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ABSTRACT

Optimizing prediction accuracy can come at the expense of fairness. Towards
minimizing discrimination against a group, fair machine learning algorithms strive
to equalize the error of a model across different groups, through imposing fairness
constraints on the learning algorithm. But, are decisions made by fair models
trustworthy? How sensitive are fair models to changes in their training data?
By giving equal importance to groups of different sizes and distributions in the
training set, we show that fair models become more fragile to outliers. We study
the trade-off between fairness and robustness, by analyzing the adversarial (worst-
case) bias against group fairness in machine learning and by comparing it with the
effect of similar adversarial manipulations on regular models. We show that the
adversarial bias introduced in training data, via the sampling or labeling processes,
can significantly reduce the test accuracy on fair models, compared with regular
models. Our results demonstrate that adversarial bias can also worsen a model’s
fairness gap on test data, even though the model satisfies the fairness constraint
on training data. We analyze the robustness of multiple fair machine learning
algorithms that satisfy equalized odds (and equal opportunity) notion of fairness.

1 INTRODUCTION

Trustworthiness is a crucial requirement of machine learning algorithms in critical decision making
processes, as highlighted by many AI regulations and policies as well as technical research papers.
Algorithmic fairness is at the core of trust requirements for automated decision making in sensitive
domains. Group fairness measures, such as equal opportunity and equalized odds (Hardt et al.,
2016) which is the focus of this paper, suggest equalizing the model’s behavior across groups
identified based on a protected attribute (e.g., race) to avoid systemic discrimination against protected
groups (Agarwal et al., 2018; Calders et al., 2009; Hardt et al., 2016; Madras et al., 2018).

The main question that we are interested in is whether fair models are trustworthy, and in particular
robust with respect to changes to their training data. In this paper, we study if and how achieving
group fairness can increase the susceptibility of machine learning models to a small fraction of
adversarially-sampled outliers in the training set.

A large body of work shows machine learning is vulnerable to noisy and adversarial data (Biggio
et al., 2012; Chen et al., 2017; Jagielski et al., 2018; Koh & Liang, 2017; Li et al., 2016; Mei &
Zhu, 2015a; Shafahi et al., 2018; Steinhardt et al., 2017; Suciu et al., 2018). Recent work studies the
performance of fair machine learning in the presence of noisy training data with under-representation
and labeling bias (Blum & Stangl, 2020; Calders & Žliobaitė, 2013; De-Arteaga et al., 2018; Jiang &
Nachum, 2020; Kallus & Zhou, 2018; Lamy et al., 2019). Under the assumptions of uniform noise
and in the theoretical setting of having an unlimited number of training data, these works analyze
the effect of noisy/biased training data on fair models. Interestingly, Blum & Stangl (2020) show
that ERM with equal opportunity can recover the Bayes-optimal classifier from biased data. In other
words, fair algorithms are more robust to certain types of bias in the training dataset than standard
learning algorithms (without fairness constraints). However, there has been little quantitative analysis
of the interaction between group fairness and robustness of the model under realistic settings (finite
training data and non-uniform noise). In this paper, we quantitatively measure the impact of group
fairness on the robustness of the model under worst-case (adversarial) bias, which exactly aims
at minimizing the chance of recovering from biased data. To the best of our knowledge, this paper
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provides the first quantitative analysis for the robustness of fair machine learning algorithms in the
adversarial setting.

We assume the training data is biased, through adding a small fraction of outliers that are adversarially
sampled (and labeled) to degrade the test accuracy of fair models. We exploit the fact that algorithms
with group-fairness constraints approximately equalize the influence of different groups, in the
training set, on the model. Equality of the group influence would consequently change the influence
of individual data samples across different groups in a disproportionate way due to differences in
size and distribution of the groups. Thus, the model’s susceptibility to worst-case outliers is largely
dependent on how the outliers are distributed across different subgroups.

We extensively evaluate the robustness of fair machine learning on multiple fairness algorithms (Hardt
et al., 2016; Agarwal et al., 2018; Rezaei et al., 2020; Cotter et al., 2019; Zhang et al., 2018) and
benchmark datasets (Dua & Graff, 2017; Larson et al., 2017; mep; ahr) to investigate how, why, and
under what circumstances models with group fairness are more fragile with respect to adversarial
bias compared to unconstrained models. We show that group fairness reduces robustness. Models
trained using various fair machine learning algorithms are all more susceptible to adversarial bias
compared with unconstrained models. We can observe this effect even for the case of the most limited
scenario of adversarial data sampling for a small fraction of the training set, without manipulating the
data features and labels. We notice this is because that adversarial bias amplifies the cost of fairness
on model accuracy by placing the outliers into the smallest group with the least frequent label. It
effectively reduces the best achievable accuracy for the smallest subgroup, limiting the fair models’
accuracy on the minority. In this case, the model sacrifices its accuracy over the majority group to
satisfy the fairness constraint. It results in a significant accuracy on the overall dataset. Furthermore,
we present the potential trade-offs between robustness and fairness. Finally, adversarial manipulation
of the training data prevents the model from generalizing its fairness to clean test data even though
it is guaranteed on training data. This results in models that, according to the fairness measure, are
even more discriminatory than unconstrained models, but on a different part of the population.

This work introduces a significant challenge towards designing trustworthy machine learning algo-
rithms. We emphasize that, as shown in our results, the fair models trained under noisy data could be
significantly unfair (with respect to the same fairness measures). Thus, sensitivity to changes in data
undermines both fairness and accuracy of models. This calls for designing new fairness measures
which are not inherently susceptible to noise.

2 BACKGROUND AND PROBLEM STATEMENT

Machine learning. Consider a classifier fθ : X → Y , that maps the feature space X to labels
Y . The model is represented by its parameters θ taken from a parameter space Θ. The model is
trained to minimize a loss function ` : Θ×X × Y → R+ over its training set D. We let X and Y
denote the random variables associated with the features and the labels, and (X,Y ) to denote the
underlying distribution of the data. We obtain the model parameters by solving minθ∈Θ

1
|D|L(θ;D),

where L(θ;D) =
∑

(x,y)∈D `(θ;x, y) is the cumulative loss of the model over the training set D.

Fairness. We assume all data points are split into groups based on a protected attribute S ∈ S
(e.g., gender). This attribute could be part of the feature set X . We focus on equalized odds, which is
a widely-used notion for group fairness (Hardt et al., 2016). 1 Following previous works (Agarwal
et al., 2018; Donini et al., 2018), we say a classifier fθ is δ-fair under equalized odds if

∆(θ,D) := max
y∈Y,a,b∈S

∣∣∣∣Pr
D

[fθ(X) 6= y|S = a, Y = y]− Pr
D

[fθ(X) 6= y|S = b, Y = y]

∣∣∣∣ ≤ δ, (1)

where the probabilities are computed empirically over the training data set D. We refer to ∆ as the
model’s empirical fairness gap. A model satisfies exact equalized odds fairness when δ = 0. In
practice, fairness is usually achieved by ensuring δ-fairness empirically on the model’s training set,
e.g., through minimizing the model’s empirical loss under δ-fairness as a constraint (Agarwal et al.,
2018) or post-processing (Hardt et al., 2016). We define the constraint C(θ,D) := ∆(θ,D)− δ ≤ 0
as a fairness constraint. We refer to the models learned with the fairness constraint as fair models,

1Extension and analysis for other group fairness metrics (i.e., equal opportunity (Hardt et al., 2016)) can be
found in Appendix E.7.
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to distinguish them from unconstrained models that are learned without any fairness constraint. We
quantify the performance of a model based on its test accuracy, and its fairness gap on the test dataset.

Problem statement. The primary research question we investigate in this paper is whether, how,
and why models with (equalized odds) group fairness are less robust to adversarial bias, compared
with unconstrained models. We consider a model is robust if changing a small fraction of the training
set does not significantly downgrade the predictive power of the model.

Towards quantifying the robustness, we assume the biased training set D is composed of the clean
datasetDc of size n, and the adversarially chosen datasetDp of size εn. The clean training setDc and
test set Dtest are sampled from the same underlying distribution (X,Y ). So, we investigate the effect
of the bias in the training set, which is introduced through Dp. We consider two variations of bias:
adversarial sampling, and adversarial labeling. These are the worst-case sampling and labeling bias,
whereDp is chosen to maximize the loss of a model. LetDk be a dataset sampled from (X,Y ), similar
to the clean data. In adversarial sampling, we choose outliers Dp ⊂ Dk, and in adversarial labeling,
we choose them also with the possibility of crafting their labelsDp ⊂ {(x, y′) : (x, y) ∈ Dk, y

′ ∈ Y}.
Based on this setting, the maximum vulnerability of a fair model in the presence of adversarial bias
can be formulated as a bi-level optimization problem subject to the fairness constraint C(θ,D) ≤ 0:

max
Dp

E(X,Y )[`(θ̂;X,Y )], where θ̂ := argmin
θ∈Θ

L(θ;Dc ∪ Dp)

|Dc ∪ Dp|
, st. C(θ,Dc ∪ Dp) ≤ 0, (2)

where the expectation is taken over the underlying (clean) data distribution. The outer maximization
searches for the strongest Dp that maximizes the expected loss of the fair model (given by θ̂). This
fair model is obtained by solving the inner constrained minimization on the biased training dataset
Dc ∪ Dp. The expected loss can be measured on a test set Dtest sampled from the data distribution
(X,Y ).

To generate the strongest Dp, we assume the knowledge of the learning algorithm (e.g., logistic
regression, SVM) and the clean training datasetDc is available when generatingDp, but the exact fair
learning algorithm is unknown. It allows us to obtain an upper bound on the performance degradation
incurred by the adversarial bias and serves as a starting point towards understanding the maximal
vulnerability. Besides, for investigating the effect of fairness constraints on the model robustness, we
evaluate the robustness of unconstrained models as a baseline. Adversarial bias against unconstrained
models is equivalent to the problem of data poisoning attacks (we discuss more in Section 6).

3 ADVERSARIAL BIAS

To find the strongest Dp for evaluating the robustness of fair models, we need to solve the bi-level
optimization problem (2), which is non-convex and intractable (Bard, 1991; Hansen et al., 1992;
Deng, 1998). The fairness constraint makes the problem even more difficult.2 In this section, we
explain how to approximate problem (2) to design effective adversarial strategies.

In the problem (2), it is hard to track the influence of Dp on the test loss as it can only affect the test
loss via the model’s parameters. To make progress, we first approximate the loss on the test data by
the loss on the clean training data, following the approximations used for designing poisoning attacks
against unconstrained models (Steinhardt et al., 2017). Specifically, let θ̂ be the solution to the inner
optimization problem and we have L(θ̂;Dtest)/|Dtest| ≈ L(θ̂;Dc)/|Dc| ≤ L(θ̂;Dc ∪ Dp)/|Dc|. As
long as the model has enough capacity to fit but does not overfit the training dataset (which can
be achieved by appropriate regularization), the loss on the biased training dataset (i.e., RHS of the
inequality) provides a good approximation for the test loss, which allows us to explicitly measure the
impact of the poisoning data. Therefore, we replace the objective of the inner minimization in Eq. (2)
with L(θ;Dc∪Dp)/n, where n = |Dc|. The resulting optimization problem is hard to solve due to the
bi-level optimization and the constraints in the inner optimization. To resolve this, we then relax the
inner constrained optimization by introducing a Lagrange multiplier λ ∈ R+:

min
θ∈Θ

[L(θ;D)

n
, s.t. C(θ,D) ≤ 0

]
= min

θ∈Θ
max
λ∈R+

(L(θ;D)

n
+ λC(θ,D)

)
≥ max
λ∈R+

min
θ∈Θ

(L(θ;D)

n
+ λC(θ,D)

)
,

2We would like to point out that, for the unconstrained model, under the convex assumption of the loss
function, it is possible to find the approximate solution by replacing the inner optimization with its stationarity
(KKT) condition (Biggio et al., 2012; Koh & Liang, 2017).
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where D = Dc ∪ Dp. The inequality follows from the weak duality theorem. We can now find Dp

by maximizing a lower bound provided by the Lagrangian function minθ∈Θ (L(θ;D)/n + λC(θ,D))
for a fixed λ ∈ R+. Indeed, maximizing the lower bound provided by the Lagrangian function would
result in a solution with a high loss (which is guaranteed to be at least equal to the loss for the lower
bound) for the original problem. In this optimization procedure, we can also replace the fairness
constraint C(θ,D) := ∆(θ,D)− δ with the fairness gap ∆(θ,D), because the constant value δ ≥ 0
does not affect the solution for the Lagrangian. Finally, by considering all the above-mentioned steps,
the new optimization problem is:

max
Dp

min
θ∈Θ

(L(θ;Dc ∪ Dp)

n
+ λ∆(θ,Dc ∪ Dp)

)
. (3)

Thus, to solve the problem (2), the alternative goal is to find Dp that maximizes a linear combination
of the training loss and the model’s violation from the fairness constraint, where λ controls the penalty
for the violation. In the light of those approximations, we design two algorithms to generate Dp.

