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Abstract

Recent advances in DNA language modeling have been limited by computational1

constraints and the ability to capture long-range dependencies within genomic2

data effectively. While effective, traditional transformer-based models suffer from3

quadratic complexity and limited context windows, making them unsuitable for4

large-scale DNA modeling. In contrast, subquadratic models, while efficient, often5

lack bidirectionality and struggle with training scalability. We introduce MSA-6

LM, an inductive-bias-aware subquadratic DNA Multiple Sequence Alignment7

(MSA) model that addresses these limitations. MSA-LM integrates a bidirectional8

Mamba model for sequence mixing, providing transformer-like expressibility with-9

out the associated quadratic complexity. By utilizing a sparse attention mechanism,10

MSA-LM selectively processes the main DNA sequence while incorporating evolu-11

tionary information from MSA data, significantly reducing computational overhead.12

Our results demonstrate that MSA-LM achieves state-of-the-art performance on13

long-context variant effect prediction tasks and Genomic Benchmarks, particu-14

larly excelling in regulatory sequence analysis. The proposed model not only15

surpasses existing transformer-based and subquadratic approaches in efficiency but16

also maintains high accuracy across diverse genomic tasks, marking a significant17

improvement in DNA language modeling capabilities.18

1 Introduction19

Advances in model sizes and architectures have brought about a revolution in sequence modeling20

capabilities. The introduction of recurrence [26], attention [1], and memory [24] have led to many21

performance improvements. The transformer model [44], commonly used in large language models22

(LLMs) [6], applies self-attention and implicit memory [14] to sequence modeling.23

Transformers have shown impressive generalization capabilities in natural language processing,24

prompting researchers to extend the models’ abilities to sequences beyond language. Transformers25

have been applied to protein sequences [30] and genomics data [39]. Recently, they have been used26

in DNA modeling [10]. However, The human genome consists of 3 billion base pairs, with gene sizes27

ranging from 10 thousand to 2 million base pairs [32]. These large DNA sequences are expensive28

to analyze using a transformer due to the quadratic nature of self-attention [27] and the model’s29

instability across extended context windows [31].30

Subquadratic models ([38], [19], [16]) have been explored as alternate method to transformers for31

DNA modeling. They have shown high performance on Genomic Benchmarks tasks [41] and have32

context lengths ranging up to 128k base pairs [36].33

Recent DNA language modeling methods have added information augmentations [2] or improved34

tokenizers/information aggregation to the original DNA sequence [40]. One of the most common35
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DNA augmentations is multiple sequence alignment (MSA) data. This information provides key36

evolutionary relationship information relative to each base pair. Transformer-based methods for37

DNA MSA processing have shown state-of-the-art performance in tasks with a basis in evolutionary38

mutations (variant effect prediction) [3]. However, these models leverage quadratic sequence-wise39

attention and axial attention-based methods, which do not scale well to long sequences. Because of40

this, transformer-based DNA MSA models have only been trained at short context lengths1.41

Subquadratic MSA models have been proposed as alternatives to transformer-based approaches42

[43]. However, these models lack bidirectionality, hindering modeling accuracy greatly. In addition,43

subquadratic MSA models are difficult to train at scale due to running subquadratic sequence mixers44

on all auxiliary sequences in addition to the main sequence in an MSA. Batch size scaling is difficult45

in these settings, leading to inefficient training and inference.46

To correct the shortcomings of subquadratic DNA MSA models, we propose MSA-LM, an inductive-47

bias-aware subquadratic DNA MSA model. This model leverages a bidirectional Mamba model as48

a sequence mixer [25], which provides similar expressibility to full self-attention in transformers49

without quadratic complexity. In addition, MSA-LM only runs the Mamba operation on the main50

sequence, using sparse attention computations to integrate MSA data into one main sequence51

representation [8]. Through this, we leverage MSA data as auxiliary information relative to the main52

sequence and fix problems in the expressibility of previous subquadratic MSA models. Evaluations53

of MSA-LM show state-of-the-art (SOTA) performance in 3 Genomic Benchmarks tasks2 (see Table54

6.2) and shows similar performance to SOTA models in long-context variant effect prediction (see55

Table 6.1).56

Figure 1: A diagram of the MSA-LM architecture. The architecture consists of multiple MSA-LM
blocks, each of which contains a bidirectional mamba (quasiseparable matrix mixer) wrapped by long
convolutions. It also includes an MSA to sequence mixer and a sequence to MSA mixer to integrate
evolutionary information across the MSA.

