
AND/OR Branch-and-Bound for
Computational Protein Design Optimizing K*

Bobak Pezeshki1 Radu Marinescu2 Alexander Ihler1 Rina Dechter1

1University of California, Irvine
2IBM Research

Abstract

The importance of designing proteins, such as high
affinity antibodies, has become ever more appar-
ent. Computational Protein Design can cast such
design problems as optimization tasks with the
objective of maximizing K*, an approximation of
binding affinity. Here we lay out a graphical model
framework for K* optimization that enables use of
compact AND/OR search algorithms. We designed
an AND/OR branch-and-bound algorithm, AOBB-
K*, for optimizing K* that is guided by a new K*

heuristic and can incorporate specialized perfor-
mance improvements with theoretical guarantees.
As AOBB-K* is inspired by algorithms from the
well studied task of Marginal MAP, this work pro-
vides a foundation for harnessing advancements
in state-of-the-art mixed inference schemes and
adapting them to protein design.

1 INTRODUCTION

The powerful framework of graphical models allows for rea-
soning about conditional dependencies over many variables.
The Marginal MAP (MMAP) task finds an optimal configu-
ration of a subset of variables (MAP variables), that have the
highest marginal probability. We define a new related task,
K*MAP, which instead asks for the configuration of MAP
variables that maximizes a quotient of marginals of condi-
tionally disjoint subsets of the remaining variables. This
ratio is known as K* [Lilien et al., 2004]. In computational
protein design (CPD), K* estimates affinity between inter-
acting subunits. Maximizing K* corresponds to maximizing
the likelihood that the subunits will associate [Hallen and
Donald, 2019].

Like MMAP, K*MAP distinguishes between maximization
(MAP) variables and summation (SUM) variables. More-
over, the SUM variables are further partitioned into a subset

whose marginal corresponds to the numerator of the K* ratio
and a subset corresponding to the denominator. Like MMAP,
the K*MAP problem relies on max-sum inference and more
difficult than either pure max- or sum- inference tasks as
the sum and max operations do not commute. This forces
constrained variable orderings that may have significantly
higher induced widths [Dechter, 1999, 2019]. This also im-
plies larger search spaces when using search algorithms
or larger messages when using message-passing schemes.
Furthermore, bounding K* requires both upper and lower
bounding of marginals, producing an additional challenge.

Over the last several years, there have been several advances
in algorithms for solving MMAP [Lou et al., 2018a,b, Mari-
nescu et al., 2019, 2018a,b], many of which can potentially
be adapted for K*MAP. Our objective in this work is to (1)
create a framework for which future advancements to the
K*MAP task can be made leveraging these powerful algo-
rithms, (2) to begin an exploration of new bounded heuristics
for the task, and (3) to create a foundation for efficient algo-
rithms solving (and eventually approximating) the K*MAP.
As such, this work presents the following contributions:

1. Two formulations of K*MAP as a graphical model

2. wMBE-K*, a weighted mini-bucket algorithm for
K*MAP enhanced with a domain partitioning scheme

3. AOBB-K*, a depth-first branch-and-bound algorithm
over AND/OR search spaces for solving K*MAP

4. A thresholding scheme to exploit determinism accom-
panied with correctness guarantees

5. Extensive empirical analysis comparing these schemes
to state-of-the-art BBK* illustrating their potential

2 BACKGROUND

Here we provide a brief background about protein design
and graphical models.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<pezeshkb@uci.edu>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
mailto:<radu.marinescu@ie.ibm.com>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
mailto:<ihler@ics.uci.edu>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*
mailto:<dechter@ics.uci.edu>?Subject=AND-OR Branch-and-Bound for Computational Protein Design Optimizing K*

2.1 COMPUTATIONAL PROTEIN DESIGN

Proteins are complex macromolecules composed of chains
of amino acids that fold into a three dimensional structure
based on intra- and inter- molecular interactions. Proteins
are essential to life and act as the machinery for a myr-
iad of biological functions including chemical metabolism,
cellular regeneration, immune response, movement, and
structural support. Computational Protein Design (CPD) is
a field focused on designing new proteins (ie. new amino
acid sequences) to satisfy desired objectives [Gainza et al.,
2016]. Two sub fields of CPD are de novo protein design:
the generation of novel protein sequences unrelated to those
found naturally [Huang et al., 2016], and protein redesign:
the modification of known proteins to alter their function
or interactions [Gainza et al., 2016]. The task we focus
on in this work is this latter sub field of protein redesign,
specifically for improving protein subunit interactions. For
simplicity, we will use CPD to refer to such redesign tasks.

A somewhat orthogonal task often confused with protein
design is protein structure prediction, or PSP, which aims
to predict the three-dimensional structure resulting from a
given amino acid sequence. PSP gained visibility recently
with the advancements of AlphaFold [Jumper et al., 2021]
and can be leveraged by certain protein design tasks.

For the protein redesign tasks that this work focusses on,
certain amino acid positions (or residues) of a protein-of-
interest are deemed as mutable - these are amino acid po-
sitions where different amino acid mutations will be con-
sidered - and through a computational process, a preferred
sequence is determined [Donald, 2011]. Throughout the
process, sets of mutations are explored, each comprising a
specific amino acid sequence. Given a sequence (or in some
methods, even partial sequence) an estimate of the resulting
protein’s goodness can be estimated. This goodness is de-
termined by considering the possible conformations of the
protein’s backbone and amino acid side-chains. The state
space for these conformations is continuous (and even when
discretized, is extremely large) leading to an intractable
problem.

To remedy, simplifications can be made: (i) consider only a
subset of residues as mutable, (ii) discretize side-chain con-
formations into rotamers, and (iii) assume a fixed protein
backbone conformation. With these simplifying assump-
tions, many algorithms have been designed to find mutations
that can potentially result in improved protein functionality
[Hallen and Donald, 2019, Zhou et al., 2016].

2.2 K* AND K*MAP

The affinity between two protein subunits P and L relates
to the rate at which they bind into a complexed form PL and
dissociate reforming P and L (as indicated by the chemical

equation: P +L
 PL). This said equilibrium is associated
with a constant, Ka, and can be determined in vitro by com-
puting the ratio of persisting concentrations of each species
by Ka = [PL]

[P][L] [Rossotti and Rossotti, 1961]. However,
in order to compare Ka values of various designs in vitro,
it is necessary to synthesize the protein subunits through
molecular processes that are both timely and costly.

Ka can also be approximated as K
∫

=
Z

∫
PL

Z
∫
PZ

∫
L

, where

Z
∫
γ =

∫
C
e−

Eγ (c)

RT dc and Z
∫
PL, Z

∫
P , and Z

∫
L are approxi-

mations of partition functions of the bound and unbound
form of the protein - namely, when the protein subunits
are complexed (denoted PL) and when they are dissociate
(denoted P and L), respectively - that capture the entropic
contributions of their various conformations C [Hill, 1987,
McQuarrie, 2000]. Eγ(c) represents the energy of a partic-
ular conformation c of the protein in form γ ∈ ϕ where
ϕ = {P,L, PL}, R is the universal gas constant, and T is
temperature (in Kelvin). We can further use a model that
discretizes the conformation space, denoted as D(C). This
computed estimate is known as K* [Lilien et al., 2004]:

K∗ =
ZPL
ZPZL

, Zγ =
∑

c∈D(C)

e−
Eγ (c)

RT (1)

Due to independence of residue interactions between the
different forms γ of the protein, we can generalize further
as K∗ = ZB

ZU
, where B represents the bound (complexed)

form(s) and U represents the unbound (dissociate) forms.
(For a two-subunit system, B = {PL} and U = {P} ∪
{L}). This generalized representation can be used for K*

computations involving more than two subunits.