An Approximation for the Fairness Gap. Finding Dp is an intractable combinatorial optimization
problem because the fairness gap could not be split into separate functions of individual data points. It
is still hard to track the influence of individual data points. To resolve it, we first find an additive proxy
for fairness gap. We substitute the fairness gap ∆ by the average of an approximate contribution of
each training data point to the fairness gap. This allows us to design an efficient sequential policy.
More specifically, let {(x, y)}k be a multi-set with k repetitions of a data point (x, y). Consequently,
D ∪ {(x, y)}k is equivalent to adding k copies of (x, y) to D. In this setting, for any data point
(x, y) ∈ Dp, the fairness gap 1

εn∆ (θ,Dc ∪ {(x, y)}εn) is a proxy for measuring the contribution of
that data point to the fairness gap ∆(θ,Dc ∪ Dp). In other words, it measures how the fairness gap
changes if εn copies of (x, y) is added to the clean data. Also, the maximum of ∆ (θ,Dc ∪ {(x, y)}εn)
over all data points (x, y) ∈ Dp provides an upper bound on the fairness gap of the model, when
the size of Dp is εn. Given this proxy for the contribution of each data point to the fairness gap, we
obtain the following approximation: ∆ (θ,Dc ∪ Dp) ≈∑(x,y)∈Dp

1
εn∆ (θ,Dc ∪ {(x, y)}εn). By

substituting the fairness gap with its proxy, now we can solve the following optimization problem:

max
Dp

min
θ∈Θ

(
1

n
L (θ;Dc ∪ Dp) +

λ

εn

∑
(x,y)∈Dp

∆ (θ,Dc ∪ {(x, y)}εn)

)
= max
Dp

M(Dp) := M∗ (4)

where M(Dp) is the loss incurred by a poisoning set Dp on the fair model, and M∗ is the maximum
loss of the fair model under any choices of Dp. Algorithm 1, a variant of the no-regret online gradient
descent methods (Hazan, 2016), presents our solution to problem (4). It initializes a model θ0 ∈ Θ,
and identifies εn points for Dp iteratively. The feasible set of points F(Dk) is determined by the
adversarial bias setting. For adversarial sampling, we have F(Dk) = Dk, and for adversarial labeling,
F(Dk) = {(x, y′) : (x, y) ∈ Dk, y

′ ∈ Y}. The algorithm iteratively performs the following steps:

• Data point selection. (Algorithm 1, line 5): It selects a data point with the highest impact on a
weighted sum of the loss function and the fairness gap with respect to the model parameter θt−1.

• Parameter update. (Algorithm 1, line 7): The parameters are updated to minimize the penalized
loss function based on the selected data point (xt, yt). In this way, the algorithm (through the
approximations made by the Lagrange multiplier and the surrogate function) keeps track of the fair
model under the set of already selected data points for Dp.

In Theorem 1, by following the approach proposed by (Steinhardt et al., 2017), we relate the
performance of Algorithm 1 with the maximum loss in Eq. (4). Moreover, in Appendix C.2, we prove
that under some reasonable conditions (e.g., by using similar assumptions made by (Donini et al.,
2018) to approximate the fairness gap), our algorithm finds the (nearly) optimal solution for Eq. (4).
Theorem 1. Let D∗p be the data set produced by Algorithm 1. Let Regret(εn) be the regret of this
online learning algorithm after εn steps. The performance of the algorithm is guaranteed by

M∗ −M(D∗p) ≤ Regret(εn)

εn
, (5)

where M∗ and M(D∗p) are the loss of the fair model under the optimal Dp and D∗p, respectively.3

3The regret of a decision-maker is defined as the difference between the total cost incurred and that of the
best-fixed decision in hindsight.
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Algorithm 1 Online Gradient Descent Algorithm for Generating Dp for Fair Models

1: Input: Clean data Dc, n = |Dc|, feasible set F(Dk), εn (the size of Dp), penalty parameter
(Lagrange multiplier) λ, learning rate η.

2: Output: Dp.
3: Initialize θ0 ∈ Θ
4: for t = 1, · · · , εn do
5: (xt, yt)← argmax(x,y)∈F(Dk)

[
ε · `(θt−1;x, y) + λ ·∆

(
θt−1,Dc ∪ {(x, y)}εn

)]
6: Dp ← Dp ∪ {(xt, yt)}
7: θt ← θt−1 − η

(
∇L(θt−1;Dc)

n +∇
[
ε · `(θt−1;xt, yt) + λ ·∆(θt−1,Dc ∪ {(xt, yt)}εn)

])
8: end for

The proof for the theorem is deferred to Appendix C. From the theorem, it is clear that when the
average regret Regret(εn)/εn is small, the Algorithm 1 will result in a nearly optimal Dp.

A Surrogate Function for the Fair Model. The parameter update step in Algorithm 1 provides an
approximation (through adding the fairness constraint as a penalty and approximating the fairness gap)
for the fair model. Differently, our Algorithm 2 approximates the fair model using the unconstrained
model. More specifically, Algorithm 2 iteratively adds data points that maximize a combination of the
loss and the fairness gap, however, over the unconstrained model. The reason for this approach is that
we hope the points with the largest weighted sum of the loss and the fairness gap on the unconstrained
model may still have a large weighted sum on the fair models. Algorithm 2 in Appendix C.3 presents
the pseudo-code of this algorithm. An advantage of Algorithm 2 is that it reduces the chance of
getting stuck in local minima because, in each parameter update, it makes a step towards the negative
gradient of the exact unconstrained loss. This is in contrast with Algorithm 1, where due to the
difficulty of approximating a constrained max-min problem, it might converge to some parameters
not close to the fair model at all. We should point out that the algorithm and objectives are similar to
the data poisoning attacks against unconstrained models when λ = 0 (Steinhardt et al., 2017). In
this case, the fairness constraints are not exploited to introduce adversarial bias. In Section 5, we
empirically show that Dp generated by exploiting the fairness gap (i.e., λ > 0) can incur a higher test
loss of fair models compared with the case where λ = 0.

4 EVALUATION SETUP

Datasets and models. We conduct experiments on the COMPAS dataset (Larson et al., 2017), Adult
dataset (Dua & Graff, 2017), Medical Expenditure Panel Survey (MEPS) dataset (mep; ahr), as
well as synthetic data generated with the same setting as in (Zafar et al., 2019). We use the binary
protected features in those datasets. We present the results on COMPAS, Adult and synthetic datasets
in this section, and the results on all datasets are deferred to Appendix E. On all datasets, we train
logistic regression models. The accuracy of classification models on the three real-world datasets is
low and close to predicting the most frequent label in the set. This does not help to understand the
behavior of models in the presence of adversarial bias. Hence, we perform data pre-processing to
separate hard examples from the rest of the data. Hard examples are data points with a large loss on a
trained model on the entire dataset. We will use hard examples as one of our baselines. We also add
hard examples to the attack dataset. We refer the reader to Appendix E.1 for more details.
Fair machine learning algorithms. We evaluate the robustness of existing learning algorithms that
achieve equalized odds to show that the susceptibility to adversarial bias is a common issue for all of
them. Thus, we train logistic regression models with the equalized odds fairness constraint, by using
the post-processing approach (Hardt et al., 2016), the reductions approach (Agarwal et al., 2018), and
fair algorithms proposed in (Zhang et al., 2018; Rezaei et al., 2020; Cotter et al., 2019). Details about
these fair algorithms are presented in Appendix D.
Adversarial bias. The data points in Dp are selected from F(Dk) using Algorithm 1 (with λ = ε
on COMPAS and synthetic, and λ = 0.1ε on Adult), and Algorithm 2 (with λ = 100ε). We use
Algorithm 2 with λ = 0 to generate biased data for unconstrained models (which is the same as
the algorithm for poisoning attacks against unconstrained models (Steinhardt et al., 2017)). In all
the cases, we select points in Dp without repetition in order to measure the robustness in a realistic
setting. See Appendix E.2 for a discussion on choosing λ and the implementation details.
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Table 1: Test accuracy and fairness gap of unconstrained models and fair models trained on biased
training data - COMPAS, Adult and synthetic datasets. When ε = 0, the models are trained on Dc.
When ε = 0.1, we show the accuracy of unconstrained models when the adversarial bias is introduced
by Algorithm 2 with λ = 0 (Steinhardt et al., 2017) and the worst accuracy of fair models when Dp

is generated by either Algorithm 1 or Algorithm 2, along with the corresponding test fairness gap ∆
defined in (1). The relative accuracy drop is shown in parentheses (defined in Section 4). Table 7 in
Appendix E.3 shows the all results.

Dataset Model
Benign
(ε = 0)

Adv.
Sampling
(ε = 0.1)

Adv. Labeling
(ε = 0.1)

Test Acc ∆test Test Acc ∆test Test Acc ∆test

Synthetic

Unconstrained 87.6 0.18 87.4 (0.2↓) 0.11 85.1 (2.9%↓) 0.24
Fair (Hardt et al., 2016) 80.0 0.03 77.2 (3.5%↓) 0.08 70.9 (11.%↓) 0.04
Fair (Agarwal et al., 2018) 84.9 0.03 80.9 (4.7%↓) 0.07 68.0 (20.%↓) 0.14
Fair (Rezaei et al., 2020) 76.1 0.02 70.2 (7.8%↓) 0.03 58.3 (23.%↓) 0.02
Fair (Cotter et al., 2019) 85.5 0.04 84.5 (1.2%↓) 0.09 77.8 (9.0%↓) 0.16
Fair (Zhang et al., 2018) 78.1 0.11 75.0 (4.0%↓) 0.16 63.0 (19.%↓) 0.27

COMPAS

Unconstrained 94.3 0.21 87.6 (7.1%↓) 0.26 84.7 (10.%↓) 0.28
Fair (Hardt et al., 2016) 87.4 0.07 70.8 (19.%↓) 0.27 68.2 (22.%↓) 0.25
Fair (Agarwal et al., 2018) 93.6 0.06 73.1 (22.%↓) 0.37 67.7 (28.%↓) 0.39
Fair (Rezaei et al., 2020)) 84.5 0.06 63.2 (25.%↓) 0.09 60.6 (28.%↓) 0.09
Fair (Cotter et al., 2019) 91.9 0.08 79.6 (13.%↓) 0.27 76.2 (17.%↓) 0.31
Fair (Zhang et al., 2018) 81.0 0.09 66.0 (19.%↓) 0.14 64.1 (21.%↓) 0.12

Adult

Unconstrained 94.3 0.07 94.0 (0.3%↓) 0.06 89.3 (5.3%↓) 0.06
Fair (Hardt et al., 2016) 92.7 0.03 89.6 (3.3%↓) 0.16 81.1 (13.%↓) 0.09
Fair (Agarwal et al., 2018) 93.8 0.04 91.7 (2.2%↓) 0.12 80.9 (14.%↓) 0.09
Fair (Rezaei et al., 2020) 84.5 0.03 78.1 (7.6%↓) 0.03 64.9 (23.%↓) 0.08
Fair (Cotter et al., 2019) 92.7 0.04 90.3 (2.6%↓) 0.07 83.8 (9.6%↓) 0.44
Fair (Zhang et al., 2018) 89.7 0.18 85.7 (4.4%↓) 0.28 44.9 (50.%↓) 0.06

Baseline algorithms and robustness evaluation. Besides comparing with prior data poisoning
attacks against unconstrained models (Steinhardt et al., 2017), we consider the following baselines
for augmenting the training dataset. Random sampling: randomly selecting data points from Dk.
Label flipping: randomly selecting data points from Dk and flipping their labels. Hard examples:
randomly selecting data points from the set of hard examples. To measure the robustness, we compute
the relative test accuracy drop of the model trained on biased data versus the benign model (ε = 0)
trained exclusively on clean data. A smaller drop in relative test accuracy implies stronger robustness.