2 Background57

Deoxyribonucleic acid is a polymer made up of 4 base nucleotides (adenine, cytosine, guanine,58

and thymine). The polymer forms a double helix structure from two complementary strands. DNA59

contains regions known as genes, which can code for different proteins to cause cellular change.60

Genes also consist of control sequences. These include enhancers, which can increase the DNA61

transcription of a specific gene into a protein; promoters, which allow the initiation of transcription;62

and silencers, which prevent transcription from occurring. [5]63

DNA sequences contain introns and exons. Exons contain DNA information used to form the final64

protein, while introns are non-coding regions that can be spliced out in different combinations to65

1GPN-MSA, a prominent DNA MSA transformer model, trains on sequence lengths of 128, which cannot
capture global relationships inherent in genomic data

2excluding dummy and demo datasets
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create varying gene outputs. Genes can vary in length from thousands to millions of base pairs,66

increasing the need for models with a large and effective context window.67

DNA MSAs DNA Multiple Sequence Alignments (MSAs) are combinations of DNA sequences68

across different species. These sequences are aligned such that base pairs that evolve similarly are69

in the same column across genomes. Aligned columns in the MSA provide crucial evolutionary70

information between species. A DNA sequence for a species can be considered as a function of a71

different species’ genome. This function consists of multiple mutations, such as insertions, deletions,72

and replacements. By aligning these sequences using MSA creation algorithms, models can implicitly73

extract conservation, coevolution, and homology information. DNA MSAs are also used to find74

motifs (short, repetitive sequences across genes). Implicit detection of these motifs in AI models can75

provide enhanced information for genome analysis. [42]76

2.1 Transformer Models77

Initial work in DNA language models involved leveraging the transformer architecture [44]. The78

transformer consists of multiple blocks [9], each containing a self-attention and MLP block. The79

self-attention block (see Eq. 1) functions as a fully connected sequence mixer, comparing all tokens to80

each other without any causal or window-based restrictions3. The comparison operation is computed81

using a dot product between two input space projections (Q, K). This dot product is passed through82

a row softmax and scaling operation before being multiplied by a value (V ) projection. This acts as a83

weighted importance operation to emphasize important relationships while diminishing unimportant84

ones.85

O = softmax(
QK⊤

dattn
)V (1)

The MLP block acts as a channel-wise mixer, increasing the size of the model dimension from dmodel86

to dff and decreasing back down to the model dimension. This upscaling and downscaling projection87

allows for an integration with implicit memory that the transformer gains within its expanded MLP88

weights while training. Between both operations, a residual connection [23] and normalization [45]89

operation are included to prevent vanishing/exploding gradient problems during the backpropagation90

process. [15]91

Transformer models that have been applied to DNA-MSA modeling show high accuracy in evolution-92

based modeling tasks. However, they have small context windows. This prevents transformers from93

attending to long-context relationships between regions, motifs, and other areas across genes.94

2.2 Subquadratic Models95

Figure 2: A diagram of the MSAMamba architecture, which leverages a selective-scan operation in
the sequence dimension and a global-positioned attention process in the vertical dimension. [43]

Subquadratic models have initially been proposed as methods to decrease the expensive quadratic96

complexity of transformers in language modeling. However, they have also been applied to DNA97

modeling [19]. Some subquadratic models leverage long convolutions, which can be optimized to be98

