
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

AdFlush: A Real-World Deployable Machine Learning Solution for
Effective Advertisement and Web Tracker Prevention

Anonymous Author(s)

ABSTRACT
Ad blocking and web tracking prevention tools are widely used,
but traditional filter list-based methods struggle to cope with web
content manipulation. Machine learning-based approaches have
been proposed to address these limitations, but they have primarily
focused on improving detection accuracy at the expense of prac-
tical considerations such as deployment overhead. In this paper,
we present AdFlush, a lightweight machine learning model for ad
blocking and web tracking prevention that is practically designed
for the Chrome browser. To develop AdFlush, we first evaluated
the effectiveness of 883 features, including 350 existing and 533
new features, and ultimately identified 27 key features that achieve
optimal detection performance. We then evaluated AdFlush using
a dataset of 10,000 real-world websites, achieving an F1 score of
0.98, which outperforms state-of-the-art models such as AdGraph
(F1 score: 0.93), WebGraph (F1 score: 0.90), and WTAgraph (F1
score: 0.84). Importantly, AdFlush also exhibits a significantly re-
duced computational footprint, requiring 56% less CPU and 80%
less memory than AdGraph. We also evaluated the robustness of
AdFlush against adversarial manipulation, such as URL manipu-
lation and JavaScript obfuscation. Our experimental results show
that AdFlush exhibits superior robustness with F1 scores of 0.89–
0.98, outperforming AdGraph and WebGraph, which achieved F1
scores of 0.81–0.87 against adversarial samples. To demonstrate
the real-world applicability of AdFlush, we have implemented it
as a Chrome browser extension and made it publicly available. We
also conducted a six-month longitudinal study, which showed that
AdFlush maintained a high F1 score above 0.97 without retraining,
demonstrating its effectiveness. Additionally, AdFlush detected 642
URLs across 108 domains that were missed by commercial filter
lists, which we reported to filter list providers.
ACM Reference Format:
Anonymous Author(s). 2024. AdFlush: A Real-World Deployable Machine
Learning Solution for Effective Advertisement and Web Tracker Prevention.
In Proceedings of International World Wide Web Conference 2024 (WWW ’24).
ACM, Singapore , 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Many internet users are concerned about web advertisements (ads)
and trackers that display unsolicited content or collect their per-
sonal information without explicit consent. To address these is-
sues, several tools are available, AdBlock Plus, uBlock Origin, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Ghostery. These tools use filter lists, such as EasyList [9] and
EasyPrivacy [10], which contain rules for determining whether
HTTP requests are associated with ads or trackers. However, man-
ual maintenance of these filter lists requires significant human
effort, and they are prone to false-positive and false-negative er-
rors [1]. The rules primarily rely on specific patterns, which renders
them ineffective against evasive or manipulated content.

Machine learning (ML) detection techniques [19, 21, 37, 43] have
recently been investigated to address the limitations of traditional
filter list-based methodologies. AdGraph [21] and WTAGraph [43]
construct graphs to extract significant features based on HTTP
traffic. Furthermore, WebGraph [37] utilizes additional behavioral
features to build more robust detection models against adversarial
evasion techniques. However, these studies have mainly focused on
developing highly accurate detection models by incorporating new
features to identify ads and trackers. While ML models show great
promise in identifying them, they often rely on extensive feature
sets. This can lead to significant execution time and memory over-
head for feature extraction, model training, and inference. This may
not be suitable for browser settings on a typical desktop machine
due to limited computational resources.

To deploy ML detection models in standard web browsers, we
need to identify a minimal yet effective set of features that can be
efficiently extracted without compromising accuracy. This involves
studying the features used by existing models, analyzing their rele-
vance, and refining the feature set based on considerations such as
computational complexity and feasibility in a browser environment.

To achieve this goal, we carefully examined all potential features
from prior models and analyzed their impact on detection accu-
racy and feasibility in web browser settings. Based on our feature
engineering, we selected an optimal set of features for detecting
advertisements and web trackers. We then used automated ma-
chine learning (AutoML) [27] on these features to identify the most
efficient machine model, AdFlush.

To demonstrate the effectiveness of AdFlush, we evaluate the
performance of AdFlush against state-of-the-art models (AdGraph
[21], WebGraph [37], and WTAGraph [43]) using the following per-
formance evaluation metrics: F1 score, training time, inference time,
memory usage, and CPU usage. AdFlush achieves an F1 score of
0.98, outperforming AdGraph (F1 score: 0.93), WebGraph (F1 score:
0.90), and WTAGraph (F1 score: 0.84). The average inference time
for AdFlush over 830K traffic samples is 2.3 seconds, considerably
faster than AdGraph’s 17.4 seconds. AdFlush has demonstrated
excellent computational efficiency by exhibiting 56% lower CPU
usage and 80% less memory consumption than AdGraph. Regarding
its robustness against adversarial attacks such as URL manipula-
tion and JavaScript obfuscation, AdFlush significantly outperforms
AdGraph and WebGraph’s performance.

Unlike previous research, we consider the feasibility of the fea-
tures within real-world browser settings, demonstrating that AdFlu-
sh can be deployed as a web browser extension without causing

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

significant CPU or memory overheads. Furthermore, AdFlush does
not transmit User-Agent values or cookies to third parties, uphold-
ing a strong commitment to user privacy. Our main contributions
can be summarized as follows:
• Wepropose a new set of 27 features for detecting ads and trackers

in real-world browser extension environments. The feature set
was carefully selected from a pool of 883 features, including
350 existing features from state-of-the-art methods [21, 37, 43]
and 533 new JavaScript features that are robust to adversarial
samples with JavaScript obfuscation.

• We developed AdFlush, a lightweight yet highly accurate model
for detecting advertisements andweb trackers usingAutoML [27].
To demonstrate its practicality, we implemented AdFlush as a
Chrome extension. The source code and dataset for AdFlush are
available at https://anonymous.4open.science/ r/AdFlush-4EF0
We have also made a comprehensive video demo available at
https://youtu.be/dzdfqpiCjKg demonstrating AdFlush’s practi-
cality in real-world web browser settings.

• We evaluated the long-term effectiveness and adversarial robust-
ness of AdFlush. In a six-month longitudinal study, AdFlush
maintained a high F1 score above 0.97 without retraining, demon-
strating its effectiveness. Commercial filter lists lagged by an
average of 80 days in updating ads and trackers, while AdFlush
detected 642 URLs across 108 domains that were missed by filter
lists. Benchmarked against state-of-the-art models using three
adversarial test cases (URL manipulation, JavaScript obfusca-
tion, and ML-based adversarial sample generation), AdFlush
consistently outperformed other models.

2 RELATEDWORK
2.1 Risks of Advertisements and Trackers
In today’s digital marketing environment, web advertising and
tracking practices are essential for providing tailored user experi-
ences, but they also raise privacy and security concerns [28].

Web trackersmonitor users’ online activities, such as visited sites,
duration, clicked links, and location. This data helps create detailed
profiles for targeted advertising [4]. While some find these ads
useful, others see them as privacy invasions. Many firms distribute
this data without user consent, raising data breach risks [23]. This
heightens the threat of cyberattacks and identity theft for users.

Web ads and tracking can expand the attack surface of users. One
such threat ismalvertising, where malicious actors exploit advertise-
ments to distribute malware or exploit system vulnerabilities [5].
These threats can be present on any website, even those generally
perceived as safe, posing a danger to users [17]. Other security
concerns originate from web tracking technologies like cookies and
browser fingerprinting. Cookies, small files stored on a user’s device,
could be exploited for harmful purposes. Browser fingerprinting,
which identifies users based on their browser’s statistical proper-
ties, can be manipulated by malicious actors to conduct targeted
attacks [12, 30].

2.2 Filter List-Based Approaches
Many web users rely on browser extensions such as AdBlock Plus,
uBlock Origin [18], Privacy Badger [33], and Disconnect [8] to
protect themselves from intrusive ads and privacy-invading web

trackers. Recognizing the importance of these ad blockers, sev-
eral web browsers, including Firefox [14], Ghostery, and Brave [3],
now offer built-in ad-blocking solutions. This demonstrates the
importance of these extensions in the browsing environment.

