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AdFlush: A Real-World Deployable Machine Learning Solution for
Effective Advertisement and Web Tracker Prevention

Anonymous Author(s)

ABSTRACT
Ad blocking and web tracking prevention tools are widely used,
but traditional filter list-based methods struggle to cope with web
content manipulation. Machine learning-based approaches have
been proposed to address these limitations, but they have primarily
focused on improving detection accuracy at the expense of prac-
tical considerations such as deployment overhead. In this paper,
we present AdFlush, a lightweight machine learning model for ad
blocking and web tracking prevention that is practically designed
for the Chrome browser. To develop AdFlush, we first evaluated
the effectiveness of 883 features, including 350 existing and 533
new features, and ultimately identified 27 key features that achieve
optimal detection performance. We then evaluated AdFlush using
a dataset of 10,000 real-world websites, achieving an F1 score of
0.98, which outperforms state-of-the-art models such as AdGraph
(F1 score: 0.93), WebGraph (F1 score: 0.90), and WTAgraph (F1
score: 0.84). Importantly, AdFlush also exhibits a significantly re-
duced computational footprint, requiring 56% less CPU and 80%
less memory than AdGraph. We also evaluated the robustness of
AdFlush against adversarial manipulation, such as URL manipu-
lation and JavaScript obfuscation. Our experimental results show
that AdFlush exhibits superior robustness with F1 scores of 0.89–
0.98, outperforming AdGraph and WebGraph, which achieved F1
scores of 0.81–0.87 against adversarial samples. To demonstrate
the real-world applicability of AdFlush, we have implemented it
as a Chrome browser extension and made it publicly available. We
also conducted a six-month longitudinal study, which showed that
AdFlush maintained a high F1 score above 0.97 without retraining,
demonstrating its effectiveness. Additionally, AdFlush detected 642
URLs across 108 domains that were missed by commercial filter
lists, which we reported to filter list providers.
ACM Reference Format:
Anonymous Author(s). 2024. AdFlush: A Real-World Deployable Machine
Learning Solution for Effective Advertisement and Web Tracker Prevention.
In Proceedings of International World Wide Web Conference 2024 (WWW ’24).
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1 INTRODUCTION
Many internet users are concerned about web advertisements (ads)
and trackers that display unsolicited content or collect their per-
sonal information without explicit consent. To address these is-
sues, several tools are available, AdBlock Plus, uBlock Origin, and
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Ghostery. These tools use filter lists, such as EasyList [9] and
EasyPrivacy [10], which contain rules for determining whether
HTTP requests are associated with ads or trackers. However, man-
ual maintenance of these filter lists requires significant human
effort, and they are prone to false-positive and false-negative er-
rors [1]. The rules primarily rely on specific patterns, which renders
them ineffective against evasive or manipulated content.

Machine learning (ML) detection techniques [19, 21, 37, 43] have
recently been investigated to address the limitations of traditional
filter list-based methodologies. AdGraph [21] and WTAGraph [43]
construct graphs to extract significant features based on HTTP
traffic. Furthermore, WebGraph [37] utilizes additional behavioral
features to build more robust detection models against adversarial
evasion techniques. However, these studies have mainly focused on
developing highly accurate detection models by incorporating new
features to identify ads and trackers. While ML models show great
promise in identifying them, they often rely on extensive feature
sets. This can lead to significant execution time and memory over-
head for feature extraction, model training, and inference. This may
not be suitable for browser settings on a typical desktop machine
due to limited computational resources.

To deploy ML detection models in standard web browsers, we
need to identify a minimal yet effective set of features that can be
efficiently extracted without compromising accuracy. This involves
studying the features used by existing models, analyzing their rele-
vance, and refining the feature set based on considerations such as
computational complexity and feasibility in a browser environment.

To achieve this goal, we carefully examined all potential features
from prior models and analyzed their impact on detection accu-
racy and feasibility in web browser settings. Based on our feature
engineering, we selected an optimal set of features for detecting
advertisements and web trackers. We then used automated ma-
chine learning (AutoML) [27] on these features to identify the most
efficient machine model, AdFlush.

To demonstrate the effectiveness of AdFlush, we evaluate the
performance of AdFlush against state-of-the-art models (AdGraph
[21], WebGraph [37], and WTAGraph [43]) using the following per-
formance evaluation metrics: F1 score, training time, inference time,
memory usage, and CPU usage. AdFlush achieves an F1 score of
0.98, outperforming AdGraph (F1 score: 0.93), WebGraph (F1 score:
0.90), and WTAGraph (F1 score: 0.84). The average inference time
for AdFlush over 830K traffic samples is 2.3 seconds, considerably
faster than AdGraph’s 17.4 seconds. AdFlush has demonstrated
excellent computational efficiency by exhibiting 56% lower CPU
usage and 80% less memory consumption than AdGraph. Regarding
its robustness against adversarial attacks such as URL manipula-
tion and JavaScript obfuscation, AdFlush significantly outperforms
AdGraph and WebGraph’s performance.

Unlike previous research, we consider the feasibility of the fea-
tures within real-world browser settings, demonstrating that AdFlu-
sh can be deployed as a web browser extension without causing
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significant CPU or memory overheads. Furthermore, AdFlush does
not transmit User-Agent values or cookies to third parties, uphold-
ing a strong commitment to user privacy. Our main contributions
can be summarized as follows:
• Wepropose a new set of 27 features for detecting ads and trackers

in real-world browser extension environments. The feature set
was carefully selected from a pool of 883 features, including
350 existing features from state-of-the-art methods [21, 37, 43]
and 533 new JavaScript features that are robust to adversarial
samples with JavaScript obfuscation.

• We developed AdFlush, a lightweight yet highly accurate model
for detecting advertisements andweb trackers usingAutoML [27].
To demonstrate its practicality, we implemented AdFlush as a
Chrome extension. The source code and dataset for AdFlush are
available at https://anonymous.4open.science/ r/AdFlush-4EF0
We have also made a comprehensive video demo available at
https://youtu.be/dzdfqpiCjKg demonstrating AdFlush’s practi-
cality in real-world web browser settings.

• We evaluated the long-term effectiveness and adversarial robust-
ness of AdFlush. In a six-month longitudinal study, AdFlush
maintained a high F1 score above 0.97 without retraining, demon-
strating its effectiveness. Commercial filter lists lagged by an
average of 80 days in updating ads and trackers, while AdFlush
detected 642 URLs across 108 domains that were missed by filter
lists. Benchmarked against state-of-the-art models using three
adversarial test cases (URL manipulation, JavaScript obfusca-
tion, and ML-based adversarial sample generation), AdFlush
consistently outperformed other models.

2 RELATEDWORK
2.1 Risks of Advertisements and Trackers
In today’s digital marketing environment, web advertising and
tracking practices are essential for providing tailored user experi-
ences, but they also raise privacy and security concerns [28].

