size,

and ϵ is Gaussian noise added at each iteration. However, Eq. 9 alone is often insufficient for stable
optimization of Eq. 8 [5], and it typically requires repeated iterations. To combat the instability and
inefficiency associated with MCMC-based sampling, we adopt an alternative [32]. We leverage the
fact that a single-step Langevin update, applied to data sampled from the true distribution ptpxtq,
provides a good approximation to the gradient of the Fisher divergence between ptpxtq and pθpxtq.
Lemma 3. A one-step Langevin update initialized from xt „ ptpxtq approximates the gradient
of the Fisher divergence between the true distribution ptpxtq and the model distribution pθpxtq

parameterized by θ, as follows:

∇θEptrlog pθpxtqs »
µ2

2
∇θDF pptpxtq||pθpxtqq ` opµ2q, (10)

where DF pp||qq is the Fisher divergence, and opµ2q denotes higher-order term with respect to µ2.
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This formulation justifies the use of the Fisher divergence as a surrogate objective for likelihood-based
training in EBMs when employing a one-step Langevin update. In particular, the Fisher divergence is
also known as score matching, and is defined as:

DF pptpxtq||pθpxtqq “ Eptr||∇xt log ptpxtq ´ ∇xt log pθpxtq||2s (11)

» EptrTrp∇2
xt

log pθpxtqq `
1

2
||∇xt log pθpxtq||2s, (12)

where ∇x log ppxq is the score function, which characterizes how the log-density of ppxq varies with
respect to x. Unlike Eq. 8, this score matching in Eq. 11 enables a sampling-free optimization via
a simple Monte Carlo estimator based solely on empirical averages over the test data. However,
computing score matching requires evaluating the trace of the Hessian ∇2

xt
of the model’s log-density

in Eq. 12. This term is costly to compute [25] and can be overly sensitive to the sharp local curvature.
Therefore, the use of score matching may become limited in high-dimensional data.

In this paper, we leverage Sliced Score Matching (SSM) [33], a variant of score matching that scales
well to high-dimensional data. The key idea is to match inner products of score functions along
randomly sampled directions, instead of matching the full score values directly:

DSF pptpxtq||pθpxtqq “ Ept,ppvqr||vT∇xt
log ptpxtq ´ vT∇xt

log pθpxtq||2s, (13)

“ Ept,ppvqrvT∇2
xt

log pθpxtqv `
1

2
||vT∇xt

log pθpxtq||2s, (14)

where DSF pp||qq is the sliced Fisher divergence and ppvq is chosen as a normal distribution N p0, IDq.
Other valid choices for ppvq should satisfy EppvqrvvJs ą 0 and Eppvqr}v}22s ă 8 [33]. Building
on this formulation, we construct the following unbiased estimator as a proxy for maximizing the
log-density of pθpxtq, defined by Eq. 7:

ℓSSM pθq “
1

|Bt|

ÿ

xtPBt

„ D
ÿ

i“1

D
ÿ

j“1

B2Eθpxtq

Bxi
t Bxj

t

vivj `
1

2

D
ÿ

i“1

ˆ

BEθpxtq

Bxi
t

vi
˙2ȷ

, (15)

where Bt represents a mini-batch of test data xt, sampled by Dt. Eq. 15 defines our first objective
that concentrates on enhancing the TTA of EM.

4.2 Targeted Class Convergence Loss

One key challenge remains: when Softmax in Eq. 2 is applied to the logits with respect to the data
xt, resulting in non-confident predictions (i.e., the model does not favor a single class, such as the
zone of k “ 2, 3, ... in Eq. 6), EM alone for prediction ppxtq is insufficient to achieve zero-entropy
convergence. This is especially challenging in the context of TTA, where the model observes the data
once and updates it once during inference [34].

