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Abstract

We tackle real-world problems with complex struc-
tures beyond the pixel-based game or simulator.
We formulate it as a few-shot reinforcement learn-
ing problem where a task is characterized by a sub-
task graph that defines a set of subtasks and their
dependencies that are unknown to the agent. Dif-
ferent from the previous meta-RL methods trying
to directly infer the unstructured task embedding,
our multi-task subtask graph inferencer (MTSGI)
first infers the common high-level task structure
in terms of the subtask graph from the training
tasks, and use it as a prior to improve the task in-
ference in testing. Our experiment results on 2D
grid-world and complex web navigation domains
show that the proposed method can learn and lever-
age the common underlying structure of the tasks
for faster adaptation to the unseen tasks than vari-
ous existing algorithms such as meta reinforcement
learning, hierarchical reinforcement learning, and
other heuristic agents.

1 INTRODUCTION

Recently, deep reinforcement learning (RL) has shown an
outstanding performance on various domains such as video
games [Mnih et al., 2015, Vinyals et al., 2019] and board
games [Silver et al., 2017]. However, most of the successes
of deep RL were focused on a single-task setting where
the agent is allowed to interact with the environment for
hundreds of millions of time steps. In numerous real-world
scenarios, interacting with the environment is expensive
or limited, and the agent is often presented with a novel
task that is not seen during its training time. To overcome
this limitation, many recent works focused on scaling the
RL algorithm beyond the single-task setting. Recent works
on multi-task RL aim to build a single, contextual policy

that can solve multiple related tasks and generalize to un-
seen tasks. However, they require a certain form of task
embedding as an extra input that often fully characterizes
the given task [Oh et al., 2017, Andreas et al., 2017, Yu et al.,
2017, Chaplot et al., 2018], or requires a human demonstra-
tion Huang et al. [2018], which are not readily available
in practice. Meta RL [Finn et al., 2017, Duan et al., 2016]
focuses on a more general setting where the agent should
learn about the unseen task purely via interacting with the
environment without any additional information. However,
such meta-RL algorithms either require a large amount of
experience on the diverse set of tasks or are limited to a
relatively smaller set of simple tasks with a simple task
structure.

On the contrary, real-world problems require the agent to
solve much more complex and compositional tasks without
human supervision. Consider a web-navigating RL agent
given the task of checking out the products from an online
store as shown in Figure 1. The agent can complete the task
by filling out the required web elements with the correct
information such as shipping or payment information, navi-
gating between the web pages, and placing the order. Note
that the task consists of multiple subtasks and the subtasks
have complex dependencies in the form of precondition;
for instance, the agent may proceed to the payment web
page (see Bottom, B) after all the required shipping infor-
mation has been correctly filled in (see Bottom, A), or the
credit_card_number field will appear after selecting
the credit_card as a payment method (see Top, Mid-
dle in Figure 1). Learning to perform such a task can be
quite challenging if the reward is given only after yielding
meaningful outcomes (i.e., sparse reward task). This is the
problem scope we focus on in this work: solving and gen-
eralizing to unseen compositional sparse-reward tasks with
complex subtask dependencies without human supervision.

Recent works [Sohn et al., 2019, Xu et al., 2017, Huang
et al., 2018, Liu et al., 2016, Ghazanfari and Taylor, 2017]
tackled the compositional tasks by explicitly inferring the
underlying task structure in a graph form. Specifically, the
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Figure 1: An illustration of the train (Top) and test task (Bottom) in our SymWoB domain. Some selected actionable web-
elements (e.g., text fields and buttons) are magnified (dotted arrow and box) for readability. The agent’s goal (green box) is
to checkout the products in unseen test website by interacting with the web elements in a correct order. For example, in
train task, the agent should fill out all the text fields in (Top, A) before clicking the credit_card button to transition
(gray arrow) to next page. The high-level checkout processes in different websites have many commonalities while certain
details may differ. For example, in both train and test tasks, the agent should fill out the user information (Top and Bottom,
A) before proceeding to the next page or there exist similar elements (Top and Bottom, C). However, the details may differ;
e.g., the train task (Top, A) has a single text field for full name, while the test task (Bottom, A) has separate text fields for the
first and last name, respectively. Also, only the test website (Bottom, B) requires shipping information since the training
website does not ship the product.