Web trackersmonitor users’ online activities, such as visited sites,
duration, clicked links, and location. This data helps create detailed
profiles for targeted advertising [4]. While some find these ads
useful, others see them as privacy invasions. Many firms distribute
this data without user consent, raising data breach risks [23]. This
heightens the threat of cyberattacks and identity theft for users.

Web ads and tracking can expand the attack surface of users. One
such threat ismalvertising, where malicious actors exploit advertise-
ments to distribute malware or exploit system vulnerabilities [5].
These threats can be present on any website, even those generally
perceived as safe, posing a danger to users [17]. Other security
concerns originate from web tracking technologies like cookies and
browser fingerprinting. Cookies, small files stored on a user’s device,
could be exploited for harmful purposes. Browser fingerprinting,
which identifies users based on their browser’s statistical proper-
ties, can be manipulated by malicious actors to conduct targeted
attacks [12, 30].

2.2 Filter List-Based Approaches
Many web users rely on browser extensions such as AdBlock Plus,
uBlock Origin [18], Privacy Badger [33], and Disconnect [8] to
protect themselves from intrusive ads and privacy-invading web

trackers. Recognizing the importance of these ad blockers, sev-
eral web browsers, including Firefox [14], Ghostery, and Brave [3],
now offer built-in ad-blocking solutions. This demonstrates the
importance of these extensions in the browsing environment.

Ad blocking solutions primarily rely on widely recognized filter
lists such as EasyList [9], EasyPrivacy [10], and Fanboy’s List [13].
These lists aremanually curated lists of websites and scripts to block.
While filter lists have been instrumental in the crowdsourced effort
to block unnecessary and potentially harmful content, they have
several shortcomings [20]. Filter lists can be labor-intensive and
challenging to scale, particularly for a large number of websites.
Additionally, the crowdsourcing model used to develop filter lists
can result in regional bias, as regions with fewer contributors may
have fewer ad-blocking rules on the list [38]. Finally, filter lists
struggle to keep up with the growing trend of script obfuscation
used by web trackers [11].

2.3 ML-Based Approaches
To overcome the limitations of traditional methods that rely on
manually created filter lists, various techniques have been proposed
for generating filter lists in an automated manner. For instance,
Bhagavatula et al.’s model [2] streamlines the process of creating
and maintaining filter lists. Recently, AutoFR [26] introduced an
efficient filter list generation method using reinforcement learning.
However, automated filter rule generation is inherently unsuitable
for real-time ads and trackers detection.

Recent graph-based ML approaches, such as AdGraph [21], Page-
Graph [38], WTAGraph [43], and WebGraph [37], utilize features
from ads and trackers’ interactions across HTML,HTTP, and JavaSc-
ript layers to train models for detection. PageGraph extends Ad-
Graph’s graph representation by refining event attribution and
capturing more behaviors, but both overlook HTTP redirects and re-
quest header information. WebGraph [37] addresses this by adding
features that trace information flow within a browser, including
HTTP redirects and request headers. Given the natural graph struc-
ture of HTTP network traffic, WTAGraph leverages a graph neural
network (GNN) model for better detection accuracy. However, both
WebGraph and WTAGraph operate offline only in practice due to
performance overheads, which subjects them to challenges similar
to traditional filter lists. Notably, WebGraph’s use of over 3,000 fea-
tures without GPU acceleration results in lengthy inference times,
making real-time desktop operation impractical for average users.

Another approach involves utilizing computer vision techniques
to detect ad images. Storey et al. [39] introduced Ad Highlighter,
the inaugural perceptual ad-blocker that identifies ad disclosures
by merging web-filtering rules with computer vision methods. Due
to the enhanced robustness of perceptual techniques, many contem-
porary ad-blockers have integrated similar concepts. For instance,
Adblock Plus has adopted image-matching filters. Percival [7] em-
ploys CNN classification models for advertising image detection.
However, challenges arise when ads are placed outside of iframes,
use transparent logos, or are fragmented into smaller images. These
tactics hinder the efficacy of computer vision in detecting ads [40].

ML-based approaches have potential for ad-blocking tools, but
they have not been widely adopted yet due to performance and
reliability issues. Performance-wise, the overheads associated with
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feature instrumentation and executingML pipelines in real-time can
offset the benefits of ad blocking [26]. Reliability issues arise from
doubts about the robustness of ML models in real-world settings [7].
Additionally, recent graph-based ML models typically aggregate
features only after webpages have fully loaded, potentially allowing
ads and trackers to execute before feature extraction. Evaluations
often neglect practical considerations, including the model’s impact
on webpage load time, CPU and memory overhead, and robustness
against adversarial attacks.

Therefore, we propose a practical ML-based solution designed
for seamless integration as a browser extension to address these
limitations. We aim to achieve high detection accuracy using only
practical features supported by commercial web browsers.

3 FEATURE ANALYSIS
This section comprehensively analyzes 883 potential features, in-
cluding 350 used by existing ML-based methods and 533 new fea-
tures that are robust to adversarial samples with JavaScript obfus-
cation. We assess the feasibility and contribution of each feature
to overall detection efficacy, identifying key features that can be
practically implemented in web browsers.

3.1 Data Collection
To collect a comprehensive dataset of real-world websites, we sam-
pled the top 10,000 websites ranked by Tranco [32]. This was be-
cause Alexa, previously used in studies for AdGraph [21] and Web-
Graph [37], no longer provides an accessible or updated ranking
service. We also followed the approach of WTAGraph [43], which
used the top 10,000 sites based on Tranco’s ranking.

We set a 60-second timeout for each website to account for
the variability in complexity and structure of different websites.
Our data collection process resulted in an average crawl time of
32.58 seconds, with a standard deviation (SD) of 11.26 seconds,
indicating that a 60-second timeout is appropriate for most sites.
With seven web crawler instances running in parallel for 11 hours
using OpenWPM[11], we generated a total of 830,160 requests. We
split the dataset into an 8:2 ratio for training and testing. This
ensures that the model is trained on a representative sample of the
data and evaluated on a held-out set that it has not seen before.

3.2 Candidate Features
We thoroughly analyzed the potential features present in our gath-
ered dataset, integrating all features leveraged by AdGraph [21],
WebGraph [37], and WTAGraph [43]. This resulted in a total of
3,323 distinct features, with some overlap.

AdGraph focuses on monitoring DOM tree alterations from
JavaScript executions or HTTP requests. The resulting changes
are formulated into a graph, from which 28 features are derived.
These features encompass both the graph’s structural attributes and
content-based features, such as the attributes of the request URL.

WebGraph builds upon AdGraph by representing a broader spec-
trum of components in its graph structure, including HTML, net-
work, JavaScript, and storage components. Drawing from this graph,
WebGraph uses 59 features that encapsulate both structural at-
tributes and advanced dataflow characteristics, with special empha-
sis on cookie access and information sharing between nodes.