In other words, full convergence requires a well-defined target and appropriate supervision. To this
end, leveraging the model’s discriminative power [11], we treat the most probable class from the
Softmax as the target class. We then supervise the model with cross-entropy. The Targeted Class
Convergence (TCC) loss is defined as:

ℓTCCpθq “
1

|Bt|

ÿ

xtPBt

„

´ log

ˆ

exppfθpxtqrỹsq
ř

k exppfθpxtqrksq

˙ȷ

, (16)

where ỹ “ argmaxkppy “ k|xtq is the target class. Eq. 16 defines our second objective.

4.3 Overall Objective for Test-Time Adaptation

The total loss for a novel, entropy- and energy-based TTA approach, ReTTA, is defined as the
combination of ℓSSM pθq, ℓTCCpθq, and the EM loss ℓEM pθq as follows:

ℓReTTApθq “ ℓEM pθq ` λ1pαq ¨ ℓSSM pθq ` λ2 ¨ ℓTCCpθq, (17)

where ℓEM pθq is defined in Eq. 4 for the mini-batch Bt, and λ1 and λ2 are the respective coefficients.
In practice, ℓSSM pθq varies across different domains (due to various types of covariate shifts [14])
and mini-batches. Thus, balancing it with ℓEM pθq is crucial for each adaptation. However, as the
domain and data are unpredictable at test time, we propose a self-adjusting balancing method.

6



Figure 2: Breakdown of the self-adjusting coefficient λ1 during total TTA iterations on ImageNet-C
(severity 5), based on Table 1. The negative-log scale has zero corresponding to λ1 “ 1, and higher
values indicate near-zero λ1. The four colors represent Noise, Blur, Weather, and Digital groups.

Self-adjusting coefficient. To achieve the seemingly challenging goal of self-adjusting the bal-
ance between ℓEM pθq and ℓSSM pθq, we leverage the concept of multi-objective optimization [29].
Given two objectives, the optimization problem is formulated as minαPr0,1s ||α∇θℓEM pθq ` p1 ´

αq∇θℓSSM pθq||22, a quadratic function of α. The analytical solution is then given by:

α “
p∇θℓSSM pθq ´ ∇θℓEM pθqqT∇θℓSSM pθq

||∇θℓEM pθq ´ ∇θℓSSM pθq||22
. (18)

To ensure that the effect of ℓEM pθq is preserved while still utilizing ℓSSM pθq relatively, we clip α
using the function λ1pαq “ maxpminpp1 ´ αq{α, 1q, 0q, keeping then λ1 remains within a practical
range. This adjustment maintains stability in balancing across diverse covariate shifts. In Section 5,
we evaluate the effectiveness and versatility of ReTTA on various covariate shifts.

5 Experiment

We conduct experiments to validate the following: (1) the performance of ReTTA compared to existing
entropy- and energy-based TTA methods under various distribution shifts, including challenging
scenarios such as online label shifts; (2) the self-adjusting impact of λ1 within the newly introduced
loss ℓSSM pθq, its projection distributions, and replacing alternative losses with SSM; and (3) the
contribution of ℓTCCpθq to performance, its role in reducing entropy, and the sensitivity to λ2.

Dataset and baseline methods. We evaluate ReTTA on ImageNet-C [14], a widely-used benchmark
for assessing model generalization under diverse distribution shifts. The dataset consists of 15
corruption types, divided into four main categories (Noise, Blur, Weather, and Digital), each with
five severity levels, for a total of 1K classes. We compare ReTTA with state-of-the-art methods
including entropy-based approaches MEMO [40], Tent [34], EATA [26], SAR [27], DeYO [20], and
energy-based methods TEA [39] and AEA [3].

DNN models and experimental settings. We perform experiments using two model architectures
— ResNet-50 (with BN/GN) and VitBase (with LN) — from torchvision and timm, respectively.
Following SAR [27], we use SGD with momentum 0.9, a batch size of 64, and learning rates of
0.00025 (ResNet) and 0.001 (Vit). Unless otherwise stated, we also apply the data sampling and
loss-reweighting scheme from DeYO [20]. For TTA, we update only the affine parameters θaffine Ă θ
of the normalization layers–batch/group norm in ResNet-50 and layer norm in VitBase–following
Tent [34]. Unless otherwise stated, we fix the TCC loss coefficient at λ2 “ 1. All experiments
use one-shot TTA: each test sample is observed and updated once. Further hyperparameters and
implementation details are provided in Appendix B.