A common goal in protein redesign is to maximize protein-
ligand interaction. Previously, this was done by minimizing
an objective called the GMEC (global minimum energy
conformation) over only the complexed protein form PL
[Ruffini et al., 2021, Hallen and Donald, 2019, Zhou et al.,
2016]. The GMEC, a pure minimum over energies of the
complex’s conformations, ignores the realization that pro-
tein structures are dynamic. Also, by the GMEC focusing
only on the complexed form, it ignores dynamicity of sub-
unit associations. However, since minimizing the GMEC
results in a pure optimization task - much easier than that of
mixed inference - many solvers use this objective. Alterna-
tively, the stronger K* objective (contrasted in Lilien et al.
[2004]) captures both the dynamicity of protein conforma-
tions and subunit interactions. K*MAP is the formalization
of computational protein design as a task to maximize K*,

K∗MAP = argmax
R

K∗(r) (2)

looking for amino acid assignments R= r that maximize
K*. The goal of recent work, and that presented here, is
to develop efficient algorithms for computing K*MAP to
predict a small set of promising sequences to experiment on
in vitro and in vivo, saving great time and cost.

2.3 GRAPHICAL MODELS AND THEIR AND/OR
SEARCH SPACES

Our work taps into algorithms developed for the MMAP
task defined on graphical models. A graphical model, such
as a Bayesian or Markov network [Pearl, 1988, Darwiche,
2009, Dechter, 2013], can be defined by a 3-tuple M =
(X,D,F), where X = {Xi : i ∈ V } is a set of variables
indexed by a set V and D = {Di : i ∈ D} is the set of
finite domains of values for each Xi. Each function fα ∈ F
is defined over a subset of the variables called its scope,
Xα, where α ⊆ V are the indices of variables in its scope
and Dα denotes the Cartesian product of their domains,
so that fα : Dα → R≥0. Primal graph G = (V,E) of
M associates each variable with a node (V =X), while
arcs e ∈ E connect nodes whose variables appear in the
scope of the same function.M defines a global function,
often a factorized probability distribution on X, P (X) =
1
Z

∏
α fα(Xα), where Z, known as the partition function,

is a normalization factor.

Three common paradigms for solving inference tasks over
graphical models are inference, search, and sampling. In our
work we use inference for generation of a bounded heuris-
tic to guide search for solving the K*MAP query. We use
AND/OR search which utilizes an AND/OR space defined
relative to a pseudo tree of the problem’s primal graph gen-
erated with respect to a variable ordering. A pseudo tree
T = (V,E′) of a primal graph G = (V,E) is a directed
rooted tree that spans G with every arc of G not in E′ as a
back-arc in T connecting nodes to their ancestors (Figure
1(a),(b)). The pseudo tree structure determines the structure
of the corresponding AND/OR search space. Its directed
edges dictate how the search space should be explored with
branchings in the pseudo tree corresponding to branchings
emanating from the AND nodes in the search space allowing
for conditional independencies to be exploited. For mixed
inference problems where a subset of variables are to be
maximized (MAP variables) and the remaining variables
(SUM variables) marginalized, the pseudo tree must be con-
strained so that MAP variables precede SUM variables in
the variable ordering [Marinescu et al., 2014].

Given a pseudo tree T of a primal graph G, the AND/OR
search tree TT guided by T has alternating levels of OR
nodes corresponding to variables, and AND nodes corre-
sponding to assignments from their domains with edge costs
extracted from the original functions [Dechter and Mateescu,
2007]. Each arc into an AND node n has a cost c(n) defined
to be the product of all factors fα inM that are instantiated
at n but not before (see Dechter and Mateescu [2007]).

The size of the search space is exponential in the depth
of the pseudo tree (rather than the number of variables)
and therefore mixed inference tasks such as MMAP can be
solved more efficiently by traversing the AND/OR search
space whenever its depth is bounded sufficiently.

Figure 1: A full AND/OR tree representing all 16 solutions.

3 GRAPHICAL MODEL FOR K*MAP

As the first main contribution of this work, we describe
two formulations of CPD problems as graphical models for
computing K*MAP. These build upon previous work from
MMAP (see Marinescu et al. [2018b]) and formulations for
optimizing the weaker GMEC objective [Zhou et al., 2016].

3.1 FORMULATION 1 (F1)

Variables and Domains: LetR = {Ri |i ∈ {1, 2, ..., N}}
be the set of residue variables representing N different
residues (i.e., positions) of the protein. Each Ri has a corre-
sponding domain DRi = {aa | aa is a possible amino acid
assignment to residue i}. For residues that are being consid-
ered for mutation (mutable residues), each Ri considers
one of ∼20 possible amino acid assignments in its domain
of values. These are the MAP variables maximized over in
the K*MAP task.

Cγ = {Cγ(i) | i ∈ {1, 2, ..., N}} are conformation vari-
ables, each indexing a discrete spacial conformation (ro-
tamer) of the amino acid at residue Ri when its sub-
unit is in form γ. Each Cγ(i) has corresponding domain
DCγ(i) = {1, 2, ...,Mγ(i)}, where Mγ(i) is the maximum
number of rotamers for any amino acid assignment to Ri in
form γ. The assignment to Cγ(i) acts as an index to the pos-
sible side chain conformations of the amino acid assigned to
Ri. The Cγ are the SUM variables to be marginalized over.

Functions: We consider two sets of functions: Esbγ =

{Esbγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}} that capture the en-
ergies of interaction of the amino acid at each residue i
with itself and the surrounding backbone, and Epwγ =
{Epwγ(ij)(Ri, Cγ(i), Rj , Cγ(j)) | for i, j s.t. Ri and Rj
interact} that capture pair-wise energies of interaction be-
tween amino acids in close proximity. For any assignment
to Cγ(i) (which corresponds to a rotamer-index) that is out
of range of Ri’s assigned amino acid’s possible rotamers,
an infinite energy value is assigned as an implicit constraint.

Objective: The K* objective can thus be expressed as

K∗(R1...RN) = ZB(R1...RN)
ZU (R1...RN) , where we assume tempera-

ture T in Kelvin and Universal Gas Constant R and where:

Zγ(R1...RN) =
∑

Cγ(1),...,Cγ(N)

∏
Esb
γ(i)
∈Esbγ

e−
Esb
γ(i)

(Ri,Cγ(i))

RT

·
∏

Epw
γ(ij)
∈Epwγ

e−
E
pw
γ(ij)

(Ri,Cγ(i),Rj,Cγ(j))

RT

3.2 FORMULATION 2 (F2)

Formulation 2, inspired by the works of Viricel et al. [2018]
and Vucinic et al. [2019], uses explicit constraints to restrict
invalid amino acid - rotamer combinations.

Variables and Domains: As in F1, a set of residue vari-
ablesR = {Ri | i ∈ {1, 2, ..., N}} and conformation vari-
ablesCγ = {Cγ(i) |i ∈ {1, 2, ..., N}} are considered. Here,
each Cγ(i) represents a specific amino acid and conforma-
tion of the N different residues. Namely, each Cγ(i) has a
domain DCγ(i) = {c | c is a rotamer for one of the possible
amino acids of Ri}. The amino acid assignment to Ri acts
as a selector into the possible assignments to Cγ(i).

Functions: C = {Cγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}, γ ∈
ϕ } is a set of constraints ensuring that the assigned ro-
tamer to Cγ(i) belongs to the amino acid assigned to Ri.
In addition, Esbγ = {Esbγ(i)(Cγ(i)) | i ∈ {1, 2, ..., N}}
captures the energies of interaction of the amino acid at
each residue i with itself and the surrounding backbone
and Epwγ = {Epwγ(ij)(Cγ(i), Cγ(j)) | for i, j s.t.Ri and Rj
interact} captures the pair-wise energies of interaction be-
tween amino acids in close proximity.

Objective: Similar to before, the K* objective can be ex-
pressed as K∗(R1...RN) = ZB(R1...RN)

ZU (R1...RN) , where

Zγ(R1...RN) =
∑

C1,...,CN

∏
Cγ(i)∈C

Cγ(i)(Ri, Cγ(i))

·
∏

Esb
γ(i)
∈Esbγ

e−
Esb
γ(i)

(Cγ(i))

RT ·
∏

Epw
γ(ij)
∈Epwγ

e−
E
pw
γ(ij)

(Cγ(i),Cγ(j))

RT

With a graphical model framework in place, next we de-
scribe a heuristic that can be used to bound the K*MAP
value and that can be used to guide search.