WTAGraph constructs an attribute homogeneous multi-graph
(AHMG) from the visited web pages. This complex network then
translates into a feature vector that includes, among others, char-
acter strings, specific JavaScript APIs, and HTTP request metrics.
In AdFlush, we condensed WTAGraph’s vector space of 3,200 URL
character representations into 30 features for FQDNs and 200 for re-
quest URLs using continuous bag-of-words features. This approach
strikes a balance between computational feasibility and robustness
against overfitting.

Moreover, we introduced 533 new features to enhance AdFlush’s
robustness against JavaScript obfuscation techniques. Traditional
features were insufficiently resilient against adversarial samples
employing JavaScript obfuscation. These new features are derived
from requested JavaScript source code or embedded HTML scripts,
including 𝑛-gram frequencies parsed from the abstract syntax tree
(AST), the structure of the AST, and various script-based metrics.

We present a comprehensive feature list by combining 350 fea-
tures from three existing models [21, 37, 43] with 533 additional
JavaScript-specific features (detailed in Appendix A). Some features,
such as URL character embeddings, are combined into a single fea-
ture label for clarity. We used the code provided in the research to
extract features whenever possible. Otherwise, we implemented
the code from scratch, especially for proprietary features or when
the source code from the baseline models was unavailable.

3.3 Feature Categorization
As presented in Appendix A, we categorize our features into four
groups: JavaScript, URL, HTTP header, and Graph as follows:
• JavaScript features are derived from the HTML structure of

a web page, focusing on functions within <script> tags and
JavaScript code, such as fetch() or XMLHttpRequest. They also
monitor specific API usage, revealing downstream behavior of
advertising and tracking actions. For example, eval() can trig-
ger hidden <script> tags to collect user tracking data, while
code tracking significant user interaction often pertains to ad-
vertising.

• URL features represent values from source and request URLs.
Keywords in the request URL or its length can provide insights
into the request’s purpose. Though ad and tracker services use
various URL manipulation techniques, embedding URLs can
effectively counter these methods.

• HTTPheader features are derived from values in HTTP request
headers. These encompass content policy type, User-Agent
strings, referrer data, and other metadata embedded in the HTTP
request header. These features are crucial as they offer context
about a request or response, often containing user-identifying
information or insights about the request’s nature.

• Graph features illustrate interactions between different graph
nodes, representing various web page elements, with edges rep-
resenting interactions between them. Potentially important fea-
tures include the distance between nodes, node centrality, and
the number of requests or redirects involving a node. These
features have recently received increased research attention due
to their potential to highlight the complex dynamics of various
components on web pages.
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In our categorization, AdGraph primarily utilizes URL and Graph
features, incorporating 1, 11, 1, and 15 features from each cate-
gory, respectively. WebGraph emphasizes Graph features, using
7 JavaScript and 52 Graph features. WTAGraph primarily uses 32
JavaScript, 3,200 URL, and 34 HTTP header features to construct a
GNN structure with these features.1

We evaluated the feasibility of integrating each feature into
standard web browsers, according to the following rules.
• Rule 1 (Avoiding loading additional resources): Feature ex-

traction should not require executing JavaScript, WebAssembly,
or loading extra browser elements. As AdFlush aims to intercept
ads and trackers before they load, it should depend solely on
features that avoid inspecting interactions that could introduce
the user to undesired ads or trackers.

• Rule 2 (Avoiding using multiple requests): Feature values
should be derived from a single web page request to ensure swift
detection and real-time analysis without excessive memory or
storage use. Nested queries on various requests demand user
history and significant computation.
Under these rules, most Graph features are infeasible because

they violateRule 1 orRule 2. For example, the number_of_set_then
_get_storage feature observes data sharing nodes in order, yet re-
quires JavaScript execution with timestamps and violates Rule 1.
The more complex indirect_all_average_degree_connectivity feature
cannot be computed without fetching all nodes and edges in a graph,
violating Rule 2 because it requires access to the user’s site visit
history to access data about all connected nodes, raising potential
privacy concerns.

The only Graph feature efficiently computed with a single re-
quest is is_parent_script. This feature determines whether the initia-
tor of the request is a JavaScript resource. Therefore, is_parent_script
is the only Graph feature we consider feasible to implement in real-
world browser settings. As a result, we excluded 52 Graph features
out of the 350 features from our candidate feature set.

3.4 Key Feature Identification

To identify the most crucial web tracking and ad detection fea-
tures, we evaluated the relevance, impact, and association with
ad and web tracker detection of 298 established state-of-the-art
features and 533 newly proposed features. We identified key fea-
tures from each group separately, including the 533 newly proposed
features, even though they exhibited lower importance in normal
samples. These features improve resilience against JavaScript obfus-
cation tactics, which complicates the task for ML-based detectors in
distinguishing between malicious and benign JavaScript code [34].

We first examined the correlation between each feature and
the labels using the point-biserial correlation coefficient [24]. We
discarded 17 and 178 features from the existing and new sets, respec-
tively, with a 𝑝-value exceeding 0.1, indicating that these features
have an insignificant correlation with the labels and are, therefore,
unlikely to be relevant to the model.

1The feature counts mentioned here do not align with the number of  symbols
in Appendix A. This discrepancy occurs because we group together features computed
using similar methods in the table.

We next curated the key feature sets for AdFlush from the re-
maining 281 existing and 355 new features. We used recursive fea-
ture elimination with cross-validation (RFECV) [16] to identify the
most influential features. RFECV works by iteratively removing fea-
tures with the lowest importance scores and evaluating the model’s
performance based on the remaining features. Figure 1 shows the
results of the RFECV process, with the x-axis denoting the number
of features and the y-axis indicating the cross-validation accuracy.
The scores for the new features are lower than those for the existing
features. For the existing features, accuracy increases as we remove
features until we retain 47, after which it decreases. For the new
features, optimal results are achieved with 11 features. Therefore,
we considered a set of 58 features, combining the 47 and 11 features
from the two groups.
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Figure 1: RFECV scores against feature count.

To further streamline the number of features, we aimed to select
only those among the remaining 58 features that exhibited minimal
correlation with each other. Thus, we analyzed the correlation for
all possible pairs within these 58 features. We employed Pearson’s
coefficient for pairs with continuous values and used Spearman’s
correlation otherwise. If the correlation 𝑝-value between any two
features was below 0.05, we discarded the less significant feature
based on RFECV scores. This process resulted in a final set of 27
features. The comprehensive list of features in AdFlush is detailed
in Appendix B.

