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Abstract
Node classification is a key task in temporal graph
learning (TGL). Real-life temporal graphs often
introduce new node classes over time, but existing
TGL methods assume a fixed set of classes. This
assumption brings limitations, as updating models
with full data is costly, while focusing only on new
classes results in forgetting old ones. Graph con-
tinual learning (GCL) methods mitigate forgetting
using old-class subsets but fail to account for their
evolution. We define this novel problem as tem-
poral graph continual learning (TGCL), which fo-
cuses on efficiently maintaining up-to-date knowl-
edge of old classes. To tackle TGCL, we propose
a selective learning framework that substitutes the
old-class data with its subsets, Learning Towards
the Future (LTF). We derive an upper bound on
the error caused by such replacement and trans-
form it into objectives for selecting and learning
subsets that minimize classification error while
preserving the distribution of the full old-class
data. Experiments on three real-world datasets
validate the effectiveness of LTF on TGCL.

1. Introduction
Temporal graphs are essential data structures for real-world
applications, such as social networks (Baumgartner et al.,
2020) and online shopping (Ni et al., 2019). In tempo-
ral graphs, the edges and/or nodes change over time, with
these additions or deletions captured as a sequence of events
(Yang et al., 2023; de Barros et al., 2023). In recent years,
various temporal graph learning (TGL) methods have been
developed to extract insights from temporal graphs by in-
corporating temporal-neighbor information into node em-
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Figure 1: The differences in temporal graph learning (TGL),
graph continual learning (GCL) and temporal graph con-
tinual learning (TGCL). At a new period, TGL assumes
no data of new classes appear, while GCL assumes static
old-class data. TGCL holds neither of these assumptions,
thus is more suitable to real-life temporal graphs.

beddings (Kumar et al., 2019; Rossi et al., 2020; Xu et al.,
2020; Cong et al., 2023; Wen & Fang, 2022; Li & Chen,
2023; Li et al., 2023). The current approaches for process-
ing both structural and temporal information in these graphs
utilize a range of model architectures, including message-
passing mechanisms (Rossi et al., 2020; Xu et al., 2020;
Wen & Fang, 2022), multi-layer perceptrons (MLPs) (Cong
et al., 2023; Gardner & Dorling, 1998), and transformers
(Yu et al., 2023; Vaswani et al., 2017). A key application
of TGL methods is node classification, which is a critical
task in the analysis of temporal graphs (Rossi et al., 2020;
Xu et al., 2020; Yu et al., 2023). For example, in social net-
works, TGL methods classify normal and malicious users
based on their interactions.

While TGL methods are effective at classifying nodes, they
face a significant limitation: they assume a static set of node
classes, which does not reflect the dynamic reality of these
environments. This static assumption is illustrated in Fig. 1,
where node classes under the TGL setting remain unchanged
over time. However, real-world scenarios often exhibit an
open class setting, where new classes frequently emerge.
Like in social networks, new malicious behaviours contin-
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ually arise, introducing new node classes into the system
(Feng et al., 2023). Due to the fixed class set assumption,
adapting current TGL methods to this open class setting
presents efficiency and effectiveness challenges. Updating
the model for all classes becomes inefficient as the tempo-
ral graph grows, while fine-tuning the model for only new
classes risks catastrophic forgetting (French & Chater, 2002;
Parisi et al., 2019; Masana et al., 2023) of older classes, par-
ticularly when their data distribution diverges from past
instances.

To address the issue of forgetting when fine-tuning TGL
models, continual learning (Parisi et al., 2019; Masana et al.,
2023) provides a promising solution. Recently, several
graph continual learning (GCL) methods have been pro-
posed to preserve old-class knowledge by either regulariz-
ing model parameters associated with previous classes (Liu
et al., 2021) or replaying representative subsets of old-class
data (Kim et al., 2022; Zhou & Cao, 2021; Chen et al.,
2021; Wang et al., 2022; Zhang et al., 2022; Feng et al.,
2023). However, existing GCL methods struggle to handle
open-class temporal graphs. The major limitation is that
they assume the seen data will be static in the future, as
shown in Fig.1. Such an assumption contradicts with the dy-
namic nature of temporal graphs, making the model become
out-dated for future temporal graphs.

These limitations in current TGL and GCL methods make
updating models for open-class temporal graphs a challeng-
ing problem, which we define as temporal graph continual
learning (TGCL). The challenge in TGCL is how to main-
tain both the effectiveness and recency of old-class knowl-
edge while ensuring high efficiency. To address this, we pro-
pose a selective learning method that identifies and learns
representative subsets of old-class data in new temporal
graphs, named Learning Towards the Future (LTF). While
subset selection is a common approach, detailed analysis
of how well these subsets represent the full dataset remains
limited, especially when learning from the entire dataset
is impractical. To address this, we derive an upper bound
on the error introduced by approximating the full dataset
with a subset. We transform the upper bound into a sub-
set selection objective to minimize this error. Additionally,
guided by the upper bound, we design a regularization loss
that aligns the embedding distribution of the selected subset
with that of the full dataset to pursue better performance.
Our contribution can be summarized as follows:

• We are among the first to investigate how to effectively
and efficiently update a model on temporal graphs with
emerging new-class data and evolving old-class data,
which we term the temporal graph continual learning
(TGCL) problem.

• Selecting representative old-class subsets is crucial for
addressing the TGCL problem. To achieve this, we define

a selection objective that minimizes the upper-bound error
on the old classes.

• The knowledge from the subsets is hard to generalize to
the full old-class data. We solve this problem by designing
an efficient loss that aligns the distributions of the subset
and the full data.

• We conduct extensive experiments on real-world web
data, Yelp, Reddit, and Amazon. The results show that
our method is effective while ensuring high efficiency.

2. Background
Many real-world scenarios are modeled as temporal graphs
(Yang et al., 2023; de Barros et al., 2023; Kazemi
et al., 2020), such as social networks and online shop-
ping networks. In this paper, the temporal graph G =
(V,E, T, Y ) ∼ G is a set of nodes V with labels Y con-
nected by time-stamped events E happening among V
within the time period T . G follows the distribution G.
Each event e = {ut, vt, t} ∈ E is an interaction (edge)
between two nodes ut, vt ∈ V at time t ∈ T . G can be
equivalently expressed as E. Each node vt ∈ V is related
with time t and has a time-dependent feature xt.