5.1 Robustness to Corruption in Test Data

Comparison on mild scenario. Table 1 compares the performance of ReTTA with state-of-the-art
entropy-based methods (MEMO, Tent, EATA, SAR, DeYO) and energy-based methods (TEA, AEA)
on ImageNet-C under mild corruption conditions (severity level 5). ReTTA achieves the highest
accuracy across nearly all corruption categories, outperforming the state-of-the-art method, DeYO, in
challenging noise corruptions: Gaussian (+1.7%), Shot (+1.8%), and Impulse (+1.8%). ReTTA also
sets new accuracy benchmarks in the Blur, Weather, and Digital categories, significantly improving
complex corruption such as Contrast (+1.5%) and Motion Blur (+0.8%). Overall, ReTTA achieves an
average accuracy of 49.2%, surpassing all compared methods by at least 0.6%, demonstrating robust
and broad applicability under mild distribution shifts.
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Mild Noise Blur Weather Digital Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
ResNet-50 (BN) 2.2 2.9 1.8 17.9 9.8 14.8 22.5 16.9 23.3 24.4 58.9 5.4 16.9 20.7 31.7 18.0
MEMO 7.5 8.8 8.9 19.8 13 20.7 27.7 25.3 28.7 32.2 61.0 11.0 23.8 33.0 37.6 23.9
Tent 29.2 31.2 30.1 28.1 27.7 41.4 49.4 47.2 41.5 57.7 67.4 29.2 54.8 58.5 52.4 43.1
EATA 34.9 37.1 35.8 33.4 33.0 47.1 52.7 51.6 45.7 60.0 68.1 44.4 57.9 60.6 55.1 47.8
SAR 30.6 30.6 31.3 28.5 28.5 41.9 49.4 47.1 42.2 57.5 67.3 37.8 54.6 58.4 52.1 43.9
DeYO 35.6 37.9 37.1 33.8 34.1 48.5 52.8 52.7 46.4 60.6 68.0 46.1 58.4 61.5 55.7 48.6
TEA˚ 16.8 17.5 17.5 15.8 16.0 27.3 39.9 35.3 33.9 49.0 65.7 17.9 45.1 50.2 41.3 32.6
AEA 26.2 26.8 27.3 24.2 20.8 40.3 48.1 47.3 41.4 56.0 65.7 9.5 53.4 56.7 49.5 39.5
ReTTA (ours) 37.3˘0.0 39.7˘0.2 38.9˘0.2 34.5˘0.3 34.1˘0.0 49.3˘0.2 53.1˘0.2 52.7˘0.1 46.1˘0.2 60.7˘0.1 68.2˘0.1 47.6˘0.3 58.6˘0.0 61.5˘0.0 56.0˘0.0 49.2˘0.0

Table 1: Comparisons with baseline TTA methods on ImageNet-C at severity level 5 under mild
scenario in terms of accuracy (%). ˚ TEA was not publicly reported and was tested directly.