We used a random forest to assess the importance of each fea-
ture in the final 27 features. We distinguished ads, trackers, and
regular resources using three features: the number of storage ele-
ments retrieved by the resource, the URL length, and the number of
cookie values retrieved. These features are crucial for identifying
ads and trackers because they often store user identifiers in storage
elements, have long request URLs, and use more cookies for tasks
such as cookie synchronization. We observed a variation in the
distribution of these features in our dataset, with ads and trackers
typically having higher average values for all three features (see Fig-
ure 2). For example, ad and tracker resources sometimes accessed
storage elements over 300 times, while regular resources rarely did
so. While some features might have a minor individual impact, their
collective use produces a robust indicator for differentiating ads
from trackers. We found 61,285 ads and trackers that receive cookie
values, access storage elements, and have a URL length of over 200
characters, in contrast to only 6,793 instances for regular resources.
This suggests that these features can be used to distinguish between
ad/tracker and regular resources.
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Figure 2: Distribution of three features for ad/tracker versus non-ad/tracker resources (normalized, y-axis in log scale).

Table 1 shows the relative importance of the top five newly in-
troduced JavaScript features in terms of information gain. The most
important feature is the 3-gram pattern (Statement, CatchClause,
Statement), which is typically represented by try-catch blocks. The
other top features, (Expression, Identifier, Identifier) and (Expres-
sion, Expression, Statement), are less distinctive. However, they still
contribute to the model’s performance, with information gains of
1.27% (± 0.19) and 1.26% (± 0.20), ranking 18th and 19th in impor-
tance, respectively. Additionally, obfuscation-related features, such
as Identifier lengths in ASTs and character counts in code lines,
would also enhance performance.

Table 1: Top-5 important JavaScript features and information
gain within optimized 27 features (averaged over 10 folds).

Feature Information Gain (%)

(Statement, CatchClause, Statement) 5.42 ± 0.54
Average of Identifier length 2.24 ± 0.32
Average of character per line 1.32 ± 0.22
(Expression, Identifier, Identifier) 1.27 ± 0.19
(Expression, Expression, Statement) 1.26 ± 0.20

4 IMPLEMENTATION OF ADFLUSH
We aim to identify the most effective features for improving the per-
formance of AdFlush while minimizing its complexity. To achieve
this goal, we carefully selected 27 features with the highest impor-
tance scores. We then applied a dimensionality reduction technique
to this compact feature set, further simplifying the model and im-
proving its predictive power by preventing overfitting.

To find the most efficient models for these reduced feature spaces,
we used H2O AutoML [27]. This tool provides a comprehensive
search and selection platform, allowing us to explore different mod-
els to identify those that provide the highest performance. Once
we had identified the best-performing models, we optimized them
to be more efficient and resource-friendly.

We integrate our model into a fully functional web browser
extension for Chrome. This extension captures features in real-
time and promptly blocks ads and trackers detected by the model,
ensuring a secure browsing experience (see Figure 3).

4.1 Dataset
We aggregated eight popular filter lists (see Appendix C) to label our
dataset accurately and distinguish between the presence or absence
of ads and trackers. Our labeling method mirrors that used in exist-
ing studies [20, 37], ensuring consistency and comparability. After
labeling, we divided the data into training and test sets in an 8:2 ratio.

HTML

JavaScript

HTTP

OpenWPM

Data collection

JavaScript 
features

HTTP header 
features

URL features

Feature extraction

AdFlush
(Extension)

Training 
data

Classifier 
(ONNX)

Browser - a.com

Ad/tracker detection and block

Figure 3: Overview of AdFlush.

This substantial labeled dataset was then used to train and test the
detection model and to compare it with state-of-the-art solutions.

4.2 Model Selection and Training
We used H2O AutoML [27], an automated machine learning plat-
form, to find the best model with our feature set. AutoML facili-
tates the search for high-performing models and the generation
of optimized feed-forward artificial neural network models. We
analyzed the training data for each feature selection, identified the
top 10 models based on F1 scores, and selected the best-performing
model using 5-fold cross-validation. After this rigorous evaluation,
a gradient boosting machine (GBM) [36] was selected as the best-
performing model. For AdFlush, we selected 27 features based on
their importance scores and correlation (see Section 3.4). However,
our analysis found significant correlations among these features.
We could use dimensionality reduction techniques to streamline
the feature set and model while preserving pivotal information.
We considered two dimensionality reduction techniques: Principal
Component Analysis (PCA) [25] and UniformManifold Approxima-
tion and Projection (UMAP) [29]. While PCA is a robust technique,
it can overlook subtle nuances, particularly in datasets with non-
linear characteristics. To address this, we also considered UMAP.
We condensed the 27 features with PCA to 8, and with UMAP, we
reduced them to 2. These results are consistent with our correlation
analysis, suggesting that the 27 features may contain redundant
data, with some being highly interrelated.

We trained the GBM with each of these three feature sets to
determine the optimal feature set and evaluated the performance
of AdFlush on the test set (see Table 2).

Although reducing AdFlush’s feature set to two features using
UMAP achieved the highest F1 score of 0.99, we chose to retain the
original 27 features because using UMAP would have complicated
result interpretation and increased computational and memory
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Figure 4: Sequence diagram of AdFlush in browser extension.

Table 2: Performance of AdFlush with each feature set: Origi-
nal (27), PCA (8), and UMAP (2).

Feature Set Acc. Prec. Recall F1
AdFlush Original (27) 0.98 0.99 0.97 0.98
AdFlush PCA (8) 0.96 0.96 0.93 0.95
AdFlush UMAP (2) 0.98 0.99 0.98 0.99

overhead due to the additional processing steps. Since the perfor-
mance improvement was marginal (0.99 vs. 0.98), we prioritized
interpretability and efficiency and used the original features.

4.3 Browser Extension Implementation
Google’s recent adoption of Manifest V3 [6] restricts Chrome exten-
sions from directly manipulating user HTTP requests. Therefore, ex-
tensions must define rules or conditions for blocking requests rather
than controlling them. To comply with this new standard, we im-
plemented AdFlush, a Chrome browser extension that uses a GBM
model to generate rules on the fly to block ads and web trackers.

Our implementation approach adheres to the guidelines of Man-
ifest V3, which emphasize the importance of performing model
inference in real time to generate rules. We used the libraries
onnxmltools and ONNX-simplifier to convert our GBM model
into the ONNX format, which enables efficient execution through a
web assembly backend. Our extension for the Chrome web browser
uses this model to detect ads and web trackers from web page
requests in real-time.

Figure 4 illustrates the detailed workflow: 1 AdFlush captures
a network request from the user’s active web page. 2 A static rule
is applied for each matched request. 3 The matched request is redi-
rected to the Requestly delay API via declarativeNetRequest.
Before this, AdFlush removes user cookies and appends a dummy
User-Agent to safeguard user privacy. In this step, AdFlush ex-
tracts features like content policy type, domain party, URL advertis-
ing keyword presence, stored value count, and 𝑛-gram frequencies.
It references a pre-trained vector dictionary in JSON format for
URL word embedding features. 4 The service worker forwards
these values to the loaded ONNX model in an off-screen tab. 5
The model predicts and notifies the service worker based on these

values. 6 If identified as an ad or tracker URL, a dynamic rule is es-
tablished in declarativeNetRequest; otherwise, benign requests
are allowed. 7 After the Requestly timeout, the original request
is reinitiated. 8 Requests violating user privacy (i.e., ad or tracker
URLs) are blocked.