Suppose the temporal graph has evolved for N time periods
{T1, T2, ..., TN}, and the corresponding temporal graphs
are noted as {G1, G2, ..., GN} which follow the distribu-
tions {G1,G2, ...,GN}. Each period has a new set of classes
{Y1, Y2, ..., YN}, where Yi ∩ Yj = ∅,∀i, j ≤ N and i ̸= j.
For simplicity, we note the old classes at TN as Yold =
∪{Yn}n<N . Corresponding to the node classes, GN can
be separated into Gnew

N = (V new
N , Enew

N , TN , YN ) and
Gold

N = (V old
N , Eold

N , TN , Yold), where GN = Gold
N ∪Gnew

N ,
V old
N ∩ V new

N = ∅ and Eold
N ∩ Enew

N ̸= ∅. Eold
N and Enew

N

are overlapping at the events connecting between V old
N and

V new
N . It is worth noting that Gold

N has the same set of
classes as GN−1, but the data distribution is different due
to the temporal evolution. The illustration on relationships
among GN−1, Gold

N and Gnew
N and the notation summary

are presented in Appendix A.

2.1. Temporal Graph Learning

In recent years, many temporal graph learning methods are
proposed (Parisi et al., 2019; Masana et al., 2023) to extract
knowledge from the temporal graphs. Under the fixed class
set assumption, at a new period TN , the TGL methods under
the node classification task aims to minimize the classifi-
cation error of the model h on Gold

N , i.e. the part of GN

with only Yold. Suppose that h is a binary classification
hypothesis (model) from the hypothesis spaceH with finite
VC-dimension, the TGL objective is formulated as:

h̃N = argmin
h∈H

ϵ(h|GoldN ), (1)
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where ϵ(h|G) := Evt∈G [h(vt) ̸= f(vt)] is the expected
classification error of h on any distribution G, and f(·) is an
unknown deterministic function that gives the ground truth
classification on each vt.

Early TGL works (Wu et al., 2021; Skarding et al., 2021)
integrate events of temporal graphs into a sequence of snap-
shots, which loses fine-grained continuous-time information.
Thus recent TGL methods preserve events as the basic train-
ing instances (Yang et al., 2023). As the pioneers, JODIE
(Kumar et al., 2019) processes and updates the embeddings
of each node based on their related events by using a recur-
sive neural network (Alom et al., 2019). CTDNE (Nguyen
et al., 2018) and CAW (Wang et al., 2021a) aggregate the
information through random walks on the events. TGAT
(Rossi et al., 2020), TGN (Xu et al., 2020) and TREND
(Wen & Fang, 2022) apply the GNN-like message-passing
mechanism to capture the temporal and structural informa-
tion at the same time. More recently, there are also works
using the multi-layer perceptrons (Cong et al., 2023) or
transformers (Yu et al., 2023) to understand the temporal
graphs. Other than structure designs, temporal learning
techniques like the temporal point process (Trivedi et al.,
2019; Wen & Fang, 2022) are also integrated into the TGL
methods to better capture the temporal dynamics.

2.2. Graph Continual Learning

As new classes continuously emerge for real-life temporal
graphs, how to efficiently learn new classes without forget-
ting the old knowledge (French & Chater, 2002) becomes
an important problem. For Euclidean data like images, the
forgetting issue has been addressed by many continual learn-
ing methods (Parisi et al., 2019; Masana et al., 2023). The
common approaches include regularizing the model param-
eters , replaying the subsets of the old data , or adjusting the
model parameters . Recently, some GCL methods are trying
to connect continual learning to dynamic graphs (Tian et al.,
2024). The objective of the GCL problem is:

h̃N = argmin
h∈H

ϵ(h|GnewN ) + ϵ(h|GN−1), (2)

where GnewN and GN−1 are distributions of Gnew
N and GN−1,

and the former term is for learning new-class knowledge
while the latter one is for maintaining old-class knowledge.
To reduce the cost of learning GN−1, most of the GCL
methods try to use subsets of GN−1 to approximate its error,
where the subsets are selected by the node influence (Zhou
& Cao, 2021) or the structural dependency (Chen et al.,
2021; Kim et al., 2022; Zhang et al., 2022), or generated
via auxiliary models (Wang et al., 2022). TWP (Liu et al.,
2021) takes a different approach by preventing the impor-
tant parameters for classification and message-passing from
being modified. SSRM (Su et al., 2023a) aligns distribu-
tions between old and new class data distributions for better

performances. However, these methods primarily target
graph snapshots and are less effective for event-based tem-
poral graphs (Feng et al., 2023). This gap is first addressed
by OTGNet (Feng et al., 2023), which proposes to replay
important and diverse triads (Zhou et al., 2018) and learn
class-agnostic embeddings.

3. Methodology
TGCL problem takes a more realistic temporal graph setting
that considers both the appearance of new classes and the
evolution of old-class data. At a new period TN , TGCL
requires the model h to learn the new classes from Gnew

N

and maintain the old-class knowledge from Gold
N :

h̃N =argmin
h∈H

ϵ(h|GN)=argmin
h∈H

ϵ(h|GnewN )+ϵ(h|GoldN ). (3)

Compared with the TGL problem at Eq. (1), the TGCL
problem additionally minimizes ϵ(h|GnewN ). Besides, TGCL
maintains more recent old-class knowledge from Gold

N , dif-
fering from GN−1 in the GCL problem at Eq. (2).

In this work, we focus on how to achieve both effectiveness
and efficiency in minimizing ϵ(h|GoldN ), and directly mini-
mize ϵ(h|GnewN ) as most continual learning works do. We
follow a common strategy by selecting and learning a subset
Gsub

N of Gold
N . To obtain an optimal performance, we first

derive an upper bound on the error introduced by approxi-
mating Gold

N with Gsub
N in Sec.3.1. We then transform this

theoretical bound into a tractable optimization problem to
facilitate subset selection in Sec.3.2. Lastly, this error is fur-
ther minimized during learning by aligning the distribution
of Gsub

N with Gold
N , as detailed in Sec.3.3. The framework

of LTF is illustrated in Fig.2.

3.1. Classification Error Upper-bound

A small classification error ϵ(h|GoldN ) on Gold
N is essen-

tial for the model effectiveness. Selecting and learning
Gsub

N ⊂ Gold
N assumes that minimizing ϵ(h|GsubN ) will

also minimize ϵ(h|GoldN ). While heuristics can help align
these errors, a theoretical analysis connecting them is lack-
ing. We address this gap using domain adaptation theory
(Redko et al., 2020a; Ben-David et al., 2010) and show that
ϵ(h|GsubN ) can approximate ϵ(h|GoldN ) with upper-bounded
additional error.