3Excluding masked tokens in the masked language modeling setting
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computed in linear time [38]. These long convolutions can extract motif and region information, but99

they lack expressibility with few channels. In addition, long convolutions cannot attend to global100

relationships between regions due to the restrictivity of the kernel size and lack of state tracking101

across long contexts [33].102

State-space model methods [21] have been proposed to fix the shortcomings of long convolution-103

based models. The original SSM formulation consists of four matrices that act as gates across a104

continuous data stream.105

ht+1 = Aht +Bxt+1 (2)
106

yt+1 = Cht+1 +Dxt+1 (3)

In the discrete-time formulation, these matrices are discretized4 [37] with a ∆ value representing a107

step size across a continuous sequence.108

Ā = exp(∆A) (4)

B̄ = (∆A)−1(exp(∆A)− I)∆B (5)

The original SSM formulation is linear time-invariant, allowing it to be computed as an efficient109

1-dimensional convolution over a sequence. However, the Mamba SSM variant [19] makes the B, C,110

and D matrices input-dependent, allowing more adaptability using gating (The A matrix is determined111

using the HiPPO matrix formulation for long context data storage [20]). Although this model is no112

longer time-invariant, it does not use activation functions, allowing the model to be computed in an113

O(N) associative scan [4] using a parallelized, hardware-aware kernel [11].114

The original Mamba formulation was tested on Genomic Benchmarks tasks [18] and had shown115

state-of-the-art performance on long-context tasks. However, it shows lower performance in shorter116

contexts, while transformers excel.117

MSAMamba has been proposed as an alternative subquadratic DNA MSA model that leverages118

Mamba as the main sequence mixer [43]. While it shows improved performance compared to119

transformer-based models in long-context variant effect prediction tasks and Genomic Benchmarks120

tasks, it lacks training efficiency. MSAMamba runs a selective scan operation on all rows of the121

MSA, which can prevent batch size scaling during training5.122

3 Methods123

We propose MSA-LM, a DNA MSA language model that improves the efficiency of previous methods124

by running a bidirectional selective scan operation on only one main sequence. MSA information is125

integrated into the main sequence using sparse attention across MSA data. In this section, we provide126

an overview of the components and structure of MSAMamba.127

3.1 MSA Attention128

The MSA-LM block architecture consists of two MSA-length attention processes that integrate129

MSA-level (column) and sequence-level (row) information. The first process is MSA-to-sequence130

attention, which alters the full column-wise self-attention process to attend only to the first sequence’s131

base pairs as a query. This integrates MSA information into the main sequence while preventing132

inter-MSA attention6. In addition, this computation decreases the computational complexity of the133

MSA attention process from quadratic to linear7, preserving the subquadratic nature of the model in134

both the sequence and MSA dimensions.135

4Recent work has shown that using the fixed HiPPO matrix and discretization cannot perform well in
state-tracking tasks [33]. We acknowledge this approach, but we use the original Mamba implementation due to
its memory-efficient selective scan kernel

5MSAMamba was trained on a physical batch size of 2 1024 base-pair sequences on a NVIDIA P100 GPU
6mixing of inter-MSA information is unnecessary, as only evolutionary information relative to the main

sequence (human genome) is required
7with reference to MSA Length
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Figure 3: A diagram of the attention processes at the start and end of each MSA block. The MSA-to-
sequence attention block acts as an integration of evolutionary information into the sequence, while
the sequence-to-MSA attention process integrates sequence information into the MSA.