5 EVALUATION RESULTS

In this section, we first quantify and compare the robustness of fair models and unconstrained models,
then show how the adversarial bias affects fair models. By examining the impacts of adversarial
bias on the majority and minority groups, we identify the causes of the vulnerability of fair models.
Finally, we present the trade-off between fairness and robustness and other effects of adversarial bias.

Fairness deteriorates robustness. Table 1 presents the test accuracy and fairness gap of uncon-
strained models and fair models on all the datasets. We observe a large relative accuracy drop for
all fair models on all the datasets compared with unconstrained models, even in the adversarial
sampling setting where data labels are not changed (only clean data are being added but in an
adversarially biased manner). On the synthetic dataset, the relative accuracy drop of fair models
trained using the reductions approach (Agarwal et al., 2018) is even more than 10 times larger than
that of unconstrained models. The results also imply that the robustness issue is more likely caused
by fairness notions instead of fair algorithms. Note that our algorithms serve as approximations of
the best algorithm for generating Dp. We can expect an even larger accuracy drop for fair models
under stronger algorithms for adversarial bias. Besides, Figure 1 compares the test accuracy of
unconstrained models and fair models when ε varies. The baselines, e.g., adding randomly selected
hard examples, do not have much effect on the test accuracy of fair models. However, when trained
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Figure 1: Test accuracy of unconstrained and fair models in the presence of adversarial bias –
COMPAS dataset. The x-axis ε is the ratio of the size of Dp to the size of clean dataset Dc, and
reflects the contamination level of the training set. We compare the impact of adversarial bias with
baselines and poisoning attacks against unconstrained models, for various ε. The difference between
test accuracy at ε = 0 (benign setting) and a larger ε value reflects the impact of the bias. Constant
prediction always outputs the majority label in a clean dataset. The enforced fairness level δ is 0 and
0.01 for the fair model (Hardt et al., 2016) and fair model (Agarwal et al., 2018), respectively.
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Figure 2: Fairness gap on the unconstrained model with respect to the training data – COMPAS
dataset. An unconstrained model is learned on the training data that includes Dp generated by various
algorithms. The fairness gap is defined in (1). The numbers reflect how unfair this unconstrained
model is with respect to the protected group on the training data.
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Figure 3: Effect of fairness level δ on robustness across groups in the presence of adversarial bias –
COMPAS dataset. For a given ε, training dataset is the same for all the algorithms andDp is generated
using Alg. 2 with λ = 100ε. Fair models are trained using reduction approach (Agarwal et al., 2018).
The majority group contributes 61% of the test data.
on adversarially biased data, fair models have a much larger relative accuracy drop compared with
unconstrained models. At ε = 0.2, the test accuracy of fair models approaches what can be achieved
even by a constant classifier. These results strongly imply that fair models are noticeably less robust
against adversarial bias than unconstrained models.

Adversarial bias amplifies the cost of fairness on model accuracy by increasing the accuracy
disparity. Figures 3(a) & (d) compare the test accuracy of fair models and unconstrained models
when trained on the same training dataset. The gap in the accuracy between unconstrained models and
fair models reflects the cost of fairness on model accuracy. Notably, as ε increases, this cost increases
significantly. For fair model with δ = 0.001, the cost is 0.003 when ε = 0 and is increased by more
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Figure 4: Effect of fairness level δ on training accuracy across groups in the presence of adversarial
bias - COMPAS dataset. For a given ε, Dp is the same for all algorithms (generated using Alg. 2 with
λ = 100ε).
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Figure 5: Training accuracy for group-based classifier - COMPAS dataset. We train models only
on the majority or minority training data and compare their training accuracy. For a given ε, Dp is
generated using Alg. 2 (λ = 100ε).

than 200 times when ε = 0.2 (0.254). It implies that adversarial bias significantly amplifies the cost
of fairness on model accuracy. We further find that the increase in this cost is positively correlated
with the increase in the fairness gap of unconstrained models on training data (which reflects the
“unfairness” of unconstrained models on the training data) as shown in Figure 2. It is intuitive
that when training accuracy disparity across groups is more significant on unconstrained models,
fairness constraints have a stronger impact on model performance, thus incurs a more substantial
cost of fairness on model accuracy. In addition, on biased training data generated with Algorithm 2
(λ = 100ε) at ε = 0.1, the fairness gap is 0.54, which is much larger than that of the random sampling
baseline (0.3). This indicates that adversarial bias notably increases the fairness gap, which, in turn,
increases the cost of fairness.

Implications of adversarial bias for majority vs. minority groups. Figures 3(b),(c),(e)&(f) show
the test accuracy of models on the majority and minority groups. We observe that on fair models,
adversarial bias is significantly more impactful on the majority group. However, on the unconstrained
model, the minority group is the one that incurs a larger loss. We find that the large loss on the
minority group for the unconstrained model is mainly caused by Dp. Because the most effective Dp

(generated by Algorithm 2 with λ = 100ε) mostly belong to the smallest subgroup, i.e., the smallest
sensitive group s with the least frequent label y (see the distribution of Dp across groups in Figure 23
in Appendix E). Consequently, the unconstrained model learns a wrong pattern on the minority group;
thus, the accuracy drops significantly for the minority while barely changing on the majority group.
On the other hand, the large accuracy drop of fair models on the majority group is primarily due
to the fairness constraint. Fair models are enforced to equalize the accuracy across groups on the
training dataset. Hence, even though most of the data from the majority group is clean, the training
accuracy of fair models on the majority group drops due to the low accuracy on the minority group,
as demonstrated in Figure 4. This accuracy drop ultimately translates from train data to test data.

Adversarial bias increases the inherent “hardness” disparity. To equalize the accuracy across
groups, fair models can increase the accuracy on the minority (the group that has a lower accuracy)
or decrease the accuracy on the majority. However, as shown in Figure 4, fair models do not increase
the accuracy on the minority but decrease the training accuracy on the majority. We discover that it
is related to the best achievable accuracy for two groups (which reflects the inherent “hardness” of
classifying positive samples and negative samples). We train group-based (unconstrained) models
only using majority or minority training data. The training accuracy approximates the best achievable
accuracy on each group for a given training dataset (and for a given type of model). The results are
shown in Figure 5. We can see that as ε increases, the best accuracy does not change on the majority
group but decreases significantly on the minority (from 0.95 to 0.7 with ε = 0.2). Moreover, we
find that the training accuracy of fair models on the minority (Figure 4 (b)&(d)) is close to the best
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achievable accuracy for the minority (Figure 5). It indicates that a small fraction of outliers can
reduce the best achievable accuracy on the minority significantly, which limits the increase of the
accuracy of fair models on the minority. Consequently, fair models have to sacrifice accuracy on the
majority to satisfy the fairness constraint. To conclude, equalizing the accuracy across groups without
considering their best achievable accuracy worsens the model’s robustness against adversarial bias.

Trade-off between fairness and robustness. A fairer model on the training data is less robust
against adversarial bias. In Figures 3(a) & (d), fair models with different δ have similar accuracy
when ε = 0, (benign setting). As ε increases, the model with a stricter fairness constraint (i.e., smaller
δ) has a larger relative accuracy drop. On the other hand, a more robust fair model is less likely to
generalize its fairness on the test dataset. In Table 1, the fair algorithm proposed in (Cotter et al.,
2019), which is the most robust algorithm against adversarial bias, fails to achieve fairness on the
test data. Interestingly, when the unconstrained model is more discriminatory, fair models are less
robust. In Table 1, fair models trained using the reduction approach (Agarwal et al., 2018) have a
22% relative accuracy drop on COMPAS dataset, which is 10 times larger than that of fair models
trained using the same algorithm on Adult datasets. We observe that this relative accuracy drop is
positively correlated with the fairness gap of the unconstrained model in the benign setting (ε = 0). It
means that when there is more need for a fairness mechanism, fair models are less robust.

Other effects of adversarial bias. Fair machine learning aims to achieve fairness for the future data
by satisfying fairness constraints on the training data. However, adversarial bias can jeopardize the
fairness generalizability of the fair model. In the presence of adversarial bias, the lower the fairness
level δ on training data is, the higher the fairness gap on test data becomes. Moreover, we find
that when the adversarial bias is introduced in the training dataset, the models trained with fairness
constraints can become even more discriminatory than unconstrained models. The detailed results
are presented in Appendix E.3. Besides, to approximate the maximal vulnerability, we assume Dp is
generated with the knowledge about the learning algorithm and clean training dataset. Interestingly,
the adversarial bias can still be effective even without this knowledge. See Appendix E.6 for details.

6 RELATED WORK AND CONCLUSION
Related Work We briefly review the related work here and provide extensive discussion in Ap-
pendix B. Adversarial bias against unconstrained models is also known as untargeted data poisoning
attacks where the adversary’s objective is to degrade the overall test accuracy of the model (Biggio
et al., 2012; Mei & Zhu, 2015a; Jagielski et al., 2018; Li et al., 2016; Mei & Zhu, 2015b; Koh
et al., 2018; Koh & Liang, 2017; Steinhardt et al., 2017) by adding a small fraction of poisoning
data. However, most existing poisoning attacks manipulate the features and labels for the poisoning
data. While, in our case, the features of adversarial-chosen data points are clean. Recently, Solans
et al. (2021) and Mehrabi et al. (2021b) develop poisoning attacks to increase the “unfairness” of
unconstrained models. Differently, our focus is to evaluate the robustness of fair models. Multiple
works in the literature study the impact of noisy and biased data on machine learning (Calders &
Žliobaitė, 2013; Fogliato et al., 2020; Kallus & Zhou, 2018) but they did not cover adversarial (worst-
case) bias. Under varying assumptions, multiple works (Blum & Stangl, 2020; Jiang & Nachum,
2020; De-Arteaga et al., 2018; Lamy et al., 2019; Friedler et al., 2019; Rambachan & Roth, 2019)
have proposed strategies to account for under-representation bias and mislabeling while learning
models. However, all the above works assume that the noise and bias in the training data is a uniform
distribution of under-representation/mislabeling over a subspace of points. Thus, these results may
not translate to our case of adversarial (worst-case) bias. Several fair learning algorithms have been
proposed to achieve different robustness properties (Wang et al., 2020; Rezaei et al., 2020; Taskesen
et al., 2020; Roh et al., 2020; Cotter et al., 2019). However, those algorithms might not achieve
robustness in our setting where the adversary controls the labels of a small fraction of samples, and
the learner has no additional knowledge about the clean dataset.