Our current implementation of AdFlush relies on the depre-
cated onBeforeSendHeaders function from the webRequest pack-
age. The latest declarativeNetRequest package restricts the read-
ing of raw network traffic, which poses challenges for specific
machine learning models that depend on this capability. While
Google’s Manifest V3 disallows the manipulation of raw requests
using webRequest, it still allows for reading. To facilitate this func-
tionality, we used an older version of the declarativeNetRequest
package, which enabled us to deploy our AdFlush extension on the
latest Chrome version (version 118).

AdFlush’s source code and dataset are available at https://anonym
ous.4open.science/ r/AdFlush-4EF0. A comprehensive video demon-
stration is also available at https://youtu.be/dzdfqpiCjKg

5 EVALUATION
We conducted a comprehensive evaluation to demonstrate the effi-
cacy and efficiency of AdFlush. This included comparing AdFlush
to state-of-the-art models, assessing its robustness to adversarial in-
puts, and measuring the runtime overhead of the browser extension.

5.1 Comparison with State-of-the-Art Models
To evaluate AdFlush’s detection capability, we compared it with
state-of-the-art ad and tracker detection systems (AdGraph [21],
WebGraph [37], and WTAGraph [43]). Additionally, we compared
it with various machine learning models, including RandomForest,
SkopeRules, XGBoost, CatBoost, and LightGBM, using the 27 fea-
tures identified in AdFlush. Since the source code for feature extrac-
tion was not publicly available for WTAGraph, we re-implemented
the feature extraction module based on the details provided in the
paper. We excluded PageGraph [38] in the comparison because
it relies on images within web pages to detect ads. To verify the
importance of these features, we also built GBMmodels in AdFlush
using the features from AdGraph and WebGraph, respectively, and
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analyzed their performance. All models were evaluated on a dataset
comprising 20% of our collected data.

Table 3 shows that AdFlush outperforms other solutions across
all metrics, including accuracy, precision, recall, and F1 score. No-
tably, AdFlush achieved an F1 score of 0.98, significantly higher
than the second-best, AdGraph, which scored 0.93. We also found
that the 27 features used in AdFlush are highly effective, as evi-
denced by the RandomForest, XGBoost, CatBoost, and LightGBM
models also achieving F1 scores exceeding 0.9. However, the Skope-
Rules model showed poor performance with an F1 score of 0.77.
When we replaced the 27 features identified in AdFlush with the
28 features from AdGraph and the 59 features from WebGraph,
the performance produced F1 scores of 0.91 and 0.86, respectively,
demonstrating the importance of our chosen 27 features for achiev-
ing high detection accuracy.

Table 3: Comparison of model performance.

Model # features Acc. Prec. Recall F1
AdGraph [21] 28 0.94 0.92 0.94 0.93
WebGraph [37] 59 0.92 0.91 0.90 0.90
WTAGraph [43] 3,266 0.90 0.85 0.83 0.84
RandomForest 27 0.98 0.98 0.96 0.97
SkopeRules 27 0.83 0.87 0.68 0.77
XGBoost 27 0.96 0.97 0.94 0.95
CatBoost 27 0.95 0.95 0.92 0.94
LightGBM 27 0.94 0.94 0.91 0.92
AdFlush 28 (AdGraph) 0.93 0.90 0.92 0.91
AdFlush 59 (WebGraph) 0.89 0.85 0.87 0.86
AdFlush 27 0.99 0.99 0.98 0.98

We evaluated AdFlush’s performance across 14 HTTP request
types (see Appendix D). Remarkably, AdFlush achieved an F1 score
over 0.93 for all 14 types, demonstrating its effectiveness across all
HTTP request types. AdFlush also performed efficiently for types
with fewer than 1,000 requests.

5.2 Longitudinal Study
Websites constantly evolve, with features frequently updated due
to redesigns, new content additions, or algorithm changes target-
ing ad serving or user tracking. As a result, ML-based solutions
typically require periodic retraining on fresh datasets to maintain
their performance. However, we show that AdFlush maintains its
effectiveness over extended durations without retraining.

We conducted a longitudinal study to evaluate AdFlush’s persis-
tent robustness and reliability, especially compared to frequently
updated filter lists.We collected eight popular filter lists, updated ev-
ery four days for six months, following EasyList’s update schedule
fromApril 2, 2023, to September 17, 2023. After training AdFlush on
the initial training dataset, we assessed its performance against the
evolving filter lists, simulating a real-world post-launch scenario.

The performance trajectory of our detection model on the test
dataset is illustrated in Figure 5. Impressively, without retraining,
AdFlush exhibited robust detection capabilities throughout, main-
taining an F1 score above 0.9789. Notably, the F1 score increased
until April 10 and then decreased by a negligible 0.0064 over the
entire period, demonstrating AdFlush’s enduring consistency over
extended intervals.
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Figure 5: Longitudinal study from April to September 2023.

AdFlush’s precision gradually declined over time, but its recall
rate remained high. This suggests that AdFlushmay have increased
false positives, but it remained effective at detecting most ads and
trackers, even when trained on an older dataset. Appendix E pro-
vides a detailed analysis of false negative samples of filter lists.

Commercial filter lists added newly identified ads and trackers
with a significant delay (mean = 80 days, SD = 29.89 days) compared
to AdFlush. Additionally, AdFlush can detect ads and trackers that
are missed by even the latest filter lists, as of October 11, 2023. We
manually verified 642 such URLs from 108 unique domains and
reported them to EasyList, EasyPrivacy, uBlock Origin, and uBlock
Privacy. This demonstrates AdFlush’s potential as a practical tool
for updating filter lists.