Ad blocking solutions primarily rely on widely recognized filter
lists such as EasyList [9], EasyPrivacy [10], and Fanboy’s List [13].
These lists aremanually curated lists of websites and scripts to block.
While filter lists have been instrumental in the crowdsourced effort
to block unnecessary and potentially harmful content, they have
several shortcomings [20]. Filter lists can be labor-intensive and
challenging to scale, particularly for a large number of websites.
Additionally, the crowdsourcing model used to develop filter lists
can result in regional bias, as regions with fewer contributors may
have fewer ad-blocking rules on the list [38]. Finally, filter lists
struggle to keep up with the growing trend of script obfuscation
used by web trackers [11].

2.3 ML-Based Approaches
To overcome the limitations of traditional methods that rely on
manually created filter lists, various techniques have been proposed
for generating filter lists in an automated manner. For instance,
Bhagavatula et al.’s model [2] streamlines the process of creating
and maintaining filter lists. Recently, AutoFR [26] introduced an
efficient filter list generation method using reinforcement learning.
However, automated filter rule generation is inherently unsuitable
for real-time ads and trackers detection.

Recent graph-based ML approaches, such as AdGraph [21], Page-
Graph [38], WTAGraph [43], and WebGraph [37], utilize features
from ads and trackers’ interactions across HTML,HTTP, and JavaSc-
ript layers to train models for detection. PageGraph extends Ad-
Graph’s graph representation by refining event attribution and
capturing more behaviors, but both overlook HTTP redirects and re-
quest header information. WebGraph [37] addresses this by adding
features that trace information flow within a browser, including
HTTP redirects and request headers. Given the natural graph struc-
ture of HTTP network traffic, WTAGraph leverages a graph neural
network (GNN) model for better detection accuracy. However, both
WebGraph and WTAGraph operate offline only in practice due to
performance overheads, which subjects them to challenges similar
to traditional filter lists. Notably, WebGraph’s use of over 3,000 fea-
tures without GPU acceleration results in lengthy inference times,
making real-time desktop operation impractical for average users.

Another approach involves utilizing computer vision techniques
to detect ad images. Storey et al. [39] introduced Ad Highlighter,
the inaugural perceptual ad-blocker that identifies ad disclosures
by merging web-filtering rules with computer vision methods. Due
to the enhanced robustness of perceptual techniques, many contem-
porary ad-blockers have integrated similar concepts. For instance,
Adblock Plus has adopted image-matching filters. Percival [7] em-
ploys CNN classification models for advertising image detection.
However, challenges arise when ads are placed outside of iframes,
use transparent logos, or are fragmented into smaller images. These
tactics hinder the efficacy of computer vision in detecting ads [40].

ML-based approaches have potential for ad-blocking tools, but
they have not been widely adopted yet due to performance and
reliability issues. Performance-wise, the overheads associated with

2

https://anonymous.4open.science/r/AdFlush-4EF0
https://youtu.be/dzdfqpiCjKg

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

AdFlush: A Real-World Deployable Machine Learning Solution for Effective Advertisement and Web Tracker Prevention WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

feature instrumentation and executingML pipelines in real-time can
offset the benefits of ad blocking [26]. Reliability issues arise from
doubts about the robustness of ML models in real-world settings [7].
Additionally, recent graph-based ML models typically aggregate
features only after webpages have fully loaded, potentially allowing
ads and trackers to execute before feature extraction. Evaluations
often neglect practical considerations, including the model’s impact
on webpage load time, CPU and memory overhead, and robustness
against adversarial attacks.

Therefore, we propose a practical ML-based solution designed
for seamless integration as a browser extension to address these
limitations. We aim to achieve high detection accuracy using only
practical features supported by commercial web browsers.

3 FEATURE ANALYSIS
This section comprehensively analyzes 883 potential features, in-
cluding 350 used by existing ML-based methods and 533 new fea-
tures that are robust to adversarial samples with JavaScript obfus-
cation. We assess the feasibility and contribution of each feature
to overall detection efficacy, identifying key features that can be
practically implemented in web browsers.

3.1 Data Collection
To collect a comprehensive dataset of real-world websites, we sam-
pled the top 10,000 websites ranked by Tranco [32]. This was be-
cause Alexa, previously used in studies for AdGraph [21] and Web-
Graph [37], no longer provides an accessible or updated ranking
service. We also followed the approach of WTAGraph [43], which
used the top 10,000 sites based on Tranco’s ranking.

We set a 60-second timeout for each website to account for
the variability in complexity and structure of different websites.
Our data collection process resulted in an average crawl time of
32.58 seconds, with a standard deviation (SD) of 11.26 seconds,
indicating that a 60-second timeout is appropriate for most sites.
With seven web crawler instances running in parallel for 11 hours
using OpenWPM[11], we generated a total of 830,160 requests. We
split the dataset into an 8:2 ratio for training and testing. This
ensures that the model is trained on a representative sample of the
data and evaluated on a held-out set that it has not seen before.

3.2 Candidate Features
We thoroughly analyzed the potential features present in our gath-
ered dataset, integrating all features leveraged by AdGraph [21],
WebGraph [37], and WTAGraph [43]. This resulted in a total of
3,323 distinct features, with some overlap.

AdGraph focuses on monitoring DOM tree alterations from
JavaScript executions or HTTP requests. The resulting changes
are formulated into a graph, from which 28 features are derived.
These features encompass both the graph’s structural attributes and
content-based features, such as the attributes of the request URL.

WebGraph builds upon AdGraph by representing a broader spec-
trum of components in its graph structure, including HTML, net-
work, JavaScript, and storage components. Drawing from this graph,
WebGraph uses 59 features that encapsulate both structural at-
tributes and advanced dataflow characteristics, with special empha-
sis on cookie access and information sharing between nodes.

WTAGraph constructs an attribute homogeneous multi-graph
(AHMG) from the visited web pages. This complex network then
translates into a feature vector that includes, among others, char-
acter strings, specific JavaScript APIs, and HTTP request metrics.
In AdFlush, we condensed WTAGraph’s vector space of 3,200 URL
character representations into 30 features for FQDNs and 200 for re-
quest URLs using continuous bag-of-words features. This approach
strikes a balance between computational feasibility and robustness
against overfitting.

Moreover, we introduced 533 new features to enhance AdFlush’s
robustness against JavaScript obfuscation techniques. Traditional
features were insufficiently resilient against adversarial samples
employing JavaScript obfuscation. These new features are derived
from requested JavaScript source code or embedded HTML scripts,
including 𝑛-gram frequencies parsed from the abstract syntax tree
(AST), the structure of the AST, and various script-based metrics.

We present a comprehensive feature list by combining 350 fea-
tures from three existing models [21, 37, 43] with 533 additional
JavaScript-specific features (detailed in Appendix A). Some features,
such as URL character embeddings, are combined into a single fea-
ture label for clarity. We used the code provided in the research to
extract features whenever possible. Otherwise, we implemented
the code from scratch, especially for proprietary features or when
the source code from the baseline models was unavailable.

3.3 Feature Categorization
As presented in Appendix A, we categorize our features into four
groups: JavaScript, URL, HTTP header, and Graph as follows:
• JavaScript features are derived from the HTML structure of

a web page, focusing on functions within <script> tags and
JavaScript code, such as fetch() or XMLHttpRequest. They also
monitor specific API usage, revealing downstream behavior of
advertising and tracking actions. For example, eval() can trig-
ger hidden <script> tags to collect user tracking data, while
code tracking significant user interaction often pertains to ad-
vertising.

• URL features represent values from source and request URLs.
Keywords in the request URL or its length can provide insights
into the request’s purpose. Though ad and tracker services use
various URL manipulation techniques, embedding URLs can
effectively counter these methods.

• HTTPheader features are derived from values in HTTP request
headers. These encompass content policy type, User-Agent
strings, referrer data, and other metadata embedded in the HTTP
request header. These features are crucial as they offer context
about a request or response, often containing user-identifying
information or insights about the request’s nature.

• Graph features illustrate interactions between different graph
nodes, representing various web page elements, with edges rep-
resenting interactions between them. Potentially important fea-
tures include the distance between nodes, node centrality, and
the number of requests or redirects involving a node. These
features have recently received increased research attention due
to their potential to highlight the complex dynamics of various
components on web pages.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

In our categorization, AdGraph primarily utilizes URL and Graph
features, incorporating 1, 11, 1, and 15 features from each cate-
gory, respectively. WebGraph emphasizes Graph features, using
7 JavaScript and 52 Graph features. WTAGraph primarily uses 32
JavaScript, 3,200 URL, and 34 HTTP header features to construct a
GNN structure with these features.1

We evaluated the feasibility of integrating each feature into
standard web browsers, according to the following rules.
• Rule 1 (Avoiding loading additional resources): Feature ex-

traction should not require executing JavaScript, WebAssembly,
or loading extra browser elements. As AdFlush aims to intercept
ads and trackers before they load, it should depend solely on
features that avoid inspecting interactions that could introduce
the user to undesired ads or trackers.

