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ABSTRACT

Cross-modal knowledge distillation (KD) has expanded the traditional KD ap-
proach to encompass multimodal learning, achieving notable success in various
applications. However, in cases where there is a considerable shift in data dis-
tribution during cross-modal KD, even a more accurate teacher model may not
effectively instruct the student model. In this paper, we conduct a comprehen-
sive analysis and evaluation of the effectiveness of cross-modal KD, focusing on
its dependence on the distribution shifts in multimodal data. We initially view
cross-modal KD as training a maximum entropy model using pseudo-labels and
establish conditions under which it outperforms unimodal KD. Subsequently, we
introduced the hypothesis of solution space divergence, which unveils the crucial
factor influencing the efficacy of cross-modal KD. Our key observation is that
the accuracy of the teacher model is not the primary determinant of the student
model’s accuracy; instead, the data distribution shifts play a more significant role.
We demonstrate that as the data distribution shifts decrease, the effectiveness of
cross-modal KD improves, and vice versa. Finally, to address significant data dis-
tribution differences, we propose a method called the “perceptual solution space
mask” to enhance the effectiveness of cross-modal KD. Through experimental
results on four multimodal datasets, we validate our assumptions and provide di-
rections for future enhancements in cross-modal knowledge transfer. Notably, our
enhanced KD method demonstrated an approximate 2% improvement in mIoU
compared to the Baseline on the SemanticKITTI dataset.

1 INTRODUCTION

Knowledge distillation (KD) is an effective technique for transferring knowledge from one neural
network to another. The core idea behind KD is to align the predicted logits of a teacher network
with those of a student network by minimizing the Kullback-Leibler divergence (KL Divergence
(Hinton et al., 2015)). This concept can be easily extended to handle multimodal data by using a
multi-branch network structure, where the teacher and student networks can take input from single
or multimodal data sources (Gou et al., 2021).

KD is commonly applied in three scenarios. Firstly, in the context of knowledge expansion or knowl-
edge transfer, cross-modal KD is used to overcome limitations in a single modality. For example, it
can compensate for deficiencies such as insufficient data volume, lack of depth information in RGB
images, or absence of texture information in point cloud data. Secondly, KD enables multimodal
knowledge fusion by transferring knowledge from one modality to another. This allows leveraging
the knowledge of a multimodal teacher network while using a single modality during testing. Finally,
KD can provide additional constraints in multimodal scenarios, including cross-modal retrieval and
cross-domain adaptation.

While cross-modal KD has achieved success in various multimodal data applications, most widely
used methods still rely primarily on single-modal approaches. This raises questions about the effec-
tiveness of cross-modal KD and the factors that limit its performance. Recent research focusing on
the effectiveness of cross-modal KD indicates that its performance depends on the modality-general
decisive features retained in the teacher network (Xue et al., 2023). These features characterize
the alignment level between different modalities, and a higher degree of feature alignment leads to
better KD results. Fig.1(a) shows an example of a multimodal dataset that includes both sound and
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Figure 1: Some Cross-Modal Data Instances.(a) Modal misaligned scene (b)-(d) Modal alignment
scenario (Our research subjects), such as images and audio of a guitar, RGB images from the same
camera perspective and point cloud projected onto images and depth maps.

images. In this scenario, the image data might not only capture the guitar playing music but also
a considerable amount of background information. As a result, the information between the two
modalities is not entirely aligned. According to the modality focus hypothesis (Xue et al., 2023),
the effectiveness of cross-modal distillation is expected to increase with better alignment of features
between the two modalities. However, it has been discovered that even in cases of perfect alignment
between modalities, cross-modal KD can still be ineffective, as illustrated in Fig.1(b), Fig.1(c) and
Fig.1(d).

In contrast to (Xue et al., 2023), this paper focuses on examining the impact of data distribution shifts
on cross-modal KD. We introduce the Solution Space Divergence Hypothesis (SSDH) to explain the
challenges faced by cross-modal KD. Furthermore, to address instances of failed cross-modal KD,
we propose a method known as the Perceptual Solution Space Mask (PSSM), which enhances the
effectiveness of cross-modal KD.

The main contributions of our paper can be summarized as follows:

• We establish the conditions under which cross-modal KD outperforms unimodal scenarios.

• We propose the SSDH, which suggests that the effectiveness of cross-modal KD is deter-
mined by the differences in the distribution of input modalities.

• To substantiate the validity of the SSHD, we propose a method called PSSM. This approach
enhances the performance of cross-modal KD by masking positions where the solution
spaces of the teacher and student networks are inconsistent, thereby validating our proposed
hypothesis.

• We conducted experiments on four cross-modal datasets, and the results validate our hy-
pothesis and the effectiveness of the proposed method.

2 RELATED WORK

2.1 CROSSMODAL KD

With the widespread use of the internet and the increasing application of multimodal sensors, there
has been a surge of interest in multimodal learning. In line with this trend, KD has evolved from
its original purpose of model compression to encompass knowledge transfer in multimodal data
settings, such as semantic segmentation (Li et al., 2020; Chen et al., 2019; Li et al., 2020; Yan et al.,
2022; Jaritz et al., 2022; Li et al., 2020; Yan et al., 2022), 3D human pose estimation (Thoker &
Gall, 2019), emotion recognition (Li et al., 2023), super-resolution reconstruction (Xia et al., 2022),
and object detection (Dai et al., 2021; Zhao et al., 2020; Chen et al., 2022; Abavisani et al., 2019;
Yang & Xu, 2021; Zhang & Ma, 2020; Yao et al., 2022), among others (Huang et al., 2022). The
mentioned methods commonly utilize paired multimodal data,

where one modality or a combination of modalities is employed to train the teacher network. Si-
multaneously, the data from another modality is used as the training data for the student network.
Through the minimization of the divergence between the output distributions of the teacher and stu-
dent models, the student model can effectively acquire knowledge from the teacher model. This
process enhances the robustness and overall performance of the student model.
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Additionally, certain methods have explored the use of non-paired data for training purposes (Dou
et al., 2020; Wang et al., 2021). Although these approaches have shown promise in cross-modal
KD, they tend to be tailored to specific multimodal tasks. This paper, on the other hand, primarily
focuses on conducting a thorough analysis of the underlying mechanisms in cross-modal KD. By
delving deeper into these mechanisms, the aim is to gain a better understanding of cross-modal KD
and its potential implications.