4 WMBE-K*

Next we present a weighted mini-bucket based approxima-
tion scheme for K∗, which adapts weighted mini-bucket for
MMAP [Dechter and Rish, 2002, Marinescu et al., 2014]
to the new K∗ objective. Since the constrained-order mini-
bucket bounds are compatible with AND/OR search, we will
leverage these bounds in the subsequent section to guide
search as part of a branch-and-bound scheme.

Algorithm 1: wMBE-K*

input :Graphical model M = {X,D,F }; constrained
variable order o = [X1, ..., Xn] (where
X = R ∪CB ∪CU), i-bound i

output :upper bound on the K*MAP value
1 begin
2 Partition the functions f ∈ F into buckets Bn, ..., B1 s.t.

each function is placed in the bucket corresponding to the
highest-index variable in its scope.

3 foreach k = n...1 do
4 Generate a mini-bucket partitioning of the bucket

functions MBk = {MB1
k, ...,MBTk } s.t.

vars(MBtk) ≤ i, for all MBtk ∈MBk

5 if Xk ∈MAP then
6 foreach MBtk ∈MBk do
7 λtk ← maxXk

∏
f∈MBt

k
f

8 else
9 if Xk ∈ CB then // upper-bound for numerator

10 Select positive weights w = {w1, ..., wT } s.t.∑
wt∈w wt = 1

11 foreach MBtk ∈MBk do
12 λtk ← (

∑
Xk

∏
f∈MBt

k
f1/wt)wt

13 else if Xk ∈ CU then // lower-bound for denominator
14 Select a negative weight w1 and positive weights

w = {w2, ..., wT } s.t.
∑
wt∈w wt = 1

15 foreach MBtk ∈MBk do
16 λtk ← (

∑
Xk

∏
f∈MBt

k
f1/wt)wt

17 if scope(λtk) ∩CU = ∅ then
18 λtk ← 1/λtk

19 Add each λtk to the bucket of the highest-index variable
in its scope.

20 return λ1

Algorithm wMBE-K* is described in Algorithm 1 and op-
erates similarly to wMBE-MMAP [Marinescu et al., 2014].
Two key similarities are that (1) it takes a variable ordering
that constrains buckets of MAP variables to be processed
last (line 3) for which maximization occurs, and (2) for any
bucket that has a width larger than a provided i-bound, a
bounded approximation is made by partitioning the bucket
functions into T mini-buckets (line 4) and taking the prod-
uct of their power-sums over the bucket variable (lines 9-12,
13-16), leveraging Holder’s Inequality [Hardy et al., 1988].

For K*MAP, two key innovations are required: (1) buckets
corresponding to variables in CU , whose marginal belongs
to the denominator of the K* expression, are lower-bounded
(to lead to an upper bound on K*) by using a modification
to Holder’s inequality that incorporates negative weights
[Liu and Ihler, 2011] (lines 13-16), and (2) when messages
are passed from buckets corresponding to variables in CU
to that of R, the messages are inverted to accommodate
being part of the denominator (line 18). Although details

are omitted here, wMBE-K* can also employ cost shifting
to tighten its bounds (see Flerova et al. [2011], Liu and Ihler
[2011]). In our empirical evaluation cost-shifting is imple-
mented as well. Finally, the complexity of the algorithm,
which is parametrized by the i-bound i, is time and space
exponential in i only.

As can be expected, bounding a ratio of functions (as in
the case for K*) is particularly challenging, relying on both
upper and lower bounds. Lower bounding of functions is
particularly challenging. For larger problems and low i-
bounds, this can often yield relatively weak bounds. We
provide an improvement to help remedy this next.

Domain-Partitioned MBE Until now, we used a mini-
bucket scheme blind to explicit hard constraints and con-
sistency issues. This can be handicapping when lower-
bounding since constraints are represented as zero’s in func-
tions and can cause premature deflation of lower bounds.
In particular, in mini-bucket elimination [Dechter and Rish,
2003] where lower bounds are created via minimizing over
function values, zeros in the functions being minimized will
cause the resulting lower bound itself to drop to zero. How-
ever, in the CPD domain where functions represent protein
energetics, satisfiable configurations corresponds to posi-
tive function values and thus can guarantee a positive lower
bound by using the following simple remedy:

Let X , Y , and Z be three variables and let obj =∑
X f(x, y) · g(x, z), let X ′ = {x ∈ X|g(x, z) 6= 0} be a

set such that εX′ = minx∈X′g(x, z). Clearly, εX′ > 0 and
therefore we can derive: obj =

∑
x∈X′ f(x, y) ·g(x, z) +∑

x∈X\X′ f(x, y) ·g(x, z) =
∑
x∈X′ f(x, y) ·g(x, z) ≥

εX′ ·
∑
x∈X′ f(x, y) > 0, assuming f(x, z) is not identi-

cally zero over X ′. Mini-buckets can then be computed ac-
cording to such domain-partitions to improve their bounds.

5 AOBB-K*

We present the key algorithmic contribution of this work:
AOBB-K* (Algorithm 2), a depth-first AND/OR branch-
and-bound scheme for solving K*MAP. With state-of-
the-art K* optimizers such as BBK* employing memory-
intensive best-first search [Ojewole et al., 2018, Hallen et al.,
2018], depth-first algorithms provide scheme linear in space
allowing for solving problems unable to be solved by best-
first methodologies due to memory [Zhou et al., 2016].

AOBB-K* traverses the underlying AND/OR search tree
guided by the provided pseudo tree T , expanding nodes
in a depth-first manner (line 9), and pruning whenever any
of three conditions are triggered: (1) the resulting variable
assignments violate constraints encoded as infinite values
inM (line 10), (2) a subunit-stability constraint (SSC – a
constraint which enforces the partition function of each pro-
tein subunit, Zγ , to be greater than a biologically-relevant
threshold Sγ [Ojewole et al., 2018]) is violated (line 12),

Algorithm 2: AOBB-K*

input :CPD graphical modelM; pseudo-tree T ; K∗

upper-bounding heuristic function hK∗(.); Zγ
upper-bounding heuristic function hZγ (.); and
subunit stability threshold Sγ for each subunit γ

output :K∗MAP (M)
1 begin
2 Encode deterministic relations inM into CNF
3 π ← root OR node s
4 ubK∗(s)← hK∗(s)
5 lbK∗(s)← −inf
6 g(s)← 1
7 foreach γ ∈ ϕ do
8 UBZγ (s)←

∏
m∈chTγ (s) hZγ (m)

9 while nX ← EXPAND(π) do
10 if ConstraintPropagation(π) = false then
11 PRUNE(π)

12 else if ∃γ ∈ ϕ s.t. UBZγ (nX) < Sγ then
13 PRUNE(π)

14 else if X ∈ R then
15 if ∃a ∈ ancOR(n) s.t. ubK∗(a, π) < lbK∗(a) then
16 PRUNE(π)

17 else if chunexpT (n) = ∅ then
18 BACKTRACK(π)

19 return ubK∗(s) = lbK∗(s) = K∗MAP (M)

or (3) it can be asserted that the current amino acid con-
figuration cannot produce a K* better than any previously
found (line 15). Backtracking occurs when all of a node’s
children have been explored and returned from (line 17), at
which point the K* value of the sub problem the node roots
is known exactly and bounds of its parents are tightened
accordingly. Infinite energy tuples inM’s functions model
an inconsistent amino acid - rotamer pairs and correspond
to hard constraints encoded into a CNF formula as in [Allen
and Darwiche, 2003]. During search, unit-propagation (e.g.,
Eén and Sörensson [2004]) is propagates these constraints
and detects infeasible variable configurations (line 10).