subtask graph inference (SGI) framework [Sohn et al., 2019]
uses inductive logic programming (ILP) on the agent’s own
experience to infer the task structure in terms of subtask
graph and learns a contextual policy to execute the inferred
task in few-shot RL setting. However, it only meta-learned
the adaptation policy that relates to the efficient exploration,
while the task inference and execution policy learning were
limited to a single task (i.e., both task inference and policy
learning were done from scratch for each task), limiting
its capability of handling large variance in the task struc-
ture. We claim that the inefficient task inference may hinder
applying the SGI framework to a more complex domain
such as web navigation [Shi et al., 2017, Liu et al., 2018]
where a task may have a large number of subtasks and com-
plex dependencies between them. We note that humans can
navigate an unseen website by transferring the high-level
process learned from previously seen websites.

Inspired by this, we extend the SGI framework to a multi-
task subtask graph inferencer (MTSGI) that can generalize
the previously learned task structure to the unseen task for
faster adaptation and stronger generalization. Figure 2 out-
lines our method. MTSGI estimates the prior model of the
subtask graphs from the training tasks. When an unseen task
is presented, MTSGI samples the prior that best matches
with the current task, and incorporates the sampled prior
model to improve the latent subtask graph inference, which
in turn improves the performance of the evaluation policy.
We demonstrate results in the 2D grid-world domain and the
web navigation domain that simulates the interaction with 15

actual websites. We compare our method with MSGI [Sohn
et al., 2019] that learns the task hierarchy from scratch for
each task, and two other baselines including hierarchical RL
and a heuristic algorithm. We find that MTSGI significantly
outperforms all other baselines, and the learned prior model
enables more efficient task inference compared to MSGI.

2 PRELIMINARIES

Few-shot Reinforcement Learning A task is defined by
an MDPMG = (S,A,PG,RG) parameterized by a task
parameter G with a set of states S , a set of actionsA, transi-
tion dynamics PG, reward functionRG. The goal of K-shot
RL [Duan et al., 2016, Finn et al., 2017], is to efficiently
solve a distribution of unseen test tasksMtest by learning
and transferring the common knowledge from the training
tasksMtrain. It is assumed that the training and test tasks
do not overlap (i.e., Mtrain ∩Mtest = ∅) but share a cer-
tain commonality such that the knowledge learned from the
training tasks may be helpful for learning the test tasks. For
each taskMG, the agent is given K steps budget for inter-
acting with the environment. During meta-training, the goal
of multi-task RL agent is to learn a prior (i.e., slow-learning)
over the training tasksMtrain. Then, the learned prior may
be exploited during the meta-test to enable faster adaptation
on unseen test tasksMtest. For each task, the agent faces
two phases: an adaptation phase where the agent learns
a task-specific behavior (i.e., fast-learning) for K environ-
ment steps, which often spans over multiple episodes, and a
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Figure 2: The overview of our algorithm and the example of agent’s trajectory and the inferred subtask graph. In meta-
train (Left), the adaptation policy πadapt interacts with the environment and collects the trajectory τ . The inductive logic
programming (ILP) module takes as input the trajectory, and infers the task structure in terms of the subtask graph Gτ .
The trajectory and the subtask graph are stored as a prior. In meta-testing (Right), the adaptation policy incorporates the
prior trajectory τ p to efficiently explore the environment, and ILP module infers the subtask graph Gτ from the adaptation
trajectory τ . Finally, the evaluation policy πeval takes as input the prior and inferred subtask graphs (Gp, Gτ ) to solve the
test task.

evaluation phase where the adapted behavior is evaluated.
In the evaluation phase, the agent is not allowed to perform
any form of learning, and agent’s performance on the task
MG is measured in terms of the return:

RMG
(πϕK

) = EπϕK
,MG

[∑H
t=1 rt

]
, (1)

where πϕK
is the policy after K update steps of adaptation,

H is the horizon of evaluation phase, and rt is the reward at
time t in the evaluation phase.