Based on Lemma 3 from (Ben-David et al., 2010) (see
Appendix C), the classification disagreement of any two
models h and h′ on any two data distributions is upper-
bounded by the discrepancy between those two distributions.
Then, the upper-bound on the classification error of GoldN

can be derived as the following theorem:

Theorem 3.1. Let GoldN ,GsubN be the distributions of Gold
N

and Gsub
N . Let h ∈ H be a function in the hypothesis space
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Figure 2: The selective learning framework of LTF on old-class data. From Gold
N , Gsub

N is greedily selected by having the
lowest classification error jcls(·) and distribution discrepancy jMMD(·), while Gsim

N is greedily selected only by the lowest
jMMD(·). Afterwards, Gsub

N is learned by minimizing the classification error and aligning the distribution with Gsim
N .

H and h̃sub
N be the function optimized on GsubN . The classifi-

cation error on GoldN then has the following upper bound:

min
h∈H

ϵ(h|GoldN ) ≤ min
h, Gsub

N

ϵ(h̃sub
N |GoldN ) (4)

+
1

2
dH∆H(GoldN ,GsubN ) + ϵ(h, h̃sub

N |GsubN ),

where dH∆H(Ga,Gb) = 2 suph∈H∆H |Prvt∼Ga
[h(vt) =

1] − Prvt∼Gb
[h(vt) = 1]| measures the H∆H divergence

between the distributions Ga and Gb, and ϵ(h, h′|D) :=

Ex∈D[h(x) ̸= h′(x)] is the expected prediction differences
of h and h′ on D.

The proof is given in Appendix C. Following Theorem 3.1,
there are three criteria to ensure that h achieves a lower error
on Gold

N by finding a suitable Gsub
N :

• Small error ϵ(h̃sub
N |GoldN ) indicates that h̃sub

N learned on
subset Gsub

N is also predictive on the entire old data Gold
N ;

• Small distribution difference dH∆H(GoldN ,GsubN ) indicates
that the subset Gsub

N is diverse enough to represent the
entire old class data Gold

N ;
• Small error ϵ(h, h̃sub

N |GsubN ) indicates that h classifies
GsubN similarly as h̃sub

N , which guarantees that the knowl-
edge of h̃sub

N can be transferred to h.
By relaxing ϵ(h|GoldN ) to the upper bound in Eq. (4), we
convert the original problem into selecting subset Gsub

N

(Sec. 3.2) and updating the TGCL model h (Sec.3.3).

3.2. Subset Selection

Theorem 3.1 specifies three criteria for selecting Gsub
N from

Gold
N . Since h is unknown during selection, third criterion

is omited in following analysis. The remaining two cri-
teria for a representative Gsub

N are: 1) a low ϵ(h̃sub
N |GoldN ),

reflecting strong predictive performance on Gold
N , and 2) a

low dH∆H(GoldN ,GsubN ), ensuring close alignment with the
distribution of Gold

N . Next, we introduce how we transform
these two criteria into a tractable optimization problem for
selecting representative Gsub

N .

Base Algorithm. In minimizing ϵ(h̃sub
N |GoldN ), it is infea-

sible to obtain h̃sub
N from each possible GsubN for selection.

Therefore we approximate h̃sub
N with h̃N−1 that is optimized

on GN−1. This is a reasonable approximation, as h̃N−1 is
readily available and GN−1 closely resembles the full data
Gold

N by sharing the same class set Yold and being tem-
porally proximate. With h̃sub

N substitued by h̃N−1, based
on the inequality in (Ben-David et al., 2010), ϵ(h̃sub

N |GoldN )

is expanded to: ϵ(h̃sub
N |GoldN ) ≤ ϵ(h̃sub

N , h̃N−1|GoldN ) +

ϵ(h̃N−1|GoldN ). As ϵ(h̃N−1|GoldN ) is unrelated to the sub-
set, we focus on minimizing ϵ(h̃sub

N , h̃N−1|GoldN ), which
requires aligning h̃sub

N with h̃N−1. Because h̃sub
N depends

on Gsub
N , we select Gsub

N that minimizes ϵ(h̃N−1|GsubN ) to
match the behaviors of h̃sub

N and h̃N−1. This simplifies our
selection problem to:

G̃subN = argmin
Gsub
N

ϵ(h̃N−1|GsubN ) + dH∆H(GoldN ,GsubN ). (5)

Due to limited available observations in reality, we trans-
form the distribution-level error ϵ(h̃N−1|GsubN ) into the em-
pirical error ϵ̂(·) on the finite subest Gsub

N :

ϵ̂(h̃N−1|Gsub
N )=

1

|Gsub
N |

∑
(vt,y)∈Gsub

N

lcls(h̃N−1(vt), y), (6)

where lcls(·) is the classification error like the mean square
error. Similarly, we estimate dH∆H(GoldN ,GsubN ) by the
square of the mean maximum distribution (MMD) (Gretton
et al., 2006) on the finite sets Gold

N and Gsub
N :

d̂2MMD(Ga,Gb) =
1

|Ga|2
∑

vt,ut∈Ga

k(vt,ut) (7)

− 2

|Ga||Gb|
∑

vt∈Ga,ut∈Gb

k(vt,ut)+
1

|Gb|2
∑

vt,ut∈Gb

k(vt,ut),

where k(·, ·) is the kernel function, Ga and Gb are adopted
for simplifying notations. To evaluate the kernel values, we
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take a common practice to replace the raw data by their
embeddings (Su et al., 2023b; Shi & Wang, 2023; Redko
et al., 2020b), which are extracted by h̃N−1 and noted as
d̂2MMD(Gsub

N , Gold
N |h̃N−1).

With above estimations, the selection objective of Gsub
N in

Eq.(5) is transformed into:

G̃sub
N =arg min

|Gsub
N |≤m,Gsub

N ⊂Gold
N

αϵ̂(h̃N−1|Gsub
N ) (8)

+ d̂2MMD(Gold
N , Gsub

N |h̃N−1),

where α is a weight hyper-parameter and m is the memory
budget for Gsub

N . A larger m brings a better estimation but
also increases the computation complexity.