Conclusion We have introduced adversarial bias against fair machine learning for quantifying the
robustness of models with group fairness. Our algorithms exploit the tension between fairness and
accuracy and the fact that fair models try to equalize the accuracy on groups with different sensitive
attributes. Our experiments show that adding a small percentage of adversarially sampled/labeled
data points to the training set can significantly reduce the best accuracy fair models can get on the
minority. As the results, a small fraction of the adversarially sampled/labeled data points reduces the
model accuracy beyond what they can impose on unconstrained models.
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A TABLE OF NOTATIONS

Table 2: List of Notations

Symbol Description Where it is defined
X Features space Section 2
Y Label space Section 2
X Random variable associated with features Section 2
Y Random variable associated with lables Section 2
(X,Y ) Underlying distribution of the data Section 2
D Training dataset Section 2
N Size of the training dataset D Section 2
Dc Clean training dataset Section 2
n Size of the clean training dataset Section 2
Dp The adversarially-chosen poisoning dataset Section 2
ε The ratio of the size of Dp over the size of clean data in the training set Section 2
PrD Computing a probability empirically over a dataset D Section 2
Dk A set of data points where the feature vectors of Dp are sampled from Section 2
Dtest Test dataset Section 2
S Sensitive/protected attribute Section 2
S Sensitive/protected attribute Space Section 2
δ Guaranteed fairness level on training data Section 2
∆ Fairness gap Section 2
∆EO Fairness gap under equalized odds Section 2
C(θ,D) Fairness constraint of fθ on dataset D Section 2
θ Model parameters Section 2
Θ Parameter space Section 2
fθ Classification model parameterized by θ Section 2
`(θ;x, y) Loss of fθ on data (x, y) Section 2
L(θ;D) Cumulative loss of fθ on dataset D Section 2
θ̂ Optimal model parameters trained on D with fairness constrained Eq. (2)
λ Lagrange multiplier (penalty parameter) Section 3
D ∪ {(x, y)}k Adding k copies of the data point (x, y) to set D Section 3
M∗ Maximum loss under the optimal attack Eq. (4)
M(Dp) The imposed loss by poisoning dataset Dp on the fair model Eq. (4)
(xt, yt) The data point selected by Algorithm 1 at step t Section 3
θt The model parameter chosen by Algorithm 1 at step t Section 3
F(Dk) Feasible set of Dp Section 3
η Learning rate Algorithm 1
D∗p The dataset produced by Algorithm 1 for introducing adversarial bias into the training dataset Section 3
Regret(T) Regret of Algorithm 1 after T steps Section 3
U(θ) Loss of model fθ under the optimal attack Appendix C.1
U∗ Minimum loss under the optimal adversarial bias minTt=1 U(θt) Appendix C.1
gt(θ) The loss function for online learning algorithm at step t Appendix C.1
θ̃ Optimal model parameters for minimizing the cumulative loss

∑T
t=1 gt(θ) Appendix C.1

ηt Learning rate at time t in Algorithm 1 used in the proof of Corollary 1 Appendix C.1
d Upper bound on the diameter of Θ Appendix C.1
G Upper bound on the norm of the subgradients of gt over Θ Appendix C.1
∆̃(θ,D) The convex relaxation for the fairness gap of equalized odds Appendix C.2
`l(θ;x, y) Linear loss of model fθ on data point (x, y) Appendix C.2
Dy,s A set of data points from group s with label y in D Appendix C.2
ny,s The number of data points in Dy,s Appendix C.2
Ry,s(θ,D) Average linear loss of fθ for data points in Dy,s Appendix C.2
∆EOpp Fairness gap under equal opportunity Appendix E.7
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B RELATED WORK

In this paper, we aim to analyze the effect of achieving group fairness on the robustness of the model
against the adversarially chosen outliers. Thus, in the following, we review the fair machine learning,
the robustness of the unconstrained model against outliers, and the recent study about learning fair
models under the noisy training data, along with the studies about the trade-off between accuracy and
fairness.

Fairness in Machine Learning A classifier that is learned by minimizing the overall cumulative
loss might not perform well on one sensitive group (usually the minority group) when the distribution
of features per each class is different across groups. In order to address this problem, multiple
definitions of fairness are proposed in the literature. Examples include metric equality across
sensitive groups (Hardt et al., 2016; Calders et al., 2009), individual fairness (Dwork et al., 2012),
causality (Kusner et al., 2017), and many techniques to satisfy group-based fairness (which is the
focus of this paper) such as pre-processing methods (Zemel et al., 2013; Madras et al., 2018),
in-processing methods (Kamishima et al., 2011; Zafar et al., 2017a;b; Agarwal et al., 2018), and post-
processing methods (Hardt et al., 2016). Pre-processing methods aim at finding a new representation
of data such that it retains as much information of input features as possible, except those which
can lead to bias. In-processing methods enforce fairness during the training process, for example,
by incorporating the fairness constraints into the objective function as a regularization term. Post-
processing methods correct the predictions of a given trained model, without modifying the training
data or the training process. A slightly different approach from these three to achieve fairness is
adversarial training (Zhang et al., 2018), where the learning objective is formulated as a game between
two players with one player trying to optimize for accuracy and the other strives to achieve fairness.
Please refer to (Mehrabi et al., 2021a) for a recent survey on methods to achieve fairness. In this
work, we focus on the notion of Equalized odds (Hardt et al., 2016) and train fair models using
in-processing approaches (Agarwal et al., 2018; Cotter et al., 2019; Rezaei et al., 2020; Zhang et al.,
2018), post-processing (Hardt et al., 2016).

Data poisoning attack Adversarial bias against unconstrained models is also known in the literature
as data poisoning attacks when the appearance of an adversary in the system is emphasized. Machine
learning systems are susceptible to data poisoning attacks. The adversary’s objective is to degrade
the overall test accuracy of the model (Biggio et al., 2012; Mei & Zhu, 2015a; Jagielski et al., 2018;
Li et al., 2016; Mei & Zhu, 2015b; Koh et al., 2018; Koh & Liang, 2017) or to increase the loss
on specific test data points or small sub-populations (Gu et al., 2017; Chen et al., 2017; Burkard &
Lagesse, 2017; Shafahi et al., 2018; Koh & Liang, 2017; Suciu et al., 2018). In our paper, we study
the impact of adversarial bias on the overall accuracy of fair models without considering the role of
an adversary (capacity, knowledge, etc). Steinhardt et al. (2017) propose an optimal algorithm for
poisoning attacks on (unconstrained) convex models, given a set of feasible poisoning data points.
The algorithm relies on the assumption that test loss of the target model can be approximated as
training loss of the model on clean data (assuming Dtest is drawn from the same distribution as the
clean training data Dc). Our algorithm is inspired by this work and uses the same online learning
framework. Note that, when λ = 0 in Algorithm 2, it is equivalent to the algorithm in (Steinhardt
et al., 2017).

In our setting of adversarial sampling bias, both the feature vectors and the labels are not modified. In
clean-label data poisoning attacks (Shafahi et al., 2018), the attacker manages to reduce the accuracy
of target examples via injecting the correctly labeled data with modified features. Another typical data
poisoning attack allows the attacker to change both features and labels of the poisoning data. This is
first studied in the context of SVMs by Biggio et al. (2012), and has subsequently been extended to
linear and logistic regression (Mei & Zhu, 2015b), topic modeling (Mei & Zhu, 2015a), collaborative
filtering (Li et al., 2016), and neural networks (Koh & Liang, 2017). In our setting, we assume the
features cannot be modified, as we focus on the most practical scenario in decision-making processes
that move toward automation. An interesting future direction would be to allow changes of features
and introduce adversarial bias using the gradient-based algorithm. Given a larger space for finding
the adversarial bias, it is likely that we would observe a larger accuracy drops for fair models.

Instead of reducing the accuracy, Solans et al. (2021) and Mehrabi et al. (2021b) develop poisoning
attacks where the attacker’s objective is to increase the disparity in the performance of the model
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across different groups i.e., increase the unfairness. The key difference in our work is that adversarial
bias is introduced to degrade test accuracy of fair models, whereas the algorithms in (Solans et al.,
2021; Mehrabi et al., 2021b) degrade the fairness of models trained without any fairness constraints.

Learning Fair Models from Noisy Training Data In most practical scenarios, the training data
used for learning models might be biased (under-representation bias) and/or noisy (with mis-labeling).
The mis-labeling phenomenon can be random or adversarial. Mislabeling can be seen as a specific
case of adversarial labeling bias, where labels of data points from only a certain part of the population
are flipped with some probability. Similarly, under-representation bias can be considered as a specific
case of adversarial sampling bias. Multiple works in the literature study the impact of noisy and
biased data on machine learning.

Calders & Žliobaitė (2013) show that learning an unconstrained model from training data with
under-representation and mislabeling bias results in biased predictions on test data. Fogliato et al.
(2020) show the effect of noise in labels on predictive bias and the evaluation of fairness metrics of
the unconstrained model without any assumption on the structure of noise. Kallus & Zhou (2018)
consider the case of systematic censoring in training data (a form of sampling bias) due to which, the
classifier that seeks to achieve fairness by equalizing fairness metrics across sensitive groups can still
be unfair on the population. We also show a similar result in Table 1 that learning models on training
data with adversarial bias increases their fairness gap on the test data.

Under varying assumptions, multiple works (Blum & Stangl, 2020; Jiang & Nachum, 2020; De-
Arteaga et al., 2018; Lamy et al., 2019; Friedler et al., 2019; Rambachan & Roth, 2019) have proposed
strategies to account for under-representation bias and mislabeling while learning models. De-Arteaga
et al. (2018) study selective label bias, where true outcomes corresponding to a certain label cannot
be learned, as such examples cannot be added to the training data. The authors propose a method for
augmenting the dataset with human expert predictions to mitigate this kind of bias. Jiang & Nachum
(2020) propose a re-weighting strategy for recovering the optimal classifier on unbiased data from
training data with labeling bias. When uniform random noise is present in the sensitive attribute, it is
shown that demographic parity (DP) gap of a fair classifier on test data increases (Lamy et al., 2019).
The authors propose a method to compute the exact level of DP gap that needs to be imposed on
training data, for achieving a target DP gap on the test data. Blum & Stangl (2020) consider a training
set corrupted by under-representation and/or labeling bias. Assuming access to an infinite number of
samples and learning different classifiers for different sensitive groups, this work shows that ERM
with Equal Opportunity constraint on the biased data can recover the Bayes-optimal classifier for
the true data distribution. Friedler et al. (2019) show a slight variation in the fraction of examples
from each group can affect the performance of a fair classifier. Rambachan & Roth (2019) consider a
specific sampling bias against a group which results in the selection of more samples from that group
in the training data. In this case, the more biased the decision-maker is against a group, the more the
algorithmic decision rule favors that group.

All the above works (Blum & Stangl, 2020; Jiang & Nachum, 2020; De-Arteaga et al., 2018; Lamy
et al., 2019; Friedler et al., 2019; Rambachan & Roth, 2019) assume that the noise and bias in the
training data is a uniform distribution of under-representation/mislabeling over a subspace of points
and study the consequences of learning from training data with such bias. These results cannot
translate to our case of adversarial bias as we consider non-uniform bias over the input space, and
bias is introduced with the specific intention of reducing test accuracy.

Several fair learning algorithms have been proposed to achieve different robustness properties. Wang
et al. (2020) and Celis et al. (2021) propose algorithms robust to noise in the sensitive attribute,
which violates our assumption on unchanged feature vectors. Distributionally robust algorithms
studied in (Rezaei et al., 2020; Taskesen et al., 2020) output classifiers that are fair when the true data
distribution is slightly different from the estimated one. These approaches might fail to defend in the
worst-case adversarial bias as the assumptions on data distributions are not satisfied; we show this
observation for the algorithm proposed in (Rezaei et al., 2020) in the evaluation. Similarly, Mandal
et al. (2020) study fair and robust algorithms that minimize a distributionally robust loss and are fair
with respect to a class of distributions. This class of distributions are weighted perturbations of the
training samples. Roh et al. (2020) propose a GAN-based robust and fair learning algorithm assuming
an additional clean dataset is available. It aims to achieve robustness and fairness at the same time
but lacks theoretical guarantees for both robustness and fairness. For a better generalization of fair
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algorithms, Cotter et al. (2019) propose to use a separate validation set during the training process
to measure and account for fairness. From Table 1, we observe that this algorithm has a smaller
accuracy drop in the presence of adversarial bias yet fails to be fair on test data. Nanda et al. (2021)
study robust and fair machine learning algorithm with respect to the adversarial perturbation at the
test time which differs from our setting. The concurrent work by Roh et al. (2021) proposes a robust
and fair machine learning algorithm that might be used to solve the issues raised by our paper.

Fairness-Accuracy Trade-offs Imposing fairness constraints might come at a cost of the model’s
performance. The effect of fair classification on accuracy and the compatibility of various definitions
with each other have been studied in some related works (Corbett-Davies et al., 2017; Kleinberg et al.,
2017). Kleinberg et al. (2017) show that it is impossible to achieve equal calibration, false positive
rate, and false negative rate if the fraction of positive labeled examples is different across sensitive
groups. Corbett-Davies et al. (2017) show that the optimal decision rule is different from the fair
decision rules that satisfy fairness definitions (statistical parity, conditional statistical parity, predictive
equality). Thus, imposing fairness constraints has a cost on model accuracy. In Section 5, we show
that adversarial bias amplifies the cost of fairness. We believe that this observation would motivate
further study about the trade-off between fairness and accuracy in the worst-case bias setting.