The second attention process is a sequence-to-MSA block, which integrates information present in136

the main sequence with MSA information across an MSA column. Similar to the first attention block,137

Inter-MSA relations are ignored for computational complexity benefits. With this formulation, other138

parts of the algorithm only have to process the top sequence, since MSA information is implicitly139

integrated and updated through these sparse attention processes.8140

Each attention process consists of multiple sequence heads. This allows for multiple channels of141

information to be integrated into the main sequence position in a column. This is integrated into the142

channel formulation of the following convolution blocks.143

3.2 Hydra + Convolution Block144

The MSA-to-sequence block integrates MSA information into the target sequence. The auxiliary145

MSA tensor is saved for the later sequence-to-MSA block but is not used in the Hydra and convolution146

block computation9. There are nchannels number of channels in the output, based on the number of147

query heads leveraged in the sequence-to-MSA attention block. These channels are then expanded148

to expand · nchannels by a long convolution block [17], which functions as a motif/region extractor149

[35]. All channels of the main sequence are then passed to a bidirectional Mamba formulation [25].150

The output of the Mamba algorithm is passed through another long convolution, which decreases151

the number of channels back to nchannels. The output is passed to the sequence-to-MSA block to152

integrate sequence information back into the MSA augmented information tensor.153

Both long convolution blocks are implemented with a fast Fourier transform algorithm10 [7]. The first154

convolution operation expands the number of sequence channels. This expansion is done to increase155

the number of computation heads in the bidirectional Mamba model to learn a robust representation156

of the data. The second convolution decreases the number of channels.11157

The output of the first convolution is passed as a multi-headed tensor to the bidirectional Mamba model.158

We leverage the Hydra model, which uses a quasiseparable matrix mixer [25], to implement the159

bidirectional mamba model12. Previous formulations use two Mamba models and add corresponding160

outputs. However, the quasiseparable matrix formulation allows for higher training and inference161

efficiency using two semiseparable matrix formulations [12].162

8Both MSA attention processes leverage absolute position embeddings, which allows the model to identify
each MSA species individually

9This is done to decrease the computational requirements of the main sequence mixer by integrating all
information into one sequence

10FFT-based convolutions have shown higher performance at large kernel sizes
11For all models, we leverage an expansion factor of 2 and 4 main channels of computation. Scaling these

factors can improve the representation capability of the model to handle longer contexts and more nuanced
relationships.

12This model was chosen over other bidirectional Mamba formulations [41] due to increased computational
efficiency
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Algorithm 1 MSA-LM Masked Language Modeling
Input: MSA x : (B, M, L, D), Mrow : (B, M), yt : (B, L, D), lr, θ (Model Params)
Output: y : (B, L, D)
h0 = mask(x, p=0.15)
for i = 1 to nlayers do
hsparse = hi[Mrow]
Omamba = scatter(Mamba(xsparse), Mrow) + hi

Oatt = SelfAttention(Omamba) + Omamba

hi+1 = MLP(Oatt)
end for
loss = CrossEntropy(hnlayers−1[h0 = MASK], yt)
θ ← AdamW(lr)

4 Training163

This section overviews the datasets and methods used to pre-train MSAMamba.164

4.1 Pre-Training: MultiZ100Way165

During model pre-training, we leverage the MultiZ100Way dataset, which consists of an MSA of the166

length of the human genome without any gap sequences13 in the human sequence. It also consists167

of 99 auxiliary aligned sequences (with gap sequences) from related species. This data has been168

curated from the public UCSC Genome Browser [34]. We use a modified version of this dataset,169

which excludes ten auxiliary sequences of organisms that are very similar to those of humans [3].170

This modification was done to decrease training time and memory requirements while losing minimal171

auxiliary information.14172

This dataset was used to train MSA-LM and all MSA-based baseline models15. The same random173

seeds were also used for data shuffling and batch loading during pre-training for all models.174

4.2 Data Preprocessing175

The initial training data was collected from the MultiZ100Way dataset by sampling random locations176

across the genome and selecting DNA sequences based on the required context length for training177

(We use a context length of 1024 across all training steps).16178

Data in the MultiZ100Way dataset was parsed using a tokenizer with a vocabulary size of 6. This179

consists of 4 nucleotides, one token for gap sequences, and one mask token. There was no need for180

<PAD> tokens due to all excerpts from the dataset being the same length.181

This data was preprocessed based on the masked language modeling algorithm. This involves masking182