3 SUBTASK GRAPH INFERENCE
PROBLEM

The subtask graph inference problem [Sohn et al., 2019]
is a few-shot RL problem where a task is parameterized
by a set of subtasks and their dependencies. Formally, a
task consists of N subtasks Φ = {Φ1, . . . ,ΦN}, and each
subtask Φi is parameterized by a tuple (Scomp

i, Gi
c, G

i
r). The

goal state Scomp
i ⊂ S and precondition Gi

c : S → {0, 1}
defines the condition that a subtask is completed: the current
state should be contained in its goal states (i.e., st ∈ Sicomp)
and the precondition should be satisfied (i.e., Gi

c(st) =
1). If the precondition is not satisfied (i.e., Gi

c(st) = 0),
the subtask cannot be completed and the agent receives no
reward even if the goal state is achieved. The subtask reward
function Gi

r defines the amount of reward given to the agent
when it completes the subtask i: rt ∼ Gi

r. We note that the
subtasks {Φ1, . . . ,ΦN} are unknown to the agent. Thus, the
agent should learn to infer the underlying task structure and
complete the subtasks in an optimal order while satisfying
the required preconditions.

State In the subtask graph inference problem, it is as-
sumed that the state input provides the high-level status of

the subtasks. Specifically, the state consists of the follow-
ings: st = (obst,xt, et, stepepi,t, stepphase,t). The obst ∈
{0, 1}W×H×C is a visual observation of the environment.
The completion vector xt ∈ {0, 1}N indicates whether each
subtask is complete. The eligibility vector et ∈ {0, 1}N
indicates whether each subtask is eligible (i.e., precondi-
tion is satisfied). Following the few-shot RL setting, the
agent observes two scalar-valued time features: the remain-
ing time steps until the episode termination stepepi,t ∈ R
and the remaining time steps until the phase termination
stepphase,t ∈ R.

Options For each subtask Φi, the agent can learn an option
Oi [Sutton et al., 1999] that reaches the goal state of the
subtask. Following Sohn et al. [2019], such options are
pre-learned individually by maximizing the goal-reaching
reward: rt = I(st ∈ Sicomp). At time step t, we denote the
option taken by the agent as ot and the binary variable that
indicates whether episode is terminated as dt.

4 METHOD

We propose a novel Multi-Task Subtask Graph Inference
(MTSGI) framework that can perform an efficient inference
of latent task embedding (i.e., subtask graph). The overall
method is outlined in Figure 2. Specifically, in meta-training,
MTSGI models the prior in terms of (1) adaptation trajectory
τ and (2) subtask graph G from the agent’s experience. In
meta-testing, MTSGI samples (1) the prior trajectory τ p for
more efficient exploration in adaptation and (2) the prior
subtask graph Gp for more accurate task inference.



Algorithm 1 Meta-training: learning the prior

Require: Adaptation policy πadapt

Ensure: Prior set T p

1: T p ← ∅
2: for each taskM∈Mtrain do
3: Rollout adaptation policy:

τ = {st,ot, rt, dt}Kt=1 ∼ πadapt in taskM
4: Infer subtask graph Gτ = argmaxG p(τ |G)
5: πeval = GRProp(Gτ )
6: Evaluate the agent: τ eval ∼ πeval in taskM
7: Update prior T p ← T p ∪ (Gτ , τ)
8: end for

4.1 MULTI-TASK ADAPTATION POLICY

The goal of adaptation policy is to efficiently explore and
gather the information about the task. Intuitively, if the
adaptation policy completes more diverse subtasks, then
it can provide more data to the task inference module (ILP),
which in turn can more accurately infer the task structure.
To this end, we extend the upper confidence bound (UCB)-
based adaptation policy proposed in Sohn et al. [2019] as
follows:

πadapt(o = Oi | s) ∝ exp

ri +
√
2
log

(∑
j n

j
)

ni

 ,

(2)

where ri is the empirical mean of the reward received after
executing subtask i and ni is the number of times subtask
i has been executed within the current task. Note that the
exploration parameters {ri, ni}Ni=1 can be computed from
the agent’s trajectory. In meta-train, the exploration parame-
ters are initialized to zero when a new task is sampled. In
meta-test, the exploration parameters are initialized with
those of the sampled prior. Intuitively, this helps the agent
visit novel states that were unseen during meta-training.

4.2 META-TRAIN: LEARNING THE PRIOR
SUBTASK GRAPH

Let τ be an adaptation trajectory of the agent for K steps.
The goal is to infer the latent subtask graph G for the given
training taskMG ∈Mtrain, specified by preconditions Gc

and subtask rewards Gr. We find the maximum-likelihood
estimate (MLE) of G = (Gc, Gr) that maximizes the likeli-
hood of the adaptation trajectory τ :

ĜMLE = argmax
Gc,Gr

p(τ |Gc, Gr). (3)

Following Sohn et al. [2019], we infer the precondition Gc

and the subtask reward Gr as follows (See Appendix for the

Algorithm 2 meta-testing: multi-task SGI

Require: Adaptation policy πadapt, prior set T p

1: for each taskM∈Mtest do
2: Sample prior: (Gp, τ p) ∼ p(T p)
3: Rollout adaptation policy:

τ = {st,ot, rt, dt}Kt=1 ∼ πadapt in taskM
4: Infer subtask graph Gτ = argmaxG p(τ |G)
5: πeval(·|τ, τ p) ∝ GRProp(·|Gτ )αGRProp(·|Gp)(1−α)

6: Evaluate the agent: τ eval ∼ πeval in taskM
7: end for

detailed derivation):

ĜMLE
c = argmax

Gc

H∏
t=1

p(et|xt, Gc), (4)

ĜMLE
r = argmax

Gr

H∏
t=1

p(rt|et,ot, Gr). (5)

where et is the eligibility vector, xt is the completion vector,
ot is the option taken, rt is the reward at time step t.

Precondition inference The problem in Equation (4) is
known as the inductive logic programming (ILP) problem
that finds a boolean function that satisfies all the indicator
functions. Specifically, {xt}Ht=1 forms binary vector inputs
to programs, and {eit}Ht=1 forms Boolean-valued outputs of
the i-th program that predicts the eligibility of the i-th sub-
task. We use the classification and regression tree (CART)
to infer the precondition function fGc : x → e for each
subtask based on Gini impurity [Breiman, 1984]. Intuitively,
the constructed decision tree is the simplest boolean func-
tion approximation for the given input-output pairs {xt, et}.
The decision tree is converted to a logic expression (i.e.,
precondition) in sum-of-product (SOP) form to build the
subtask graph.

Subtask reward inference To infer the subtask reward
ĜMLE

r in Equation (5), we model the reward for i-th sub-
task as a Gaussian distribution: Gi

r ∼ N (µ̂i, σ̂i). Then, the
MLE of subtask reward is given as the empirical mean and
variance of the rewards received after taking the eligible
option Oi in adaptation phase:

µ̂i
MLE = E

[
rt|ot = Oi, eit = 1

]
, (6)

σ̂2
i

MLE = E
[
(rt − µ̂i

MLE)
2|ot = Oi, eit = 1

]
, (7)

where Oi is the option corresponding to the i-th subtask.
Algorithm 1 outlines the meta-training process.



4.3 EVALUATION: GRAPH-REWARD
PROPAGATION POLICY

In both meta-training and meta-testing, the agent’s adapted
behavior is evaluated during the test phase. Following Sohn
et al. [2019], we adopted the graph reward propagation
(GRProp) policy as an evaluation policy πeval that takes as
input the inferred subtask graph Ĝ and outputs the subtasks
to execute to maximize the return. Intuitively, the GRProp
policy approximates a subtask graph to a differentiable form
such that we can compute the gradient of return with respect
to the completion vector to measure how much each subtask
is likely to increase the return. Due to space limitations, we
give a detail of the GRProp policy in Appendix. The overall
meta-training process is summarized in Appendix.