The algorithm progresses in this manner until it finally re-
turns to, and updates, the root of the search tree with the
maximal K* value corresponding to an amino acid configu-
ration that also satisfies the subunit-stability thresholds.

Throughout search, each node n maintains a progressive
upper bound ubK∗(n) on the K*MAP of the sub problem
it roots. When a node is expanded, this value is initialized
based on upper-bounding heuristic function hubK∗(.) (line
4). As search progresses, ubK∗(n) decreases converging
towards the K*MAP of the sub problem rooted at n. Further-
more, each node n also maintains a progressively improved
upper bound on the partition function of each subunit γ
consistent with the path to n, UBZγ (n) (line 8). At each
step in the search, UBZγ (n) is recomputed to ensure that
it is greater than the given Sγ , thus satisfying the SSC’s

and enforcing consideration of only biologically relevant
solutions [Ojewole et al., 2018]. Note that the SSC’s are
not encoded into the problem, and thus add another layer of
complexity not present in tasks such as MMAP.

Theorem 5.1 (correctness, completeness). AOBB-K* is
sound and complete, returning the optimal K* value of all
amino-acid configurations that do not violate the subunit-
stability constraints.

Theorem 5.2 (complexity). AOBB-K* is time O(n · kd),
where n is the number of variables, k is the maximum do-
main size, and d is the dept of the guiding pseudo tree, and
is space O(n) (see Marinescu and Dechter [2009b]). When
modified to search the context minimal AND/OR search
graph (as opposed to search tree) AOBB-K* is both time
and space O(n · kw∗), where w∗ is the induced width of the
pseudo tree (see Marinescu and Dechter [2009a]).

5.1 WEIGHTED SEARCH FOR K*

Weighted best-first search (e.g., WA∗ [Pohl, 1970], WAO∗

[Desarkar et al., 1987]) is a well known principle for convert-
ing best-first search into an anytime scheme by multiplying
the heuristic function h(n) of a node n in the search space by
a weight ω > 1. The solution is guaranteed to be ω-optimal
(i.e., within a factor ω from the optimal one).

Therefore, AOBB-K* can easily be relaxed to an ω-
approximation scheme (for ω ∈ [0, 1)) by multiplying
hK∗(n) at each node n in the AND/OR search tree by a
factor of ω. It can be shown that the resulting solution will
be at worst ω ·K∗MAP [Pohl, 1970, Flerova et al., 2014].
We explore the performance of applying such approxima-
tions to a class of difficult CPD problem instances in Section
6.

5.2 INFUSING DETERMINISM VIA
THRESHOLDED UNDERFLOWS

Exploiting determinism via constraint propagation (CP)
can be a powerful tool [Dechter, 2003, 2019] helping to
prune invalid configurations corresponding to inconsistent
amino acid - rotamer pairs or configurations not contribut-
ing to a subunit’s partition function. CP can be accelerated
by introducing additional determinism such that the solu-
tion is unchanged. Namely, extremely small function values
(corresponding to extremely unfavorable side-chain inter-
actions that would not occur in feasible solutions) can be
underflowed (ie. replaced by zeros) and treated as hard con-
straints.

Definition 5.1 (τ -underflow of f , fτ). Let f be a non-
negative function and τ ∈ R+. The τ -underflow of f is
fτ (x) = f(x) if f(x) ≥ τ and 0, otherwise.

Definition 5.2 (τ -underflow of M, Mτ). For M =
〈X,D,F〉, the τ -underflow of M is Mτ = 〈X,D,Fτ 〉,
where Fτ = {fτ | f ∈ F }.

Notation. We denote: fmaxγ - the maximum value in all
the functions associated with subunit γ, |fγ | - the number
of functions included in the partition function computation
for subunit γ, excluding explicit constraints, |Cγ |⇑ - the
cardinality of the Cartesian product of greatest number of
assignments to each variable in Cγ that are individually
consistent with any assignmentR = r, ZminB - the smallest
ZB that could possibly lead to a valid K∗ > K∗(wt) (here
wt refers to the wild-type, or naturally occurring, amino
acid sequence), prec(x) - the smallest decimal place for
which the value of x is recorded.

We give two sufficient conditions that, when upheld, al-
low us to assert K∗MAP (Mτ) = K∗MAP (M): (1) τ -
underflows do not alter subunit partition functions that sat-
isfy SSC’s, i.e., ∀r ∈ R s.t. ZMγ (r) ≥ Sγ , Z

M
γ (r) =

ZM
τ

γ (r) and (2) τ -underflows do not alter any ZB ≥ ZminB ,
i.e., ∀r ∈ R s.t. ZMB (r) ≥ ZminB , ZMB (r) = ZM

τ

B (r).

Condition 1: A problem created with underflows using
an underflow threshold τ such that ∀γ ∈ ϕ: (i) if τ ≤ 1,
|Cγ |⇑ · (fmaxγ)|fγ | · (τ) < 0.5 · prec(Sγ), or (ii) if τ > 1,
|Cγ |⇑ ·(fmaxγ)|fγ | ·(τ)|fγ | < 0.5·prec(Sγ) will not violate
any subunit stability constraints.

Condition 2: A problem created with underflows using an
underflow threshold τ such that τ does not violate the SSC’s
and such that: (i) if τ ≤ 1, |CB|⇑ · (fmaxB)|fB | · (τ) <
0.5 · prec(ZminB), or (ii) if τ > 1, |CB|⇑ · (fmaxB)|fB | ·
(τ)|fB | < 0.5 · prec(ZminB), will also not alter the K*MAP
solution.

Theorem 5.3. If a chosen τ satisfies Conditions 1 and 2,
then K∗MAP (Mτ) = K∗MAP (M).

Complexity. Both Conditions 1 and 2 can be verified in lin-
ear time, thus the sufficient condition presented in Theorem
5.3 can also be checked in linear time.

Although Theorem 5.3 provides a way to verify a τ used
will still result in the correct optimal solution, the theorem’s
underlying conditions are often overly conservative, and, in
practice, even τ larger than those satisfying the theorem can
yield exact solutions.

6 EMPIRICAL EVALUATION

We now present the empirical evaluation of our schemes on
real protein benchmarks provided to us by the Bruce Donald
Lab at Duke University.

Benchmarks. We experimented on 48 protein design bench-
marks, 30 with two mutable residues (denoted "original"),

12 made harder expanding to three mutable residues ("ex-
panded"), and six problems expanded to four mutable
residues ("hard"). Problems were generated using OSPREY
3.0 [Hallen et al., 2018] to compute interaction energies and
then formulated into F1 and F2.

AOBB-K* vs state-of-the-art BBK*. We ran AOBB-K*

and its derived schemes, [ω, τ]-AOBB-K*, built on top of
AOBB-MMAP [Marinescu et al., 2014] implemented in
C++. For comparison, we also run BBK* [Ojewole et al.,
2018], a state-of-the-art best-first search algorithm available
in OSPREY 3.0. BBK* (implemented in Java, set to use
rigid rotamers and with a bound-tightness of 1× 10−2001).

Contrasting major differences of the two schemes, (1)
AOBB-K* uses a depth-first traversal allowing for mem-
ory efficiency and ease of facilitating constraint propagation
while BBK* uses memory-intensive best-first search, (2)
our experiments with AOBB-K* use the statically compiled
wMBE-K* generated before search while BBK* exclusively
uses a dynamic heuristic that considers best and worst case
scenarios from all possible ensuing configurations during
search, (3) we use constraint propagation dynamically dur-
ing search to prune provably invalid (or zero-weighted) re-
gions of the search space, and (4) AOBB-K* is designed
as an exact scheme that finds the optimal K* that satisfies
SSC’s (ie. exact for the K*MAP task) whereas BBK* is
inherently designed as a bounded approximation scheme
that, even when using the very low tightness of 1× 10−200,
seems not to always return the optimal K*MAP.

Experiments were allotted 1hr on a 2.66 GHz processor
with 4 GB of memory and using subunit-stability thresholds
Sγ = Z

(wt)
γ · e− 5

RT where Z(wt)
γ is the partition function

of the wild-type sequence. As BBK* can take advantage of
parallelism, it was run with access to 4 CPU cores.