2.2 KD ANALYSIS

while knowledge distillation (KD) has demonstrated success across various domains, there are in-
stances where its effectiveness may not be satisfactory, leading to distillation failures. Consequently,
researchers have made efforts to explore and study the factors influencing KD. Among these factors,
the structure and capacity of both the teacher and student networks have received considerable at-
tention from researchers (Cho & Hariharan, 2019). For example (Mirzadeh et al., 2020) employed
a medium-sized network, often referred to as a ’teacher assistant,’ to bridge the gap between the
student and the teacher. (Li et al., 2017) proposed a novel algorithm based on the distillation process
for learning from noisy data. Additionally, (Ren et al., 2022) and (Mirzadeh et al., 2020) explored
the transfer of inductive biases of different networks, such as Long Short-Term Memory(Hochreiter
& Schmidhuber, 1997), Convolutional Neural Network(CNN)(LeCun et al., 1989), or Multi-Layer
Perceptron(MLP), through KD. Some other researchers have analyzed the poor performance of KD
for specific tasks and proposed improvement strategies. For instance, (Guo et al., 2021) highlighted
the importance of including background information without objects in object detection tasks for
KD. (Yang et al., 2020) advocated KD based on representation learning, which involves minimizing
the difference between the penultimate layer feature representations of the teacher and student net-
works. In (Abavisani et al., 2019), KD was combined with model quantization to compress models,
resulting in enhanced performance. Recently, (Xue et al., 2023) investigated the impact of the con-
centration of cross-modal features on KD. In contrast to (Xue et al., 2023), our focus in this paper is
on the influence of data distribution shift between cross-modal data on KD.

2.3 DATA DISTRIBUTION SHIFTS

Data distribution shifts has become a critical factor influencing the fusion of multimodal data. To
tackle the challenge of domain shift, two broad approaches have been pursued. One approach fo-
cuses on decoupling and aligning features to achieve multimodal data fusion (Li et al., 2023; Zhao
et al., 2020). These methods separate multimodal features into modality-related and modality-
unrelated components and subsequently align the related features. The other approach involves
unsupervised adversarial learning, where adversarial techniques are employed to transform features
from one modality to another or to an intermediate modality (Li et al., 2020). However, these
methods primarily address the fusion of multimodal features and may not be directly applicable to
dual-branch network structures in the context of cross-modal KD. To the best of our knowledge,
there is currently no existing literature that specifically addresses the adverse effects of domain shift
on cross-modal KD. In this paper, we propose a mask-based approach to alleviate the failure of
cross-modal KD caused by data distribution shift issues.

3 THE PROPOSED APPROACH

3.1 CONDITIONAL ASSUMPTIONS AND SYMBOL DEFINITIONS

In this paper, we begin by providing a comprehensive overview of the fundamentals of KD and
introducing the symbol representations utilized throughout the study. Our focus is primarily on the
case of C-class classification, although the concepts discussed can be extended to regression tasks
as well. To maintain a general framework, we consider a two-modal setting, where the data is
represented as xa and xb, denoting the data from modalities ‘A’ and ‘B’, respectively.

{(xa
i , yi)}ni=1 ∼ Pn(xa, y), xa

i ∈ Rda , yi ∈ ∆c

{(xb
i , yi)}ni=1 ∼ Pn(xb, y), xb

i ∈ Rdb , yi ∈ ∆c
(1)
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Here, (xa
i , yi) and (xb

i , yi) respectively represent the feature-label pair of modality ‘A’ and modality
‘B’. and ∆c represents the set of c-dimensional probability vectors. Suppose our goal is to train a
student network that takes xb as input. In the case of cross-modal KD, the teacher network takes the
training data xa as its input and minimizes the training objective:

ft = argmin
f∈Ft

1

n

n∑
i=n

L(yi, σ(f(xa
i ))) + Ω(∥f∥) (2)

Where Ft is a class of functions from Rda to Rc , the function σ : Rc → ∆c is the softmax operation.

σ(z)k =
ezk∑c
j=1 e

zj
(3)

For all 1 ≤ k ≤ c , the function L : ∆c × ∆c → R is KL Divergence. And Ω : R → R is an
increasing function which serves as a regularizer. Note that here the KL divergence is equivalent to
the cross-entropy(CE) loss.

After training the teacher model ft using the data xa
i from modality ‘A’, our goal is to transfer the

knowledge acquired by the teacher network to the student network operating in modality ‘B’. The
objective in optimizing the student network is to minimize Eqn. (4).

fs = argmin
f∈Fs

1

n

n∑
i=1

[(1− λ) · L(yi, σ(f(xb
i )))︸ ︷︷ ︸

CE

+λ · L(si, σ(f(xb
i )))︸ ︷︷ ︸

KL

] (4)

Where si = σ(ft(x
a
i )/T ) ∈ ∆c represents the soft predictions obtained from ft about the training

on modality ‘A’. The temperature parameter T (T > 0) controls the level of softening or smoothing
of the class-probability predictions from ft and the imitation parameter λ ∈ [0, 1] determines the
balance between imitating the soft predictions si and predicting the true hard labels yi. Note that as
si represents predicted labels rather than true labels, the loss function L used at this stage cannot
be equivalent to the CE loss typically used for training with true labels.

Given that our primary focus in this paper is the examination of data distribution shift effects con-
cerning cross-modal KD, we delineate the ensuing assumption conditions in our discourse. These
assumptions form the foundational framework for the theoretical elucidations in Sec. 3.2.