Label Shifts Noise Blur Weather Digital Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
ResNet-50 (GN) 17.9 19.9 17.9 19.7 11.3 21.3 24.9 40.4 47.4 33.6 69.3 36.3 18.7 28.4 52.2 30.6
MEMO 18.4 20.6 18.4 17.1 12.7 21.8 26.9 40.7 46.9 34.8 69.6 36.4 19.2 32.2 53.4 31.3
Tent 3.6 4.2 4.4 16.5 5.9 26.9 28.4 17.9 26.2 2.3 72.2 46.1 7.3 52.3 56.2 24.7
EATA 25.7 28.6 24.8 18.5 19.6 24.1 28.4 35.3 33.0 41.2 65.2 33.3 28.0 42.4 43.1 32.7
SAR 33.7 36.9 35.3 19.3 20.3 33.8 29.8 21.9 44.7 34.9 71.9 46.7 6.6 52.3 56.2 36.3
DeYO 42.5 44.9 43.8 22.2 16.3 41.0 13.2 52.2 51.5 39.7 73.4 52.6 46.9 59.3 59.3 43.9
TEA˚ 0.4 0.4 0.4 0.2 0.1 0.4 1.2 1.1 1.3 0.4 13.5 0.5 0.3 0.3 5.0 1.7
ReTTA (ours) 42.7˘0.3 45.1˘0.1 44.2˘0.2 29.4˘2.5 22.9˘5.8 41.1˘0.1 34.4˘14.4 52.8˘0.5 51.1˘0.1 58.5˘0.2 73.5˘0.1 49.8˘0.2 48.4˘0.7 59.8˘0.3 59.3˘0.0 47.5˘0.4

VitBase (LN) 9.4 6.7 8.3 29.1 23.4 34.0 27.1 15.8 26.4 47.4 54.7 44.0 30.5 44.5 47.6 29.9
MEMO 21.6 17.4 20.6 37.1 29.6 40.6 34.4 25.0 34.8 55.2 65.0 54.9 37.4 55.5 57.7 39.1
Tent 33.9 1.8 27.2 54.8 52.9 58.6 54.3 12.4 11.7 69.7 76.3 66.3 59.6 69.7 66.6 47.7
EATA 36.2 34.7 35.5 43.4 44.3 49.3 48.5 53.2 53.5 62.3 72.7 18.8 58.0 64.7 62.8 49.2
SAR 42.3 34.9 44.1 50.0 50.5 55.6 53.1 59.7 47.2 66.2 75.2 50.3 60.1 67.3 65.0 54.8
DeYO 53.5 36.0 54.6 57.6 58.7 63.7 46.2 67.6 66.0 73.2 77.9 66.7 69.0 73.5 70.3 62.3
TEA˚ 6.9 13.2 14.6 0.9 1.4 7.1 3.1 0.6 1.4 66.9 73.7 62.1 1.4 68.2 63.8 25.7
ReTTA (ours) 54.0˘0.1 55.0˘0.1 55.2˘0.1 57.8˘0.2 58.7˘0.2 64.7˘0.1 58.5˘7.5 69.0˘0.4 67.1˘0.1 71.2˘0.2 77.9˘0.0 67.6˘1.0 69.8˘0.4 74.1˘0.2 71.6˘0.3 64.8˘0.5

Table 2: Comparisons with baseline TTA methods on ImageNet-C (severity 5) under online label
shifts (imbalance ratio=8) in accuracy (%). ˚ TEA was not publicly reported and was tested directly.

Figure 3: Effects of TCC (Defocus)

In this evaluation, Figure 2 illustrates the impact of the self-
adjusting coefficient λ1 on corruption-specific performance
when applying SSM. The influence of SSM is most pro-
nounced in the Noise category, where it is fully utilized and
also shows to be essential in challenging corruptions like
Frost and JPEG. Interestingly, in a more difficult corruption
case, such as the Contrast, we observe that SSM is used con-
servatively, allowing the TCC to adjust the impact of EM
principally. This self-adjustment signifies the importance of
the adaptive balance between entropy and energy.

Comparison on online label shifts. We evaluate ReTTA
under severe online label shifts, following the setting of an
infinite imbalance ratio (pmax

t pyq{pmin
t pyq “ 8) as in SAR. Table 2 presents the results for this

challenging scenario, highlighting ReTTA’s robustness on both ResNet-50 (GN) and VitBase (LN).
On ResNet-50 (GN), ReTTA significantly outperforms the state-of-the-art method, DeYO, across
difficult corruptions, notably Defocus (+7.2%), Zoom (+21.2%), and Fog (+18.8%), achieving an
overall improvement of 3.6% in average accuracy. Similarly, for VitBase (LN), ReTTA surpasses
DeYO on almost all corruption categories, with notable improvements on Impulse Noise (+0.6%),
Zoom Blur (+12.3%), and Pixel (+0.6%), resulting in an average accuracy gain of 2.5%. These results
demonstrate ReTTA’s outstanding robustness to label distribution shifts.