AOBB-K* was run using wMBE-K* with moment matching
[Flerova et al., 2011, Liu and Ihler, 2011] for guiding and
bounding search. For hard problems, a derivation of wMBE-
K*, wMBE+-K*, was tested that avoided consideration of
zeros during lower-bounding approximations (motivated
by Section 4). For all experiments, wMBE-MMAP was
used to upper-bound the partition function of each subunit.
According to Ojewole et al. [2018], BBK* uses a dynamic
greedy heuristic based on optimistic values for all variables
not yet instantiated.

In all problems, each mutable residues considers 21 dif-
ferent amino acid assignments. Conformation variables of
non-mutable residues have a domain size of 2-14 rotamers
(most having domain sizes 4-9). Conformation variables
of mutable residues have a domain size of 34-35 when
formulated as F1 and 203-205 when formulated as F2.

Table Keys. F: formulation type, ω: weight applied to the

1BBK*’s bound tightness parameter does not correlate directly
with an ω-approximation. See Ojewole et al. [2018].

Table 1: Aggregated statistics comparing the solution and time of
AOBB-K* (on both F1 and F2, as an exact and anytime scheme)
with BBK*. K*≥ counts the the number of times AOBB-K*’s K*

solution was equal or greater; K*> counts the number of AOBB-
K*’s solution was strictly better; time< counts the number of times
AOBB-K* found the optimal solution faster.

AOBB-K* any-AOBB-K*

Dataset K*≥ K*> time< K*≥ K*>
(#instances) (F1,F2) (F1,F2) (F1,F2) (F1,F2) (F1,F2)

Orig. (30) 30,30 2,2 23,28 30,30 2,2
Expand. (12) 6,11 0,4 2,4 11,11 1,4

heuristic, τ : underflow-threshold, H: heuristic, iB: i-bound
used, w*: induced width, d: pseudo tree depth, |R|: number
of MAP variables, |X|: total number of variables, Dmax:
maximum domain size, UB: heuristic upper bound at the
root (empty cells representing no finite bound), pre-t: pre-
processing time (ex. compiling heuristics), search: search
time, time: total time, K*: the returned K* solution (in
log10), and Any-K*: best valid K* value found in 1hr. The
best performance points are highlighted.

Table 2: F1 vs F2 on original and Expanded(*) problems.

benchmark F iB |R| |X| Dmax w* d UB pre-t time
F1 3 2 16 34 8 8 0.9 226.9
F2 3 2 16 203 6 8 0.7 93.0
F1 6 2 12 34 6 6 10.28 69.2 101.2
F2 4 2 12 203 4 6 10.29 6.8 15.7
F1 3 2 18 35 9 9 1.0 30.2
F2 3 2 18 203 7 9 1.3 12.3
F1 6 2 14 34 7 7 15.18 14.6 25.0
F2 4 2 14 203 5 7 15.08 1.7 7.3
F1 3 3 15 34 8 8 2.9 24.5
F2 4 3 15 205 5 8 14.80 58.3 60.9
F1 6 3 15 35 8 8 12.28 122.0 775.2
F2 5 3 15 203 5 8 11.39 81.8 360.7
F1 5 3 13 34 7 7 12.9 45.1
F2 4 3 13 203 4 7 12.29 74.0 76.1
F1 6 3 15 34 8 8 16.93 119.6 1494.9
F2 5 3 15 203 5 8 16.05 169.2 181.3

AOBB-K*

1a0r_00031

1gwc_00021

2hnu_00026

4wwi_00019*

3u7y_00011*

1gwc_00033

2xgy_00020*

2rfe_00012*

Formulation 1 vs. Formulation 2: We can see from the
aggregated time statistics in Table 1 that F2 is generally
superior to F1, outperforming BBK* more frequently. F1
uses an indexing scheme between amino-acids and their
rotamers, which implies that all functions need to include
both residue and conformation variables thus leading to
densely connected graphs compared with F2. A strength of
F1 vs. F2 is its smaller domain sizes in the presence of MAP
variables which facilitates use of higher i-bounds compared
with F2.

AOBB-K*vs BBK* (solution quality): The summary in
Table 1 show that AOBB-K* and BBK* find the same K* so-
lution for the majority of the original problems. As problems
are expanded, AOBB-K* begins to find better solutions more
frequently. Concrete examples are displayed in Tables 3 and
4 where greater K* solutions by AOBB-K* are highlighted
in the K*MAP columns.

AOBB-K*vs BBK* (running time): The results in Table
3 show that AOBB-K* solved nearly all original bench-
mark problems faster than BBK* (see the time column).
As problems were expanded (Table 4), we see AOBB-K*’s
time-performance begin to drop more rapidly than BBK*’s;
AOBB-K* surpasses BBK* on four problems, but not on the
other eight. No hard problem was solved exactly without
modifications (presented shortly). However, it is important
to note that: (1) AOBB-K* finds solutions greater than that
of BBK* (which may account for increased time searching)
and not explicitly shown here (2) AOBB-K* returns inter-
mediate anytime solutions, some of which exceeded the K*

value returned by BBK*.

Table 3: AOBB-K* vs BBK* on Original F2 problems.

benchmark iB w* |X| UB pre-t time K* time K*
1a0r_00031 3 6 16 0.7 92.99 7.88 109.1 7.88
1gwc_00021 4 4 12 10.29 6.8 15.68 9.79 152.3 9.79
1gwc_00033 3 7 18 1.3 12.33 10.48 512.5 10.48
2hnu_00026 4 5 14 15.08 1.7 7.28 13.18 436.9 13.18
2hnv_00025 4 6 16 15.04 1.7 16.56 13.65 962.1 13.65
2rf9_00007 6 7 18 14.52 4.1 4.67 14.08 45.5 14.08
2rf9_00013 5 6 16 14.12 1.4 1.93 13.25 11.8 13.25
2rf9_00018 6 7 18 16.68 8.4 15.13 15.79 187.2 15.79
2rf9_00042 6 9 22 15.8 148.78 22.65 897.1 22.65
2rfd_00035 6 6 16 17.70 80.1 379.82 17.27 1242.3 16.77
2rfe_00012 4 5 14 14.80 0.8 1.49 13.93 11.1 13.93
2rfe_00014 4 5 14 15.23 0.8 1.72 14.36 31.4 14.36
2rfe_00017 5 5 14 10.96 1.7 7.02 10.52 29.2 10.52
2rfe_00030 4 5 14 11.53 6.9 18.94 10.50 181.5 10.50
2rfe_00041 5 7 18 48.1 401.68 22.73 1181.5 22.73
2rfe_00043 6 6 16 18.48 75.5 79.4 18.04 50.5 18.04
2rfe_00044 6 6 16 18.62 75.2 85.6 18.19 74.5 18.19
2rfe_00047 3 7 18 0.7 88.27 22.70 348.9 22.70
2rfe_00048 4 8 20 2.8 158.65 22.81 387.7 22.81
2rl0_00008 4 3 10 11.16 2.6 2.62 11.16 261.9 9.46
2xgy_00020 4 5 14 11.47 1.9 16.36 10.60 887.5 10.60
3cal_00032 6 6 16 13.38 59.5 125.26 11.62 1428.9 11.62
3ma2_00016 4 5 14 13.39 0.7 3.51 8.38 9.6 8.38
3u7y_00009 6 4 12 4.51 5.7 5.72 4.51 190.8 4.51
3u7y_00011 3 4 12 12.72 0.5 1.95 11.85 27.8 11.85
4hem_00027 3 6 16 1.0 2.01 15.48 39.9 15.48
4hem_00028 3 6 16 0.9 1.84 15.27 34.5 15.27
4kt6_00023 4 6 16 14.80 2.1 7.30 12.69 136.5 12.69
4kt6_00024 4 6 16 14.87 2.1 5.07 12.93 120.7 12.93
4wwi_00019 5 5 14 15.43 5.6 7.85 14.99 26.3 14.99