15% of the sequence, where 80% of masked tokens are replaced with the <MASK> token, 10% is183

replaced with a random token, and the final 10% is not replaced [13].184

Note: Only the top sequence in the MSA (the human sequence) is masked due to the focus on the185

human genome, with other genomes being additional information186

4.3 Model Sizes187

We trained 4 different MSA-LM models (see Table 1). Two of these models have a model dimension188

of 64, while others have a model dimension of 128. In all cases, we leverage an expansion factor of 2189

for the SSM process. In addition, all models contain 3 MSA-LM layers except for one model with a190

model dimension of 128. Sequence length was gradually increased across model sizes.191

13Gap sequences occur in MSAs when alignment moves around nucleotides to fit the proper evolutionary
configuration, leaving placeholders for locations affected by shift/insertion/deletion mutations

14The MultiZ90Way is publicly accessible through HuggingFace datasets [29]
15Non-MSA models used as baselines were trained on the regular human genome without MSA augmentation
16We were unable to train on the entire genome due to lack of computational power
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All models were trained on the same amount of data. However, only the final model (dmodel = 128192

and sequence length = 1024) is leveraged for its evaluations due to it having the highest performance193

based on training and validation loss results.194

Table 1: Table of model configurations that underwent the training, fine-tuning, and evaluation
processes with comparison to baseline models with similar parameters

dmodel dssm nlayers SEQ. LEN

64 128 3 128
64 128 3 512

128 256 3 1024
128 256 4 1024

4.4 Hyperparameter Selection195

MSA-LM was trained using a masked language modeling formulation17. This method involves using196

Cross Entropy Loss on logit outputs to determine the accuracy of mask predictions (see Algorithm 1).197

The Adam optimizer was used for all training runs.198

Before a full training run, we swept across multiple learning rates for an initial epoch of training18.199

The following learning rates were evaluated based on first-epoch performance: 3e-5, 9e-5, 3e-4,200

1e-3, 8e-319. The learning rate of 3e-4 was found to perform the best during pre-training. A201

warmup scheduler is used to gradually increase the learning rate from 0 to 3e-4 across 25% of all202

gradient steps in the training run.203

We train on sequences that are 1024 base pairs in length and use a physical batch size of 4 sequences.204

Due to computational constraints, we accumulate gradients across every 12 batches to increase the205

precision of gradient steps. With this formulation, the model is trained on 49152 base pairs per206

gradient step.207

All training runs use a gradient clip value of 5.0 and a weight decay of 1e-3. In addition, the Adam208

optimizer uses (0.9, 0.95) as beta values.209

5 Fine-Tuning and Evaluation210

We provide an overview of the datasets and methods used for fine-tuning the MSA-LM model. In211

addition, we use similar formulations of the datasets for baseline models20. (Dataset processing212

information in A)213

5.1 Fine-Tuning Method and Parameters214

All fine-tuning tasks leveraged a full-parameter fine-tuning methodology. In addition, we padded215

all sequences during the fine-tuning process to a length of 1024. The only exception to this padding216

length is during the OMIM and ClinVar tasks, where we fine-tune two models on a sequence length217

of 1024 and two other models on a sequence length of 512.218

All fine-tuning jobs leveraged the Adam optimizer and similar hyperparameters. We leveraged a219

learning rate of 3e-4, a weight decay value of 1e-3, and betas of (0.9, 0.95).220

Each fine-tuning process consisted of 3 epochs, each with 15000 steps. Fine-tuning was done using a221

batch size of 4 and gradient accumulation across every 8 iterations. This amounts to 32768 base pairs222

being attended to per gradient step.223

17Masked language modeling was chosen over causal language modeling to learn full representations of DNA
without restrictions from causal masks or specific decoding methods

18This epoch used the same shuffling seed to ensure equal performance
19a learning rate of 8e-3 was leveraged in Mamba and long-convolution-based models
20Datasets are modified to use MSA or single-sequence versions based on the capability of the specified

baseline model
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TASK NAME GPN-MSA MSAMAMBA MSA-LM