• Rule 2 (Avoiding using multiple requests): Feature values
should be derived from a single web page request to ensure swift
detection and real-time analysis without excessive memory or
storage use. Nested queries on various requests demand user
history and significant computation.
Under these rules, most Graph features are infeasible because

they violateRule 1 orRule 2. For example, the number_of_set_then
_get_storage feature observes data sharing nodes in order, yet re-
quires JavaScript execution with timestamps and violates Rule 1.
The more complex indirect_all_average_degree_connectivity feature
cannot be computed without fetching all nodes and edges in a graph,
violating Rule 2 because it requires access to the user’s site visit
history to access data about all connected nodes, raising potential
privacy concerns.

The only Graph feature efficiently computed with a single re-
quest is is_parent_script. This feature determines whether the initia-
tor of the request is a JavaScript resource. Therefore, is_parent_script
is the only Graph feature we consider feasible to implement in real-
world browser settings. As a result, we excluded 52 Graph features
out of the 350 features from our candidate feature set.

3.4 Key Feature Identification

To identify the most crucial web tracking and ad detection fea-
tures, we evaluated the relevance, impact, and association with
ad and web tracker detection of 298 established state-of-the-art
features and 533 newly proposed features. We identified key fea-
tures from each group separately, including the 533 newly proposed
features, even though they exhibited lower importance in normal
samples. These features improve resilience against JavaScript obfus-
cation tactics, which complicates the task for ML-based detectors in
distinguishing between malicious and benign JavaScript code [34].

We first examined the correlation between each feature and
the labels using the point-biserial correlation coefficient [24]. We
discarded 17 and 178 features from the existing and new sets, respec-
tively, with a 𝑝-value exceeding 0.1, indicating that these features
have an insignificant correlation with the labels and are, therefore,
unlikely to be relevant to the model.

1The feature counts mentioned here do not align with the number of symbols
in Appendix A. This discrepancy occurs because we group together features computed
using similar methods in the table.

We next curated the key feature sets for AdFlush from the re-
maining 281 existing and 355 new features. We used recursive fea-
ture elimination with cross-validation (RFECV) [16] to identify the
most influential features. RFECV works by iteratively removing fea-
tures with the lowest importance scores and evaluating the model’s
performance based on the remaining features. Figure 1 shows the
results of the RFECV process, with the x-axis denoting the number
of features and the y-axis indicating the cross-validation accuracy.
The scores for the new features are lower than those for the existing
features. For the existing features, accuracy increases as we remove
features until we retain 47, after which it decreases. For the new
features, optimal results are achieved with 11 features. Therefore,
we considered a set of 58 features, combining the 47 and 11 features
from the two groups.

0.948

0.952

0.956

0.960

0.964

0.62

0.66

0.70

0.74

0.78

0 60 120 180 240 300 360

Features

S
co

re
 (

E
xi

st
in

g
 f

e
a
tu

re
s) S

co
re

 (N
e
w

 fe
a
tu

re
s)Existing features New features

Figure 1: RFECV scores against feature count.

To further streamline the number of features, we aimed to select
only those among the remaining 58 features that exhibited minimal
correlation with each other. Thus, we analyzed the correlation for
all possible pairs within these 58 features. We employed Pearson’s
coefficient for pairs with continuous values and used Spearman’s
correlation otherwise. If the correlation 𝑝-value between any two
features was below 0.05, we discarded the less significant feature
based on RFECV scores. This process resulted in a final set of 27
features. The comprehensive list of features in AdFlush is detailed
in Appendix B.

We used a random forest to assess the importance of each fea-
ture in the final 27 features. We distinguished ads, trackers, and
regular resources using three features: the number of storage ele-
ments retrieved by the resource, the URL length, and the number of
cookie values retrieved. These features are crucial for identifying
ads and trackers because they often store user identifiers in storage
elements, have long request URLs, and use more cookies for tasks
such as cookie synchronization. We observed a variation in the
distribution of these features in our dataset, with ads and trackers
typically having higher average values for all three features (see Fig-
ure 2). For example, ad and tracker resources sometimes accessed
storage elements over 300 times, while regular resources rarely did
so. While some features might have a minor individual impact, their
collective use produces a robust indicator for differentiating ads
from trackers. We found 61,285 ads and trackers that receive cookie
values, access storage elements, and have a URL length of over 200
characters, in contrast to only 6,793 instances for regular resources.
This suggests that these features can be used to distinguish between
ad/tracker and regular resources.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

AdFlush: A Real-World Deployable Machine Learning Solution for Effective Advertisement and Web Tracker Prevention WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

0 100 200 300 400 500 600
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

Ad/Tracker
Non-Ad/Tracker

(a) Storage value acccesses

0 500 1000 1500 2000 2500
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

Ad/Tracker
Non-Ad/Tracker

(b) Request URL length

0 100 200 300 400 500 600
10 5

10 4

10 3

10 2

Fr
eq

ue
nc

y

Ad/Tracker
Non-Ad/Tracker

(c) Cookie value accesses

Figure 2: Distribution of three features for ad/tracker versus non-ad/tracker resources (normalized, y-axis in log scale).

Table 1 shows the relative importance of the top five newly in-
troduced JavaScript features in terms of information gain. The most
important feature is the 3-gram pattern (Statement, CatchClause,
Statement), which is typically represented by try-catch blocks. The
other top features, (Expression, Identifier, Identifier) and (Expres-
sion, Expression, Statement), are less distinctive. However, they still
contribute to the model’s performance, with information gains of
1.27% (± 0.19) and 1.26% (± 0.20), ranking 18th and 19th in impor-
tance, respectively. Additionally, obfuscation-related features, such
as Identifier lengths in ASTs and character counts in code lines,
would also enhance performance.

Table 1: Top-5 important JavaScript features and information
gain within optimized 27 features (averaged over 10 folds).

Feature Information Gain (%)

(Statement, CatchClause, Statement) 5.42 ± 0.54
Average of Identifier length 2.24 ± 0.32
Average of character per line 1.32 ± 0.22
(Expression, Identifier, Identifier) 1.27 ± 0.19
(Expression, Expression, Statement) 1.26 ± 0.20

4 IMPLEMENTATION OF ADFLUSH
We aim to identify the most effective features for improving the per-
formance of AdFlush while minimizing its complexity. To achieve
this goal, we carefully selected 27 features with the highest impor-
tance scores. We then applied a dimensionality reduction technique
to this compact feature set, further simplifying the model and im-
proving its predictive power by preventing overfitting.

To find the most efficient models for these reduced feature spaces,
we used H2O AutoML [27]. This tool provides a comprehensive
search and selection platform, allowing us to explore different mod-
els to identify those that provide the highest performance. Once
we had identified the best-performing models, we optimized them
to be more efficient and resource-friendly.

We integrate our model into a fully functional web browser
extension for Chrome. This extension captures features in real-
time and promptly blocks ads and trackers detected by the model,
ensuring a secure browsing experience (see Figure 3).

4.1 Dataset
We aggregated eight popular filter lists (see Appendix C) to label our
dataset accurately and distinguish between the presence or absence
of ads and trackers. Our labeling method mirrors that used in exist-
ing studies [20, 37], ensuring consistency and comparability. After
labeling, we divided the data into training and test sets in an 8:2 ratio.

HTML

JavaScript

HTTP

OpenWPM

Data collection

JavaScript
features

HTTP header
features

URL features

Feature extraction

AdFlush
(Extension)

Training
data

Classifier
(ONNX)

Browser - a.com

Ad/tracker detection and block

Figure 3: Overview of AdFlush.

This substantial labeled dataset was then used to train and test the
detection model and to compare it with state-of-the-art solutions.