AOBB-K* BBK*(203 ≤ Dmax ≤ 206)

Table 4: AOBB-K* vs BBK* on Expanded F2 problems.

benchmark iB w* |X| UB pre-t time K* time K*
1gwc_00021* 4 4 13 12.51 123.8 205.1 11.92 551.3 11.72
2hnv_00025* 4 6 17 18.38 109.8 153.8 880.5 13.65
2rf9_00007* - - - - - - 369.4 14.73
2rf9_00013* 4 6 17 16.36 83.0 100.8 39.2 15.03
2rfe_00012* 4 5 15 14.80 58.3 60.9 11.8 13.93
2rfe_00014* 4 5 15 15.23 58.2 60.6 14.36 44.9 14.36
2rfe_00017* 5 5 15 11.46 166.8 334.6 78.0 10.80
2rfe_00030* 4 5 15 13.61 115.2 276.6
2xgy_00020* 5 5 15 11.39 81.8 360.7
3u7y_00009* 4 4 13 4.95 62.6 99.5 4.51
3u7y_00011* 4 4 13 12.29 74.0 76.1
4wwi_00019* 5 5 15 16.05 169.2 181.3

AOBB-K* BBK*(203 ≤ Dmax ≤ 206)

275.4 10.97
1388.1 10.96
215.8 4.51

10.96

26.6 11.85
34.0 14.9914.99

10.86

15.03

16.18

11.12

11.85

13.93

-

Weighted Search: Each pair of rows in Table 5 com-
pares AOBB-K*(denoted ω = 1) and ω-AOBB-K*(ω =

0.001) on all Expanded problems. Moving to approx-
imate search reduces the MAP search space and im-
proves search time (sometimes by more than a factor of
ten). For 2rfe_prepped_00017*, 2xgy_prepped_00020*, and
4wwi_prepped_00019*, we see the optimal i-bound is re-
duced from 5 to 4 when using weighted search highlighting
the increased pruning of the search space enabled by the
weighted heuristic even when using a weaker (but more
quickly computed) heuristic. (When using the same i-bound,
the weighted search still showed significant speed-ups solv-
ing these problems). With other advances, weighted search
was instrumental to solving the hard problems.

Infusing Determinism: We assessed the impact of infus-
ing determinism as discussed in Section 5.2 by applying
thresholded-underflow with τ = 1 × 10−5 and compar-
ing to base problems (τ = 0). Table 6 shows the results
obtained on expanded problems. In all cases, we see that
the τ -underflows improved search times (see "search" col-
umn), sometimes so much so that the best time corresponded
to allowing for a more crudely computed heuristic to en-
ter search more quickly. Even when the same iB is used,
the overall time is still reduced, however interestingly the
speedup does not always correspond to a reduced search of
the MAP space; we found that the heuristic can be adversely
affected by underflows (as described in Section 4’s discus-
sion on Domain-Partitioned MBE) resulting in less efficient
pruning of the MAP space. However, this can potentially be
remedied, which we explore next.

wMBE+-K*: Bounding a ratio of functions such as in K* is
especially difficult - particularly because it relies on lower-
bounding, which is especially problematic in the presence of
determinism. To empirically test the intuition presented in
Section 4 and in attempt to solve problems that could not be
solved by vanilla AOBB-K*, we used wMBE+-K* (which
avoids considering zeros when lower bounding) with ω, τ -
AOBB-K* (ω = 0.001, τ = 1×10−5) on hard F1 problems,
for which wMBE-K* was unbounded (Table 7). In every
case, the modified heuristic was able to provide a bounded
estimate and in three of the six problems enabling AOBB-K*

to find a solution better than BBK*.

In summary, AOBB-K* shows strong performance on the
original protein problems, especially with Formulation F2,
outperforming state-of-the-art BBK* time-wise and find-
ing better solutions. AOBB-K* also performed admirably
on expanded problems, finding solutions faster for several
problems and finding better solutions. The innovations of
ω-approximate search, infusing determinism, and omitting
zeros from lower bounding enabled the algorithm to find
solutions to harder problems, some of which were better
than BBK*’s. However, these hard problems were a chal-
lenge for base AOBB-K*. The increase in domain sizes as
MAP variables increase proved problematic memory-wise
for compiling the heuristic, restricting to low iB’s resulting
in less helpful bounds. This challenge, and the realization

Table 5: AOBB-K* (ω = 1) vs. Weighted ω-AOBB-K* (ω = 0.001
on Expanded F2 problems.

benchmark ω iB w* d |X| UB pre-t search time K*
1 4 4 7 13 28.80 123.8 81.3 205.1

0.001 4 4 7 13 28.80 124.3 12.1 136.4
1 4 6 9 17 42.32 109.8 44.0 153.8

0.001 4 6 9 17 42.32 109.3 12.2 121.5
1 4 6 9 17 37.68 83.0 17.8 100.8

0.001 4 6 9 17 37.68 82.8 1.6 84.4
1 4 5 8 15 34.07 58.3 2.6 60.9

0.001 4 5 8 15 34.07 58.6 0.3 58.9
1 4 5 8 15 35.07 58.2 2.4 60.6

0.001 4 5 8 15 35.07 58.2 1.3 59.4
1 5 5 8 15 26.39 166.8 167.8 334.6

0.001 4 5 8 15 27.39 89.1 5.0 94.1
1 4 5 8 15 31.34 115.2 161.5 276.6 11.1

0.001 4 5 8 15 31.34 101.4 0.5 101.9 10.9
1 5 5 8 15 26.24 81.8 278.9 360.7

0.001 4 5 8 15 27.24 60.4 8.2 68.6
1 4 4 7 13 11.41 62.6 36.8 99.5

0.001 4 4 7 13 11.41 62.5 2.1 64.7
1 4 4 7 13 28.29 74.0 2.1 76.1

0.001 4 4 7 13 28.29 83.4 0.1 83.5
1 5 5 8 15 36.96 169.2 12.1 181.3

0.001 4 5 8 15 37.96 62.0 7.2 69.2

(203 ≤ Dmax ≤ 206) ω-AOBB-K*

11.92

16.18

15.03

13.93

14.36

1gwc_00021*

2hnv_00025*

2rf9_00013*

2rfe_00012*

2rfe_00014*

3u7y_00011*

4wwi_00019*

10.86

10.96

4.51

11.85

14.99

2rfe_00017*

2rfe_00030*

2xgy_00020*

3u7y_00009*

Table 6: Impact of τ -underflows on Expanded F2 problems.

benchmark τ iB w* d |X| UB pre-t search time K*
0 4 4 7 13 28.80 123.8 81.3 205.1

1E-05 4 4 7 13 28.80 117.1 3.5 120.7
0 4 6 9 17 42.32 109.8 44.0 153.8

1E-05 4 6 9 17 42.32 100.8 1.7 102.4
0 4 6 9 17 37.68 83.0 17.8 100.8

1E-05 4 6 9 17 37.68 71.4 0.4 71.8
0 4 5 8 15 34.07 58.3 2.6 60.9

1E-05 3 5 8 15 5.5 14.9 20.3
0 4 5 8 15 35.07 58.2 2.4 60.6

1E-05 3 5 8 15 4.9 15.2 20.0
0 5 5 8 15 26.39 166.8 167.8 334.6

1E-05 4 5 8 15 27.39 85.7 7.1 92.8
0 4 5 8 15 31.34 115.2 161.5 276.6

1E-05 4 5 8 15 30.43 105.4 3.5 108.9
0 5 5 8 15 26.24 81.8 278.9 360.7

1E-05 4 5 8 15 27.24 60.1 23.8 83.9
0 4 4 7 13 11.41 62.6 36.8 99.5

1E-05 4 4 7 13 61.3 5.1 66.4
0 4 4 7 13 28.29 74.0 2.1 76.1

1E-05 4 4 7 13 28.29 80.7 0.5 81.2
0 5 5 8 15 36.96 169.2 12.1 181.3

1E-05 4 5 8 15 54.2 8.4 62.7

13.93

10.862rfe_00017*

1gwc_00021*

2hnv_00025*

2rf9_00013*

2rfe_00012*

2rfe_00014*

(203 ≤ Dmax ≤ 206) ω-AOBB-K*

14.99

2rfe_00030*

2xgy_00020*

3u7y_00009*

3u7y_00011*

4wwi_00019*

11.12

10.96

4.51

11.85

11.92

16.18

15.03

14.36

Table 7: Observing the effects on wMBE approximations on Hard
problems when omitting zeros while computing lower bounds.