5.3 Robustness against Adversarial Samples
ML models require rigorous validation to ensure their resilience to
unseen data and feature-targeted attacks. We evaluated AdFlush’s
robustness against AdGraph [21] and WebGraph [37] under three
mutation scenarios, excluding WTAGraph [43] due to its larger
feature set and lower effectiveness than WebGraph. We used at-
tack success rate (ASR) and AUROC as experiment metrics. Our
experiments are as follows:
Case 1: URL Manipulation. Attackers with access to filter lists
and a broad understanding of URL patterns used in ad and tracker
detection can manipulate URLs to bypass ad blockers. They can
change the domain or subdomain name, hide ad and tracker key-
words within the query string, or combine these techniques. For
example, an attacker might manipulate the URL of an ad from
https://secure.adnxs.com/seg?ad=22932261&t=1 to https://UJu0xD.
OBGFCuxmU.com/seg?tk=22932261&62Jo=M1lrD0yUI. In our eval-
uation, we applied all possible combinations of URL manipulation
to our test dataset.
Case 2: JavaScript Obfuscation. To mimic the tactics of ad and
tracker writers attempting to evade detection, we obfuscated JavaSc-
ript code using three widely recognized tools: JavaScript-Obfuscator
[22], gnirts [15], and Wobfuscator [35]. gnirts is particularly effec-
tive at mangling string literals beyond simple hexadecimal string
escapes, while JavaScript-Obfuscator offers various code transfor-
mations, such as variable renaming and control flow flattening.
Wobfuscator replaces parts of JavaScript code with WebAssembly
modules that retain the same function. Using these tools, we ob-
fuscated 13,695, 15,386, and 13,311 samples from our test dataset,
respectively. We then evaluated the resilience of our model against
JavaScript obfuscation using these subsets.
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Case 3: CTGAN-Based Manipulation. We generated adversarial
samples using the conditional tabular GAN (CTGAN) [42]. CTGAN
is designed to emulate the diversity of real-world data and has
shown increased resilience and adaptability across various datasets.
Using CTGAN, we generated adversarial versions of our test dataset,
tailored to the features of our target models.We first divided our test
dataset into an 8:2 ratio for training and testing. Once trained, CT-
GAN created adversarial samples indistinguishable from real-world
data but also designed to evade detection by the tested models.

Table 4 presents the robustness of AdFlush against adversarial
samples compared to AdGraph and WebGraph. We excluded Web-
Graph when manipulating URL features, as it does not use them,
and excluded AdGraph during JavaScript manipulations due to its
reliance on a single constant JavaScript feature. Overall, AdFlush
consistently demonstrated the lowest ASR and highest F1 score
across all adversarial sample scenarios compared to the state-of-the-
art models. Specifically, AdGraph’s F1 score dropped significantly
to 0.81 against CTGAN-based manipulations, while AdFlush main-
tained a high F1 score of 0.98. WebGraph’s F1 score decreased to
0.81 when JavaScript was obfuscated, while AdFlush consistently
held an F1 score above 0.89.

Table 4: Robustness against adversarial samples.

Method Model Acc. Prec. Recall F1 ASR AUROC
URL

manipulation
AdGraph [21] 0.89 0.85 0.86 0.85 0.11 0.95

AdFlush 0.98 0.97 0.96 0.97 0.02 0.98
JavaScript-
obfuscator

WebGraph [37] 0.86 0.87 0.76 0.81 0.14 0.92
AdFlush 0.95 0.96 0.91 0.94 0.05 0.94

gnirts WebGraph [37] 0.87 0.88 0.75 0.81 0.13 0.92
AdFlush 0.92 0.99 0.81 0.89 0.08 0.90

Wobfuscator WebGraph [37] 0.86 0.87 0.76 0.81 0.14 0.92
AdFlush 0.95 0.96 0.92 0.94 0.05 0.95

CTGAN-
based

manipulation

AdGraph [21] 0.74 0.78 0.85 0.81 0.26 0.75
WebGraph [37] 0.89 0.88 0.87 0.87 0.11 0.96

AdFlush 0.98 0.98 0.97 0.98 0.02 0.98

5.4 Runtime Overhead Evaluation
To evaluate AdFlush’s runtime overhead, we measured its time
complexity on a Ubuntu 18.04 with an Intel Xeon E5-2687W v3
CPU and 256GB of memorywithin a Python environment.We calcu-
lated the average time from model loading to test dataset inference
over 10 trials. AdFlush’s inference time of 2.3 seconds was signifi-
cantly faster than the state-of-the-art solutions (17.4 seconds for
AdGraph [21], 19.7 seconds for WebGraph [37], and 144.9 seconds
for WTAGraph [43]), marking an 86% speedup over AdGraph. This
faster inference speed underscores AdFlush’s efficacy for real-time
ad and tracker blocking.

We also evaluated AdFlush’s performance on the top 1,000 Tranco
websites using Selenium to replicate user engagements on a Chrome
browser. Typical interactions were conducted via page scrolling
and a 60-second timeout. We collected 68,495 queries from the 1,000
sites. For a single request, AdFlush averagely took 0.242 seconds
(SD = 0.990 seconds) for feature extraction and 0.014 seconds (SD
= 0.035 seconds) for inference, respectively. It is important to note
that these tasks do not take time in an additive manner. Utilizing
JavaScript’s asynchronous functionalities, AdFlush performs simul-
taneously without disrupting the user’s experience and is much
speedier than results from the user’s perspective.

AdFlush is also superior in terms of CPU and memory consump-
tion. For CPU usage, AdGraph and WebGraph consumed 1.8% and
1.6%, respectively, while AdFlush used only 0.8%, requiring 56%
less CPU than AdGraph. WTAGraph also reported 0.8% CPU usage,
but its memory demand was significantly higher than AdFlush’s.
WTAGraph required a substantial 1.3 GB of memory during infer-
ence, while AdGraph and WebGraph needed over 200 MB and 150
MB, respectively. In comparison, AdFlush’s memory footprint was
a modest 40 MB, a reduction of up to 80% from AdGraph.

6 DISCUSSION
Validity of Ground Truth Dataset. Machine learning models
that detect ads and web trackers, such as AdFlush, often rely on
filter lists like EasyList [9] as their ground truth. The accuracy of
these models is inherently linked to the reliability of these lists.
Sole reliance on filter lists introduces two primary challenges: (1)
The need for frequent updates to ensure that the lists are compre-
hensive and up-to-date, and (2) potential inaccuracies in the lists
that could jeopardize the model’s trustworthiness. Le et al. [26]
highlighted these issues and proposed AdHighlighter as a solution;
however, this tool also requires regular maintenance. As described
in Section 4.1, to mitigate these challenges, we used eight popular
filter lists (detailed in Appendix C) to obtain valid labels for our
collected dataset. This approach helped reduce the risk of bias from
relying on a single filter list.
Feasible Features for Real-Time Ad Blocking in Browser Ex-
tensions. State-of-the-art ML-based ad and web tracker detectors
often emphasize model accuracy without thoroughly considering
the feasibility of implementing their features in real-world web
browser extensions. For ad-blocking extensions, the primary objec-
tive is to halt requests intended for ads andweb trackers in real-time.
However, many graph-based features used in existing ML-based
solutions require the outcomes of HTTP requests and the execution
results of JavaScript code, indicating that the ad and tracker code
must be executed before detection occurs. To address this challenge,
we exclusively considered features that can be swiftly computed
in real-time within a browser extension. This allows AdFlush to
quickly generate rules for blocking URLs in real-time before HTTP
requests are delivered and code is executed.

7 CONCLUSION
We have introduced AdFlush, a novel framework for effectively
detecting ads and trackers. AdFlush stands out with its carefully
selected features, which surpass those of state-of-the-art tools. In
addition to the 350 features used by state-of-the-art tools, we con-
sider 533 new JavaScript features. We evaluated the efficacy of all
883 features and chose a subset of 27 optimal features for AdFlush,
considering both feature importance and feasibility of browser
implementation.