Greedy Algorithm. Directly optimizing the selection ob-
jective in Eq. (8) is infeasible due to its factorial time com-
plexity. However, it can be proven to be a monotone sub-
modular function, allowing greedy optimization with a guar-
anteed approximation to the optimal solution.

The first term ϵ̂(h̃N−1|Gsub
N ) is linear to the clas-

sification error of each instance, thus it is directly
monotone submodular. Following the proof in
(Kim et al., 2016), d̂2MMD(Gold

N , Gsub
N |h̃N−1) is

also monotone submodular function with respect to
Gsub

N , provided k(vt, ut) satisfies 0 ≤ k(vt, ut) ≤
k(vt,vt)/(|Gold

N |3−2|Gold
N |2−2|Gold

N |−3), ∀vt, ut ∈ Gold
N , vt ̸=

ut. This requirement is met with a properly parame-
terized kernel, and we use the Radial Basis Function
kernel (Schölkopf et al., 1997) in practice. Thus, Eq. (8),
as a sum of two monotone submodular functions, is itself
monotone submodular based on the theory in (Cook
et al., 2011). Consequently, as per (Nemhauser et al.,
1978), Eq.(8) can be efficiently approximated by a greedy
algorithm, achieving an error bound of (1− 1/e) relative to
the optimal solution.

To implement the greedy algorithm, we derive the witness
function j(·) to evaluate how adding one node to Gsub

N af-
fects the value of Eq.(8). The function j(·) is a summation of
two separate witness functions jcls(·) and jMMD(·), corre-
sponding to ϵ̂(h̃N−1|Gsub

N ) and d̂2MMD(Gold
N , Gsub

N ). Since
the classification error is a summation over node-wise losses
defined in Eq.(6), jcls(vt) = lcls(vt, y|h̃N−1). On the other
hand, jMMD(·) can be derived from Eq. (7) as:

jMMD(vt) =
2

|Gsub
N |

∑
ut∈Gsub

N

k(vt, ut|h̃N−1) (9)

− 2

|Gold
N |

∑
ut∈Gold

N

k(vt, ut|h̃N−1),

where k(vt, ut|h) notes the kernel calculated by the node
embeddings extracted from the model h. Then, the overall

witness function j(·) is expressed as:

j(vt) = αjcls(vt) + jMMD(vt),

where α is the same as in Eq. (8). Afterwards, we greedily
select the nodes with the smallest j(·) from Gold

N to Gsub
N

untill the buffer is full.

Cost Reduction. During greedy selection, estimating
d̂2MMD(Gold

N , Gsub
N |h̃N−1) has a high computational com-

plexity of O((|Gold
N |+ |Gsub

N |)2), which limits its applica-
tion to large data sets. Thus, we propose to evenly partition
Gold

N into groups of size p, |Gold
N | > p ≫ m, resulting in

W = ⌈|Gold
N |/p⌉ partitions. We then greedily select 1/W of

Gsub
N from each partition and join them as the final subset.

The complexity of selecting Gsub
N from each partition is

reduced to O((|Gold
N |+ |Gsub

N |)2/W 2).

Based on the triangle inequality of dH∆H(·, ·) (Gret-
ton et al., 2006), this partition procedure enlarges
the second term of Eq. (8) to dH∆H(GoldN ,GsubN ) ≤
dH∆H(GoldN ,GoldN,w) + dH∆H(GoldN,w,GsubN,w) for each parti-
tion Gold

N,w ∼ GoldN,w. To reduce this additional error, GoldN,w

should be similar to GoldN . As the partitioned data can remain
a large size for the subset selection, the random partition
can well satisfy this requirement.

3.3. Model Optimization

After selecting an optimal subset from Sec. 3.2, we trans-
form Eq. (4) into a concrete learning objective to train
an effective model h with Gsub

N . Because h̃sub
N is deter-

mined after the subset is selected and GoldN is fixed, the
first term ϵ(h̃sub

N |GoldN ) of Eq. (4) cannot be further opti-
mized and is omitted. We minimize dH∆H(GoldN ,GsubN ) by
enclosing the embedding distributions of both data sets
extracted by h (Ben-David et al., 2010; Su et al., 2023b;
Shi & Wang, 2023; Redko et al., 2020b), i.e., minimize
dH∆H(GoldN ,GsubN |h). By replacing the population terms
with their estimations, the objective of learning Gsub

N is
ϵ̂(h, h̃sub

N |Gsub
N ) + dMMD(Gold

N , Gsub
N |h).

As we avoid learning Gold
N for efficiency reason, we substi-

tute Gold
N with its similarly distributed subset Gsim

N ⊂ Gold
N ,

GsimN ≈ GoldN . To satisfy this requirement, Gsim
N is selected

by solely minimizing its distribution discrepancy with Gold
N :

G̃sim
N = arg min

|Gsim
N |≤m′

Gsim
N ⊂Gold

N

d̂2MMD(Gsim
N , Gold

N |h̃N−1), (10)

where m′ is the memory budget for Gsim
N . A larger m′

improves the estimation but also increases the computation
complexity. Gsim

N can be selected by greedily finding the
nodes with the lowest jMMD(·) defined in Eq. (9). We fur-
ther reduce the selection cost of Gsim

N by data partitioning,
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Table 1: Data statistics
Data Set Yelp Reddit Amazon
# Nodes 19,918 13,106 84,605
# Events 2,321,186 310,231 875,563
# Timespan / Period 1 year 20 days 24 days
# Periods 5 3 3
# Classes / Period 3 5 3
# Total Classes 15 15 9

similar to Gsub
N . After substituting Gold

N with Gsim
N , the

learning objective is transformed to:

lold(G
sim
N , Gsub

N |h) = ϵ̂(h|Gsub
N )+d̂MMD(Gsim

N , Gsub
N |h),

(11)
where ϵ̂(h, h̃sub

N |Gsub
N ) is written as ϵ̂(h|Gsub

N ) since both
terms are equivalent in making h perform like h̃sub

N .