(τ = 1e-5) H iB w* |X| UB time K* time K*
wMBE 6 8 14 timeout 11.72

wMBE+ 6 8 14 19.92 1511.9 11.92

wMBE 6 10 18 timeout 11.52

wMBE+ 6 10 18 21.81 2085.6 16.18
wMBE 8 11 20 timeout 12.02

wMBE+ 8 11 20 515.99 timeout 13.41
wMBE 6 10 18 1686.5 15.03
wMBE+ 5 10 18 17.68 62.3 15.03
wMBE 5 9 16 timeout 10.33

wMBE+ 5 9 16 23.00 timeout 10.86
wMBE 6 9 16 timeout 10.27

wMBE+ 6 9 16 515.23 timeout 10.29

ω-AOBB-K*
(ω=0.001)benchmark (34 ≤ Dmax ≤ 35) BBK*

10.80

10.97248.3

91.2

625.4

43.8

399.6

1013.2

11.72

13.65

14.73

15.03

2rfe_00017**

2rfe_00030**

2rf9_00007**

2rf9_00013**

1gwc_00021**

2hnv_00025**

that bounds can be improved by domain partitioning, moti-
vates future work into new representations.

7 SUMMARY, CONCLUSION, AND
FOUNDATION FOR FUTURE WORK

Summary. This work creates a competitive framework for
which future advancements to protein redesign optimizing
K* can be made leveraging advances in graphical model
algorithms. This work also features an exploration of new
bounded heuristics for the K*MAP task and identifies areas
amenable to improvement. As part of the presented frame-
work, new efficient algorithms solving the K*MAP task
are introduced along with an empirical proof of concept by
evaluation against a pre-existing state-of-the-art algorithm.

Conclusion. We leave readers with 1. two distinct graphi-
cal model formulations to address the K*MAP query, and
analysis showing Formulation F2 is generally superior; 2. a
new guiding wMBE-K* heuristic and demonstration of the
potential to improve its bounds by domain-partitioning; 3.
AOBB-K*, a depth-first AND/OR branch-and-bound algo-
rithm for optimizing K* (and an accompanying approximate
ω-AOBB-K*) that proved competitive against state-of-the-
art BBK*; 4. a scheme to exploit determinism into problems
by introducing underflows, with theoretical guarantees; and
5. extensive empirical analysis on over forty benchmarks
providing the above-mentioned analysis. As a part of our
results, we note that AOBB-K* finds a K* greater than that
of BBK* on several occasions, leaving an open question as
to the cause and how it impacts time-performance.

As a foundation. Research directions illuminated by our
results are: (1) exploration of more compact representations
able to exploit determinism [Mateescu and Dechter, 2008,
Larkin and Dechter, 2003]; (2) development of new K*

heuristics (incorporating constraints, using alternative frame-
works such as Deep Bucket Elimination [Razeghi et al.,
2021]), employing dynamic heuristics); and (3) adaptation
of state-of-the-art mixed-inference schemes to K*MAP [Lou
et al., 2018a,b, Marinescu et al., 2019, 2018a,b]. This work
can be tuned more to the protein domain by: (1) evaluating
new CPD’s with additional independencies exploitable by
AND/OR schemes, (2) integrating optimizations present in
developed protein software such as BBK*’s OSPREY 3.0;
and (3) considering backbone ensembles.

Acknowledgements

Special thanks to Thomas Schiex, from INRAE, France, and
Bruce Donald and his members of his lab at Duke University,
including Graham Holt, Jonathan Jou, and Nathan Guerin.
We also thank our reviewers for their valuable comments.
This work was supported in part by NSF grant IIS-2008516.

References

D. Allen and A. Darwiche. New advances in inference by
recursive conditioning. In Proceedings of the 19th Con-
ference on uncertainty in Artificial Intelligence (UAI03),
pages 2–10, 2003.

A. Darwiche. Modeling and Reasoning with Bayesian Net-
works. Cambridge University Press, 2009.

R. Dechter. Bucket elimination: A unifying framework for
reasoning. Artificial Intelligence, 113:41–85, 1999.

R. Dechter. Constraint Processing. Morgan Kaufmann,
2003.

R. Dechter and I Rish. Mini-buckets: A general scheme
for approximating inference. Journal of the ACM, pages
107–153, 2002.

Rina Dechter. Reasoning with Probabilistic and Deter-
ministic Graphical Models: Exact Algorithms. Syn-
thesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2013. doi:
10.2200/S00529ED1V01Y201308AIM023. URL http:
//dx.doi.org/10.2200/S00529ED1V01Y201308AIM023.

Rina Dechter. Reasoning with probabilistic and determin-
istic graphical models: Exact algorithms, second edi-
tion. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 13:1–199, 02 2019. doi: 10.2200/
S00893ED2V01Y201901AIM041.

Rina Dechter and Robert Mateescu. AND/OR search spaces
for graphical models. Artificial Intelligence, 171(2-3):
73–106, 2007.

Rina Dechter and Irina Rish. Mini-buckets: A general
scheme for bounded inference. J. ACM, 50(2):107–
153, 2003. doi: 10.1145/636865.636866. URL http:
//doi.acm.org/10.1145/636865.636866.

S. Desarkar, P. Chakrabarti, and S. Ghose. Admissibility of
AO* when heuristics overestimate. Artificial Intelligence,
34(1):97–113, 1987.

Bruce Donald. Algorithms in structural molecular biol-
ogy. MIT Press, Cambridge, Mass, 2011. ISBN 978-
0262015592.

Niklas Eén and Niklas Sörensson. An extensible sat-solver.
In Enrico Giunchiglia and Armando Tacchella, editors,
Theory and Applications of Satisfiability Testing, pages
502–518, Berlin, Heidelberg, 2004. Springer Berlin Hei-
delberg.

Natalia Flerova, Alexander T. Ihler, Rina Dechter, and Lars
Otten. Mini-bucket elimination with moment matching.
In DISCML 2011 (a workshop of NIPS 2011), 2011.

Natalia Flerova, Radu Marinescu, and Rina Dechter. Eval-
uating weighted DFS branch and bound over graphical
models. In Stefan Edelkamp and Roman Barták, editors,
Proceedings of the Seventh Annual Symposium on Combi-
natorial Search, SOCS 2014, Prague, Czech Republic, 15-
17 August 2014. AAAI Press, 2014. URL http://www.aaai.
org/ocs/index.php/SOCS/SOCS14/paper/view/8937.

Pablo Gainza, Hunter M Nisonoff, and Bruce R Donald. Al-
gorithms for protein design. Current opinion in structural
biology, 39:16–26, 2016.

Mark Hallen, Jeffrey Martin, Adegoke Ojewole, Jonathan
Jou, Anna Lowegard, Marcel Frenkel, Pablo Gainza,
Hunter Nisonoff, Aditya Mukund, Siyu Wang, Graham
Holt, David Zhou, Elizabeth Dowd, and Bruce Donald.
Osprey 3.0: Open-source protein redesign for you, with
powerful new features. Journal of Computational Chem-
istry, 39, 10 2018. doi: 10.1002/jcc.25522.

Mark A. Hallen and Bruce R. Donald. Protein design by
provable algorithms. Commun. ACM, 62(10):76–84, sep
2019. ISSN 0001-0782. doi: 10.1145/3338124. URL
https://doi.org/10.1145/3338124.