On a benchmark of the top 10,000 websites, AdFlush achieved
an F1 score of 0.98, outperforming the best state-of-the-art tool,
AdGraph [21], by 0.05 in F1 score. AdFlush also demonstrated re-
markable resilience against adversarial attacks, surpassing state-of-
the-art methods. Additionally, AdFlush maintained its high detec-
tion accuracy for six months without retraining, demonstrating its
effectiveness for new and unseen data.
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A CATEGORIZATION OF CANDIDATE
FEATURES

Table 5 shows the features that we investigate in this paper, includ-
ing all aggregated features from AdGraph [21], WTAGraph [43],
and WebGraph [37], as well as new features against JavaScript
obfuscation strategies. Duplicate features are grouped by imple-
mentation, and we group the entire feature set into JavaScript, URL,
HTTP header, and graph categories based on their resource. Specific
features considered for AdFlush are marked with “‡” in the table.

Table 5: Summary of the categorized features. Feature sets
include AdGraph (A), WTAGraph (T), and WebGraph (W),
with AdFlush (‡) denoting new features. A ‘ ’ indicates a
tool’s use of the feature, while ‘!’ signifies the feasibility (F)
of integrating the feature into a browser extension.

Theme Feature A T W F

JavaScript

# of requests sent   !

# of storage (set/get)   !

# of cookies (set/get)   !

Use of eval/function instructions    !

Use of ad/tracker related JavaScript API  !

𝑛-gram frequency of JavaScript AST‡ !

JavaScript AST depth/breadth‡ !

Average of Identifier length‡ !

Average of characters per line‡ !

Bracket to dot notations ratio in JavaScript‡ !

URL

URL length   !

Sub-domain check  !

Valid query string parameters  !

Domain party (first/third)  !

Specific keywords in request URL  !

Semi-colons in request URL  !

Base domain in request URL  !

Screen size in request URL  !

Character embeddings  !

HTTP
header

Content policy type (categorical)   !

Content policy type (boolean)  !

Request Content type (boolean)  !

Request Method type (boolean)  !

Order, timing, and # of attributes  !

Graph

# of nodes/edges and node/edge ratio   
Degree (in, out, in+out)   
Average degree connectivity   
Presence of ancestor script   
Presence of parent script   !
Ascendant script length   
Ad keywords in ascendant script   
Use of eval/function in ascendant   
Use of eval/function in descendant   
# of ancestors/descendants  
Closeness centrality/eccentricity  
# of predecessors/successors script  
# of requests received  
# of redirects sent/received  
Max depth of redirect  
# of indirect degree (in/out)  
# of indirect ancestors/descendants  
Indirect centrality/connectivity  
Indirect in/out weights (min/max/mean)  
# of set then get/modify storage (src/dst)  
# of set/get URL (src/dst)  
# of all indirect degree (in/out)  
# of all indirect ancestors/descendants  
Indirect all centrality/connectivity  

Section 3.3 explores the feasibility of implementing each feature
within a privacy-preserving browser environment. Following our
rules to ensure users’ privacy, we note whether the feature is se-
cure to implement in a commercial web browser. Only one feature
in the Graph category is available by observing the Initiator in
the request header without referencing other requests or response
headers. For the same reason, the max_depth_of_redirect is only
observable by chaining requests and responses with a communi-
cated server. Therefore, extracting this feature is vulnerable to ad
and tracker collecting user privacy.

B FEATURE SET OF ADFLUSH
AdFlush uses a carefully selected collection of the most effective
features to detect ads and web trackers. These features are detailed
in Table 6 and are used in both Python and web browser envi-
ronments. For example, we compute the number of requests sent,
storage values set or fetched, and accesses of cookies based on the
occurrences of related JavaScript API calls, similar to how Web-
Graph does it. We also calculate the average length of Identifiers by
averaging the length of names parsed as Identifier tokens within
JavaScript source code and HTML <script> tags. Finally, we use a
Boolean feature to indicate whether a unique character follows an
ad or tracker keyword within the request URL.

Table 6: Features used in AdFlush. The types stand for Nu-
merical (N), Boolean (B), and Categorical (C).

Category Feature Type # of Values

JavaScript

# of requests sent N 1
# of storage set N 1
# of storage get N 1
# of cookies get N 1
𝑛-gram frequency of JavaScript AST N 6
Average of Identifier length N 1
Average of characters per line N 1
Bracket to dot notation ratio in JavaScript N 1

URL

Third-party check B 1
Request URL length N 1
Ad keyword with special character in URL B 1
FQDN character embeddings N 7
Request URL character embeddings N 3

HTTP header Content policy type C 1
Total - - 27

Overall, AdFlush uses a variety of features to detect ads and web
trackers. These features are carefully selected to be effective and
efficient, and they are implemented in a way that preserves user
privacy.

C DATASET LABELINGWITH FILTER LISTS
To label our dataset, we aggregated continually updated filter lists,
which served as our ground truth dataset. We collected the filter
lists on April 4, 2023, using the samemethodology as Iqbal et al. [21]
and Siby et al. [37]. However, Anti-Adblock Killer, Blockzilla, and
Squid Blacklist were no longer actively updated or supported, so we
incorporated two additional filter lists, uBlock Origin, and uBlock
Privacy, to bolster our ground truth dataset. Table 7 shows the lists
used in AdFlush, along with the number of rules in each list as of
the collection date and the source of each filter list. By integrating
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filter lists beyond those specified in Table 7, AdFlush’s performance
can potentially improve due to more reliable labels.

Table 7: Filter lists for labeling.

Filter List (# Rules) URL
EasyList [9] (53,997) https://easylist.to/easylist/easylist.txt
EasyPrivacy [10] (30,646) https://easylist.to/easylist/easyprivacy.txt
Fanboy annoyance [13] (4,644) https://easylist.to/easylist/fanboy-annoyance.txt
Fanboy social [13] (18,883) https://easylist.to/easylist/fanboy-social.txt

Peterlowe [31] (3,667) https://pgl.yoyo.org/adservers/serverlist.
php?hostformat=adblockplus

uBlock Origin [18] (11,152) https://raw.githubusercontent.com
/uBlockOrigin/uAssets/master/filters/filters.txt

uBlock Privacy [18] (219) https://raw.githubusercontent.com
/uBlockOrigin/uAssets/master/filters/privacy.txt

Warning removal list [41] (697) https://easylist-downloads.adblockplus.org/
antiadblockfilters.txt

D HTTP REQUEST COVERAGE OF ADFLUSH
Table 8 provides a detailed breakdown of AdFlush’s detection
performance across 14 types of HTTP requests in our Top-10K
dataset. AdFlush captures all 14 request types, as outlined in Google
Chrome’s documentation.