5.2 Ablation Study

Effects of the balancing parameter λ2. Figure 4(a) shows how varying λ2 impacts ReTTA’s
accuracy. Performance peaks at λ2 “ 1, which we adopt for all experiments; deviations in either
direction degrade accuracy, showcasing the importance of a well-tuned TCC coefficient. Since TTA
is unsupervised, overly large λ2 can be detrimental. Figure 3 further demonstrates that with λ2 “ 1,
ReTTA reduces entropy while boosting accuracy over EM [20] on the Defocus corruption (Table 1).

Effects of alternatives for SSM. Figure 4(b) shows the impact of SSM alternatives, including
Score Matching (SM) and Sliced Score Matching with Variance Reduction (SSM-VR), which applies
when ppvq follows a Normal distribution [33]. While SSM, our chosen loss, outperforms SM (which
shows marginal gains), it performs slightly better than SSM-VR, with an average difference of
approximately 0.1%. This demonstrates SSM’s effectiveness within ReTTA.
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(a) Effects of varying λ2 (b) Effects of alternatives for SSM (c) Effects of varying ppvq

Figure 4: Effects of varying components in ReTTA: λ2 for balancing TCC, alternative losses for
SSM, and projection vector distributions within SSM. Experimental settings match those in Table 1.

Label Shifts Noise Blur Weather Digital Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
ResNet-50 (GN) + EM [20] 42.5 44.9 43.8 22.2 16.3 41.0 13.2 52.2 51.5 39.7 73.4 52.6 46.9 59.3 59.3 43.9
+SSM 42.2 44.6 43.8 26.7 22.3 40.7 13.4 51.6 50.8 58.4 73.1 49.8 48.3 59.5 59.1 45.6
+TCC 42.5 45.0 43.4 22.5 23.4 41.5 28.7 53.1 51.5 59.7 73.6 52.8 46.3 59.5 59.5 46.9
ëReTTA (Eq. 17) 42.7 45.1 44.2 29.4 22.9 41.1 34.4 52.8 51.1 58.5 73.5 49.8 48.4 59.8 59.3 47.5
VitBase (LN) + EM [20] 53.5 36.0 54.6 57.6 58.7 63.7 46.2 67.6 66.0 73.2 77.9 66.7 69.0 73.5 70.3 62.3
+SSM 54.1 55.0 55.4 57.8 58.4 64.7 59.2 69.0 67.0 71.4 77.0 67.4 69.4 74.1 70.8 64.7
+TCC 53.9 54.8 55.0 57.8 58.1 64.4 41.8 68.1 66.7 71.1 77.9 67.1 69.6 73.9 69.3 63.3
ëReTTA (Eq. 17) 54.0 55.0 55.2 57.8 58.7 64.7 58.5 69.0 67.1 71.2 77.9 67.6 69.8 74.1 71.6 64.8

Table 3: Effect of components in ReTTA. Each denotes accuracy (%) on ImageNet-C (severity 5)
under online label shifts (imbalance ratio = 8), with DeYO as the baseline EM method.