G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities.
Cambridge Mathematical Library. Cambridge University
Press, 1988. ISBN 9781107647398. URL https://books.
google.com/books?id=EfvZAQAAQBAJ.

Terrell Hill. Statistical mechanics : principles and selected
applications. Dover Publications, New York, 1987. ISBN
978-0486653907.

Po-Ssu Huang, Scott E Boyken, and David Baker. The
coming of age of de novo protein design. Nature, 537
(7620):320–327, 2016.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasu-
vunakool, Russ Bates, Augustin Žídek, Anna Potapenko,
et al. Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589, 2021.

D. Larkin and R. Dechter. Bayesian inference in the pres-
ence of determinism. AI and Statistics(AISTAT03), 2003.

Ryan H. Lilien, Brian W. Stevens, Amy C. Anderson,
and Bruce R. Donald. A novel ensemble-based scor-
ing and search algorithm for protein redesign, and its
application to modify the substrate specificity of the
gramicidin synthetase a phenylalanine adenylation en-
zyme. In Proceedings of the Eighth Annual Interna-
tional Conference on Research in Computational Molec-
ular Biology, RECOMB ’04, page 46–57, New York,
NY, USA, 2004. Association for Computing Machinery.
ISBN 1581137559. doi: 10.1145/974614.974622. URL
https://doi.org/10.1145/974614.974622.

http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023
http://dx.doi.org/10.2200/S00529ED1V01Y201308AIM023
http://doi.acm.org/10.1145/636865.636866
http://doi.acm.org/10.1145/636865.636866
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8937
http://www.aaai.org/ocs/index.php/SOCS/SOCS14/paper/view/8937
https://doi.org/10.1145/3338124
https://books.google.com/books?id=EfvZAQAAQBAJ
https://books.google.com/books?id=EfvZAQAAQBAJ
https://doi.org/10.1145/974614.974622

Qiang Liu and Alexander Ihler. Bounding the partition
function using Hölder’s inequality. In International Con-
ference on Machine Learning (ICML), pages 849–856,
New York, NY, USA, June 2011. ACM.

Qi Lou, Rina Dechter, and Alexander Ihler. Anytime anys-
pace and/or best-first search for bounding marginal map.
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 32(1), 2018a.

Qi Lou, Rina Dechter, and Alexander T. Ihler. Finite-sample
bounds for marginal MAP. In Proceedings of the Thirty-
Fourth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2018, Monterey, California, USA, August 6-
10, 2018, pages 725–734. AUAI Press, 2018b.

R. Marinescu and R. Dechter. Memory intensive AND/OR
search for combinatorial optimization in graphical mod-
els. Artificial Intelligence, 173(16-17):1492–1524, 2009a.

R. Marinescu and R. Dechter. AND/OR branch-and-
bound search for combinatorial optimization in graphical
models. Artificial Intelligence, 173(16-17):1457–1491,
2009b.

Radu Marinescu, Rina Dechter, and Alexander Ihler. And/or
search for marginal map. In Proceedings of the Thirti-
eth Conference on Uncertainty in Artificial Intelligence,
UAI’14, page 563–572, Arlington, Virginia, USA, 2014.
AUAI Press. ISBN 9780974903910.

Radu Marinescu, Rina Dechter, and Alexander T Ihler.
Stochastic anytime search for bounding marginal map. In
IJCAI, pages 5074–5081, 2018a.

Radu Marinescu, Junkyu Lee, Rina Dechter, and Alexander
Ihler. And/or search for marginal map. J. Artif. Int.
Res., 63(1):875–921, sep 2018b. ISSN 1076-9757. doi:
10.1613/jair.1.11265. URL https://doi.org/10.1613/jair.1.
11265.

Radu Marinescu, Akihiro Kishimoto, Adi Botea, Rina
Dechter, and Alexander Ihler. Anytime recursive best-first
search for bounding marginal map. Proceedings of the
AAAI Conference on Artificial Intelligence, 33(01):7924–
7932, Jul. 2019. doi: 10.1609/aaai.v33i01.33017924.
URL https://ojs.aaai.org/index.php/AAAI/article/view/
4792.

Robert Mateescu and Rina Dechter. Mixed deterministic
and probabilistic networks. Annals of mathematics and
artificial intelligence, 54(1):3–51, 2008.

Donald McQuarrie. Statistical mechanics. University
Science Books, Sausalito, Calif, 2000. ISBN 978-
1891389153.

Adegoke Ojewole, Jonathan D. Jou, Vance G. Fowler, and
Bruce Randall Donald. BBK* (Branch and Bound Over

K*): A provable and efficient ensemble-based protein
design algorithm to optimize stability and binding affinity
over large sequence spaces. J. Comput. Biol., 25(7):726–
739, 2018. doi: 10.1089/cmb.2017.0267. URL https:
//doi.org/10.1089/cmb.2017.0267.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

I. Pohl. Heuristic search viewed as path finding in a graph.
Artificial Intelligence, 1(3-4):193–204, 1970.

Yasaman Razeghi, Kalev Kask, Yadong Lu, Pierre Baldi,
Sakshi Agarwal, and Rina Dechter. Deep bucket elim-
ination. In Zhi-Hua Zhou, editor, Proceedings of the
Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI-21, pages 4235–4242. International
Joint Conferences on Artificial Intelligence Organiza-
tion, 8 2021. doi: 10.24963/ijcai.2021/582. URL https:
//doi.org/10.24963/ijcai.2021/582. Main Track.

F.J.C. Rossotti and H. Rossotti. The Determination of Sta-
bility Constants: And Other Equilibrium Constants in
Solution. McGraw-Hill series in advanced chemistry.
McGraw-Hill, 1961. URL https://books.google.com/
books?id=zY8zAAAAIAAJ.

Manon Ruffini, Jelena Vucinic, Simon de Givry, George
Katsirelos, Sophie Barbe, and Thomas Schiex. Guar-
anteed diversity and optimality in cost function net-
work based computational protein design methods. Al-
gorithms, 14(6), 2021. ISSN 1999-4893. URL https:
//www.mdpi.com/1999-4893/14/6/168.

Clement Viricel, Simon de Givry, Thomas Schiex, and
Sophie Barbe. Cost function network-based design of
protein-protein interactions: predicting changes in bind-
ing affinity. Bioinformatics (Oxford, England), 34, 02
2018. doi: 10.1093/bioinformatics/bty092.

Jelena Vucinic, David Simoncini, Manon Ruffini, Sophie
Barbe, and Thomas Schiex. Positive multistate protein
design. Bioinformatics (Oxford, England), 36, 06 2019.
doi: 10.1093/bioinformatics/btz497.

Yichao Zhou, Yuexin Wu, and Jianyang Zeng. Compu-
tational protein design using and/or branch-and-bound
search. Journal of computational biology : a journal of
computational molecular cell biology, 23, 05 2016. doi:
10.1089/cmb.2015.0212.

https://doi.org/10.1613/jair.1.11265
https://doi.org/10.1613/jair.1.11265
https://ojs.aaai.org/index.php/AAAI/article/view/4792
https://ojs.aaai.org/index.php/AAAI/article/view/4792
https://doi.org/10.1089/cmb.2017.0267
https://doi.org/10.1089/cmb.2017.0267
https://doi.org/10.24963/ijcai.2021/582
https://doi.org/10.24963/ijcai.2021/582
https://books.google.com/books?id=zY8zAAAAIAAJ
https://books.google.com/books?id=zY8zAAAAIAAJ
https://www.mdpi.com/1999-4893/14/6/168
https://www.mdpi.com/1999-4893/14/6/168

	Introduction
	Background
	Computational Protein Design
	K* and K*MAP
	Graphical Models and Their AND/OR Search Spaces

	Graphical Model for K*MAP
	Formulation 1 (F1)
	Formulation 2 (F2)

	wMBE-K*
	AOBB-K*
	Weighted Search for K*
	Infusing Determinism via Thresholded Underflows

	Empirical Evaluation
	Summary, Conclusion, and Foundation for Future Work