In practice, the complexity of calculating
d̂2MMD(Gsim

N , Gsub
N |h) is O((|Gsim

N | + |Gsub
N |)2), which

is much higher than O(|Gsub
N |) of the classification error

calculation. So that we further simplify its format to
improve the efficiency. To ensure that Gsim

N is the target
distribution of Gsub

N during optimization, we stop the
gradients of Gsim

N from being back-propagated. Following
this stop gradient design, the first and third terms in
d̂2MMD(·) definition at Eq. (7) are omitted, since Gsim

N

is not learned and the self-comparison within Gsub
N is

meaningless. After this simplification, the complexity is
reduced from O((|Gsim

N |+ |Gsub
N |)2) to O(|Gsim

N ||Gsub
N |),

and d̂2MMD(Gsim
N , Gsub

N |h) is optimized by:

ldst(G
sub
N , Gsim

N |h)=−s
∑

vt∈Gsub
N

ut∈Gsim
N

k(vt,sg(ut)|h),

where s = 2/|Gsub
N |·|Gsim

N | and sg(·) means stopping the
gradients from back-propagation.

Finally, by including the objective of learning Gnew
N , our

total objective of updating h at TN is:

ltot = ϵ̂(h|Gnew
N ) + ϵ̂(h|Gsub

N ) + βldst(G
sim
N , Gsub

N |h),

where β is the hyper-parameter weighting the distribution
regularization importance. The pseudo-code of our overall
framework is presented in Algorithm 1 at Appendix D.

4. Experiments
4.1. Experiment Setup

Data Set. 1 We evaluate our method using three real-world
datasets: Yelp (dat), Reddit (Baumgartner et al., 2020), and

1Our code and data are available at https://github.
com/liuhanmo321/TGCL_LTF.git.

Amazon (Ni et al., 2019). Yelp, a business-to-business tem-
poral graph from 2014 to 2019, treats businesses in the same
category as nodes of the same class, with user interactions
creating events. The graph is divided into five periods, each
representing a year, with three new business categories in-
troduced each year. Reddit, a post-to-post temporal graph,
treats subreddit topics as classes and posts as nodes. User
comments create events, with every 24 days forming a pe-
riod and five new subreddits introduced each period. Ama-
zon is constructed similarly to Yelp, with 20-day periods
and three new businesses per period. The temporal graph
transformation mechanism is similar to OTGNet (Feng et al.,
2023), but adapted to our unique problem definition. Dataset
statistics are summarized in Tab. 1, with additional details
in the Appendix G.

Backbone Model. As LTF is agnostic to TGL model de-
signs, we select the classic model TGAT (Rossi et al., 2020)
and the state-of-the-art model DyGFormer (Yu et al., 2023)
as our backbone models. TGAT uses the self-attention mech-
anism to aggregate the temporal neighbor information and
embed the nodes. DyGFormer applies the transformer struc-
ture and uses the structural encoding to embed the nodes.

Baselines. First, we select three classic continual learning
models that are adaptable to the TGCL problem, which
are EWC (Kirkpatrick et al., 2016), LwF (Li & Hoiem,
2018) and iCaRL (Rebuffi et al., 2017). EWC and LwF
use regularization losses to prevent forgetting the old class
knowledge while not using the old class data. iCaRL selects
the representative old class data based on the closeness to the
mean of the embeddings. For the GCL methods, we select
the replay-based methods ER (Zhou & Cao, 2021), SSM
(Zhang et al., 2022), OTGNet (Feng et al., 2023), and URCL
(Miao et al., 2024). Besides, the naive baselines of learning
the full GN (Joint) and learning only the Gnew

N (Finetune)
are included. Joint is the upper-bound for performance with
the lowest efficiency, while Finetune is the opposite.

Evaluation Metric. The average precision (AP) and aver-
age forgetting (AF) on each set of classes within a period
are used to evaluate the model performance. In Gn, there
are n sets of classes {Y1, ..., Yn}, and the model’s precision
on each of them is Pn,i,∀i ≤ n. Then AP at period Tn is
calculated as APn := 1

n

∑n
i=1 Pn,i. To evaluate the forget-

ting issue at Tn, we use the precision difference between the
current method and Joint (P jnt

n,i ) as the forgetting score for
Yi, which is Fn,i := P jnt

n,i −Pn,i. Then the AF at period Tn

is calculated as AFn := 1
n−1

∑n−1
i=1 Fn,i. For simplicity,

we omit the subscript N for APN and AFN as they reflect
the final performance. A higher value of AP is better, while
a lower value of AF is better. To evaluate the efficiency, the
average training time per epoch (abbreviated as Time) at the
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Table 2: The comparison between LTF and the baselines methods. The best and second best results are noted in Bold and
Underline. Joint and Finetune are excluded from the notations.

Method
TGAT DyGFormer

Yelp Reddit Amazon Yelp Reddit Amazon

AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓
Joint 0.0810 — 58.37 0.1378 — 50.50 0.1477 — 128.71 0.0813 — 95.11 0.1256 — 70.64 0.1500 — 177.38
Finetune 0.0141 0.0843 9.11 0.0312 0.1550 14.93 0.0340 0.1408 65.81 0.0172 0.0800 14.43 0.0360 0.1433 20.58 0.0551 0.1517 88.34

LwF 0.0209 0.0620 13.90 0.0439 0.1091 23.67 0.0303 0.1024 102.92 0.0399 0.0386 26.03 0.0469 0.0944 37.53 0.0763 0.0856 155.03
EWC 0.0443 0.0408 9.19 0.0467 0.1384 14.95 0.0524 0.1152 68.37 0.0601 0.0295 14.24 0.0521 0.1046 20.20 0.1005 0.0832 89.32
iCaRL 0.0607 0.0198 11.57 0.0602 0.0860 19.22 0.0699 0.0794 70.03 0.0558 0.0214 18.31 0.0917 0.0248 26.34 0.0945 0.0775 92.36
ER 0.0521 0.0332 11.63 0.0622 0.0783 19.07 0.0799 0.0617 69.06 0.0546 0.0276 18.49 0.0771 0.0386 26.65 0.1026 0.0650 92.11
SSM 0.0552 0.0232 11.82 0.0308 0.1203 82.99 0.0723 0.0912 145.27 0.0560 0.0235 18.27 0.0723 0.0641 26.09 0.1063 0.0568 92.15
OTGNet* 0.0648 0.0236 316.15 0.0868 0.0518 49.42 0.1031 0.0459 709.49 — — — — — — — — —
URCL 0.0562 0.0303 11.57 0.0726 0.0649 20.13 0.0915 0.0431 70.32 0.0584 0.0216 20.13 0.0902 0.0284 27.58 0.1089 0.0566 93.43
LTF 0.0682 0.0195 25.05 0.0871 0.0474 39.16 0.1110 0.0165 72.94 0.0681 0.0096 51.80 0.1134 0.0081 58.56 0.1253 0.0383 101.06
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Figure 3: The average precision (AP) of LTF and the base-
lines at each period based on TGAT.
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Figure 4: The average forgetting (AF) of LTF and the base-
lines at each period based on TGAT.