CLINVAR (512) 0.967 0.965 0.965
OMIM (512) 0.130 0.131 0.129
CLINVAR (1024) 0.962 0.978 0.976
OMIM (1024) 0.118 0.139 0.143

Table 2: Evaluation of MSA-LM, GPN-MSA, MSAMamba, HyenaDNA, and DNABERT on variant
effect prediction tasks using the AUROC metric for ClinVar and AUPRC for OMIM

TASK NAME DNABERT HYENADNA GPN-MSA MSAMAMBA MSA-LM

MOUSE ENHANCERS 66.9 85.1 76.4 82.7 86.8
CODING VS INTERGENOMIC 92.5 91.3 90.3 90.0 92.7
HUMAN VS WORM 93.0 96.6 98.9 98.5 98.6
HUMAN ENHANCERS COHN 74.0 74.2 73.1 72.7 72.8
HUMAN ENHANCERS ENSEMBL 85.7 89.2 89.3 88.8 89.7
HUMAN REGULATORY 88.1 93.8 93.5 94.4 95.1
HUMAN NONTATA PROMOTERS 85.6 96.6 90.9 94.2 97.0
HUMAN OCR ENSEMBL 75.1 80.9 76.8 82.5 81.9

Table 3: Evaluation of MSA-LM, GPN-MSA, MSAMamba, HyenaDNA, and DNABERT on Ge-
nomicBenchmarks tasks using top-1 accuracy (%) metric

6 Results224

We show evaluation results for fine-tuned versions of MSA-LM on Genomic Benchmarks tasks and225

Long-Context ClinVar and OMIM Tasks21. In addition, we evaluate inference and training step times226

for MSA-LM and relevant baseline models.227

6.1 Variant Effect Prediction228

We evaluate MSA-LM on both the ClinVar and OMIM variant effect prediction tasks. Each variant229

effect prediction task involved two fine-tuning jobs: one with a context length of 512, and another230

with a context length of 1024. Results show that MSA-LM performs similarly to MSAMamba at231

context lengths of 1024 and slightly below average with reference to GPN-MSA regarding smaller232

context lengths.233

This most likely occurs due to the MSA-LM’s bias towards longer sequences during training. In con-234

trast, GPN-MSA’s full self-attention formulation is more robust at shorter context lengths. However,235

MSA-LM is advantageous in longer context lengths due to its training data being mostly from this236

distribution. The model shows similar performance to MSAMamba, with only minor differences in237

metrics. Overall, MSA-LM can generalize to long sequences for downstream tasks with a higher238

computational efficiency compared to previous methods.239

6.2 Genomic Benchmarks240

In addition to variant effect prediction tasks, we evaluate MSA-LM and baseline models on Genomic241

Benchmarks tasks. We fine-tune the model on sequences of length 1024, and we also evaluate the242

following baseline models:243

• DNABERT (110 million parameters) - a BERT transformer architecture trained to represent244

DNA sequences245

• HyenaDNA - long convolution-based architecture for DNA processing. The HyenaDNA-tiny246

version was used with a model dimension of 128 and a sequence length of 16k247

• MSA-based models: GPN-MSA - a transformer model that processes DNA MSAs.248

MSAMamba - subquadratic MSA model leveraging Mamba selective scan249

21maximum sequence length is capped at 1024 base pairs due to computational constraints
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MSA-LM shows state-of-the-art performance in 3 Genomic Benchmarks tasks. While lacking in250

"OCR Ensembl" and "Enhancers Cohn" tasks, MSA-LM shows the highest performance when fine-251

tuning on regulatory sequences (e.g. promoters, enhancers). This shows that MSA-LM’s training252

dataset may have been biased towards these regions during training. It is also possible that convolution253

operators inserted in the architecture can efficiently extract regulatory sequence information and254

influence across long-context inputs.255

6.3 Training Complexity Analysis256

Figure 4: A comparison of time benchmarks for 3 DNA MSA sequence processing models. Each
model is evaluated on one NVIDIA T4 GPU to determine the time taken to process the forward and
backward pass of a batch of 4 1024-base-pair sequences