Under certain assumptions on bias in data and the underlying data distribution, fairness and accuracy
are not always in tension as discussed in (Wick et al., 2019; Dutta et al., 2020). These works (Wick
et al., 2019; Dutta et al., 2020) argue that the reason for the seeming existence of a trade-off between
fairness and accuracy is due to measuring the wrong or biased datasets (which is the only information
that is available). Had there been an unbiased dataset available, classifiers could achieve both
fairness and accuracy simultaneously without any trade-off. The sampling bias and labeling bias are
particularly highlighted in (Wick et al., 2019) and it is mentioned that measuring the fairness and
accuracy on datasets with such bias will reflect a trade-off. It was shown in (Dutta et al., 2020) that
there exists a distribution for which classifier learned on (biased) observed data can be both perfectly
fair and accurate. In our paper, we do not have any assumptions about bias already existing in the
data set. We introduce adversarial bias on the given training data set (potentially already biased) and
study the robustness of the fair models in the presence of the adversarial bias setting by measuring
the relative accuracy drop on the test data set (without adversarial bias).
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C SUPPLEMENTARY THEORETICAL RESULTS

C.1 PROOF FOR THEOREM 1

Proof. We should point out that in this proof we follow the approach of (Steinhardt et al., 2017).
Assume T = εn is the time horizon. We have D∗p = {(x1, y1), · · · (xT , yT )} as the data set
produced by Algorithm 1. Also, θt is the parameter chosen by the algorithm at the t-th step. First,
from max–min inequality we have:

M∗
def
= max
Dp

min
θ

 1

n
L(θ;Dc ∪ Dp) +

λ

εn
·
∑

(x,y)∈Dp

∆ (θ,Dc ∪ {(x, y)}εn)


≤ min

θ
max
Dp

 1

n
L(θ;Dc ∪ Dp) +

λ

εn
·
∑

(x,y)∈Dp

∆ (θ,Dc ∪ {(x, y)}εn)

 .

Furthermore, for a given θ we define:

U(θ)
def
= max
Dp

 1

n
L(θ;Dc ∪ Dp) +

λ

εn
·
∑

(x,y)∈Dp

∆ (θ,Dc ∪ {(x, y)}εn)


=

1

n
L(θ;Dc) + max

(x,y)∈F(Dk)
[ε · `(θ;x, y) + λ ·∆ (θ,Dc ∪ {(x, y)}εn)] .

We define U∗ = minTt=1 U(θt). Note that for any given θ, we have M∗ ≤ U(θ). More specifically,
we have M∗ ≤ U∗.
From the definition of M∗, for any set, including D∗p, we have

min
θ

 1

n
L(θ;Dc ∪ D∗p) +

λ

εn
·
∑

(x,y)∈D∗
p

∆ (θ,Dc ∪ {(x, y)}εn)

 = M(D∗p) ≤M∗

Let us define T different functions

gt(θ) =
1

n
L(θ;Dc) + ε · `(θ;xt+1, yt+1) + λ ·∆(θ,Dc ∪ {(xt+1, yt+1)}εn) , (6)

for 0 ≤ t ≤ T . Let us define

θ̃ = argmin
θ∈Θ

T∑
t=1

gt(θ) .

Note that we have ∑T
t=1 gt(θ̃)

T
= M(D∗p) ≤M∗ ≤ U∗ ≤

∑T
t=1 gt(θ

t)

T

Finally, from the definition of regret we have:∑T
t=1 gt(θ

t)

T
−
∑T
t=1 gt(θ̃)

T
=

Regret(T )

T
,

which consequently completes the proof of the theorem.

C.2 OPTIMALITY CONDITIONS FOR THE SOLUTION OF PROBLEM (4)

In this section, we show under which conditions, our algorithm finds the (nearly) optimal solution
for problem (4). We first state a direct consequence of Theorem 1 for a no-regret algorithm which
results from a convexity assumption for functions gt(θ). We then explain under what conditions this
convexity assumption is valid.
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Corollary 1. Under the assumption that (i) loss function ` is convex in θ, (ii) ∆(θ,D) is convex in θ
and (iii) ηt = d

G
√
t

for 1 ≤ t ≤ T , Algorithm 1 produces the near optimal dataset D∗p, such that

M∗ −M(D∗p) ≤ 3Gd√
εn

(7)

where ηt is step size at time t, d is an upper bond on the diameter of Θ, and G is an upper bound on
the norm of the subgradients of gt over Θ, i.e., ‖∇gt(θ)‖ ≤ G.

Proof. First note that Algorithm 1 exactly runs as online gradient descent algorithm for gt(θ) func-
tions. From the assumptions (i) and (ii), we conclude that functions gt(θ) are convex. The theoretical
guarantee of the online gradient descent algorithm for convex functions (Hazan, 2016) allows us to
bound the average regret

Regret(T )

T
≤ 3Gd√

T
,

where d is an upper bond on the diameter of Θ, and G is an upper bound on the norm of the
subgradients of gt over Θ, i.e., ‖∇gt(θ)‖ ≤ G. Finally, the proof is concluded from this bound for
the regret and the result of Theorem 1.

Next, we discuss the optimality conditions for linear classifiers with a convex loss, e.g., `(θ;x, y) =
max(0, 1− y〈θ, x〉) for SVM. In our paper, we focus on equalized odds which is non-convex. We
adopt simplification proposed by Donini et al. (2018) to reach convex relaxations of loss and fairness
constraint. Instead of balancing prediction error, Donini et al. (2018) propose a fairness definition as
balancing the risk among two sensitive groups. Following the same idea, we define the linear loss as
`l (e.g., `l = (1− fθ(x))/2 for SVM). Based on the linear loss, the convex relaxation for the fairness
gap of equalized odds is defined as follows:

∆̃(θ,D) :=
|R+,a(θ,D)−R+,b(θ,D)|+ |R−,a(θ,D)−R−,b(θ,D)|

2
, (8)

for Ry,s(θ,D) = 1
ny,s

∑
(x,y)∈Dy,s `l(θ;x, y) where Dy,s is the set of data points from group s

with label y in D and ny,s = |Dy,s|. To find the optimal Dp for the EO fair model, in Eq. (4), we
replace loss ` with a convex loss (e.g. Hinge loss) `c and replace ∆(fθ;D) with the convex relaxation
∆̃(θ;D). Hence, Algorithm 1 produces the nearly optimal data set D∗p such that it has the maximal
damage on the fair model under our approximations.

As a future research direction, one could try to design new online algorithms that achieve small regrets
in the non-convex setting or under better approximations of the fairness constraint. Our framework
can then utilize such online algorithms to further investigate the effect of adversarial bias on the
robustness of models with fairness constraints.

C.3 PSEUDOCODE FOR THE ALGORITHM FROM SECTION 3

For the sake of completeness, we present the full pseudo-code for our algorithm proposed in Section 3.

Algorithm 2
1: Input: Clean data Dc, n = |Dc|, feasible set F(Dk), εn (the size of Dp), penalty parameter

(Lagrange multiplier) λ, learning rate η.
2: Output: Dp.
3: Initialize θ0

4: for t = 1, · · · , εn do
5: (xt, yt)← argmax(x,y)∈F(Dk)

[
ε · `(θt−1;x, y) + λ ·∆

(
θt−1,Dc ∪ {(x, y)}εn

)]
6: Dp ← Dp ∪ {(xt, yt)}
7: θt ← θt−1 − η

(
∇L(θt−1;Dc)

n + ε · ∇`(θt−1;xt, yt)
)

8: end for
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Table 3: Distribution of data points in clean training dataset and Dk – COMPAS dataset.

Clean Dk

y = − y = + y = − y = +
s = 0 28.5% 31.8% s = 0 29.0% 31.1%
s = 1 32.5% 7.2% s = 1 16.0% 23.9%

Table 4: Distribution of data points in clean training dataset and Dk – Adult dataset.

Clean Dk

y = − y = + y = − y = +
s = 0 48.5% 16.5% s = 0 45.0% 23.4%
s = 1 32.3% 2.6% s = 1 27.2% 4.4%

D FAIR MACHINE LEARNING ALGORITHMS

The post-processing approach is the first proposed algorithm to achieve equalized odds (Hardt et al.,
2016). The fair model is obtained by adjusting a trained unconstrained model so as to remove the
discrimination according to equalized odds. The outcome of this approach is a randomized classifier
that assigns to each data point a probability of changing the prediction output by the unconstrained
model, conditional on its protected attribute, and predicted label. These probabilities are computed
by a linear program that optimizes the expected loss.

Many methods have been proposed to achieve fairness in machine learning (see (Mehrabi et al.,
2021a) for a recent survey). The reductions approach proposed by (Agarwal et al., 2018) trains a
fair randomized classifier over a hypothesis class by reducing the constrained optimization problem
to learning a sequence of cost-sensitive classification models. Cost-sensitive classification is used in
this as an oracle to solve classification problems resulted from a two-player game: one player (primal
variables) minimizes the loss function; the other player (dual variables) maximizes the fairness
violation (constraints). Similarly, the fair learning algorithm proposed in (Cotter et al., 2019) is
also based on a two-player game. One player optimizes the model parameters on a training dataset
to minimize the loss, and the other player enforces the constraints on an independent validation
dataset instead of training data. Different from the fair algorithms based on the two-play game,
adversarial debiasing (Zhang et al., 2018) is proposed to learn a classifier to maximize prediction
accuracy and simultaneously reduce an adversary’s ability to determine the protected attribute from
the predictions. This approach leads to a fair classifier as the predictions cannot carry any group
discrimination information that the adversary can exploit. (Rezaei et al., 2020) trains a fair classifier
that is (distributionally) robust when the true data distribution is different from the distribution
estimated on training data but their statistics match. The method is applied particularly for classifier
using logarithmic loss, where due to the strong duality of the optimization problem, a closed-form
solution can be derived.

E SUPPLEMENTARY EXPERIMENTAL RESULTS

For the following section, we present the detailed experimental results on COMPAS, Adult, Medical
Expenditure Panel Survey (MEPS) and synthetic datasets. All the results on COMPAS dataset are
averaged over 100 runs with different random seeds. On Synthetic, MEPS and Adult datasets, all the
results are averaged over 50 runs with different random seeds.

E.1 DETAILS OF DATASETS

We use four datasets in our evaluation, their details are described below.

COMPAS COMPAS (Larson et al., 2017) dataset contains 5278 data samples. The classification
task is to predict recidivism risk from criminal history and demographics. We consider race as the
sensitive attribute and include records only with white/black as race. There are 3175 records (60.2%)
for the sensitive attribute as white. Among the white group, 52.3% have positive labels while among
the black group, this number is 41.9%. Overall, there are 2483 records (47%) are labeled positive.
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Table 5: Distribution of data points in clean training dataset and Dk - Synthetic dataset.

Clean Dk

y = − y = + y = − y = +
s = 0 18.1% 36.3% s = 0 18.1% 36.5%
s = 1 31.9% 13.7% s = 1 31.9% 13.5%

Table 6: Distribution of data points in clean training dataset and Dk - MEPS dataset.

Clean Dk

y = − y = + y = − y = +
s = 0 8.2% 50.7% s = 0 13.0% 45.7%
s = 1 13.1% 28.0% s = 1 17.6% 23.7%

Pre-processing A model trained with the original dataset can only achieve low accuracy (66.6%
for the Logistic regression model, compared to the constant prediction classifier that can achieve
53% accuracy), which does not help the understanding of the model’s behavior in the presence of
adversarial bias. To get rid of the noise that exists in the dataset, we pre-process the dataset as follows:
we train an SVM model with RBF kernel on the entire dataset and only keep 60% of the data points
which have the smallest loss. To create the training data, test data Dtest and Dk, we randomly split
the clean data in the corresponding ratio 4:1:1. Hard examples (the left-out data points) are added to
Dk.

Data distribution The data distribution of points in the clean training dataset and Dk after pre-
processing are presented in Table 3. The numbers are the average values over all the datasets we
evaluated on. On average, the training data contains 2111 samples, Dtest 528 samples. Dk consists
of 2639 samples out of which 2112 are hard examples. A Logistic regression model trained on the
clean data achieves on average 94% accuracy on test data.