N ’s update is recorded, as it accumulates the most data and
is the most time-consuming.

Implementation Details. The experiments are run on
Nvidia A30 GPU. The implementation of backbone mod-
els follow the code provided by DyGLib (Yu et al., 2023).
TGAT contains two layers, and each layer has 4 attention
heads. DyGFormer contains two layers, and each layer has
4 attention heads. The number of temporal neighbors is
10 and they are selected based on their freshness. We use
a single 2-layer perceptron to classify all the nodes of the
period, which is called class-incremental setting in continual
learning. For all data sets, dropout rate is 0.4, learning rate
is 0.00001, training epochs for each period is 100, and batch
size is 600. Early stop is applied when validate AP does not
improve for 20 epochs. For the selection based methods,
1000 events are selected for each class data at each period
of Reddit and Amazon, and 500 for Yelp. Additionally, for
LTF, the size of Gsim

N is set to 500 for all data sets, and data
are partitioned to have around 10000 samples in each part.
The reported results are averaged over 3 random seeds. For
all data sets, each period is split into 80% training, 10%
validation, and 10% test. The testing data are not seen in
training and validation.

4.2. Main Experiments

The overall comparison of LTF with other baselines is shown
in Tab.2, with performance trends in Fig.3 and Fig. 4. OT-
GNet modifies TGAT with a unique structure, making adap-

tation to DyGFormer non-trivial. Naive approaches like
Joint and Finetune face efficiency and effectiveness issues;
Joint requires long training times, while Finetune performs
worse than other baselines. Existing continual learning
methods partially address TGCL, achieving higher APs
(lower AFs) than Finetune with significantly lower time
costs than Joint. Regularization-based methods are gener-
ally weaker than selection-based methods, highlighting the
importance of data for updating old knowledge. However,
a performance gap remains compared to Joint. OTGNet
improves subset selection by ensuring importance and di-
versity, outperforming other baselines but suffering from
high time complexity. LTF, with its theoretical guarantees,
achieves better performance than OTGNet with lower time
costs. On DyGFormer, LTF outperforms OTGNet across all
datasets. Full results with standard deviations are provided
in Appendix I.

4.3. Ablation Study

Selection and Regularization Components. In Tab.3, we
evaluate the impact of each LTF component. The key terms
of our selection objective in Eq.(8) are error ϵ̂(·|·) and distri-
bution d̂2MMD(·, ·), which are represented by Err. and Dist.
respectively. We also analyze the effect of adding ldst(·) to
the training objective. The first two lines of Tab. 3 show that
neither selection component alone is sufficient to find an
effective subset. Yelp and Reddit rely more on distribution
similarity, while Amazon benefits from lower error. Com-
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Table 3: Ablation study on the selecting and learning components of LTF. The applied components are noted with Y. The
best and second best results are noted in Bold and Underline.

Component TGAT DyGFormer

Select Learn Yelp Reddit Amazon Yelp Reddit Amazon

Err. Dist. ldst(·) AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓
Y 0.0438 0.0439

11.79
0.0579 0.0736

19.28
0.1063 0.0185

67.77
0.0467 0.0309

18.51
0.0807 0.0407

27.12
0.1203 0.0456

90.18Y 0.0565 0.0322 0.0640 0.0695 0.0592 0.0684 0.0543 0.0266 0.0863 0.0350 0.1161 0.0465
Y Y 0.0654 0.0215 0.0866 0.0447 0.1004 0.0078 0.0618 0.0155 0.0939 0.0272 0.1231 0.0366
Y Y Y 0.0682 0.0195 25.05 0.0871 0.0474 39.16 0.1110 0.0165 72.94 0.0681 0.0096 51.80 0.1134 0.0081 58.56 0.1253 0.0383 101.06
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Figure 5: Sensitivity on the key hyper-parameters based on TGAT.

Table 4: Ablation study on the partition methods when
selecting the subsets. The reported values are AP.
Partition TGAT DyGFormer

Method Yelp Reddit Amazon Yelp Reddit Amazon

Kmeans 0.0598 0.0754 0.0929 0.0569 0.0912 0.1104
Hierarchical 0.0613 0.0792 0.0897 0.0621 0.0987 0.1091
Random 0.0682 0.0871 0.1110 0.0681 0.1134 0.1253

bining both improves performance across all datasets and
backbones. After selecting the most effective data, incorpo-
rating ldst(·) further enhances performance. The additional
optimization time is less significant for denser graphs, es-
pecially in Amazon, where new class data dominates. Full
results are provided in Appendix J.

Data Partition Approaches. We reduce selection com-
plexity by partitioning old-class data and prove that an opti-
mal partition should preserve distribution. Tab. 4 examines
different partition methods. Selecting subsets without parti-
tioning exceeds GPU memory limits (24G on Nvidia A30),
making performance untrackable. Among intuitive methods,
random partitioning is more effective, as k-means or Hier-
archical clustering alter data distribution of each partition,
conflicting with theorem requirements. The study on the
impact of partition size is included in the Appendix K.

4.4. Sensitivity Analysis

In Fig. 5, we evaluate the sensitivity of our method over
the essential hyper-parameters on TGAT. The results on
DyGFormer are in Appendix L. The empirical analysises
are listed as follows, which apply to both backbones:

• The impact of α. α balances error and distribution in
selecting Gsub

N in Eq. (8). Across values [0.25, 0.5, 1, 2,
4], Yelp and Reddit favor smaller weights, while Amazon
prefers larger ones, aligning with the ablation study. Op-
timal performance occurs around α = 1 for all datasets,
confirming the importance of both error and distribution
in subset selection.

• The impact of β. β controls the weight of ldst(·) during
subset learning. Despite favoring distribution in selection,
Yelp and Reddit require a low β for regularization, while
Amazon needs a higher value. This suggests that distri-
bution is crucial for generalizing subset knowledge, with
ldst(·) enhancing its effect during learning.

• Size m of Gsub
N . As Gsub

N is the major carrier of the old
class knowledge, its size m is an important factor for the
performance. Following the setup of the main experiment,
the memory size is set to [250, 500, 750] for Yelp, and
[500, 1000, 1500] for Reddit and Amazon. With the
increase of memory size, the performance continuously
improves, which is consistent with the intuition.