• Assumption 1: Fs and Ft have the same model capacity, meaning they have the same
ability to fit or learn complexity or accommodate information.

• Assumption 2: xa
i and xb

i have the same modality strength, meaning that when the same
model is trained using xa

i and xb
i as data separately, the difference in model prediction

accuracy is not significant.
• Assumption 3: Considering the vector output from Eqn. (3) , which encompasses the

model’s scores or probability estimates for each potential class, and assuming that assump-
tions 1 and 2 are satisfied, the key distinction between cross-modal knowledge distillation
and single-modal knowledge distillation emerges from the variability in data distribution.
Consequently, we have the option to substitute the solution space, initially characterized by
network parameters, with the probability distribution output after feeding the data into the
network.

3.2 SOLUTION SPACE DIVERGENCE HYPOTHESIS

Under the assumption in 3.1, based on VC theory (Vapnik, 1999) , we can prove that: Unimodal
KD serves as an upper bound for cross-modal KD. (See Appendix A for the omitting proof.)
According to the above conclusion, we can infer that the shift in data distribution is a crucial factor
affecting the effectiveness of cross-modal KD. This data distribution shift ultimately leads to the
inconsistency of solution spaces between the teacher and student networks, resulting in the teacher’s
inability to guide the student. This gives rise to the Solution Space Divergence Hypothesis (SSDH).
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Solution Space Divergence Hypothesis (SSDH).

For cross-modal KD, the performance of KD is determined by the Divergence in the solution space
between the teacher and student networks, which is caused by the input modality. The smaller the
Divergence in solution space, the better the student network is expected to perform.

This hypothesis posits that in cross-modal knowledge transfer, the student learns to ’focus on’ fea-
tures in the teacher network that align with its own network’s solution space. Therefore, cross-modal
KD benefits from the consistency of solution spaces. Furthermore, it elucidates our observation that,
in certain circumstances, the teacher’s performance is not directly correlated with the student’s per-
formance.

To intuitively and quickly comprehend our hypothesis, we conducted an experiment using synthetic
Gaussian data in this context. We maintained a constant input for the student network and generated
6 sets of cross-modal data by varying the input data for the teacher network, thereby satisfying As-
sumption 2. Both the teacher and student networks employed the same 2-layer MLP, in accordance
with Assumption 1. To better characterize the differences in solution spaces between different
data modalities, as stipulated by Assumption 3, we quantified the discrepancy between the solution
spaces of the student and teacher networks using Central Moment Discrepancy (CMD) (Zellinger
et al., 2017), based on the Moment Matching Theorem. A higher CMD value indicates a greater
disparity in solution spaces.

Figure 2: The teacher modality is xa
i , and the student modality is xb

i . We plot a confidence interval
of one standard deviation for student accuracy. As CMD increases, cross-modal KD becomes inef-
fective.

As shown in Fig. (2), we begin by considering scenarios where the disparity in solution spaces
between the two modalities was at its maximum. By gradually increasing shared deterministic
features, we progressively reduced the dissimilarity in solution spaces. We observed that when
there was a significant disparity in solution spaces between the teacher and student, cross-modal
KD did not function effectively, as the approximation error was substantial at this point. As the
dissimilarity in solution spaces decreased, cross-modal KD became more effective. It’s important to
note that throughout this process, the teacher’s accuracy remained relatively stable, while there was
a substantial variation in student performance.

3.3 PERCEPTUAL SOLUTION SPACE MASK (PSSM)

In accordance with the hypothesis in Sec. 3.2, we have demonstrated that in cross-modal KD, the
inconsistency in solution spaces leads to differences between the student and teacher prediction
distributions, ultimately resulting in an increase in approximation error. To mitigate this decline in
KD due to multimodal data, in this section, we propose a mask-based approach called the Perceptual
Solution Space Mask(PSSM) to enhance cross-modal KD.

Building upon the analysis above, we introduce the concept of a perceptual solution space incon-
sistency mask to focus on output features that arise from differences in solution spaces. Our ap-
proach involves computing a mask for each pair of teacher and student network-predicted output
features, where features with larger differences in solution spaces are assigned smaller weights, and
vice versa. The mask values range from 0 to 1. As features with greater dissimilarity in solution
spaces receive smaller weights, this approach can mitigate the impact of solution space inconsis-
tency. Specifically, we first calculate the difference between the predicted distributions of the stu-
dent and teacher in the final classification output layer. Then, based on the computed distribution
discrepancy, we obtain the specific mask values.
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To compute the difference between probability distributions of different modalities’ outputs, we first
calculate the cosine similarity between the distributions.

distance =
1

2
·
(

Oa ·Ob

∥Oa∥ ∥Ob∥
+ 1

)
(5)

Here, ∥·∥ represents the L2 norm. To normalize the distribution discrepancy in our computed results
to a range of 0 to 1, we add 1 to the calculated cosine similarity and then divide it by 0.5. Further-
more, lower similarity in output distributions indicates greater dissimilarity between modalities. By
combining this with a cosine distance threshold, we obtain the mask:

mask =


1, if distance < τ

distance, otherwise

(6)

Here τ indicates the distance threshold. Finally, for the last output layer, the maximum value in
the predicted probability distribution should align with the one-hot label; otherwise, the prediction
distribution is definitely incorrect. Based on this prior information, we only apply the mask when
the predicted label is incorrect.