4.2 Model Selection and Training
We used H2O AutoML [27], an automated machine learning plat-
form, to find the best model with our feature set. AutoML facili-
tates the search for high-performing models and the generation
of optimized feed-forward artificial neural network models. We
analyzed the training data for each feature selection, identified the
top 10 models based on F1 scores, and selected the best-performing
model using 5-fold cross-validation. After this rigorous evaluation,
a gradient boosting machine (GBM) [36] was selected as the best-
performing model. For AdFlush, we selected 27 features based on
their importance scores and correlation (see Section 3.4). However,
our analysis found significant correlations among these features.
We could use dimensionality reduction techniques to streamline
the feature set and model while preserving pivotal information.
We considered two dimensionality reduction techniques: Principal
Component Analysis (PCA) [25] and UniformManifold Approxima-
tion and Projection (UMAP) [29]. While PCA is a robust technique,
it can overlook subtle nuances, particularly in datasets with non-
linear characteristics. To address this, we also considered UMAP.
We condensed the 27 features with PCA to 8, and with UMAP, we
reduced them to 2. These results are consistent with our correlation
analysis, suggesting that the 27 features may contain redundant
data, with some being highly interrelated.

We trained the GBM with each of these three feature sets to
determine the optimal feature set and evaluated the performance
of AdFlush on the test set (see Table 2).

Although reducing AdFlush’s feature set to two features using
UMAP achieved the highest F1 score of 0.99, we chose to retain the
original 27 features because using UMAP would have complicated
result interpretation and increased computational and memory

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

AdFlush

background.js staticRules.json dynamicRules.json model.js Requestly.io

a.com

 Capture network requests.
Match request URLs. Redirect and sanitize requests to protect user privacy.

 Forward feature values to the ONNX model.
Feature Extraction

JavaScript
URL

HTTP header

Establish a rule dynamically to block ads and trackers.
 Reinitiate the original request after a timeout.

 Block the request using the rule.

Delay
Timeout
(300ms)

ad.example.com
1

2 3

 Use the model to detect ads and trackers.

4

5

8
7

6

Figure 4: Sequence diagram of AdFlush in browser extension.

Table 2: Performance of AdFlush with each feature set: Origi-
nal (27), PCA (8), and UMAP (2).

Feature Set Acc. Prec. Recall F1
AdFlush Original (27) 0.98 0.99 0.97 0.98
AdFlush PCA (8) 0.96 0.96 0.93 0.95
AdFlush UMAP (2) 0.98 0.99 0.98 0.99

overhead due to the additional processing steps. Since the perfor-
mance improvement was marginal (0.99 vs. 0.98), we prioritized
interpretability and efficiency and used the original features.

4.3 Browser Extension Implementation
Google’s recent adoption of Manifest V3 [6] restricts Chrome exten-
sions from directly manipulating user HTTP requests. Therefore, ex-
tensions must define rules or conditions for blocking requests rather
than controlling them. To comply with this new standard, we im-
plemented AdFlush, a Chrome browser extension that uses a GBM
model to generate rules on the fly to block ads and web trackers.

Our implementation approach adheres to the guidelines of Man-
ifest V3, which emphasize the importance of performing model
inference in real time to generate rules. We used the libraries
onnxmltools and ONNX-simplifier to convert our GBM model
into the ONNX format, which enables efficient execution through a
web assembly backend. Our extension for the Chrome web browser
uses this model to detect ads and web trackers from web page
requests in real-time.

Figure 4 illustrates the detailed workflow: 1 AdFlush captures
a network request from the user’s active web page. 2 A static rule
is applied for each matched request. 3 The matched request is redi-
rected to the Requestly delay API via declarativeNetRequest.
Before this, AdFlush removes user cookies and appends a dummy
User-Agent to safeguard user privacy. In this step, AdFlush ex-
tracts features like content policy type, domain party, URL advertis-
ing keyword presence, stored value count, and 𝑛-gram frequencies.
It references a pre-trained vector dictionary in JSON format for
URL word embedding features. 4 The service worker forwards
these values to the loaded ONNX model in an off-screen tab. 5
The model predicts and notifies the service worker based on these

values. 6 If identified as an ad or tracker URL, a dynamic rule is es-
tablished in declarativeNetRequest; otherwise, benign requests
are allowed. 7 After the Requestly timeout, the original request
is reinitiated. 8 Requests violating user privacy (i.e., ad or tracker
URLs) are blocked.

Our current implementation of AdFlush relies on the depre-
cated onBeforeSendHeaders function from the webRequest pack-
age. The latest declarativeNetRequest package restricts the read-
ing of raw network traffic, which poses challenges for specific
machine learning models that depend on this capability. While
Google’s Manifest V3 disallows the manipulation of raw requests
using webRequest, it still allows for reading. To facilitate this func-
tionality, we used an older version of the declarativeNetRequest
package, which enabled us to deploy our AdFlush extension on the
latest Chrome version (version 118).

AdFlush’s source code and dataset are available at https://anonym
ous.4open.science/ r/AdFlush-4EF0. A comprehensive video demon-
stration is also available at https://youtu.be/dzdfqpiCjKg

5 EVALUATION
We conducted a comprehensive evaluation to demonstrate the effi-
cacy and efficiency of AdFlush. This included comparing AdFlush
to state-of-the-art models, assessing its robustness to adversarial in-
puts, and measuring the runtime overhead of the browser extension.

5.1 Comparison with State-of-the-Art Models
To evaluate AdFlush’s detection capability, we compared it with
state-of-the-art ad and tracker detection systems (AdGraph [21],
WebGraph [37], and WTAGraph [43]). Additionally, we compared
it with various machine learning models, including RandomForest,
SkopeRules, XGBoost, CatBoost, and LightGBM, using the 27 fea-
tures identified in AdFlush. Since the source code for feature extrac-
tion was not publicly available for WTAGraph, we re-implemented
the feature extraction module based on the details provided in the
paper. We excluded PageGraph [38] in the comparison because
it relies on images within web pages to detect ads. To verify the
importance of these features, we also built GBMmodels in AdFlush
using the features from AdGraph and WebGraph, respectively, and

6

https://anonymous.4open.science/r/AdFlush-4EF0
https://anonymous.4open.science/r/AdFlush-4EF0
https://youtu.be/dzdfqpiCjKg

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

AdFlush: A Real-World Deployable Machine Learning Solution for Effective Advertisement and Web Tracker Prevention WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

analyzed their performance. All models were evaluated on a dataset
comprising 20% of our collected data.

Table 3 shows that AdFlush outperforms other solutions across
all metrics, including accuracy, precision, recall, and F1 score. No-
tably, AdFlush achieved an F1 score of 0.98, significantly higher
than the second-best, AdGraph, which scored 0.93. We also found
that the 27 features used in AdFlush are highly effective, as evi-
denced by the RandomForest, XGBoost, CatBoost, and LightGBM
models also achieving F1 scores exceeding 0.9. However, the Skope-
Rules model showed poor performance with an F1 score of 0.77.
When we replaced the 27 features identified in AdFlush with the
28 features from AdGraph and the 59 features from WebGraph,
the performance produced F1 scores of 0.91 and 0.86, respectively,
demonstrating the importance of our chosen 27 features for achiev-
ing high detection accuracy.

Table 3: Comparison of model performance.

Model # features Acc. Prec. Recall F1
AdGraph [21] 28 0.94 0.92 0.94 0.93
WebGraph [37] 59 0.92 0.91 0.90 0.90
WTAGraph [43] 3,266 0.90 0.85 0.83 0.84
RandomForest 27 0.98 0.98 0.96 0.97
SkopeRules 27 0.83 0.87 0.68 0.77
XGBoost 27 0.96 0.97 0.94 0.95
CatBoost 27 0.95 0.95 0.92 0.94
LightGBM 27 0.94 0.94 0.91 0.92
AdFlush 28 (AdGraph) 0.93 0.90 0.92 0.91
AdFlush 59 (WebGraph) 0.89 0.85 0.87 0.86
AdFlush 27 0.99 0.99 0.98 0.98

We evaluated AdFlush’s performance across 14 HTTP request
types (see Appendix D). Remarkably, AdFlush achieved an F1 score
over 0.93 for all 14 types, demonstrating its effectiveness across all
HTTP request types. AdFlush also performed efficiently for types
with fewer than 1,000 requests.

5.2 Longitudinal Study
Websites constantly evolve, with features frequently updated due
to redesigns, new content additions, or algorithm changes target-
ing ad serving or user tracking. As a result, ML-based solutions
typically require periodic retraining on fresh datasets to maintain
their performance. However, we show that AdFlush maintains its
effectiveness over extended durations without retraining.

We conducted a longitudinal study to evaluate AdFlush’s persis-
tent robustness and reliability, especially compared to frequently
updated filter lists.We collected eight popular filter lists, updated ev-
ery four days for six months, following EasyList’s update schedule
fromApril 2, 2023, to September 17, 2023. After training AdFlush on
the initial training dataset, we assessed its performance against the
evolving filter lists, simulating a real-world post-launch scenario.