• Size m′ of Gsim
N . m′ affects the quality of distribution

approximation in Eq. 10. It can be seen Amazon requires
a larger size, while 500 is effective enough for Yelp and
Reddit. This is because the distribution of Amazon is
more complex and requires a larger sample size to approx-
imate.

In addition to the effectiveness study, we also evaluated
the efficiency-performance tradeoff by varying m and m′

in Tab. 5. Results show that increasing either m or m′

consistently improves average precision (AP), at the cost
of longer training time. This trend is expected due to the
O(mm′) complexity introduced by the regularization loss.
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Notably, the full LTF model (with both subgraph selection
and regularization) achieves the highest accuracy among
all continual learning baselines, but also incurs additional
runtime due to regularization. However, since our selection
and regularization modules are decoupled, the regulariza-
tion can be disabled when efficiency is a priority. In such
cases, the selection-only variant (No Reg. for m′) still out-
performs existing replay-based methods with comparable
runtime, offering a flexible trade-off between performance
and efficiency.

Table 5: Sensitivity analysis on the efficiency-performance
tradeoff by varying m and m′ on Yelp dataset and DyG-
Former backbone.

Setting AP ↑ Time (s) ↓
Varying m (size of Gsub

N )
m = 250 0.0434 34.99
m = 500 0.0681 54.30
m = 750 0.0713 72.31

Varying m′ (size of Gsim
N )

Best Baseline 0.0601 14.24
m′ = 0 (No Reg.) 0.0618 18.51
m′ = 250 0.0624 36.70
m′ = 500 0.0681 54.30
m′ = 750 0.0693 71.88

4.5. Case Studies

In this sections, we include experiments on special questions
of our problem, including the necessity of TGNNs in solving
the proposed problem, and how more complex datasets may
affect the performance of LTF.

The necessity of TGNNs. As node embeddings are the
key media of selecting data and classifying nodes, here
we study whether the embeddings along can support the
whole training process, rather than using the topological
structures. As shwon in Tab. 6, the MLP backbone, which
only uses the node embeddings, is not able to achieve a good
performance on even under the joint setting. This shows
that the topological structures are essential for the TGCL
problem, and the TGNNs are necessary to solve it.

Table 6: The comparison of AP across different backbone
models and TGCL methods.

MLP TGAT DyGFormer

Joint 0.0184 0.1477 0.1500
Finetune 0.0160 0.0340 0.0551
LTF 0.0171 0.1110 0.1253

More Complex Datasets To evaluate the scalability and
robustness of our approach under more challenging condi-
tions, we construct two new large-scale benchmarks, Reddit-
Large for more data updates and Reddit-Long for longer
period durations:

• Reddit-Large comprises 344,630 nodes, 4,962,297 edges,
and spans 16 time periods, with 2 novel classes introduced
per period, totaling 32 classes.

• Reddit-Long consists of 558,486 nodes, 5,323,230 edges,
and spans 4 time periods, each covering 180 days. In each
period, 6 new classes are introduced, resulting in a total
of 24 classes evenly added over time.

We evaluate several baseline methods alongside our pro-
posed LTF framework. As shown in Table 7, despite the
increased difficulty in data updates and durations, LTF main-
tains competitive performance in terms of both predictive
accuracy and runtime, outperforming other continual learn-
ing baselines such as Finetune and iCaRL when paired with
the TGAT backbone.

Table 7: Performance comparison across Reddit-Large and
Reddit-Long datasets.

Method Reddit-Large Reddit-Long

AP ↑ Time ↓ AP ↑ Time ↓
Joint-TGAT 0.02042 107.73 0.0734 174.02
Finetune-TGAT 0.00237 6.37 0.0113 54.16
iCaRL-TGAT 0.00747 14.71 0.0354 60.03
LTF-TGAT 0.01043 37.21 0.0499 110.35

5. Conclusion
This paper introduces a novel challenge of updating mod-
els in temporal graphs with open-class dynamics, termed
temporal graph continual learning (TGCL). Unlike exist-
ing problems, TGCL necessitates adapting to both emerg-
ing new-class data and evolving old-class data, requiring
model updates to be both effective and efficient. Our pro-
posed Learning Towards the Future (LTF) method addresses
TGCL by selectively learning from representative subsets of
old classes, a strategy substantiated by theoretical analysis.
Experiments on real-life datasets show that LTF effectively
mitigates forgetting with minimal additional cost.
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A. Important Notations
The important notations used in the paper are summarized
in Tab. 8 below. The relationships among GN−1, Gold

N and
Gnew

N are illustrated in Fig. 6.

Table 8: Important Notations

Notation Meaning

G ∼ G Temporal graph G that follows the distribution G
V,E, T, Y Nodes V , events E, time period T and class set Y of G

e=(ut, vt, t) An event e ∈ E that links nodes ut, vt ∈ V at t ∈ T

vt,xt The node v and its feature x at time t

TN , Tn The latest period N and a past period n < N

h ∈ H Model h from hypothesis space H
ϵ(·), ϵ̂(·) Classification error on distribution and finite set

dH∆H(·) Discrepancy between two distributions

d̂MMD(·) Estimated Maximum Mean Discrepancy

Figure 6: An illustration on the relationships among GN−1,
Gold

N and Gnew
N . Gold

N and Gnew
N DO NOT overlap over

nodes, but DO share the events connecting old and new
class nodes.

B. Additional Discussion on Related Works
Besides the related works in TGL discussed in the main
content, we provide additional discussions on other TGL
variants in this section. Firstly, the efficiency issue in TGL
is addressed by redesigning the training framework (Zhou
et al., 2022; Gao et al., 2024), sampling the representative
nodes (Li & Chen, 2023), and integrating the random walk
with temporal graph neural networks (Li et al., 2023).

Beyond simple temporal graphs, research has also explored
temporal hyper-graphs (Yan et al., 2023), spatio-temporal
graphs (Jin et al., 2023), and temporal knowledge graphs (Li
et al., 2021; Garcı́a-Durán et al., 2018). However, these
methods typically assume a fixed set of node or entity labels
and still encounter the forgetting issue when adapting to new
classes, making them foundational but limited backbones
for studying the TGCL problem.