Mild Noise Blur Weather Digital Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
ResNet-50 (BN) + EM [26] 34.9 37.1 35.8 33.4 33.0 47.1 52.7 51.6 45.7 60.0 68.1 44.4 57.9 60.6 55.1 47.8
ëReTTA (Eq. 17) 35.1 37.8 36.0 33.7 33.0 47.5 52.9 51.7 45.8 60.1 68.1 44.7 57.9 60.7 55.5 48.0
ResNet-50 (BN) + EM [27] 30.6 30.6 31.3 28.5 28.5 41.9 49.4 47.1 42.2 57.5 67.3 37.8 54.6 58.4 52.1 43.9
ëReTTA (Eq. 17) 31.8 34.1 32.7 27.8 27.9 44.1 50.7 48.3 42.4 58.5 67.7 40.5 55.4 59.2 53.2 44.9
ResNet-50 (BN) + EM [20] 35.6 37.9 37.1 33.8 34.1 48.5 52.8 52.7 46.4 60.6 68.0 46.1 58.4 61.5 55.7 48.6
ëReTTA (Eq. 17) 37.3 39.7 38.9 34.5 34.1 49.3 53.1 52.7 46.1 60.7 68.2 47.6 58.6 61.5 56.0 49.2

Table 4: Adaptivity of components in ReTTA applied to state-of-the-art EM methods (EATA, SAR,
and DeYO). Each denotes accuracy (%) on ImageNet-C (severity 5) under mild scenarios.

Effects of projection distributions. Figure 4(c) shows the effect of different projection distributions,
Rademacher t˘1uD and the uniform over the hypersphere (Sphere). Normal is our chosen distribution.
The minimal performance variation suggests that the choice of projection distribution has little impact
on accuracy, demonstrating ReTTA’s insensitivity to different projections.

Effects of components in ReTTA. Table 3 shows that integrating SSM improves performance,
especially for ResNet-50 (GN), with additional gains from incorporating TCC. The combination
of SSM and TCC outperforms the baseline EM method, demonstrating that ReTTA’s integration of
entropy and energy-based optimization provides a robust, general-purpose solution. This approach
excels across various distribution shifts, particularly under challenging online label shifts, as also
reflected in improvements with VitBase (LN).

Effects of SSM and TCC in state-of-the-art EM methods. Table 4 shows that combining SSM
and TCC into EATA, SAR, and DeYO yields accuracy gains across most corruption types. DeYO
sees its largest gain in the Noise category, while SAR outperforms its baseline on all but Defocus
and Glass corruptions. EATA shows marginal gains—speculatively because its built-in forgetting
mitigation dampens the impact of deviated updates from the original parameters. While gains for
Defocus and Glass are more modest overall, integrating energy-based and class-targeted components
in ReTTA effectively strengthens performance to diverse distribution shifts.

5.3 Case Study

Potential in test-time domain adaptation. We further evaluate ReTTA under mild adaptation
conditions on three additional ImageNet-scale out-of-distribution benchmarks. ImageNet-R contains
rendered versions of ImageNet objects, introducing a large domain shift. In contrast, ImageNetV2 is
a closely related re-sampling of the original ImageNet distribution, while ImageNet-S consists of
single-channel sketch drawings. As shown in Table 5, ReTTA improves accuracy to 47.4% (ResNet-
50) and 61.7% (VitBase) on ImageNet-R, comparable to its gains on ImageNet-C. On ImageNetV2,
ReTTA mitigates the performance degradation often observed with EM-based methods, which tend
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ImageNet-R ResNet-50 (GN) VitBase (LN) ImageNetV2 ImageNet-S
No adapt. 40.8 50.9 ResNet-50 (BN) 63.20 24.09
Tent 42.8 55.3 Tent 63.07 30.50
TEA 7.0 22.9 TEA 57.28 8.87
EATA 41.9 51.1 EATA 63.14 35.24
ëReTTA (Algorithm 1) 42.4 52.1 ëReTTA (Algorithm 1) 63.20 35.24
SAR 41.9 51.8 SAR 63.06 31.74
ëReTTA (Algorithm 2) 42.3 52.5 ëReTTA (Algorithm 2) 63.14 32.16
DeYO 47.0 61.3 DeYO 62.89 35.83
ëReTTA (Algorithm 3) 47.4 61.7 ëReTTA (Algorithm 3) 63.06 35.86

Table 5: Comparison of ReTTA with baseline TTA methods defined by Algorithms 1-3 in Appendix
B.1 on three ImageNet-scale out-of-distribution benchmarks under mild adaptation settings. Each
result reports accuracy (%) on ImageNet-R (rendered objects), ImageNetV2 (re-sampled validation
distribution), and ImageNet-S (sketch-style grayscale images) using ResNet-50 and VitBase.