The performance trajectory of our detection model on the test
dataset is illustrated in Figure 5. Impressively, without retraining,
AdFlush exhibited robust detection capabilities throughout, main-
taining an F1 score above 0.9789. Notably, the F1 score increased
until April 10 and then decreased by a negligible 0.0064 over the
entire period, demonstrating AdFlush’s enduring consistency over
extended intervals.

0.975

0.980

0.985

0.990

0.995

Apr
 0

2

Apr
 1

4

Apr
 2

6

M
ay

 0
8

M
ay

 2
0

Ju
n

01

Ju
n

13

Ju
n

25

Ju
l 0

7

Ju
l 1

9

Ju
l 3

1

Aug
 1

2

Aug
 2

4

Sep
 0

5

Sep
 1

7

S
co

re

Accuracy Precision Recall F1 score

Figure 5: Longitudinal study from April to September 2023.

AdFlush’s precision gradually declined over time, but its recall
rate remained high. This suggests that AdFlushmay have increased
false positives, but it remained effective at detecting most ads and
trackers, even when trained on an older dataset. Appendix E pro-
vides a detailed analysis of false negative samples of filter lists.

Commercial filter lists added newly identified ads and trackers
with a significant delay (mean = 80 days, SD = 29.89 days) compared
to AdFlush. Additionally, AdFlush can detect ads and trackers that
are missed by even the latest filter lists, as of October 11, 2023. We
manually verified 642 such URLs from 108 unique domains and
reported them to EasyList, EasyPrivacy, uBlock Origin, and uBlock
Privacy. This demonstrates AdFlush’s potential as a practical tool
for updating filter lists.

5.3 Robustness against Adversarial Samples
ML models require rigorous validation to ensure their resilience to
unseen data and feature-targeted attacks. We evaluated AdFlush’s
robustness against AdGraph [21] and WebGraph [37] under three
mutation scenarios, excluding WTAGraph [43] due to its larger
feature set and lower effectiveness than WebGraph. We used at-
tack success rate (ASR) and AUROC as experiment metrics. Our
experiments are as follows:
Case 1: URL Manipulation. Attackers with access to filter lists
and a broad understanding of URL patterns used in ad and tracker
detection can manipulate URLs to bypass ad blockers. They can
change the domain or subdomain name, hide ad and tracker key-
words within the query string, or combine these techniques. For
example, an attacker might manipulate the URL of an ad from
https://secure.adnxs.com/seg?ad=22932261&t=1 to https://UJu0xD.
OBGFCuxmU.com/seg?tk=22932261&62Jo=M1lrD0yUI. In our eval-
uation, we applied all possible combinations of URL manipulation
to our test dataset.
Case 2: JavaScript Obfuscation. To mimic the tactics of ad and
tracker writers attempting to evade detection, we obfuscated JavaSc-
ript code using three widely recognized tools: JavaScript-Obfuscator
[22], gnirts [15], and Wobfuscator [35]. gnirts is particularly effec-
tive at mangling string literals beyond simple hexadecimal string
escapes, while JavaScript-Obfuscator offers various code transfor-
mations, such as variable renaming and control flow flattening.
Wobfuscator replaces parts of JavaScript code with WebAssembly
modules that retain the same function. Using these tools, we ob-
fuscated 13,695, 15,386, and 13,311 samples from our test dataset,
respectively. We then evaluated the resilience of our model against
JavaScript obfuscation using these subsets.

7

https://secure.adnxs.com/seg?ad=22932261&t=1
https://UJu0xD.OBGFCuxmU.com/seg?tk=22932261&62Jo=M1lrD0yUI
https://UJu0xD.OBGFCuxmU.com/seg?tk=22932261&62Jo=M1lrD0yUI

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Case 3: CTGAN-Based Manipulation. We generated adversarial
samples using the conditional tabular GAN (CTGAN) [42]. CTGAN
is designed to emulate the diversity of real-world data and has
shown increased resilience and adaptability across various datasets.
Using CTGAN, we generated adversarial versions of our test dataset,
tailored to the features of our target models.We first divided our test
dataset into an 8:2 ratio for training and testing. Once trained, CT-
GAN created adversarial samples indistinguishable from real-world
data but also designed to evade detection by the tested models.

Table 4 presents the robustness of AdFlush against adversarial
samples compared to AdGraph and WebGraph. We excluded Web-
Graph when manipulating URL features, as it does not use them,
and excluded AdGraph during JavaScript manipulations due to its
reliance on a single constant JavaScript feature. Overall, AdFlush
consistently demonstrated the lowest ASR and highest F1 score
across all adversarial sample scenarios compared to the state-of-the-
art models. Specifically, AdGraph’s F1 score dropped significantly
to 0.81 against CTGAN-based manipulations, while AdFlush main-
tained a high F1 score of 0.98. WebGraph’s F1 score decreased to
0.81 when JavaScript was obfuscated, while AdFlush consistently
held an F1 score above 0.89.

Table 4: Robustness against adversarial samples.

Method Model Acc. Prec. Recall F1 ASR AUROC
URL

manipulation
AdGraph [21] 0.89 0.85 0.86 0.85 0.11 0.95

AdFlush 0.98 0.97 0.96 0.97 0.02 0.98
JavaScript-
obfuscator

WebGraph [37] 0.86 0.87 0.76 0.81 0.14 0.92
AdFlush 0.95 0.96 0.91 0.94 0.05 0.94

gnirts WebGraph [37] 0.87 0.88 0.75 0.81 0.13 0.92
AdFlush 0.92 0.99 0.81 0.89 0.08 0.90

Wobfuscator WebGraph [37] 0.86 0.87 0.76 0.81 0.14 0.92
AdFlush 0.95 0.96 0.92 0.94 0.05 0.95

CTGAN-
based

manipulation

AdGraph [21] 0.74 0.78 0.85 0.81 0.26 0.75
WebGraph [37] 0.89 0.88 0.87 0.87 0.11 0.96

AdFlush 0.98 0.98 0.97 0.98 0.02 0.98

5.4 Runtime Overhead Evaluation
To evaluate AdFlush’s runtime overhead, we measured its time
complexity on a Ubuntu 18.04 with an Intel Xeon E5-2687W v3
CPU and 256GB of memorywithin a Python environment.We calcu-
lated the average time from model loading to test dataset inference
over 10 trials. AdFlush’s inference time of 2.3 seconds was signifi-
cantly faster than the state-of-the-art solutions (17.4 seconds for
AdGraph [21], 19.7 seconds for WebGraph [37], and 144.9 seconds
for WTAGraph [43]), marking an 86% speedup over AdGraph. This
faster inference speed underscores AdFlush’s efficacy for real-time
ad and tracker blocking.

We also evaluated AdFlush’s performance on the top 1,000 Tranco
websites using Selenium to replicate user engagements on a Chrome
browser. Typical interactions were conducted via page scrolling
and a 60-second timeout. We collected 68,495 queries from the 1,000
sites. For a single request, AdFlush averagely took 0.242 seconds
(SD = 0.990 seconds) for feature extraction and 0.014 seconds (SD
= 0.035 seconds) for inference, respectively. It is important to note
that these tasks do not take time in an additive manner. Utilizing
JavaScript’s asynchronous functionalities, AdFlush performs simul-
taneously without disrupting the user’s experience and is much
speedier than results from the user’s perspective.

AdFlush is also superior in terms of CPU and memory consump-
tion. For CPU usage, AdGraph and WebGraph consumed 1.8% and
1.6%, respectively, while AdFlush used only 0.8%, requiring 56%
less CPU than AdGraph. WTAGraph also reported 0.8% CPU usage,
but its memory demand was significantly higher than AdFlush’s.
WTAGraph required a substantial 1.3 GB of memory during infer-
ence, while AdGraph and WebGraph needed over 200 MB and 150
MB, respectively. In comparison, AdFlush’s memory footprint was
a modest 40 MB, a reduction of up to 80% from AdGraph.