UCI Adult (Census Income) Adult dataset (Dua & Graff, 2017) includes 48,842 records with
14 attributes such as age, gender, education, marital status, occupation, working hours, and native
country. The (binary) classification task is to predict if a person makes over $50K a year based on the
census attributes. We consider gender (male and female) as the sensitive attribute. In this dataset,
66.8% are males, and 23.9% are labeled one, i.e having an income over $50K a year. Among male
samples, 30.4% are positive samples; for the females, this number is 10.9%.

Pre-processing A model trained on this dataset generally achieves below 90% accuracy (Logistic
regression: 85.3%, 2-layer fully connected neural network with 32 hidden units each layer: 85.3%
on training data, compared to a constant prediction classifier that can achieve 76.1% accuracy). To
enhance the model accuracy, we apply similar pre-processing steps as on COMPAS: we train an
SVM model with Linear kernel on the entire dataset and keep 90% of the data points which have the
smallest loss. The number of females with income above $50K is small; hence we randomly split 1/2
of the data for Dk. Of the remaining data, 70% are used for training data and 30% for Dtest. Hard
examples (the left-out data points) are added to Dk.

Data distribution The data distribution of the points in the clean training dataset and Dk after pre-
processing are presented in Table 4. The numbers are the average values over all the datasets we
evaluated on. On average, the training data contains 15385 samples, Dtest 6594 samples. Dk consists
of 26863 samples. The training data maintains approximately the same fractions of males and females
as in the original dataset. A Logistic regression model trained on the clean data achieves on average
94% accuracy on test data.

MEPS dataset Medical Expenditure Panel Survey (MEPS) dataset(mep; ahr) includes 15,675
records with 44 attributes. The classification task is to predict annual hospital utilization (positive
label indicates at least 10 visits). We use the same preprocessing as in IBM’s AI Fairness 360
(Bellamy et al., 2018) and use race (white or non-white) as the sensitive attribute.

Pre-processing The dataset contains 83% positive samples and 17% negative samples. A logistic
regression classifier trained on this data achieves low balanced accuracy (96% for the positive class,
and 36% for the negative). Hence, we subsample and keep only 50% of the positive class (for both
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groups). We further proceed to train an SVM model with Linear kernel and keep 80% of the data
points which have the smallest loss. We randomly split 3/4 of the data for Dk. Of the remaining data,
75% are used for training and 25% for Dtest. The left-out data points are added to Dk.

Data distribution The data distribution of points in the clean training dataset and Dk after pre-
processing are presented in Table 6. The numbers are the average values over all the datasets we
evaluated on. On average, the training data contains 1372 samples, Dtest 458 samples. Dk consists
of 7321 samples out of which 1381 are hard examples. A Logistic regression model trained on clean
data achieves on average 93% accuracy on test data.

Synthetic data As described before, the real-world datasets can be noisy and unbalanced. Hence,
we generate a synthetic dataset which does not affect by unbalancing and pre-processing. We used the
settings proposed in (Zafar et al., 2019). Specifically, we sample data from two following Guassian
distributions p(x|y = −) = N([2; 2], [5, 1; 1, 5]) and p(x|y = +) = N([−2;−2], [10, 1; 1, 3]). For
each feature vector x, the sensitive attribute is generated by a Bernoulli distribution: p(s = 1) =
p(x′|y = +)/(p(x′|y = +) + p(x′|y = −)), where x′ is a rotated version of x. We generate for each
label class 1000 training data points, 500 test points and 2000 points for Dk. A Logistic regression
model trained on the generated data achieves on average 87.6% accuracy on test data. We do not
consider the Hard examples baseline for this dataset.

Data distribution The data distribution of points in the clean training dataset and Dk after pre-
processing are presented in Table 5.

E.2 IMPLEMENTATION AND PARAMETERS SELECTION

In Algorithm 1 we test with λ ∈ {ε, 100ε, 1000ε} and show the results when λ = 1000ε for all
datasets. In Algorithm 2, we use Logistic regression models. Since we measure the exact ∆ of the
model and want that ∆ to have a large impact on finding a new data point in each iteration. We
choose λ ∈ {ε, 10ε, 100ε} and use λ = 100ε in the evaluation for Synthetic, COMPAS and Adult,
and λ = ε for MEPS. For both algorithms, we use η = 0.001 as the learning rate.

To train a fair model, we use the post-processing method (Hardt et al., 2016) and reductions ap-
proach (Agarwal et al., 2018) and also fair algorithms proposed in (Zhang et al., 2018; Rezaei
et al., 2020; Cotter et al., 2019). For post-processing method (Hardt et al., 2016) and reductions
approach (Agarwal et al., 2018), we use the implementation of these algorithms provided in (Agarwal
et al., 2018)4. For the fair algorithm proposed in (Rezaei et al., 2020), we use the implementation
provided in (Rezaei et al., 2020)5. We use the implementation from AI Fairness 360 library (Bellamy
et al., 2018) for the fair algorithm proposed in (Zhang et al., 2018) 6. We implement the fair algorithm
proposed in (Cotter et al., 2019) based on TensorFlow Constrained Optimization library 7.

Note that while the post-processing approach allows achieving exact fairness on the training data,
the implementation of the fair algorithms (Cotter et al., 2019; Agarwal et al., 2018) requires a
strictly positive δ. We set δ = 0 for the fair algorithm (Cotter et al., 2019). However, the fair
algorithms (Rezaei et al., 2020; Zhang et al., 2018; Cotter et al., 2019) does not have a strict
fairness constraint that contains δ. We use default values for all hyper-parameters from the available
implementation. For the fair algorithm (Zhang et al., 2018), we set the adversary loss weight to 1
which is a hyperparameter that chooses the strength of the adversarial loss. See Eq. (1) in (Zhang
et al., 2018). It is important to note that, the output of reduction, post-processing approaches, and fair
algorithm (Cotter et al., 2019) is a randomized classifier. We, therefore, use the expected accuracy to
measure the classification performance, given by

Acc(θ;D) = 1− 1

|D|
∑

(x,y)∈D

|fθ(x)− y|, (9)

where fθ(x) is the expected prediction of randomized classifier fθ. For the unconstrained models, fθ
is the deterministic prediction.

4https://github.com/fairlearn/fairlearn
5https://github.com/arezae4/fair-logloss-classification
6https://github.com/Trusted-AI/AIF360
7https://github.com/google-research/tensorflow_constrained_optimization
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E.3 ROBUSTNESS EVALUATION

In this section, we provide the detailed results about the test accuracy and fairness gap of the target
models for all datasets, as discussed in Section 5. We show that the fair models are more vulnerable to
adversarial bias than the unconstrained model. In addition, the test accuracy and the fairness property
of fair models are both compromised.

Test accuracy In the Table 7, we compare the effect of adversarial bias on unconstrained models
(without fairness constraint) with fair models trained with different fair algorithms on all datasets
when the amount of bias equals 10% of the training data i.e., ε = 0.1. On all the datasets, we observe
a larger relative accuracy drop for all fair models compared with unconstrained models. This implies
that, under the adversarial bias setting, the fairness constraints hurt the robustness of the model.

Fairness gap In Table 8, we compare the effect of adversarial bias on unconstrained model (without
fairness constraint) with different fair models at different δ on all datasets, when ε = 0.1. We notice
that the fairness gap of fair models trained on the biased data is larger than those of fair models
trained on clean data (as shown in “Benign” row) (this observation is particularly pronounced on
COMPAS, Adult, and Synthetic datasets). This implies fair models trained on biased data become
less fair on the test dataset when biases are present in both adversarial sampling bias and adversarial
labeling bias setting. This shows that not only does adversarial bias can cause accuracy drops, but it
is also able to make fair models more discriminatory on test data.

E.4 CONFLICT BETWEEN FAIRNESS AND ROBUSTNESS

In Figure 1, Figure 7, Figure 8 and Figure 9 we compare the test accuracy of target model at different
fractions of adversarial bias selected using all the strategies on COMPAS, Adult, Synthetic and MEPS
datasets respectively. The x-axis ε is the ratio of the size of Dp to the size of the clean dataset and
reflects the contamination level of the training set. We compare the impact of adversarial bias with
baselines and adversarial bias against unconstrained models, for various ε. The difference between
test accuracy at ε = 0 (benign setting) and a larger ε values reflects the impact of the biasing strategy.
Constant prediction always outputs the majority label in the clean dataset.

For the Adult dataset, notice that the Constant prediction baseline has good accuracy (>80%). Hence,
the relative accuracy drop on the Adult dataset is not as significant as that on the COMPAS dataset.
However, we can still observe similar results that compared to the unconstrained models, the fair
models suffer a greater accuracy drop, with our proposed algorithms perform significantly better
than the baselines. The three algorithms have similar results both when the fair models are trained
with (Hardt et al., 2016) and (Agarwal et al., 2018).

For the Synthetic and MEPS datasets, adversarial sampling hardly influences the unconstrained
models, while some small effect is observed on the fair models. On the other hand, on Synthetic data,
adversarial labeling bias has a much stronger effect on the fair models than on the unconstrained
models. For MEPS, the difference in accuracy is smaller; yet we can still observe the accuracy drop
is larger for the fair models. This is another evidence for the claim that fair models are less robust to
bias than unconstrained models.

E.5 EFFECT OF FAIRNESS LEVEL ON IMPACT OF ADVERSARIAL BIAS

In Figure 10, Figure 11, Figure 12 and Figure 13, we show the effect of fairness level δ on impact of
adversarial sampling bias and adversarial labeling bias for COMPAS, Adult, Synthetic and MEPS
dataset respectively. To measure the influence of fairness level δ, we generate bias using Algorithm 2
and Algorithm 1 for both adversarial labeling and adversarial sampling settings.

We measure the test accuracy of models learned with different values of fairness level δ on the same
biased dataset. We can observe that the drop in accuracy for the same fraction of bias is higher for
models with stricter fairness constraints (smaller δ). This shows that the more fair a model tries to be,
the more vulnerable it becomes to adversarial bias. We also present the majority (the protected group
with a larger number of samples) accuracy and minority accuracy. It is clear that the accuracy drop
for the majority is more significant than that for minorities for all the cases.
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In the Appendix E.10, we show that the algorithms choose the points with large loss from the smallest
subgroup (subgroups are determined by the protected attribute and the label). As a result, in order
to achieve fairness on the biased dataset, fair models are more likely to reduce the accuracy of the
majority group.

On Synthetic dataset, this observation is not clear as the size of the majority is not much bigger than
that of the minority (54.4% vs. 45.6%). On MEPS dataset, the accuracy drop for the majority and
minority is similar. From Figure 26, we notice that Dp generated by Algorithm 2 with λ = ε and
Algorithm 2 with λ = ε has a similar fraction of samples from the each group. This is because the
fairness gap of the unconstrained model on MEPS is small. In addition, the selected λ for MEPS
is relatively small. As a result, data points that have a large loss also have a large weighted sum
of the loss and the fairness gap. As a consequence, Dp generated by Algorithm 2 with λ = 0 and
Alghorithm 2 with λ = ε has a similar effect on the majority and minority of the fair models.

E.6 TRANSFERABILITY OF ADVERSARIAL BIAS.

Table 9 shows the test accuracy of fair models when we generate poisoning data without the knowledge
of the exact data points in the clean training data Dc or the target model’s architecture. Instead, we
use a substitute model and a substitute dataset drawn from the same distribution. The target model’s
architecture used in the unconstrained model and the fair models trained with (Agarwal et al., 2018)
and (Hardt et al., 2016) is the decision tree. However, to generate poisoning data, we use a logistic
regression model instead of a decision tree in Algorithm 1 and Algorithm 2. We observe that for both
adversarial sampling and adversarial labeling, there is a similar pattern in the model performance
and impact of the bias compared to the results in Table 1, where we used the knowledge of the
clean training data to generate the poisoning data. This implies that the adversarial bias can still be
effectively transferred to the more realistic scenarios where knowledge of the target’s model and clean
training data is not available to an adversary. It means, in practice, an adversary who only knows the
fairness notion that the target model aims to satisfy can successfully reduce the overall accuracy of
the resulting model significantly.