As the table shows, AdFlush identifies a similar number of HTTP
requests as the filter lists for each request type. Overall, AdFlush
and filter lists detect 39.27% and 39.92% of all requests as advertise-
ments and web trackers, respectively, demonstrating that AdFlush
can effectively serve as a substitute for filter lists.

Notably, AdFlush demonstrates exceptional proficiency across
the majority of request categories. For instance, it achieves an
accuracy, precision, recall, and F1 score exceeding 0.99 for the three
most common request types, image, script, and XMLHttpRequest,
which collectively constitute 80.41% of all dataset requests.

However, AdFlush’s performance is somewhat diminished for
imageset, main_frame, and other request types, with false nega-
tive rates of 0.06, 0.13, and 0.09, respectively. These request types
have a skewed distribution of true and false values, with only 1.75%,
3.60%, and 3.30% true values per the filter lists.

E ADS AND TRACKERS MISSED BY FILTER
LISTS

In our longitudinal study detailed in Section 5.2, we identified signif-
icant samples of advertisements and trackers that were mislabeled
by even commercial filter lists, but that AdFlush could detect. We
manually analyzed and verified 642 such URLs from 108 unique
domains to discern their unique types and behaviors.

We found that iframe is frequently used for ads and trackers.
These iframe tags contained several code snippets designed to
execute JavaScript segmented into elements. An example is shown
in Figure 6, where the eval() function is used to process inner
HTML text as source codes within alternative containers.

AdFlush also detected other requests to JavaScript resources
that were later added to conventional filter lists. Figure 7 shows an
example of a detected tracker source code that transmits valuable
user data to a server using sendBeacon. Notably, AdFlush was able
to accurately detect this tracker code, which is not detected by
commercial filter lists.

Figure 6: Script detected by AdFlush that the filter listsmissed.

t.prototype.assembleData = function (e) {
var t = this

    .beaconSession
    .getSession();
  return {
    appVersion: this.config.appVersion ? 

Object(s.e)(this.config.appVersion) : "",
    sdkId: "js",

sdkVersion: "4.3.4-web",
mainAppKey: this.config.appkey,
platformId: 3,

    common: Object(s.d)(I(I({}, this.additionalParams), {
      A2: this.commonInfo.deviceId, A8: this.commonInfo.openid,
      A12: this.commonInfo.language, A17: this.commonInfo.pixel,
      A23: this.commonInfo.channelID, A50: this.commonInfo.unid,
      A76: t.sessionId, A101: this.commonInfo.userAgent,
      A102: window.location.href, A104: document.referrer,

A119: this.commonInfo.query
}), !1),
events: e

  }
}
t.prototype.onSendBeacon = function (e, t) {
  if (this.isUnderIE8)
    this.errorReport.reportError("601", "UnderIE8");
  else {

var n = this.assembleData(this.generateData(e, t, !0));
navigator.sendBeacon(this.strategy.getUploadUrl(),

JSON.stringify(n))
  }
}

1
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Figure 7: Example tracker code detected by AdFlush.

https://stat.tiara.tistory.com/track?d=
"sdk":{

"type":"WEB","version":"1.1.25"
},"env":{

"screen":"1512X982","tz":"+9","cke":"Y"
},"common":{

"session_timeout":"1800","svcdomain":"user.tistory.com","deployment":"production",
"url":"https://www.tistory.com/","title":"TISTORY","section":"top","page":"user","ka
kao_app_key":"####"

},"etc":{
"client_info":{

"tuid":"####","tsid":"####","uuid":"####","suid":"####","isuid":"####","client_
timestamp":1680553904861

}
},"action":{

"type":"Pageview","name":"user","kind":""
}

}

Response Header:{
Set-Cookie: ELOQUA=GUID=####; domain=dow.com; expires=Mon, 11-Nov-2024 
10:33:58 GMT; path=/; secure

}
Request Header: {

Cookie: ELOQUA=GUID=####; AKA_A2=A; _cs_mk=####; at_check=true; s_ips=1051; 
mbox=session##########|PC#####; dtCookie=####; rxVisitor=####; s_tp=2246;
s_plt=4.03; s_pltp=home; _cs_c=1; _cs_id=####; _cs_s=####; s_ecid=####;
AMCVS_988D095F54BD18520A4C98A5%40AdobeOrg=1; s_cc=true;
_hjSessionUser_####=####=; _hjFirstSeen=1; 

}

Request_ID: 59437

Request_ID: 114851

Figure 8: Examples of tracker behavior in URL and HTTP
headers.
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Table 8: Detection performance of AdFlush by HTTP request type.

Request Type # Requests # Blocked by
Filter Lists

# Detected by
AdFlush

Accuracy Precision Recall F1 FNR FPR

image 312,231 120,120 119,422 0.99 0.99 0.99 0.99 0.01 0.00
script 237,509 112,772 111,961 0.99 0.99 0.99 0.99 0.01 0.00
xmlhttprequest 117,826 59,528 59,139 0.99 0.99 0.99 0.99 0.01 0.00
stylesheet 43,674 3,449 3,358 0.99 0.99 0.97 0.99 0.03 0.00
font 33,314 3,642 3,626 0.99 0.99 0.99 0.99 0.00 0.00
imageset 26,382 462 434 0.99 0.99 0.94 0.97 0.06 0.00
sub_frame 25,620 19,014 18,985 0.99 0.99 0.99 0.99 0.00 0.01
main_frame 18,459 665 573 0.99 0.99 0.86 0.93 0.13 0.00
ping 11,736 11,231 11,218 0.99 0.99 0.99 0.99 0.00 0.02
media 1,654 281 278 0.99 0.99 0.98 0.99 0.02 0.00
other 696 23 21 0.99 0.99 0.91 0.95 0.09 0.00
websocket 511 132 128 0.99 0.99 0.97 0.98 0.03 0.01
csp_report 398 58 54 0.99 0.98 0.93 0.96 0.07 0.00
object 150 12 12 0.99 0.99 0.99 0.99 0.00 0.00
Total 830,160 331,389 329,205 0.99 0.99 0.99 0.99 0.01 0.00

Finally, we present examples of tracker behavior evident in URLs
and HTTP headers. Request ID 114,851, illustrated in Figure 8, is
directed at an image URL but returns a single pixel. This tactic is
used to transmit user data to the tracker through the query string.
Similarly, Request ID 59,437, another image URL, responds with
a single pixel due to the storage of user identifiers in the browser
cookie. Although filter lists overlooked these instances of privacy
breaches, AdFlush efficiently mitigated them.

To further explore filter lists’ false negatives, we relabeled our
dataset with the latest filter lists fromOctober 11, 2023. By manually
verifying the newly labeled AdFlush detections, we obtained 642
URLs from 108 unique domains where all authors agreed on the
verification. We reported these results to EasyList, EasyPrivacy,
uBlock Origin, and uBlock Privacy to help create more effective
and updated filter lists.
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