6 DISCUSSION
Validity of Ground Truth Dataset. Machine learning models
that detect ads and web trackers, such as AdFlush, often rely on
filter lists like EasyList [9] as their ground truth. The accuracy of
these models is inherently linked to the reliability of these lists.
Sole reliance on filter lists introduces two primary challenges: (1)
The need for frequent updates to ensure that the lists are compre-
hensive and up-to-date, and (2) potential inaccuracies in the lists
that could jeopardize the model’s trustworthiness. Le et al. [26]
highlighted these issues and proposed AdHighlighter as a solution;
however, this tool also requires regular maintenance. As described
in Section 4.1, to mitigate these challenges, we used eight popular
filter lists (detailed in Appendix C) to obtain valid labels for our
collected dataset. This approach helped reduce the risk of bias from
relying on a single filter list.
Feasible Features for Real-Time Ad Blocking in Browser Ex-
tensions. State-of-the-art ML-based ad and web tracker detectors
often emphasize model accuracy without thoroughly considering
the feasibility of implementing their features in real-world web
browser extensions. For ad-blocking extensions, the primary objec-
tive is to halt requests intended for ads andweb trackers in real-time.
However, many graph-based features used in existing ML-based
solutions require the outcomes of HTTP requests and the execution
results of JavaScript code, indicating that the ad and tracker code
must be executed before detection occurs. To address this challenge,
we exclusively considered features that can be swiftly computed
in real-time within a browser extension. This allows AdFlush to
quickly generate rules for blocking URLs in real-time before HTTP
requests are delivered and code is executed.

7 CONCLUSION
We have introduced AdFlush, a novel framework for effectively
detecting ads and trackers. AdFlush stands out with its carefully
selected features, which surpass those of state-of-the-art tools. In
addition to the 350 features used by state-of-the-art tools, we con-
sider 533 new JavaScript features. We evaluated the efficacy of all
883 features and chose a subset of 27 optimal features for AdFlush,
considering both feature importance and feasibility of browser
implementation.

On a benchmark of the top 10,000 websites, AdFlush achieved
an F1 score of 0.98, outperforming the best state-of-the-art tool,
AdGraph [21], by 0.05 in F1 score. AdFlush also demonstrated re-
markable resilience against adversarial attacks, surpassing state-of-
the-art methods. Additionally, AdFlush maintained its high detec-
tion accuracy for six months without retraining, demonstrating its
effectiveness for new and unseen data.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

AdFlush: A Real-World Deployable Machine Learning Solution for Effective Advertisement and Web Tracker Prevention WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] M. Alrizah, S. Zhu, X. Xing, and G.Wang, “Errors, misunderstandings, and attacks:

Analyzing the crowdsourcing process of ad-blocking systems,” in Proceedings of
the 2019 Internet Measurement Conference (IMC), 2019, pp. 230–244.

[2] S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and B. Ziebart, “Leveraging
machine learning to improve unwanted resource filtering,” in Proceedings of the
2014 Workshop on Artificial Intelligent and Security Workshop (AISec), 2014, pp.
95–102.

[3] “Brave browser.” [Online]. Available: https://brave.com/
[4] B. X. Chen, “The battle for digital privacy is reshaping the internet,” Sep 2021.

[Online]. Available: https://www.nytimes.com/2021/09/16/technology/digital-
privacy.html

[5] M. Y.-K. Chua, G. O. Yee, Y. X. Gu, and C.-H. Lung, “Threats to online advertising
and countermeasures: A technical survey,” Digital Threats: Research and Practice,
vol. 1, no. 2, pp. 1–27, 2020.

[6] “Chrome.declarativenetrequest.” [Online]. Available: https://developer.chrome.
com/docs/extensions/reference/declarativeNetRequest/

[7] Z. A. Din, P. Tigas, S. T. King, and B. Livshits, “Percival: Making in-browser
perceptual ad blocking practical with deep learning,” in Proceedings of the 2020
USENIX Annual Technical Conference (USENIX ATC), 2020, pp. 387–400.

[8] “Disconnect.” [Online]. Available: https://disconnect.me/
[9] “Easylist.” [Online]. Available: https://easylist.to/
[10] “Easyprivacy.” [Online]. Available: https://easylist.to/easylist/easyprivacy.txt
[11] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site measurement

and analysis,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016.

[12] S. Englehardt, D. Reisman, C. Eubank, P. Zimmerman, J. Mayer, A. Narayanan,
and E. W. Felten, “Cookies that give you away: The surveillance implications of
web tracking,” in Proceedings of the 2015 International Conference on World Wide
Web (WWW), 2015, pp. 289–299.

[13] “Fanboy list.” [Online]. Available: https://fanboy.co.nz/
[14] “Firefox.” [Online]. Available: https://www.mozilla.org/en-US/firefox/features/

private-browsing/
[15] “Gnirts: Obfuscate string literals in javascript code.” [Online]. Available:

https://github.com/anseki/gnirts
[16] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classi-

fication using support vector machines,” Machine learning, vol. 46, pp. 389–422,
2002.

[17] T. Hegel, “Breaking down the SEO poisoning attack: How attackers are hijacking
search results,” Jan 2023. [Online]. Available: https://www.sentinelone.com
/blog/breaking-down-the-seo-poisoning-attack-how-attackers-are-hijacking-
search-results/

[18] R. Hill, “Ublock origin,” 2020. [Online]. Available: https://ublockorigin.com/
[19] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the fingerprinters: Learning

to detect browser fingerprinting behaviors,” in Proceedings of the 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 1143–1161.

[20] U. Iqbal, Z. Shafiq, and Z. Qian, “The ad wars: retrospective measurement and
analysis of anti-adblock filter lists,” in Proceedings of the 2017 InternetMeasurement
Conference (IMC), 2017, pp. 171–183.

[21] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq, “AdGraph: A
graph-based approach to ad and tracker blocking,” in Proceedings of the 2020 IEEE
Symposium on Security and Privacy (SP), 2020, pp. 763–776.

[22] “Javascript-obfuscator: A powerful obfuscator for javascript and node.js.” [On-
line]. Available: https://github.com/javascript-obfuscator/javascript-obfuscator

[23] “Your data is shared and sold... What’s being done about it?” Oct 2019.
[Online]. Available: https://knowledge.wharton.upenn.edu/article/data-shared-
sold-whats-done/

[24] D. Kornbrot, “Point biserial correlation,”Wiley StatsRef: Statistics Reference Online,
2014.

[25] C. Labrín and F. Urdinez, “Principal component analysis,” in R for Political Data
Science. Chapman and Hall/CRC, 2020, pp. 375–393.

[26] H. Le, S. Elmalaki, A. Markopoulou, and Z. Shafiq, “AutoFR: Automated filter rule
generation for adblocking,” in Proceedings of the 2023 USENIX Security Symposium
(Security), 2023, pp. 7535–7552.

[27] E. LeDell and S. Poirier, “H2O automl: Scalable automatic machine learning,” in
Proceedings of the 2020 Workshop on Automatic Machine Learning (ICML), vol.
2020, 2020.

[28] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and technology,”
in Proceedings of the 2012 IEEE symposium on security and privacy (SP), 2012, pp.
413–427.

[29] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation
and projection for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[30] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. Weippl, “Block me if you can: A large-scale study of tracker-blocking
tools,” in Proceedings of 2017 IEEE European Symposium on Security and Privacy
(Euro S&P), 2017, pp. 319–333.

[31] “Peterlowe’s list.” [Online]. Available: https://pgl.yoyo.org/adservers/serverlist.
php?hostformat=adblockplus

[32] V. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and W. Joosen,
“Tranco: A research-oriented top sites ranking hardened against manipulation,”
in Proceedings of the 2019 Network and Distributed System Security Symposium
(NDSS), 2019.

[33] “Privacy Badger.” [Online]. Available: https://privacybadger.org/
[34] K. Ren, W. Qiang, Y. Wu, Y. Zhou, D. Zou, and H. Jin, “An empirical study on

the effects of obfuscation on static machine learning-based malicious javascript
detectors,” in Proceedings of the 2023 ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), 2023, pp. 1420–1432.

[35] A. Romano, D. Lehmann, M. Pradel, and W. Wang, “Wobfuscator: Obfuscating
javascript malware via opportunistic translation to webassembly,” in Proceedings
of the 2022 IEEE Symposium on Security and Privacy (SP), 2022, pp. 1574–1589.

[36] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the
human out of the loop: A review of Bayesian optimization,” Proceedings of the
IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[37] S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and C. Troncoso, “WebGraph: Capturing
advertising and tracking information flows for robust blocking,” in Proceedings
of the 2022 USENIX Security Symposium (Security), 2022, pp. 2875–2892.