E.7 OTHER NOTIONS OF GROUP FAIRNESS

We present experimental results for equal opportunity to show the vulnerability of fair models under
other notions of group fairness. Without loss of generality, we consider positive prediction as the
advantaged outcome. Equal opportunity, a relaxation of equalized odds, enforces non-discrimination
among groups with “advantaged” prediction, i.e, it requires the true positive rate to be equal among
all groups. We use a relaxed notion of equal opportunity, formally defined as follows:
Definition 1 (Equal opportunity). A binary classifier fθ is δ-fair under equal opportunity if

∆EOpp(θ,D) ,

∣∣∣∣Pr
D

[fθ(X) 6= y|S = 0, Y = +]− Pr
D

[fθ(X) 6= y|S = 1, Y = +]

∣∣∣∣ ≤ δ, (10)

where, the probabilities are computed empirically over the training set D. We refer to ∆EOpp as the
model’s empirical fairness gap under equal opportunity. A model satisfies exact fairness under equal
opportunity when δ = 0.

Algorithm 1 and Algorithm 2 can be modified accordingly for equal opportunity by replacing ∆ with
∆EOpp. In Figure 14, we compare the test accuracy of unconstrained model and fair models with
respect to equal opportunity when ε varies for the reduction approach (Fair (Agarwal et al., 2018),
δ = 0.01) and post-processing approach (Fair (Hardt et al., 2016), δ = 0) on COMPAS dataset.
We observe the same pattern as in Figure 1 that at the same ε, the accuracy drop of the fair models
is significantly more than that of the unconstrained models. We can come to the conclusion that
fair models trained with equal opportunity are noticeably less robust than unconstrained models. In
addition, comparing the unconstrained model with fair models, as ε increases, shows that the cost of
fairness increases. Hence, for equal opportunity fairness notion, adversarial bias amplifies the cost of
fairness.

E.8 ACCURACY ON TRAINING DATA FOR MINORITY GROUP

In Figure 15, Figure 16, Figure 17 and Figure 18, the accuracy of the unconstrained model on Dp

from the minority group is compared with the corresponding accuracy of fair models with different
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fairness level δ on COMPAS, Adult, Synthetic and MEPS datasets. All fair models are trained with
the reductions approach (Agarwal et al., 2018). Dp is selected using Algorithm 2 with λ = 0 for the
unconstrained model for both adversarial labeling and adversarial sampling settings. On all datasets,
we can observe that, for the fair model using (Agarwal et al., 2018), as the value of δ decreases, the
accuracy of the model increases on Dp and decreases on clean training data. This implies adversarial
bias reduces fair models’ ability to learn from clean data on the minority group.

E.9 FAIRNESS GAP OF THE UNCONSTRAINED MODEL ON BIASED TRAINING DATA

To investigate the effect of adversarial bias, we train an unconstrained classifier without any fairness
constraints and measure the fairness gap ∆(θ;Dc ∪Dp) of the poisoned training dataset generated by
different algorithms. Figure 19, Figure 20, Figure 21 and Figure22 show the results for all datasets.
We observe a correlation between the effect of the bias and the corresponding fairness gap on the
training data. For the baselines (Label flipping, Random sampling, Hard examples), the slight increase
in ∆ corresponds to a small accuracy drop on the test data. For our biasing strategies, ∆ is much
larger and at the same time, the corresponding test accuracy is also significantly lower than observed
for the baselines.

E.10 DISTRIBUTION OF Dp

In Figure 23, Figure 24, Figure 25, and Figure 26 we show group membership based on the protected
attribute and labels of the data which are generated via different biasing strategies. The number of
samples with s = 1, y = + (s = 0, y = − for MEPS) is the smallest among the four combinations
of labels and the protected attribute. As shown in each figure, the biasing algorithms in the first two
rows are more effective compared with baselines in the second row. As shown in sub-figures (a)-(f),
in more effective strategies, most data points in Dp are from the smallest subgroup (positive labeled
points from the minority).

E.11 PERFORMANCE OF ALGORITHM 2 WITH λ = 100ε ON ADULT DATASET

We notice that there are accuracy fluctuations for the fair models evaluated on the Dp selected by
Algorithm 2 with λ = 100ε on the Adult dataset. Recall that, the algorithm selects data from the Dk

without replacement. In each iteration, it selects the data point that maximizes the classification loss
plus the fairness gap (as at Line 5 in Algorithm 2). As shown in Figure 23, Figure 24 and Figure 25,
Algorithm 2 with λ = 100ε has a significant preference to select data that would result in a large
fairness gap. Thus, it chooses data that would fall into the smallest subgroup in the training set. This
is shown to be very effective in the case of COMPAS dataset and can lead to a sharp decrease in the
model accuracy even for small ε (see Figure 1). However, this greedy algorithm in the case of small
Dk, and no repetition in the Dp, can result in the degradation of the impact of the adversarial bias for
larger ε values, as we see in Figure 7.

In more detail, the reason behind the Algorithm 2 with λ = 100ε for larger ε on the Adult dataset
is the following. In the adversarial sampling setting, the size of the smallest subgroup (y = + and
s = 1) in the Dk is only equivalent to ε = 7.69% of Dp. For larger values of ε, Algorithm 2 with
λ = 100ε will choose data from other subgroups, which cannot further harm the model accuracy,
thus reduces the effect of the adversarial bias.

In the adversarial labeling setting, with large ε, the number of Dp is larger than the size of subgroups
with positive labels (y = +) in Dc; typically when ε = 0.2, |Dp| > 3000 whereas the number of
samples with y = + in Dc is 2943 on average. Relying on choosing points to select data points to
maximize ∆ results in the possibility of choosing points from any subgroups with positive labels (as
shown in Figure 16(b)), since data points can dominate any of these subgroups.

In summary, the fluctuation in the figures is due to the significant effect of maximizing the fairness
gap. In fact, in both adversarial sampling and labeling settings, Algorithm 2 (λ = 100ε) achieves the
same performances with a smaller ε as the other algorithms with larger ε. These results, in effect,
reflect the effectiveness of the algorithm.
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Figure 6: Test accuracy of unconstrained and fair models under adversarial bias – COMPAS dataset.
The x-axis ε is the ratio of the size of biasing dataset Dp to the size of clean dataset, and reflects the
contamination level of training set. We compare the impact of adversarial bias with baselines and
poisoning attacks against unconstrained models, for various ε. The difference between test accuracy
at ε = 0 (benign setting) and larger ε values reflects the impact of the biasing strategy. Constant
prediction always outputs the majority label in clean dataset. The enforced fairness level δ is 0 and
0.01 for the fair model (Hardt et al., 2016) and fair model (Agarwal et al., 2018), respectively.
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Table 7: Test accuracy of unconstrained models and fair models (Hardt et al., 2016; Agarwal et al.,
2018; Rezaei et al., 2020; Cotter et al., 2019; Zhang et al., 2018) in the presence of adversarial bias -
all datasets, for ε = 0.1. We report and compare the accuracy of the unconstrained models and fair
models in the benign (ε = 0) and adversarial bias setting. When ε = 0, the models are trained on Dc.
For each result in the adversarial bias setting, we report the relative accuracy drop compared with
the accuracy in the benign setting (ε = 0). The smaller relative accuracy drop reflects the stronger
robustness of the model. The numbers in bold are the largest relative accuracies drop of the target
models against different algorithms.

D
at

as
et Target Model

ε = 0

Adversarial Sampling (ε = 0.1) Adversarial Labeling (ε = 0.1)
Alg. 2

(λ = 0)
Alg. 2 Alg. 1 Alg. 2

(λ = 0)
Alg. 2 Alg. 1

Sy
nt

he
tic

Unconstrained 87.6 87.4
(0.2↓)

- - 85.1
(2.9%↓)

- -

Fair (Hardt et al., 2016) 80.0 77.2
(3.5%↓)

78.9
(1.4%↓)

79.9
(0.1%↓)

71.0
(11.%↓)

71.1
(11.%↓)

70.9
(11.%↓)

Fair (Agarwal et al., 2018) 84.9 80.9
(4.7%↓)

82.8
(2.5%↓)

81.7
(3.8%↓)

75.2
(11.%↓)

68.0
(20.%↓)

68.0
(20.%↓)

Fair (Rezaei et al., 2020) 76.1 70.2
(7.8%↓)

71.4
(6.2%↓)

74.2
(2.5%↓)

60.9
(20.%↓)

58.3
(23.%↓)

60.1
(21.%↓)

Fair (Cotter et al., 2019)) 85.5 84.5
(1.2%↓)

84.5
(1.2%↓)

84.9
(0.7%↓)

80.3
(6.1%↓)

79.7
(6.8%↓)

77.8
(9.0%↓)

Fair (Zhang et al., 2018) 78.1 75.0
(4.0%↓)

75.1
(3.8%↓)

76.4
(2.2%↓)

66.1
(15.%↓)

63.0
(19.%↓)

65.3
(16.%↓)

C
O

M
PA

S

Unconstrained 94.3 87.6
(7.1%↓)

- - 84.7
(10.%↓)

- -

Fair (Hardt et al., 2016) 87.4 70.8
(19.%↓)

71.6
(18.%↓)

75.2
(14.%↓)

68.2
(22.%↓)

69.8
(20.%↓)

72.9
(17.%↓)

Fair (Agarwal et al., 2018) 93.6 77.8
(17.%↓)

73.1
(22.%↓)

79.0(16.%↓) 73.0
(22.%↓)

67.7
(28.%↓)

76.2
(19.%↓)

Fair (Rezaei et al., 2020) 84.5 63.2
(25.%↓)

64.7
(23.%↓)

68.2
(19.%↓)

60.9
(28.%↓)

60.6
(28.%↓)

66.2
(22.%↓)

Fair (Cotter et al., 2019) 91.9 79.6
(13.%↓)

81.2
(12.%↓)

82.9
(10.%↓)

76.2
(17.%↓)

76.7
(17.%↓)

79.3
(14.%↓)

Fair (Zhang et al., 2018) 81.0 70.0
(14.%↓)

66.0
(19.%↓)

72.3
(11.%↓)

67.4
(17.%↓)

64.1
(21.%↓)

70.9
(12.%↓)

A
du

lt

Unconstrained 94.3 94.0
(0.3%↓)

- - 89.3
(5.3%↓)

- -

Fair (Hardt et al., 2016) 92.7 89.6
(3.3%↓)

90.1
(2.8%↓)

91.4
(1.4%↓)

84.6
(8.7%↓)

81.1
(13.%↓)

84.8
(8.5%↓)

Fair (Agarwal et al., 2018) 93.8 91.7
(2.2%↓)

92.2
(1.7%↓)

92.4
(1.5%↓)

83.9
(11.%↓)

80.9
(14.%↓)

86.1
(8.2%↓)

Fair (Rezaei et al., 2020) 84.5 78.1
(7.6%↓)

79.1
(6.4%↓)

78.9
(6.6%↓)

70.4
(17.%↓)

64.9
(23.%↓)

76.1
(9.9%↓)

Fair (Cotter et al., 2019) 92.7 91.2
(1.6%↓)

91.1
(1.7%↓)

90.3
(2.6%↓)

84.0
(9.1%↓)

83.8
(9.6%↓)

86.8
(6.4%↓)

Fair (Zhang et al., 2018) 89.7 85.7
(4.4%↓)

86.1
(4.0%↓)

88.7
(1.1%↓)

82.6
(7.9%↓)

44.9
(50.%↓)

51.9
(42.%↓)

M
E

PS

Unconstrained 92.8 91.2
(1.7%↓)

- - 88.8
(4.3%↓)

- -

Fair (Hardt et al., 2016) 91.3 88.6
(3.0%↓)

87.8
(3.8%↓)

90.4
(1.0%↓)

85.0
(6.9%↓)

85.2
(6.7%↓)

90.1
(1.3%↓)

Fair (Agarwal et al., 2018) 92.6 89.8
(3.0%↓)

88.9
(4.0%↓)

91.1
(1.6%↓)

85.9
(7.2%↓)

86.0
(7.1%↓)

90.7
(2.0%↓)

Fair (Rezaei et al., 2020) 88.6 75.7
(15.%↓)

76.0
(14.%↓)

86.5
(2.4%↓)

74.8
(16.%↓)

74.5
(16.%↓)

86.0
(2.9%↓)

Fair (Cotter et al., 2019) 91.4 89.1
(2.5%↓)

88.2
(3.5%↓)

89.9
(1.6%↓)

86.9
(4.9%↓)

86.8
(5.0%↓)

89.4
(2.2%↓)

Fair (Zhang et al., 2018) 78.6 67.2
(15.%↓)

66.8
(15.%↓)

75.9
(3.4%↓)

63.7
(19.%↓)

64.4
(18.%↓)

74.2
(5.6%↓)
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Table 8: Fairness gap of target models on test data for ε = 0.1. Fair models are trained using the
reduction approach (Agarwal et al., 2018). The fairness gap ∆ is defined in (1). The numbers reflect
how unfair the model is with respect to the protected group in the test data. For fair models, compare
numbers with δ (the guaranteed fairness gap on training data). The farther apart ∆ and δ are, the less
the fairness generalization is on test data.