Ωa→b
i =


1, if predict = label

mask, otherwise

(7)

Inspired by (Zhang et al., 2018), to learn perceptual information from the data distributions of dif-
ferent modalities, we construct the perception-aware loss with respect to cross-modal KD loss by

Lper = Ωa→b
i ·KLmulti(Ft||Fs) (8)

Because this method operates based on the input data at the final layer and does not involve modi-
fications to the network model itself, it can be easily ported to other improved KD algorithms. The
details will be discussed in Sec. 4.3.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

To validate our SSDH and evaluate PSSM, we conducted four experiments on multimodal datasets.
We employ three methods to construct multimodal data with domain shifts. (1) For synthetic Gaus-
sian and Sklearn datasets, we kept the input features fixed for the student network and generated
multimodal data with varying degrees of modality differences by replacing teacher features with
different numbers of student features. Detailed information can be found in the Appendix. A. It’s
important to note that, on the synthetic Gaussian dataset, we primarily aimed to validate the sound-
ness of SSDH and PSSM. On the Sklearn Dataset, we applied the PSSM to the DKD loss (Zhao
et al., 2022), significantly enhancing its performance in cross-modal KD. This demonstrates the
strong generalization capability of our method. For more details, please refer to Sec. 4.3. (2) For the
MNIST-MNISTM dataset, we employed MNISTM and MNIST data as the inputs for the student and
teacher networks, respectively. To induce distribution shifts, we introduced varying levels of noise
to the MNIST data. (3) For the SemanticKITTI dataset, we used point clouds and RGB images as
inputs for the student and teacher networks, respectively. We modified the input data distribution of
the teacher network by incorporating point cloud features into the image features.

4.2 SYNTHETIC GAUSSIAN

In line with the settings provided by the (Xue et al., 2023), we expand upon the Gaussian example
presented in (Lopez-Paz et al., 2015) to encompass a multimodal scenario (see Appendix ?? for
details). This dataset represents a binary classification task, consisting of six pairs of data distri-
butions with distinct differences. This type of data distribution shift leads to an inconsistency in
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solution spaces, as illustrated in Fig. (2).These findings align with the perspectives of the SSDH,
which posits that minimizing the disparity between teacher and student solution spaces fosters im-
proved student performance. To further analyze the origin of this inconsistent solution space, we
computed the CMD distances between the teacher and student networks regarding their input data
and the CMD distances between their output probability distributions, as shown in the first and sec-
ond columns of Table. 1, respectively. Observably, as the CMD value of the input data increases,
the CMD value of the network outputs also increases, signifying that the deviation in data distri-
bution results in an inconsistency in the solution space. It is worth noting that in the experiments,
we solely manipulated the input data while keeping other variables constant. When we further vi-
sualize the probability distributions of the teacher and student network outputs, we notice that an
increase in the disparity of input data distribution (indicated by the increase in CMD) corresponds
to an enlargement of the solution space differences, as depicted in Fig. (3).

Figure 3: Visualizing the Probability Distributions of Teacher and Student Network Outputs When
Teacher Predicts Incorrectly.

To address the problem of KD failure caused by significant disparities in the solution spaces of
teachers and students, we employed the PSSM method proposed in Sec. 3.3. A comparison of the
results from Table. 1 and Fig. (4) 1 reveals that the method incorporating the perceptual solution
space mask achieves lower CMD values compared to the original method. This observation sug-
gests that our approach effectively mitigates the performance degradation caused by solution space
disparities. Upon further examination, we have noticed that under conditions where solution space
disparities are minimal, the improvements achieved by the enhanced algorithm are limited and, in
some cases, do not surpass the performance of the original KD method (e.g., CMD=3). This further
emphasizes that the performance improvement in PSSM is not due to the elimination of inaccurate
pseudo-labels but rather the reduction in solution space divergence. The code can be found in the
supplementary materials.

Figure 4: Using KL as the baseline, compare
the accuracy of the student network predictions
with and without PSSM.

Table 1: The CMD distance between the teacher
and student networks for input data, as well as
the CMD distance between their output proba-
bility distributions.

Input Data w/o PSSM w/ PSSM

15.84 0.03 0.03 -
16.79 0.06 0.05 ↓
17.66 0.09 0.07 ↓
18.62 0.11 0.08 ↓
19.43 0.13 0.09 ↓
20.30 0.15 0.11 ↓

4.3 SKLEARN DATASETS

In this section, we extend the PSSM to (Zhao et al., 2022), this approach reformulates the classical
KD loss into two distinct components: Target Class Knowledge Distillation (TCKD) and Non-Target
Class Knowledge Distillation (NCKD). TCKD represents the similarity of binary probabilities for
target classes between the teacher and student networks. Meanwhile, NCKD represents the similar-
ity of probabilities between the teacher and student networks for non-target classes. The DKD loss
with the PSSM is formulated as follows:
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DKDPSSM = Ω ·DKD (9)

Where Ω is determined by Eqn. (7), DKD = αTCKD+βNCKD and α, β are hyperparameters
used to balance the importance of TCKD and NCKD. For details, please refer to (Zhao et al. (2022)).

Table. 2 presents a comparison between the results of DKD with PSSM and the original DKD loss.
From the experimental results, we observe a significant performance improvement of DKD com-
pared to the KD loss, with an enhancement of approximately 3%, when the solution space difference
is relatively small (i.e., a smaller CMD value). However, as the solution space shifts increases, DKD
performance deteriorates notably, even exhibiting negative distillation effects. Interestingly, we also
discover that when we extend PSSM to DKD, there is a notable improvement in accuracy, indicating
the effectiveness of our method in enhancing cross-modal KD.

In addition, we investigated the sensitivity of TCKD and NCKD to inconsistent solution spaces by
varying α and β. From Table. 3, we observe that when β is fixed, increasing α leads to effective
KD regardless of whether the solution space difference increases. However, when α is fixed and
β is increased, the KD performance significantly deteriorates, especially when the solution space
difference is large (indicated by a larger CMD value), as shown in Table. (4). This suggests that
in the context of cross-modal KD, NCKD is more sensitive to the inconsistency in solution spaces
compared to TCKD.