[38] A. Sjösten, P. Snyder, A. Pastor, P. Papadopoulos, and B. Livshits, “Filter list
generation for underserved regions,” in Proceedings of the 2020 Web Conference
(WWW), 2020, pp. 1682–1692.

[39] G. Storey, D. Reisman, J. Mayer, and A. Naayana, “The future of ad blocking: An
analytical framework and new techniques,” arXiv preprint arXiv:1705.08568, 2017.

[40] F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and D. Boneh, “Adversarial: Percep-
tual ad blocking meets adversarial machine learning,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security (CCS), 2019,
pp. 2005–2021.

[41] “Warning removal list.” [Online]. Available: https://easylist-downloads.
adblockplus.org/antiadblockfilters.txt

[42] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni, “Modeling
tabular data using conditional gan,” Advances in neural information processing
systems, vol. 32, 2019.

[43] Z. Yang, W. Pei, M. Chen, and C. Yue, “WTAGraph: Web tracking and adver-
tising detection using graph neural networks,” in Proceedings of the 2022 IEEE
Symposium on Security and Privacy (SP), 2022, pp. 1540–1557.

9

https://brave.com/
https://www.nytimes.com/2021/09/16/technology/digital-privacy.html
https://www.nytimes.com/2021/09/16/technology/digital-privacy.html
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://developer.chrome.com/docs/extensions/reference/declarativeNetRequest/
https://disconnect.me/
https://easylist.to/
https://easylist.to/easylist/easyprivacy.txt
https://fanboy.co.nz/
https://www.mozilla.org/en-US/firefox/features/private-browsing/
https://www.mozilla.org/en-US/firefox/features/private-browsing/
https://github.com/anseki/gnirts
https://www.sentinelone.com/blog/breaking-down-the-seo-poisoning-attack-how-attackers-are-hijacking-search-results/
https://www.sentinelone.com/blog/breaking-down-the-seo-poisoning-attack-how-attackers-are-hijacking-search-results/
https://www.sentinelone.com/blog/breaking-down-the-seo-poisoning-attack-how-attackers-are-hijacking-search-results/
https://ublockorigin.com/
https://github.com/javascript-obfuscator/javascript-obfuscator
https://knowledge.wharton.upenn.edu/article/data-shared-sold-whats-done/
https://knowledge.wharton.upenn.edu/article/data-shared-sold-whats-done/
https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus
https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus
https://privacybadger.org/
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A CATEGORIZATION OF CANDIDATE
FEATURES

Table 5 shows the features that we investigate in this paper, includ-
ing all aggregated features from AdGraph [21], WTAGraph [43],
and WebGraph [37], as well as new features against JavaScript
obfuscation strategies. Duplicate features are grouped by imple-
mentation, and we group the entire feature set into JavaScript, URL,
HTTP header, and graph categories based on their resource. Specific
features considered for AdFlush are marked with “‡” in the table.

Table 5: Summary of the categorized features. Feature sets
include AdGraph (A), WTAGraph (T), and WebGraph (W),
with AdFlush (‡) denoting new features. A ‘ ’ indicates a
tool’s use of the feature, while ‘!’ signifies the feasibility (F)
of integrating the feature into a browser extension.

Theme Feature A T W F

JavaScript

of requests sent !

of storage (set/get) !

of cookies (set/get) !

Use of eval/function instructions !

Use of ad/tracker related JavaScript API !

𝑛-gram frequency of JavaScript AST‡ !

JavaScript AST depth/breadth‡ !

Average of Identifier length‡ !

Average of characters per line‡ !

Bracket to dot notations ratio in JavaScript‡ !

URL

URL length !

Sub-domain check !

Valid query string parameters !

Domain party (first/third) !

Specific keywords in request URL !

Semi-colons in request URL !

Base domain in request URL !

Screen size in request URL !

Character embeddings !

HTTP
header

Content policy type (categorical) !

Content policy type (boolean) !

Request Content type (boolean) !

Request Method type (boolean) !

Order, timing, and # of attributes !

Graph

of nodes/edges and node/edge ratio
Degree (in, out, in+out)
Average degree connectivity
Presence of ancestor script
Presence of parent script !
Ascendant script length
Ad keywords in ascendant script
Use of eval/function in ascendant
Use of eval/function in descendant
of ancestors/descendants
Closeness centrality/eccentricity
of predecessors/successors script
of requests received
of redirects sent/received
Max depth of redirect
of indirect degree (in/out)
of indirect ancestors/descendants
Indirect centrality/connectivity
Indirect in/out weights (min/max/mean)
of set then get/modify storage (src/dst)
of set/get URL (src/dst)
of all indirect degree (in/out)
of all indirect ancestors/descendants
Indirect all centrality/connectivity

Section 3.3 explores the feasibility of implementing each feature
within a privacy-preserving browser environment. Following our
rules to ensure users’ privacy, we note whether the feature is se-
cure to implement in a commercial web browser. Only one feature
in the Graph category is available by observing the Initiator in
the request header without referencing other requests or response
headers. For the same reason, the max_depth_of_redirect is only
observable by chaining requests and responses with a communi-
cated server. Therefore, extracting this feature is vulnerable to ad
and tracker collecting user privacy.

B FEATURE SET OF ADFLUSH
AdFlush uses a carefully selected collection of the most effective
features to detect ads and web trackers. These features are detailed
in Table 6 and are used in both Python and web browser envi-
ronments. For example, we compute the number of requests sent,
storage values set or fetched, and accesses of cookies based on the
occurrences of related JavaScript API calls, similar to how Web-
Graph does it. We also calculate the average length of Identifiers by
averaging the length of names parsed as Identifier tokens within
JavaScript source code and HTML <script> tags. Finally, we use a
Boolean feature to indicate whether a unique character follows an
ad or tracker keyword within the request URL.

Table 6: Features used in AdFlush. The types stand for Nu-
merical (N), Boolean (B), and Categorical (C).

Category Feature Type # of Values

JavaScript

of requests sent N 1
of storage set N 1
of storage get N 1
of cookies get N 1
𝑛-gram frequency of JavaScript AST N 6
Average of Identifier length N 1
Average of characters per line N 1
Bracket to dot notation ratio in JavaScript N 1

URL

Third-party check B 1
Request URL length N 1
Ad keyword with special character in URL B 1
FQDN character embeddings N 7
Request URL character embeddings N 3

HTTP header Content policy type C 1
Total - - 27

Overall, AdFlush uses a variety of features to detect ads and web
trackers. These features are carefully selected to be effective and
efficient, and they are implemented in a way that preserves user
privacy.

C DATASET LABELINGWITH FILTER LISTS
To label our dataset, we aggregated continually updated filter lists,
which served as our ground truth dataset. We collected the filter
lists on April 4, 2023, using the samemethodology as Iqbal et al. [21]
and Siby et al. [37]. However, Anti-Adblock Killer, Blockzilla, and
Squid Blacklist were no longer actively updated or supported, so we
incorporated two additional filter lists, uBlock Origin, and uBlock
Privacy, to bolster our ground truth dataset. Table 7 shows the lists
used in AdFlush, along with the number of rules in each list as of
the collection date and the source of each filter list. By integrating

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

AdFlush: A Real-World Deployable Machine Learning Solution for Effective Advertisement and Web Tracker Prevention WWW ’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

filter lists beyond those specified in Table 7, AdFlush’s performance
can potentially improve due to more reliable labels.

Table 7: Filter lists for labeling.

Filter List (# Rules) URL
EasyList [9] (53,997) https://easylist.to/easylist/easylist.txt
EasyPrivacy [10] (30,646) https://easylist.to/easylist/easyprivacy.txt
Fanboy annoyance [13] (4,644) https://easylist.to/easylist/fanboy-annoyance.txt
Fanboy social [13] (18,883) https://easylist.to/easylist/fanboy-social.txt

Peterlowe [31] (3,667) https://pgl.yoyo.org/adservers/serverlist.
php?hostformat=adblockplus

uBlock Origin [18] (11,152) https://raw.githubusercontent.com
/uBlockOrigin/uAssets/master/filters/filters.txt

uBlock Privacy [18] (219) https://raw.githubusercontent.com
/uBlockOrigin/uAssets/master/filters/privacy.txt

Warning removal list [41] (697) https://easylist-downloads.adblockplus.org/
antiadblockfilters.txt

D HTTP REQUEST COVERAGE OF ADFLUSH
Table 8 provides a detailed breakdown of AdFlush’s detection
performance across 14 types of HTTP requests in our Top-10K
dataset. AdFlush captures all 14 request types, as outlined in Google
Chrome’s documentation.