4.4 META-TESTING: MULTI-TASK TASK
INFERENCE

Prior sampling In meta-testing, MTSGI first chooses the
prior task that most resembles the given evaluation task.
Specifically, we define the pair-wise similarity between a
prior taskMprior

G and the evaluation taskMG as follows:

sim
(
MG,Mprior

G

)
= Fβ

(
Φ,Φprior )+ κR

(
τ prior ) ,

(8)

where Fβ is the F-score with weight parameter β, Φ is
the subtask set ofMG, Φprior is the subtask set ofMprior

G ,
R
(
τ prior

)
is the agent’s empirical performance on the prior

taskMprior
G , and κ is a scalar-valued weight which we used

κ = 1.0 in experiment. Fβ measures how many subtasks
overlap between current and prior tasks in terms of precision
and recall as follows:

Fβ =
(
1 + β2

)
· precision · recall
(β2 · precision ) + recall

, (9)

Precision = |Φ ∩Φprior |/|Φprior |, (10)

Recall = |Φ ∩Φprior |/|Φ|. (11)

We used β = 10 to assign a higher weight to the current
task (i.e., recall) than the prior task (i.e., precision).

Multi-task subtask graph inference Let τ be the adap-
tation trajectory, and τ p be the sampled prior adaptation
trajectory. Then, we model our evaluation policy as follows:

π(o|s, τ, τ p) ≃ π(o|s,Gτ )απ(o|s,Gp)(1−α). (12)

Due to the limited space, we include the detailed deriva-
tion of Equation (12) in Appendix. Finally, we deploy the
GRProp policy as a contextual policy:

πeval(·|τ, τ p) = GRProp(·|Gτ )αGRProp(·|Gp)(1−α).
(13)

Note that Equation (13) is the weighted sum of the logits
of two GRProp policies induced by prior τ p and current
experience τ . We claim that such form of ensemble induces
the positive transfer in compositional tasks. Intuitively, en-
sembling GRProp is taking a union of preconditions since
GRProp assigns a positive logit to task-relevant subtask
and non-positive logit to other subtasks. As motivated in
the Introduction, related tasks often share the task-relevant
preconditions; thus, taking the union of task-relevant pre-
conditions is likely to be a positive transfer and improve the
generalization. The pseudo-code of the multi-task subtask
graph inference process is summarized in Algorithm 2.

5 RELATED WORK

Web navigating RL agent Previous work introduced
MiniWoB [Shi et al., 2017] and MiniWoB++ [Liu et al.,
2018] benchmarks that are manually curated sets of sim-
ulated toy environments for the web navigation problem.
They formulated the problem as acting on a page repre-
sented as a Document Object Model (DOM), a hierarchy of
objects in the page. The agent is trained with human demon-
strations and online episodes in an RL loop. Jia et al. [2019]
proposed a graph neural network based DOM encoder and
a multi-task formulation of the problem similar to this work.
Gur et al. [2018] introduced a manually-designed curricu-
lum learning method and an LSTM based DOM encoder.
DOM level representations of web pages pose a signifi-
cant sim-to-real gap as simulated websites are considerably
smaller (100s of nodes) compared to noisy real websites
(1000s of nodes). As a result, these models are trained and
evaluated on the same simulated environments which are
difficult to deploy on real websites. Our work formulates the
problem as abstract web navigation on real websites where
the objective is to learn a latent subtask dependency graph
similar to a sitemap of websites. We propose a multi-task
training objective that generalizes from a fixed set of real
websites to unseen websites without any demonstration, il-
lustrating an agent capable of navigating real websites for
the first time.