Mild Noise Blur Weather Digital Avg.Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG
EATA [26] (Source) 73.8 73.5 73.6 73.7 73.5 73.8 74.1 74.3 74.1 74.6 74.9 74.1 74.2 74.3 74.0 74.0
ëReTTA (Source) 73.4 73.5 73.3 73.6 73.4 74.0 74.1 74.1 74.0 74.4 74.7 74.0 74.1 74.4 73.9 73.9
EATA [26] (Lifelong) 35.3 38.7 38.0 34.1 34.0 47.1 52.9 50.9 45.6 59.8 67.9 44.1 57.4 60.1 54.9 48.0
ëReTTA (Lifelong) 36.0 38.8 38.2 34.2 33.8 47.4 53.1 51.4 45.5 59.9 68.1 44.6 57.5 60.7 54.9 48.3

Table 6: Adaptivity of ReTTA when integrated with EATA (Algorithm 1) under the lifelong adaptation
setting, following the continual adaptation strategy described in [26]. Each result represents accuracy
(%) on ImageNet-C (severity 5) using ResNet-50 (BN) with a source accuracy of 76.13%. "Source"
denotes the validation performance on ImageNet-1k measured during the lifelong adaptation process.

to incur uncertainty-induced penalties in similar or overlapping domains. On ImageNet-S, ReTTA
maintains the top rank among baselines, although the limited grayscale information and reduced
modes of distribution likely constrain the influence of SSM.

Potential in lifelong adaptation. Building on Lemma 3, we speculate that SSM can also mitigate
forgetting. During each adaptation step, the “negative phase” slightly raises energy for samples from
the source distribution, while the “positive phase” lowers energy for newly corrupted samples. Rather
than offsetting each other within a single SGLD update, these two forces may reach a balanced
state that broadens the source density to cover new data without overwriting its original support.
Table 6 confirms that integrating ReTTA with EATA preserves similar gains in lifelong protocols as
in standard TTA (+0.2%). In particular, ReTTA+EATA achieves an average improvement of +0.3%
in the lifelong setting, yielding a final source accuracy of 73.9%. These results demonstrate that
ReTTA complements EM not only by enhancing adaptation under distributional shifts but also by
maintaining source performance during extended lifelong adaptation.

6 Conclusion

This paper questions the sufficiency of minimizing entropy alone for effective TTA. We identify two
key obstacles in entropy minimization under distribution shifts: the inability to estimate the test data
distribution and the failure to enhance the model’s discriminability further. This study shows that
simultaneous entropy-energy minimization is one goal-driven approach to overcoming these problems.
We propose ReTTA, which combines SSM and TCC for energy reduction and discriminability. By
adaptively balancing both objectives, ReTTA offers a scalable solution to distribution shifts. Extensive
experiments demonstrate that ReTTA outperforms existing entropy- or energy-based TTA methods.
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results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Results and experimental settings are clearly documented in the paper and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: Code will be released after the review process to avoid potential violations of the
double-blind policy.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Details of the experimental settings are included in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars (standard deviations) with three random trials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: We do not report specific compute details, such as workers, memory, and time, as
resource allocation varies depending on data center schedules and shared usage.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No harmful content or ethical risks are involved.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Societal impacts are discussed in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [No]

Justification: No use of the models and data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and models are used in compliance with their licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [No]

Justification: No new assets are introduced in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Not applicable — no human subjects or crowdsourcing involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
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Justification: Not applicable — no human subjects or crowdsourcing involved.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in the core methodology.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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