Table 2: Results on Sklearn datasets. α = 100, β = 1

CMD
Distance

Teacher
Accuracy

Student
w/o KD

Student KD
KL

Student KD
DKD

Student KD
DKD with PSSM

4.20 41.36 41.73 42.61
(0.88± 0.40)

46.46
(4.73 ±1.39)

48.54
(6.81± 1.18)

4.68 42.71 41.73 42.28
(0.55± 0.47)

45.87
(4.14± 2.87)

48.61
(6.89± 2.26)

5.15 39.88 41.73 41.83
(0.10± 0.73)

42.07
(0.34± 3.17)

46.39
(4.67± 2.39)

5.60 40.46 41.73 41.68
(−0.05± 0.69)

41.12
(−0.60± 3.37)

44.93
(3.20± 2.84)

5.96 42.36 41.73 41.53
(−0.19± 0.42)

40.98
(−0.74± 3.06)

44.82
(3.09± 2.70)

Table 3: Results on Sklearn datasets. Fixing β = 1 and varying α. The data in the table shows the
difference in prediction accuracy when using DKD with PSSM compared to not using KD. A larger
value indicates a better improvement.

CMD
α 1 4 8 16 20

5.96 0.06 ± 0.45 0.06 ± 1.06 0.01 ± 1.42 0.65 ± 1.97 0.92 ± 2.16
5.60 0.42 ± 0.49 0.45 ± 0.77 0.57 ± 1.08 1.16 ± 1.64 1.52 ± 1.74
5.51 0.29 ± 0.39 0.94 ± 1.06 1.53 ± 1.48 2.57 ± 1.80 2.95 ± 1.87
4.68 0.50 ± 0.43 1.79 ± 1.03 2.89 ± 1.44 4.11 ± 1.50 4.61 ± 1.44
4.20 0.77 ± 0.31 1.85 ± 0.61 2.92 ± 1.13 3.91 ± 1.20 4.27 ± 1.26

Further analysis of this phenomenon reveals that, due to the common constraint of both teacher and
student networks on target classes using the same CE loss, there is a significant bias in probability
prediction for non-target classes due to the shift in data distribution (resulting in larger solution space
divergence). Therefore, the increase in TCKD, which represents the similarity of probabilities for
target classes between the teacher and student, helps in suppressing NCKD, which represents the
similarity of probabilities for non-target classes. This demonstrates that enhancing TCKD, which
reflects the similarity of target class probabilities, contributes to the suppression of NCKD, which
represents the similarity of non-target class probabilities.
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Table 4: Results on Sklearn datasets. Fixing α = 1 and varying β. The data in the table shows the
difference in prediction accuracy when using DKD with PSSM compared to not using KD. A larger
value indicates a better improvement.

CMD
β 1 4 8 16 20

5.96 0.06 ± 0.45 -0.58 ± 0.73 -1.79 ± 1.28 -3.94 ± 2.22 -4.98 ± 2.60
5.60 0.42 ± 0.49 0.04 ± 0.84 -0.81 ± 0.82 -2.03 ± 1.23 -2.60 ± 1.49
5.15 0.29 ± 0.39 0.25 ± 0.69 -0.18 ± 0.94 -0.95 ± 1.07 -1.45 ± 1.28
4.68 0.50 ± 0.43 0.75 ± 0.73 0.70 ± 0.97 0.83 ± 1.20 0.73 ± 1.27
4.20 0.77 ± 0.31 1.10 ± 0.53 1.43 ± 0.76 2.09 ± 0.92 2.34 ± 1.01

4.4 MNIST/MNISTM AND SEMANTICKITTI DATASETS

We applied the proposed PSSM to both simulated and real-world datasets to further validate the
effectiveness of PSSM.

Experimental Results on MNIST/MNISTM Dataset: Table. (5) presents the comparative experi-
mental results of using DKD loss and our DKD with PSSM under different noise levels. From Table.
5, we can observe a significant improvement in accuracy when applying the PSSM. Particularly, un-
der high noise levels, our method demonstrates substantial performance enhancement. For instance,
at a noise level of 5, our approach achieved an approximately 6% increase in classification accuracy.

Table 5: Results on MNIST/MNISTM dataset. α = 16, β = 1

Noise
level

Teacher
Accuracy

Student
w/o KD

Student KD
DKD

Student KD
DKD with PSSM ∆

0 92.98 75.40 82.03(6.62 ± 0.67) 81.83 (6.64 ± 0.76 ) -0.2
1 81.10 75.40 79.87 (4.74 ± 0.72) 81.21 (5.81 ± 0.88) +1.34
2 70.42 75.40 76.52 (1.12 ± 2.17) 78.77 (3.37 ± 0.81) +2.25
3 62.58 75.40 75.14 (-0.26 ± 2.44) 79.92 (4.52 ± 1.28) +4.78
4 46.37 75.40 72.19 (-3.21 ± 1.87) 76.94 (1.52 ± 0.78) +4.75
5 38.85 75.40 68.99 (-6.17 ± 5.66) 76.20 (0.66 ± 1.15) +7.21

Experimental Results on SemanticKITTI Dataset: We compared the point cloud segmentation
results using KD loss, DKD, and the improved DKD loss, as shown in Table. (6). It can be observed
that without incorporating point cloud information, both KD loss and DKD loss are ineffective.
However, our method still achieves a performance improvement of 1.5%, indicating its effectiveness
in overcoming the negative impact caused by data distribution shift.

Table 6: Results on SemanticKITTI.