Meta-reinforcement learning To tackle the few-shot RL
problem, researchers have proposed two broad categories
of meta-RL approaches: RNN- and gradient-based methods.
The RNN-based meta-RL methods [Duan et al., 2016, Wang
et al., 2016, Hochreiter et al., 2001] encode the common
knowledge of the task into the hidden states and the parame-
ters of the RNN. The gradient-based meta-RL methods [Finn
et al., 2017, Nichol et al., 2018, Gupta et al., 2018, Finn
et al., 2018, Kim et al., 2018] encode the task embedding
in terms of the initial policy parameter for fast adaptation
through meta gradient. Existing meta-RL approaches, how-
ever, often require a large amount of environment interaction
due to the long-horizon nature of the few-shot RL tasks. Our
work instead explicitly infers the underlying task parameter



in terms of subtask graph, which can be efficiently inferred
using the inductive logic programming (ILP) method and
be transferred across different, unseen tasks.

More Related Works Please refer to the Appendix for
further discussions about other related works.

6 EXPERIMENT

6.1 DOMAINS

Mining Mining [Sohn et al., 2018] is a 2D grid-world
domain inspired by Minecraft game where the agent re-
ceives a reward by picking up raw materials in the world
or crafting items with raw materials. The subtask depen-
dency in Mining domain comes from the crafting recipe
implemented in the game. Following Sohn et al. [2018], we
used the pre-generated training/testing task splits generated
with four different random seeds. Each split set consists of
3200 training tasks and 440 testing tasks for meta-training
and meta-testing, respectively. We report the performance
averaged over the four task split sets.

SymWoB We implement a symbolic version of the check-
out process on the 15 real-world websites such as Amazon,
BestBuy, and Walmart, etc.

Subtask and option policy. Each actionable web element
(e.g., text field, button drop-down list, and hyperlink) is con-
sidered as a subtask. We assume the agent has pre-learned
the option policies that correctly interact with each element
(e.g., click the button or fill out the text field). Thus, the
agent should learn a policy over the option.

Completion and eligibility. For each subtask, the com-
pletion and eligibility are determined based on the sta-
tus of the corresponding web element. For example, the
subtask of a text field is completed if the text field is
filled with the correct information, and the subtask of a
confirm_credit_info button is eligible if all the re-
quired subtasks (i.e., filling out credit card information)
on the webpage are completed. Executing an option will
complete the corresponding subtask only if the subtask is
eligible.

Reward function and episode termination. The agent may
receive a non-zero reward only at the end of the episode
(i.e., sparse-reward task). When the episode terminates due
to the time budget, the agent may not receive any reward.
Otherwise, the following two types of subtasks terminate
the episode and give a non-zero reward upon completion:

• Goal subtask refers to the button that completes the or-
der (See the green boxes in Figure 1). Completing this
subtask gives the agent a +5 reward, and the episode is
terminated.

• Distractor subtask does not contribute to solving the

given task but terminates the episode with a -1 reward.
It models the web elements that lead to external web
pages such as Contact_Us button in Figure 1.

Transition dynamics. The transition dynamics follow the
dynamics of the actual website. Each website consists of
multiple web pages. The agent may only execute the sub-
tasks that are currently visible (i.e., on the current web page)
and can navigate to the next web page only after filling out
all the required fields and clicking the continue button. The
goal subtask is present in the last web page; thus, the agent
must learn to navigate through the web pages to solve the
task.

For more details about each task, please refer to Appendix.

6.2 AGENTS

We compared the following algorithms in the experiment.

• MTSGI (Ours): our multi-task SGI agent
• MSGI [Sohn et al., 2019]: SGI agent without multi-task

learning
• HRL: an Option [Sutton et al., 1999]-based proximal

policy optimization (PPO) [Schulman et al., 2017]
agent with the gated rectifier unit (GRU)

• Random: a heuristic policy that uniform randomly exe-
cutes an eligible subtask

More details on the architectures and the hyperparameters
can be found in Appendix.