Dataset Strategies Unconstrained
Model

Fair
(δ = 0.1)

Fair
(δ = 0.05)

Fair
(δ = 0.01)

Synthetic

Benign 0.18±0.04 0.14±0.05 0.08±0.04 0.03±0.02
Random Sampling 0.18±0.04 0.14±0.04 0.08±0.04 0.03±0.02
Label flipping 0.19±0.04 0.07±0.04 0.07±0.02 0.10±0.03
Adv. sampling (Alg. 2, λ = 0) 0.17±0.05 0.08±0.05 0.08±0.04 0.07±0.04
Adv. sampling (Alg. 1, λ = 1000ε) - 0.05±0.03 0.04±0.03 0.04±0.02
Adv. sampling (Alg. 2, λ = 100ε) - 0.07±0.04 0.09±0.04 0.09±0.04
Adv. labeling (Alg. 2, λ = 0) 0.29±0.10 0.07±0.04 0.10±0.04 0.11±0.06
Adv. labeling (Alg. 1, λ = 1000ε) - 0.08±0.03 0.15±0.03 0.14±0.06
Adv. labeling (Alg. 2, λ = 100ε) 0.12±0.05 0.15±0.05 0.14±0.07

COMPAS

Benign 0.21±0.07 0.11±0.06 0.08±0.05 0.06±0.04
Random Sampling 0.19±0.07 0.08±0.03 0.10±0.03 0.11±0.05
Hard examples 0.19±0.08 0.09±0.03 0.11±0.03 0.13±0.05
Label flipping 0.23±0.07 0.09±0.04 0.08±0.03 0.07±0.04
Adv. sampling (Alg. 2, λ = 0) 0.26±0.08 0.19±0.07 0.25±0.07 0.30±0.07
Adv. sampling (Alg. 1, λ = 1000ε) - 0.16±0.05 0.20±0.07 0.22±0.09
Adv. sampling (Alg. 2, λ = 100ε) - 0.29±0.06 0.33±0.08 0.37±0.09
Adv. labeling (Alg. 2, λ = 0) 0.28±0.08 0.13±0.05 0.15±0.07 0.19±0.08
Adv. labeling (Alg. 1, λ = 1000ε) - 0.14±0.05 0.17±0.07 0.16±0.08
Adv. labeling (Alg. 2, λ = 100ε) - 0.28±0.05 0.31±0.09 0.39±0.08

Adult

Benign 0.07±0.03 0.07±0.03 0.06±0.03 0.04±0.02
Random Sampling 0.07±0.03 0.07±0.03 0.06±0.03 0.03±0.02
Hard examples 0.08±0.03 0.06±0.03 0.06±0.03 0.04±0.02
Label flipping 0.08±0.04 0.10±0.04 0.17±0.04 0.24±0.04
Adv. sampling (Alg. 2, λ = 0) 0.06±0.03 0.03±0.02 0.07±0.03 0.12±0.03
Adv. sampling (Alg. 1, λ = 1000ε) - 0.03±0.02 0.05±0.02 0.09±0.03
Adv. sampling (Alg. 2, λ = 100ε) - 0.06±0.03 0.07±0.02 0.07±0.02
Adv. labeling (Alg. 2, λ = 0) 0.06±0.04 0.07±0.03 0.13±0.04 0.21±0.04
Adv. labeling (Alg. 1, λ = 1000ε) - 0.1±0.04 0.16±0.04 0.13±0.05
Adv. labeling (Alg. 2, λ = 100ε) - 0.18±0.06 0.16±0.06 0.09±0.08

MEPS

Benign 0.09±0.06 0.08±0.05 0.08±0.05 0.08±0.05
Random Sampling 0.09±0.06 0.09±0.07 0.07±0.05 0.08±0.06
Hard examples 0.11±0.06 0.08±0.05 0.07±0.04 0.08±0.05
Label flipping 0.08±0.05 0.07±0.05 0.07±0.05 0.07±0.05
Adv. sampling (Alg. 2, λ = 0) 0.09±0.05 0.10±0.06 0.20±0.10 0.14±0.08
Adv. sampling (Alg. 1, λ = 1000ε) - 0.08±0.05 0.09±0.06 0.08±0.05
Adv. sampling (Alg. 2, λ = ε) - 0.09±0.06 0.20±0.10 0.13±0.08
Adv. labeling (Alg. 2, λ = 0) 0.08±0.07 0.09±0.07 0.10±0.07 0.09±0.07
Adv. labeling (Alg. 1, λ = 1000ε) - 0.07±0.04 0.07±0.05 0.07±0.04
Adv. labeling (Alg. 2, λ = ε) - 0.11±0.08 0.10±0.07 0.09±0.07

31



Under review as a conference paper at ICLR 2022

Table 9: Test accuracy of unconstrained models and fair models in the presence of adversarial bias –
COMPAS for ε = 0.1. We report and compare the accuracy of the unconstrained models and fair
models in adversarial bias setting when the clean training data and the target model’s architecture
are unknown. Instead, a substitute dataset and a substitute model are used in Algorithm 1 and
Algorithm 2. We also report the relative accuracy drop in parenthesis.

Target Model Adv. Sampling (ε = 0.1) Adv. Labeling (ε = 0.1)
Unconstrained 92.2 (4.6%↓) 91.7 (5.1%↓)
Fair (Hardt et al., 2016) (δ = 0) 83.6 (13.%↓) 82.6 (14.%↓)
Fair (Agarwal et al., 2018) (δ = 0.01) 84.1 (13.%↓) 82.0 (15.%↓)
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Figure 7: Test accuracy of unconstrained and fair models under adversarial bias – Adult dataset. The
enforced fairness level δ is 0 and 0.01 for the fair model (Hardt et al., 2016) and fair model (Agarwal
et al., 2018), respectively.
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Figure 8: Test accuracy of unconstrained and fair models under adversarial bias – Synthetic dataset.
Constant prediction has 50% accuracy. The enforced fairness level δ is 0 and 0.01 for the fair model
(Hardt et al., 2016) and fair model (Agarwal et al., 2018), respectively.
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Figure 9: Test accuracy of unconstrained and fair models under adversarial bias – MEPS dataset. The
enforced fairness level δ is 0 and 0.01 for the fair model (Hardt et al., 2016) and fair model (Agarwal
et al., 2018), respectively.
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Figure 10: Effect of fairness level δ on robustness across groups under adversarial sampling and
adversarial labeling bias – COMPAS dataset. The reductions approach (Agarwal et al., 2018) is used
to train fair models. The majority group (whites) contributes 61% of the test data.
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Figure 11: Effect of fairness level δ on robustness across groups under adversarial sampling and
adversarial labeling bias – Adult dataset. The majority group (males) contributes 66% of the test data.
The reductions approach (Agarwal et al., 2018) is used to train fair models.
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Figure 12: Effect of fairness level δ on robustness across groups under adversarial sampling and
adversarial labeling bias – Synthetic dataset. The majority group contributes 54.4% of the test data.
The reductions approach (Agarwal et al., 2018) is used to train fair models.
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Figure 13: Effect of fairness level δ on robustness across groups under adversarial sampling and
adversarial labeling bias – MEPS dataset. The majority group contributes 58.9% of the test data. The
reductions approach (Agarwal et al., 2018) is used to train fair models.
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Figure 14: Test accuracy of unconstrained and fair models with respect to equal opportunity in the
presence of adversarial bias – COMPAS dataset. The x-axis ε is the ratio of the size of Dp to the size
of clean dataset Dc, and reflects the contamination level of the training set. We compare the impact
of adversarial bias with baselines and adversarial bias against unconstrained models, for various ε.
The difference between test accuracy at ε = 0 (benign setting) and a larger ε value reflects the impact
of the bias. Constant prediction always outputs the majority label in the clean dataset. The enforced
fairness level δ is 0 and 0.01 for the fair model (Hardt et al., 2016) and fair model (Agarwal et al.,
2018), respectively.
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Figure 15: Accuracy of clean training data and Dp under adversarial sampling and adversarial
labeling bias – COMPAS dataset. The reductions approach Agarwal et al. (2018) is used to train all
fair models.
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Figure 16: Accuracy of clean training data andDp under adversarial sampling and adversarial labeling
bias – Adult dataset. Fair models are trained using reduction approach (Agarwal et al., 2018).
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Figure 17: Accuracy of clean training data andDp under adversarial sampling and adversarial labeling
bias – Synthetic dataset. Fair models are trained using reduction approach (Agarwal et al., 2018).
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Figure 18: Accuracy of clean training data andDp under adversarial sampling and adversarial labeling
bias – MEPS dataset. Fair models are trained using reduction approach (Agarwal et al., 2018).
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Figure 19: Fairness gap on the unconstrained model with respect to the training data – COMPAS
dataset. An unconstrained model is learned on the training data that includes adversarial bias
generated by Alg. 2 (λ = 100ε). The fairness gap ∆ is defined in (1). The numbers reflect how unfair
this unconstrained model is with respect to the protected group on the training data.
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Figure 20: Fairness gap on the unconstrained model with respect to the training data – Adult dataset.
An unconstrained model is learned on the training data that includes adversarial bias generated by
Alg. 2 (λ = 100ε). The fairness gap ∆ is defined in (1).
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Figure 21: Fairness gap on the unconstrained model with respect to the training data – Synthetic
dataset. An unconstrained model is learned on the training data that includes adversarial bias
generated by Alg. 2 (λ = 100ε).
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Figure 22: Fairness gap on the unconstrained model with respect to the training data – MEPS dataset.
An unconstrained model is learned on the training data that includes adversarial bias generated by
Alg. 2 (λ = ε).

44



Under review as a conference paper at ICLR 2022

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

Pe
rc

en
ta

ge

(a) Adv. sampling (Alg. 2, λ = 0)

s = 0, y = −
s = 0, y = +
s = 1, y = −
s = 1, y = +

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

(b) Adv. sampling (Alg. 2, λ = 100ε)

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

(c) Adv. sampling (Alg. 1, λ = 1000ε)

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

Pe
rc

en
ta

ge

(d) Adv. labeling (Alg. 2, λ = 0)

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

(e) Adv. labeling (Alg. 2, λ = 100ε)

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

(f) Adv. labeling (Alg. 1, λ = 1000ε)

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

Pe
rc

en
ta

ge

(g) Random sampling

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

(h) Hard examples

0.05 0.1 0.15 0.2
0

20

40

60

80

100

ε

(i) Label flipping

Figure 23: Distribution of Dp – COMPAS dataset. We report the protected attribute (s = 0 for
whites and s = 1 for blacks) and labels of data points in Dp for various ε. For every value of ε, the
number for each combination of the protected attribute and label reflects the percentage of points
with this combination in Dp. Algorithm 2 with λ = 0 is the same as the attack algorithm proposed in
Steinhardt et al. (2017).
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Figure 24: Distribution of Dp – Adult dataset. We report the protected attribute (s = 0 for males and
s = 1 for females) and labels of data points in Dp for various ε. Algorithm 2 with λ = 0 is the same
as the attack algorithm proposed in Steinhardt et al. (2017).
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Figure 25: Distribution of the Dp – Synthetic dataset. Algorithm 2 with λ = 0 is the same as the
attack algorithm proposed in Steinhardt et al. (2017).
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Figure 26: Distribution of the Dp – MEPS dataset. We report the protected attribute (s = 0 for non-white and
s = 1 for white) and labels of data points in Dp for various ε. For this dataset, (s = 0, y = −) represents the
smallest subgroup.
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