Teacher
mIoU(%)

Student w/o KD
mIoU (%)

Student KD
mIoU(%)

Student KD+PSSM
mIoU(%

a 46.04 59.68 60.19 62.40
b 61.7 59.68 62.95 63.90

5 CONCLUSION AND LIMITATIONS

In this study, we conducted a comprehensive exploration of cross-modal KD and its broader appli-
cations in multimodal learning. We introduce the SPDH, highlighting the role of data distribution
disparities across modalities in KD effectiveness. Additionally, we propose PSSM to mitigate the
impact of data distribution shifts on cross-modal KD. However, it’s important to note that our inves-
tigation primarily centered on cross-modal KD rooted in logit distillation, omitting the exploration
of alternative approaches based on distilling deep features from intermediate layers. Future research
endeavors may expand upon these aspects to further advance cross-modal KD in the academic com-
munity.
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A PROOF OF THEOREM

Symbol List
xa data from modalities ‘A’
xb data from modalities ‘B’
Ft teacher function (trained on xa)
Fs student function (trained on xa or xb)
T temperature parameter
yi the true hard labels
si soft predictions
ε approximation error

O(·) Estimation error
σ the softmax operation.
|·|C some function class capacity measure
n The number of data point

Recall our three actors: the student function fs ∈ Fs (trained on xb
i ), the teacher function ft ∈ Ft

(trained on xa
i or xb

i ), and the real target function of interest to both the student and the teacher,
f ∈ F . For simplicity, consider pure distillation, where the imitation parameter is set to λ = 1.

According to VC theory (Vapnik, 1999), the classification error of the classifier, f b
s can be expressed

as:

R(f b
s )−R(f) ≤ O

(∣∣Fb
s

∣∣
C√
n

)
+ εsb (10)

Where the O(·) and εsb terms are the estimation and approximation error, respectively. The former
refers to the performance gap between a model on training data and its theoretical best performance.
The latter refers to the difference between a model output and the true target function. It reflects
whether the model representational capacity is sufficiently powerful to accurately approximate the
true target function. If the model’s hypothesis space is not capable of capturing the complexity of
the target function, the approximation error will be large. Here R is the error, |·|C is some function
class capacity measure, and n is the number of data point.

Let fa
t ∈ Fa

t and f b
t ∈ Fb

t be the teacher function trained on xa
i and xa

i , then:

R(fa
t )−R(f) ≤ O

(
|Fa

t |C
n

)
+ εta (11)

R(f b
t )−R(f) ≤ O

(∣∣Fb
t

∣∣
C

n

)
+ εtb (12)

Then, we can transfer the knowledge of the teacher separately from training data ‘A’ or ‘B’ to the
student. Let fa

t serve as the teacher function in cross-modal KD, and f b
t in Unimodal KD, then:

Cross modal KD

R(f b
s )−R(fa

t ) ≤ O

(∣∣Fb
s

∣∣
c

nα

)
+ εm (13)

Where εm is the approximation error of the teacher function class Fb
s with respect to fa

t ∈ Fa
t , and

1
2 ≤ α ≤ 1.

Unimodal KD

R(f b
s )−R(f b

t ) ≤ O

(∣∣Fsb
∣∣
C

nα

)
+ εl (14)
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Where εl is the approximation error of the teacher function class Fb
s with respect to f b

t ∈ Fb
t .

Then, if we employ cross-modal KD, combining Eqn. (11) and Eqn. (13), we can obtain an alterna-
tive expression for the student learning the real function f , as follows:

Alternative Expression Through Cross-Modal KD

R(f b
s )−R(f) = R(f b

s )−R(fa
t ) +R(fa

t )−R(f)

≤ O

(∣∣Fb
s

∣∣
C

nα

)
+ εm +O

(
|Fa

t |C
n

)
+ εta

(15)

Similarly, by employing unimodal KD and combining Eqn. (12) and Eqn. (14), we can obtain an
alternative expression for the student’s learning of the real function f , as follows:

Alternative Expression Through Unimodal KD

R(f b
s )−R(f) = R(f b

s )−R(f b
t ) +R(f b

t )−R(f)

≤ O

(∣∣Fb
s

∣∣
C

nα

)
+ εl +O

(∣∣Fb
t

∣∣
C

n

)
+ εtb

(16)

Combining Eqn. (15) and Eqn. (16), it is necessary to satisfy Eqn. (17); otherwise, cross-modal
KD would not outperform Unimodal KD.

O

(
|Fa

t |C
n

)
︸ ︷︷ ︸
estimation

+ εm + εta︸ ︷︷ ︸
approximation

≤ O

(∣∣Fb
t

∣∣
C

n

)
︸ ︷︷ ︸
estimation

+ εl + εtb︸ ︷︷ ︸
approximation

(17)

Observing Eqn. (17), we can find that it consists of two components: estimation and approximation
error. Regarding the estimation error, it is mainly determined by model capacity and data modality
strength. According to the assumption conditions in Sec. 3.1, when we disregard the differences in
model capacity and data strength, the estimation error between cross-modal and unimodal KD is not
significantly different. Therefore, we will now focus on discussing the approximation error.

Further analysis reveals that concerning the approximation error term, it reflects the disparity be-
tween model outputs and the true target. In KD, this difference is primarily determined by the loss
function (Eqn. (4). When we use CE and KL divergence as loss functions for model parameter
updates, the approximation error introduced by CE is not significantly different for cross-modal and
unimodal KD since both use the same labels for teachers and students. However,data distribution
shifits lead to inconsistencies in the model output solution space, resulting in varying approximation
errors due to KL divergence. Therefore, we will now focus on the approximation error caused by
KL divergence. Therefore, we will now focus on the approximation error induced by KL.

In the case of Unimodal KD, the KL divergence is:

KLuni(Ft||Fs) = −
∑
xb
i

σ(ft(x
b
i )) log

σ(fs(x
b
i ))

σ(ft(xb
i ))

(18)

Similarly, in the case of cross-modal KD, the KL divergence is:

KLmulti(Ft||Fs) = −
∑
xb
i

σ(ft(x
a
i )) log

σ(fs(x
b
i ))

σ(ft(xa
i ))

(19)

By combining Eqn. (18) and Eqn. (19) and based on the assumption conditions, we can conclude
that due to modality differences, the approximation error in cross-modal KD is greater than in Uni-
modal KD.
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εm − εl = KLmulti(Ft||Fs)−KLuni(Ft||Fs)

= KLmulti(Ft||Fs)− 0

= KLmulti(Ft||Fs) ≥ 0

(20)

Unimodal KD can be seen as a special case of cross-modal KD (i.e., cross-modal KD without modal-
ity shift). According to Eqn. (20), we can observe that, when the assumption conditions are
met, Unimodal KD serves as an upper bound for cross-modal KD. Thus, we propose the So-
lution Space Divergence Hypothesis to elucidate the impact of modality differences on KD during
cross-modal KD.