In addition to experimental evaluations, we provide a wall-clock complexity comparison of MSA-LM.257

Wall clock time-based computational complexity evaluations of MSA-LM, along with 2 baseline258

models (GPN-MSA, MSAMamba) are computed. The time taken to evaluate the forward and259

backward pass of a batch of 4 1024-length sequences is computed22. All experiments use a model260

dimension of 128 and default derivations of other model dimensions23. We find that MSA-LM has261

the fastest training step performance. This is due to the relative efficiency of the sequence-level mixer262

operation in comparison to MSAMamba and GPN-MSA.263

7 Discussion264

MSA-LM is a promising architecture for DNA MSA analysis. Previous methods for DNA MSA265

analysis have lacked robust training on long context lengths due to computational complexity con-266

straints. In addition, many previous models were not equipped to extract inductive biases inherent in267

DNA effectively. MSA-LM modifies the previous MSAMamba architecture to fix these problems.268

MSA-LM has higher training efficiency compared to previous methods due to sequence-level pro-269

cessing only happening on the main sequence instead of all sequences. This allows the model to270

be subquadratic in both the sequence and MSA dimension, and remove the restriction of low batch271

sizes due to expensive sequence-level computations. MSA-LM shows state-of-the-art/similar to272

state-of-the-art (SOTA) performance in long-context variant effect prediction tasks. The model also273

shows SOTA performance on Genomic Benchmarks tasks, showing particularly high performance in274

regulatory sequence analysis.275

MSA-LM can be applied to mutation detection and effect prediction, as well as general causal analysis276

of DNA sequences for editing sequence generation or plasmid generation.277
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A Fine-Tuning Datasets405

A.0.1 Variant Effect Prediction Tasks406

We use the OMIM and ClinVar Datasets during the evaluation process. The OMIM dataset relates407

gene sequences to different genetic disorders and their forms [22], while ClinVar relates aggregated408

gene variance information to overall human health [28]. Fine-tuning on this dataset evaluates a DNA409

MSA model’s ability to perceive overall and individual gene relationships to determine its properties.410

The addition of MSA information provides key evolutionary information that is useful for these tasks411

[3].412

These two datasets were used at two sequence lengths: 512, and 1024. MSA-LM is trained on413

sequence lengths of 1024, while previous models were trained with sequence lengths varying from414

128 base pairs to 16 kilo-base pairs depending on model capabilities. We compare evaluations from415

the fine-tuning processes across these two context windows as a median context window for all416

models to generalize to.417

The original OMIM and ClinVar datasets consisted of 128-length sequences. We modified these418

original sequences to include the area around the original sequence to add up to larger context lengths.419
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This tests models’ abilities to detect and analyze specific mutations and segments within longer420

sequences.421

All sequences were retrieved from the MultiZ90Way database given each sequence’s chromosome422

index, start indices, and end indices. These sequences were not masked but passed as a tuple with a423

binary label as the fine-tuning target.424

A.0.2 Genomic Benchmark Tasks425

MSA-LM and other relevant models were also evaluated on the GenomicBenchmarks dataset [18].426

This dataset consists of 8 different tasks relating to sequence-level classification24. The original427

GenomicBenchmarks datasets are single-sequence, containing only the human genome. However,428

we use start indices, stop indices, and chromosome metadata from the datasets along with the429

MultiZ90Way database to generate MSA versions of these evaluation datasets.430

These datasets were not modified for different sequence lengths and were only trained on their original431

sequence lengths.432

Note: Ethical considerations were carefully addressed during the data curation/processing step. All433

genome data used in this study were obtained and modified from publicly available datasets (e.g.,434

MultiZ100Way, OMIM, ClinVar)435

24We exclude the first three tasks seen in Table 6.2 from discussion, due to their relatively small size and
designation as "demo" or "dummy" datasets
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