Meta-training In SymWoB, for each task chosen for a
meta-testing, we randomly sampled Ntrain tasks among the
remaining 14 tasks and used it for meta-training. We used
Ntrain = 1 in the experiment (See Figure 8 for the impact
of the choice of Ntrain). For example, we meta-trained our
MTSGI on Amazon and meta-tested on Expedia. For Min-
ing, we used the train/test task split provided in the environ-
ment. The RL agents (e.g., HRL) were individually trained
on each test task; the policy was initialized when a new task
is sampled and trained during the adaptation phase. All the
experiments were repeated with four random seeds, where
different training tasks were sampled for different seeds.

6.3 RESULT: FEW-SHOT GENERALIZATION
PERFORMANCE

Figure 3 and Figure 4 show the few-shot generalization per-
formance of the compared methods on SymWoB and Mining.
In Figure 3, MTSGI achieves more than 75% zero-shot suc-
cess rate (i.e., success rate at x-axis=0) on all five tasks,
which is significantly higher than the zero-shot performance
of MSGI. This indicates that the prior learned from the
training task significantly improves the subtask graph infer-
ence and in turn improves the multi-task evaluation policy.
Moreover, our MTSGI can learn a near-optimal policy on all
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Figure 3: The success rate (y-axis) of the compared methods in the test phase in terms of the environment step during the
adaptation phase (x-axis) on SymWoB domain. See Appendix for the results on other tasks.
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Figure 4: The performance of the compared methods in
terms of the adaptation steps averaged over all the tasks in
SymWoB (Left) and Mining (Right) domains.
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Figure 5: The precision and recall of the subtask graphs
inferred by MTSGI and MSGI on SymWoB and Mining.

the tasks after only 1,000 steps of environment interactions,
demonstrating that the proposed multi-task learning scheme
enables fast adaptation. Even though the MSGI agent is
learning each task from scratch, it still outperforms the HRL
and Random agents. This shows that explicitly inferring the
underlying task structure and executing the predicted sub-
task graph is significantly more effective than learning the
policy from the reward signal (i.e., HRL) on complex com-
positional tasks. Given the pre-learned options, HRL agent
can slightly improve the success rate during the adaptation
via PPO update. However, training the policy only from
the sparse reward requires a large number of interactions
especially for the tasks with many distractors (e.g., Expedia
and Walgreens).

6.4 ANALYSIS ON THE INFERRED SUBTASK
GRAPH

We compare the inferred subtask graph with the ground-
truth subtask graph. Figure 6 shows the subtask graph in-
ferred by MTSGI in Walmart. We can see that MTSGI
can accurately infer the subtask graph; the inferred sub-
task graph is missing only two preconditions (shown in

red color) of Click_Continue_Payment subtask.We
note that such a small error in the subtask graph has a neg-
ligible effect as shown in Figure 3: i.e., MTSGI achieves
near-optimal performance on Walmart after 1,000 steps of
adaptation. Figure 5 measures the precision and recall of
the inferred precondition (i.e., the edge of the graph). First,
both MTSGI and MSGI achieve high precision and recall
after only a few hundred of adaptation. Also, MTSGI out-
performs MSGI in the early stage of adaptation. This clearly
demonstrates that the MTSGI can perform more accurate
task inference due to the prior learned from the training
tasks.

6.5 ABLATION STUDY: EFFECT OF
EXPLORATION STRATEGY

In this section, we investigate the effect of various explo-
ration strategies on the performance of MTSGI. We com-
pared the following three adaptation policies:

• Random: A policy that uniformly randomly executes
any eligible subtask.

• UCB: The UCB policy defined in Equation (2) that
aims to execute the novel subtask. The exploration
parameters are initialized to zero when a new task is
sampled.

• MTUCB (Ours): Our multi-task extension of UCB
policy. When a new task is sampled, the exploration
parameter is initialized with those of the sampled prior.