B EXPERIMENTAL SETUP AND MORE RESULTS

B.1 SYNTHETIC GAUSSIAN IN SEC. 4.2

Assuming two vectors, xa ∈ Rd and xb ∈ Rd, constitute a multimodal data pair (xa, xb). The
feature vectors of xa and xb are composed of deterministic features and noise. Initially, we make xa

and xb identical, and then we fix xb while altering xa features. The modification involves gradually
replacing deterministic features in xa with other deterministic features. We set xb as the input data
for the student network, while xa serves as the input data for the teacher network, creating multi-
modal data with different distribution shifts, as illustrated in Fig. (5). We reduce the dimensionality
of the 6 sets of multimodal features to two dimensions for visualization, as shown in Fig. (6).

Figure 5: synthetic Gaussian.

Figure 6: Visualize the 6 sets of multimodal data using t-SNE (Van der Maaten & Hinton, 2008).

B.2 SKLEARN DATASETS IN SEC. 4.3

Dataset: In the process of constructing a multimodal dataset, we adopted two crucial steps. Firstly,
by leveraging the ‘make classification‘ function from the sklearn toolkit, we could effortlessly gen-
erate an initial classification dataset, providing a convenient and intuitive starting point for the entire
process. Subsequently, by randomly splitting these single-modal features into two, we simulated
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features from different modalities. The advantage of this construction method lies in its simplicity
and intuitiveness, enabling us to flexibly generate multimodal features and gain a better understand-
ing of the similarities and differences between modalities.

Further Analysis on the Effectiveness of PSSM:
This section will further analyze the reasons for the effectiveness of PSSM. Through experiments,
we can explain that the effectiveness of the PSSM method lies in its ability to bring about
consistency in the solution space of the ”Target” section, while preserving the distinctiveness of the
solution space for the ”None-target” section. The specific analysis is as follows:

We assessed the CMD distance between ”Target” and ”Non-target” segments of the student network
and the evolving probability distribution of the teacher network over network iterations. With
the introduction of PSSM in the ”Target” segment, probability distributions between teacher
and student networks converged, aligning their solution spaces (Fig.(7)(a)). Conversely, in the
”Non-target” segment, PSSM increased the separation of probability distributions, preserving dis-
tinct solution spaces (Fig.(7)(b)). Table. 7 displays average CMD distances, confirming these trends.

Additionally, we visualized the probability distributions corresponding to the ”Target” and ”Non-
target” segments of both the student and teacher network outputs during the stable training phase.For
the ”Target” segment, characterized by a binary (0-1) probability distribution, the visualization mani-
fests as a singular point on a plane, as depicted in Fig.(8)(a). Notably, the integration of PSSM results
in the convergence of the student’s predicted probability distribution toward that of the teacher. This
convergence is accentuated with the augmentation of data shift. A similar visualization approach
was applied to the probability distributions of the ”Non-target” segment. Given its discrete multi-
nomial probability distribution, a spline curve was employed to connect the discrete distribution for
enhanced observation, as portrayed in Fig.(8)(b). The graph demonstrates that the introduction of
PSSM leads to a divergence between the student’s predicted probability distribution and that of the
teacher, with this phenomenon becoming more prominent as data shift increases. These observa-
tions collectively suggest that the efficacy of the PSSM method lies in fostering consistency in the
solution space for the ”Target” segment while concurrently preserving distinctiveness in the solution
space for the ”Non-target” segment.

Figure 7: The CMD distance between the output probability distributions of the teacher and student
networks. According to (Zhao et al., 2022), we decompose the classification probabilities of the
student’s teacher network into predictions relevant and irrelevant to the target class. We define the
following notations: b = [pt, p\t] ∈ R1×2 represents the binary probabilities of the target class (pt)

and all the other non-target classes (p\t). Meanwhile, we declare
∧
p = [

∧
p1 , ...,

∧
pt−1 ,

∧
pt+1 , ...,

∧
pC ] ∈

R1×(C−1) to independently model probabilities among nontarget classes (i.e., without considering
the t-th class). The specific calculation method can be found in the (Zhao et al., 2022).

B.3 MNIST/MNISTM DATASETS IN SEC. 4.4

Dataset: MNIST (Modified National Institute of Standards and Technology) is a widely used dataset
for handwritten digit recognition. This dataset comprises grayscale images of handwritten digits
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Table 7: The average CMD distance between the output probability distributions of the teacher and
student networks

Output CMD×100

Input CMD
4.20 4.68 5.15 5.60 5.96

Target w/o PSSM 0.40 0.44 0.57 0.79 1.54
w/ PSSM 0.44 0.84 1.34 1.44 2.23

Non-target w/o PSSM 0.34 0.42 0.40 0.64 1.23
w/ PSSM 1.08 2.30 2.80 3.03 4.29

ranging from 0 to 9, each corresponding to a label. Each image has a size of 28x28 pixels, with a
total of 60,000 training images and 10,000 test images. The MNIST-M (Ganin & Lempitsky, 2015)
is created by blending MNIST digits with randomly colored blocks from the BSDS500. To simulate
differences from various data sources, we introduced varying levels of noise into the MNIST, as
visualized in Fig. (7).

Implementation Details: The network consists of a 2-layer MLP. The input data for the student
network is MNIST-M, while the input data for the teacher network is MNIST data with added
Gaussian noise. This setup allows us to assess the impact of data distribution shift on KD. We
conducted experiments with five different noise levels, ranging from 0 to 5. Here, 0 represents data
without added noise, corresponding to the original MNIST data, and 5 represents the highest noise
level.