As the table shows, AdFlush identifies a similar number of HTTP
requests as the filter lists for each request type. Overall, AdFlush
and filter lists detect 39.27% and 39.92% of all requests as advertise-
ments and web trackers, respectively, demonstrating that AdFlush
can effectively serve as a substitute for filter lists.

Notably, AdFlush demonstrates exceptional proficiency across
the majority of request categories. For instance, it achieves an
accuracy, precision, recall, and F1 score exceeding 0.99 for the three
most common request types, image, script, and XMLHttpRequest,
which collectively constitute 80.41% of all dataset requests.

However, AdFlush’s performance is somewhat diminished for
imageset, main_frame, and other request types, with false nega-
tive rates of 0.06, 0.13, and 0.09, respectively. These request types
have a skewed distribution of true and false values, with only 1.75%,
3.60%, and 3.30% true values per the filter lists.

E ADS AND TRACKERS MISSED BY FILTER
LISTS

In our longitudinal study detailed in Section 5.2, we identified signif-
icant samples of advertisements and trackers that were mislabeled
by even commercial filter lists, but that AdFlush could detect. We
manually analyzed and verified 642 such URLs from 108 unique
domains to discern their unique types and behaviors.

We found that iframe is frequently used for ads and trackers.
These iframe tags contained several code snippets designed to
execute JavaScript segmented into elements. An example is shown
in Figure 6, where the eval() function is used to process inner
HTML text as source codes within alternative containers.

AdFlush also detected other requests to JavaScript resources
that were later added to conventional filter lists. Figure 7 shows an
example of a detected tracker source code that transmits valuable
user data to a server using sendBeacon. Notably, AdFlush was able
to accurately detect this tracker code, which is not detected by
commercial filter lists.

Figure 6: Script detected by AdFlush that the filter listsmissed.

t.prototype.assembleData = function (e) {
var t = this

 .beaconSession
 .getSession();
 return {
 appVersion: this.config.appVersion ?

Object(s.e)(this.config.appVersion) : "",
 sdkId: "js",

sdkVersion: "4.3.4-web",
mainAppKey: this.config.appkey,
platformId: 3,

 common: Object(s.d)(I(I({}, this.additionalParams), {
 A2: this.commonInfo.deviceId, A8: this.commonInfo.openid,
 A12: this.commonInfo.language, A17: this.commonInfo.pixel,
 A23: this.commonInfo.channelID, A50: this.commonInfo.unid,
 A76: t.sessionId, A101: this.commonInfo.userAgent,
 A102: window.location.href, A104: document.referrer,

A119: this.commonInfo.query
}), !1),
events: e

 }
}
t.prototype.onSendBeacon = function (e, t) {
 if (this.isUnderIE8)
 this.errorReport.reportError("601", "UnderIE8");
 else {

var n = this.assembleData(this.generateData(e, t, !0));
navigator.sendBeacon(this.strategy.getUploadUrl(),

JSON.stringify(n))
 }
}

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

Figure 7: Example tracker code detected by AdFlush.

https://stat.tiara.tistory.com/track?d=
"sdk":{

"type":"WEB","version":"1.1.25"
},"env":{

"screen":"1512X982","tz":"+9","cke":"Y"
},"common":{

"session_timeout":"1800","svcdomain":"user.tistory.com","deployment":"production",
"url":"https://www.tistory.com/","title":"TISTORY","section":"top","page":"user","ka
kao_app_key":"####"

},"etc":{
"client_info":{

"tuid":"####","tsid":"####","uuid":"####","suid":"####","isuid":"####","client_
timestamp":1680553904861

}
},"action":{

"type":"Pageview","name":"user","kind":""
}

}

Response Header:{
Set-Cookie: ELOQUA=GUID=####; domain=dow.com; expires=Mon, 11-Nov-2024
10:33:58 GMT; path=/; secure

}
Request Header: {

Cookie: ELOQUA=GUID=####; AKA_A2=A; _cs_mk=####; at_check=true; s_ips=1051;
mbox=session##########|PC#####; dtCookie=####; rxVisitor=####; s_tp=2246;
s_plt=4.03; s_pltp=home; _cs_c=1; _cs_id=####; _cs_s=####; s_ecid=####;
AMCVS_988D095F54BD18520A4C98A5%40AdobeOrg=1; s_cc=true;
hjSessionUser####=####=; _hjFirstSeen=1;

}

Request_ID: 59437

Request_ID: 114851

Figure 8: Examples of tracker behavior in URL and HTTP
headers.

11

https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://easylist.to/easylist/fanboy-annoyance.txt
https://easylist.to/easylist/fanboy-social.txt
https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus
https://pgl.yoyo.org/adservers/serverlist.php?hostformat=adblockplus
https://raw.githubusercontent.com/uBlockOrigin/uAssets/master/filters/filters.txt
https://raw.githubusercontent.com/uBlockOrigin/uAssets/master/filters/filters.txt
https://raw.githubusercontent.com/uBlockOrigin/uAssets/master/filters/privacy.txt
https://raw.githubusercontent.com/uBlockOrigin/uAssets/master/filters/privacy.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13–17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 8: Detection performance of AdFlush by HTTP request type.

Request Type # Requests # Blocked by
Filter Lists

Detected by
AdFlush

Accuracy Precision Recall F1 FNR FPR

image 312,231 120,120 119,422 0.99 0.99 0.99 0.99 0.01 0.00
script 237,509 112,772 111,961 0.99 0.99 0.99 0.99 0.01 0.00
xmlhttprequest 117,826 59,528 59,139 0.99 0.99 0.99 0.99 0.01 0.00
stylesheet 43,674 3,449 3,358 0.99 0.99 0.97 0.99 0.03 0.00
font 33,314 3,642 3,626 0.99 0.99 0.99 0.99 0.00 0.00
imageset 26,382 462 434 0.99 0.99 0.94 0.97 0.06 0.00
sub_frame 25,620 19,014 18,985 0.99 0.99 0.99 0.99 0.00 0.01
main_frame 18,459 665 573 0.99 0.99 0.86 0.93 0.13 0.00
ping 11,736 11,231 11,218 0.99 0.99 0.99 0.99 0.00 0.02
media 1,654 281 278 0.99 0.99 0.98 0.99 0.02 0.00
other 696 23 21 0.99 0.99 0.91 0.95 0.09 0.00
websocket 511 132 128 0.99 0.99 0.97 0.98 0.03 0.01
csp_report 398 58 54 0.99 0.98 0.93 0.96 0.07 0.00
object 150 12 12 0.99 0.99 0.99 0.99 0.00 0.00
Total 830,160 331,389 329,205 0.99 0.99 0.99 0.99 0.01 0.00

Finally, we present examples of tracker behavior evident in URLs
and HTTP headers. Request ID 114,851, illustrated in Figure 8, is
directed at an image URL but returns a single pixel. This tactic is
used to transmit user data to the tracker through the query string.
Similarly, Request ID 59,437, another image URL, responds with
a single pixel due to the storage of user identifiers in the browser
cookie. Although filter lists overlooked these instances of privacy
breaches, AdFlush efficiently mitigated them.

To further explore filter lists’ false negatives, we relabeled our
dataset with the latest filter lists fromOctober 11, 2023. By manually
verifying the newly labeled AdFlush detections, we obtained 642
URLs from 108 unique domains where all authors agreed on the
verification. We reported these results to EasyList, EasyPrivacy,
uBlock Origin, and uBlock Privacy to help create more effective
and updated filter lists.

12

	Abstract
	1 Introduction
	2 Related Work
	2.1 Risks of Advertisements and Trackers
	2.2 Filter List-Based Approaches
	2.3 ML-Based Approaches

	3 Feature Analysis
	3.1 Data Collection
	3.2 Candidate Features
	3.3 Feature Categorization
	3.4 Key Feature Identification

	4 Implementation of AdFlush
	4.1 Dataset
	4.2 Model Selection and Training
	4.3 Browser Extension Implementation

	5 Evaluation
	5.1 Comparison with State-of-the-Art Models
	5.2 Longitudinal Study
	5.3 Robustness against Adversarial Samples
	5.4 Runtime Overhead Evaluation

	6 Discussion
	7 Conclusion
	References
	A Categorization of Candidate Features
	B Feature set of AdFlush
	C Dataset Labeling with Filter Lists
	D HTTP Request Coverage of AdFlush
	E Ads and Trackers Missed by Filter Lists