Figure 7 summarizes the result on SymWoB and Mining do-
main, respectively. Using the more sophisticated exploration
policy such as MTSGI+UCB or MTSGI+MTUCB improved
the performance of MTSGI compared to MTSGI+Random,
which was also observed in Sohn et al. [2019]. This is be-
cause better exploration helps the adaptation policy collect
more data for logic induction by executing more diverse
subtasks. In turn, this results in more accurate subtask graph
inference and better performance. Also, MTSGI+MTUCB
outperforms MTSGI+UCB on both domains. This indi-
cates that transferring the exploration parameters makes
the agent’s exploration more efficient in meta-testing. Intu-
itively, the transferred exploration counts inform the agent
which subtasks were under-explored during meta-training,



Click Help

Click RP

Click Subscribe

Click Zip

Click ContinueBase

Fill First

Fill Last

Fill Zip

Fill Street

Fill City

Fill State

Fill Country

Fill Apt

Fill Email

Fill Phone

&

&

Click ContinueShipping &

&Click ContinueContact

Click Credit

Fill C_First

Fill C_Last

Fill C_NUM

Fill C_EXPMM

Fill C_EXPYY

Fill C_CVV

Fill C_Phone

Click Gift
Fill G_NUM

Fill G_PIN

Click G_No PIN

&

& Click G_Apply

Click ContinuePayment
Click Place Order

Click EditShipping

 

Bhinognnhh

Figure 6: The visualization of the subtask graph inferred by our MTSGI after 1,000 steps of environment interaction on
Walmart domain. Compared to the ground-truth subtask graph (not available to the agent), there was no error in the nodes
and only two missing edges (in red). See Appendix for the progression of the inferred subtask graph with varying adaptation
steps.
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Figure 7: Comparison of different exploration strategies for
MTSGI used in adaptation phase for SymWoB and Mining.

0K 0.2K 0.4K 0.6K 0.8K 1K
adaptation steps

0.85

0.90

0.95

1.00

su
cc

es
s r

at
e

SymWoB

MTSGI-14
MTSGI-4
MTSGI-1

0 200 400 600 800
adaptation steps

4.5

5.0

5.5

cu
m

ul
at

iv
e 

re
wa

rd

mining

MTSGI-3200
MTSGI-500
MTSGI-100
MTSGI-10

Figure 8: Comparison of different number of priors for
MTSGI on SymWoB and Mining.

such that the agent can focus more on exploring those in
meta-testing.

6.6 ABLATION STUDY: EFFECT OF THE PRIOR
SET SIZE

MTSGI learns the prior from the training tasks. We inves-
tigated how many training tasks are required for MTSGI
to learn a good prior for transfer learning. Figure 8 com-
pares the performance of MTSGI with the varying number
of training tasks: 1, 4, 14 tasks for SymWoB and 10, 100,
500, 3200 tasks for Mining. The training tasks are randomly
subsampled from the entire training set. The result shows
that training on a larger number of tasks generally improves
the performance. Mining generally requires more number of
training tasks than SymWoB because the agent is required to
solve 440 different tasks in Mining while SymWoB was eval-
uated on 15 tasks; the agent is required to capture a wider
range of task distribution in Mining than SymWoB. Also, we
note that MTSGI can still adapt much more efficiently than
all other baseline methods even when only a small number

of training tasks are available (e.g., one task for SymWoB
and ten tasks for Mining).

7 CONCLUSION

We introduce a multi-task RL extension of the subtask graph
inference framework that can quickly adapt to the unseen
tasks by modeling the prior of subtask graph from the train-
ing tasks and transferring it to the test tasks. The empirical
results demonstrate that our MTSGI achieves strong zero-
shot and few-shot generalization performance on 2D grid-
world and complex web navigation domains by transferring
the common knowledge learned in the training tasks to the
unseen ones in terms of subtask graph.

In this work, we have assumed that the subtasks and the cor-
responding options are pre-learned and that the environment
provides a high-level status of each subtask (e.g., whether
the web element is filled in with the correct information).
In future work, our approach may be extended to a more
general setting where the relevant subtask structure is fully
learned from (visual) observations, and the corresponding
options are autonomously discovered.
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