B.4 SEMANTICKITTI DATASET IN SEC. 4.4

Dataset: The SemanticKITTI (Behley et al., 2019) is an extension of the KITTI dataset and includes
both point cloud data and corresponding images. The point cloud from each frame can be projected
onto the image using camera intrinsic and extrinsic matrices, creating a multimodal dataset. For
more details on this process, please refer to (Zhuang et al., 2021).

Implementation Details: In order to construct two different data distribution disparities, we adopted
the following approaches: (1) Images as input data for the teacher network and point clouds as input
data for the student network, as depicted in Fig. (8 (a)); (2) Fusion features of images and point
clouds as input data for the teacher network, with point clouds as input data for the student network,
as shown in Fig. (8 (b)). We consider that the latter has a smaller data distribution shift compared to
the former since it incorporates the input data of the student network.

C ADDITIONAL COMPARISONS

In order to further illustrate the superiority of the PSSM method proposed in Sec.3.3, we compared
it with some classical single-modal knowledge distillation methods.

The competing methods included are:

• Features: FitNet (Romero et al., 2014), Contrastive Representation Distillation (CRD)
(Tian et al., 2019), Relational Knowledge Distillation (RKD) (Park et al., 2019), Probabilis-
tic Knowledge Transfer for deep representation learning(PKT) (Passalis & Tefas, 2018) ,
Similarity-Preserving KD (SP) (Tung & Mori, 2019).

• logits: Knowledge Distillation (KD) (Hinton et al., 2015), decoupled Knowledge Distilla-
tion (DKD) (Zhao et al., 2022).

Comparison results on the Gauss dataset: Drawing upon empirical findings, our approach demon-
strates superior performance across various scenarios, with the only exception being a marginal de-
crease in effectiveness compared to the SP method, particularly evident when encountering minimal
disparities in data distribution, as illustrated in the Table. 8. Notably, our method surpasses other
comparative techniques in all remaining situations. As for methodologies such as Contrastive Rep-
resentation Distillation (CRD), reliant on contrastive learning, their efficacy is compromised on the
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Gauss dataset due to its binary categorization and the scarcity of abundant negative sample pairs.
Consequently, a comparative analysis of CRD on the Gauss dataset is omitted from the presented
table.

Table 8: Comparison with other knowledge distillation methods on the Gauss dataset.

Distillation manner CMD 15.84 16.79 17.66 18.62 19.43 20.30

Features

FitNet 73.48 72.47 71.33 70.24 69.32 68.33
CRD - - - - - -
RKD 73.07 70.88 68.13 64.53 61.66 58.18
PKT 73.51 72.58 71.38 70.14 68.95 68.42
SP 73.53 72.57 71.37 70.13 68.92 68.41

logits

KD 73.51 72.57 71.38 70.15 68.95 68.44
KL+PSSM 73.29 72.58 71.94 71.44 71.31 71.06
DKD 73.22 72.70 71.91 71.24 70.71 70.27
DKD+PSSM 72.96 72.57 72.11 71.87 71.73 71.59

Comparison results on the Sklearn dataset: Table. 9 displays the results for the Sklearn dataset,
indicating that our methodology outperforms all classical approaches Notably, its exceptional per-
formance shines in scenarios marked by pronounced disparities in data distribution. This observation
underscores the effectiveness of our approach in mitigating the diminishing impact on distillation
performance arising from substantial biases in data distribution.

Table 9: Comparison with other knowledge distillation methods on the Sklearn dataset.

Distillation manner CMD 4.20 4.68 5.15 5.60 5.96

Features

FitNet 42.28 42.20 41.34 41.16 40.60
CRD 30.18 29.48 29.85 29.44 29.58
RKD 40.30 39.13 35.11 32.55 33.01
PKT 42.38 42.39 41.95 41.65 41.39
SP 42.39 42.39 41.96 41.64 41.39

logits

KL 42.61 42.28 41.83 41.68 41.53
KL+PSSM 42.16 42.25 42.07 41.92 41.73
DKD 46.46 45.87 42.07 41.12 40.98
DKD+PSSM 48.54 48.61 46.39 44.93 44.82

Comparison results on the MNIST/MNISTM: Based on the experimental results, our method ex-
hibits a slight lag behind single-modal knowledge distillation methods only in cases of minimal data
distribution differences. Nevertheless, in all other scenarios, it surpasses the comparative methods,
as evidenced in Table. 10. This indicates that the performance enhancement of our PSSM method
is not solely attributed to the elimination of erroneously assigned pseudo-labels but rather to the
increased likelihood that the inconsistency in the solution spaces between the teacher and student
occurs precisely where the teacher’s pseudo-labels are incorrect, especially in cases of significant
data distribution shift.

Table 10: Comparison with other knowledge distillation methods on the MNIST/MNISTM

Distillation manner Noise level 0 1 2 3 4 5

Features

FitNet 82.78 81.97 81.00 76.32 73.70 74.13
CRD 81.05 80.86 78.67 75.47 71.58 66.02
RKD 73.07 75.17 63.00 67.83 61.94 56.70
PKT 82.04 81.62 80.10 77.34 74.13 73.00
SP 82.18 81.71 80.40 77.38 75.88 74.00

logits

KL 82.02 81.34 79.75 76.08 72.00 71.74
KL+PSSM 81.71 81.60 80.63 77.69 77.20 76.84
DKD 82.03 79.87 76.52 75.14 72.19 68.99
DKD+PSSM 81.83 81.21 78.77 79.92 76.94 76.20
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Figure 8: Teacher-student output probability distributions under different data distribution shifts
(increasing data distribution shift from top to bottom).
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Figure 9: Visualizing the MNIST/MNIST-M dataset.

Figure 10: Experiments on the SemanticKITTI dataset. (a) Student: Point Cloud, Teacher: RGB
image, (b) Student: Point Cloud, Teacher: Fusion features.
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