There are also works addressing the OOD generalization
problem in temporal graphs (Zhou et al., 2023; 2024), which
address a fundamentally different problem from ours. These
works aim to improve model performance on test datasets
that have distributions differing from the training datasets.

In contrast, we focus on the continual learning problem that
tackles the challenge of selecting new data subsets to effi-
ciently fine-tune the past model, ensuring its effectiveness
and preventing forgetting at the new period.

Some recent continual learning works have also applied
the domain adaptation theory to their research, which are
UDIL (Shi & Wang, 2023) and SSRM (Su et al., 2023a).
However, both of them differ largely from ours. UDIL
focuses on automatically finding the most suitable hyper-
parameters for the losses to best balance the model stability
and plasticity during learning new datasets. SSRM directly
minimizes the distribution discrepancy between old and new
data. Our work takes an orthogonal direction from them by
selecting the most representative subset from the old class
data. Besides, our TGCL problem differs from the previous
continual learning settings in the considering the evolving
old-class data.

C. Proofs of Theorems
We first introduce and prove the important Lemma 3 that is
originally proposed in (Ben-David et al., 2010):
Lemma C.1. For any hypothesis h, h′ ∈ H and any two
different data distributions D,D′,

|ϵ(h, h′|D)− ϵ(h, h′|D′)| ≤ 1

2
dH∆H(D,D′), (12)

where ϵ(h, h′|D) := Ex∈D[h(x) ̸= h′(x)] is the expected
prediction differences of h and h′ on D, and

dH∆H(D,D′) := 2 sup
h,h′∈H

|Prx∈D[h(x) ̸= h′(x)]

− Prx∈D′ [h(x) ̸= h′(x)]|
is the discrepancy between the two distributions.

Proof. By definition, we have

dH∆H(D,D′) = 2 sup
h,h′∈H

|Px∈D[h(x) ̸= h′(x)]

− Px∈D′ [h(x) ̸= h′(x)]|
= 2 sup

h,h′∈H
|ϵ(h, h′|D)− ϵ(h, h′|D′)|

≥ 2 |ϵ(h, h′|D)− ϵ(h, h′|D′)| (13)

Based on Lemma C.1, Theorem 3.1 can be prove as follows:
Theorem 3.1. Let GoldN ,GsubN be the distributions of Gold

N

and Gsub
N . Let h ∈ H be a function in the hypothesis space

H and h̃sub
N be the function optimized on GsubN . The classifi-

cation error on GoldN then has the following upper bound:

min
h∈H

ϵ(h|GoldN ) ≤ min
h, Gsub

N

ϵ(h̃sub
N |GoldN ) +

1

2
dH∆H(GoldN ,GsubN )

+ ϵ(h, h̃sub
N |GsubN ).
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Algorithm 1 Pseudo Code

1: Input: Gold
N , Gnew

N , h̃N−1

2: Gsub
N ← {}, Gsim

N ← {}
3: Partition Gold

N into parts with sizes p, resulting in W =
⌈|Gold

N |/p⌉ parts {Gold
N,w}Ww=1

4: for Gold
N,w ∈ {Gold

N,w}Ww=1 do
5: Select G̃sub

N,w of size m/W by optimizing Eq.(8)
6: Select G̃sim

N,w of size m/W by optimizing Eq.(10)
7: Gsub

N ← Gsub
N ∪ G̃sub

N,w, Gsim
N ← Gsim

N ∪ G̃sim
N,w

8: end for
9: h̃N = argminh∈H ϵ̂(h|Gnew

N ) + ϵ̂(h|Gsub
N ) +

βldst(G
sim
N , Gsub

N |h)
10: return h̃N

Proof. From the triangle inequality in (Ben-David et al.,
2010) and Lemma C.1,

ϵ(h|GoldN ) ≤ ϵ(h, h̃sub
N |GoldN ) + ϵ(h̃sub

N |GoldN )

= ϵ(h, h̃sub
N |GoldN ) + ϵ(h̃sub

N |GoldN )− ϵ(h, h̃sub
N |GsubN )

+ ϵ(h, h̃sub
N |GsubN )

≤ ϵ(h̃sub
N |GoldN ) + |ϵ(h, h̃sub

N |GoldN )− ϵ(h, h̃sub
N |GsubN )|

+ ϵ(h, h̃sub
N |GsubN )

≤ ϵ(h̃sub
N |GoldN ) +

1

2
dH∆H(GoldN ,GsubN )

+ ϵ(h, h̃sub
N |GsubN ).

As this inequality applies for all h ∈ H and Gsub
N , the

minimum of the left side is always less than the minimum
of the right side.

D. Pesudo Code of LTF
The pseudo code of the Learning Towards the Future (LTF)
method is presented in Algorithm 1 below.

E. Definition of RBF Kernel
Definition (Radial Basis Function Kernel (Schölkopf et al.,
1997)). Consider the radial basis function kernel K with
entries ki,j = k(xi, xj) = exp(−γ||xi − xj ||) evaluated
on a sample set X with non-duplicated points i.e. xi ̸=
xj∀xi, xj ∈ X . The off-diagonal kernel entries ki,j , i ̸= j,
monotonically decrease with respect to increasing γ.

F. Complexity Analysis
Note that the sizes of Gold

N , Gsub
N and Gsim

N as r, m and m′,
and Gold

N is partitioned into W groups, our time complexity
is analyzed as follows:

Selection: For each partition, we first need O(r/W ) to ob-

tain the errors and embeddings of all nodes. When selecting
Gsub

N from each partition, it takes O(m/W ) for loss esti-
mation and O(rm/W 2) for distribution estimation, which
finally gives O(m/W + rm/W 2). For Gsim

N , we only need
O(rm′/W 2) for distribution estimation. Because different
partitions can be processed in parallel, the overall selection
complexity is O((r +m)/W + r(m+m′)/W 2).

Learning: When learning Gsub
N , the complexity for error is

O(m) and that for distribution alignment is O(mm′). When
learning Gnew

N , the complexity is O(|Gnew
N |). So the overall

learning complexity is O(mm′ + |Gnew
N |).

G. Data Set Details
Yelp Yelp is a business review dataset that contains a large
amount of reviews on different businesses. When buiding
Yelp data set, we regard the businesses as the nodes to
construct the temporal graph. The business categories are
used as the class labels. From 2015 to 2019, we take each of
the five years as one period of temporal graph. The reviews
from the same user within a month create events among
the bussinesses they are evaluating. For each period, we
select the largest three categories as the new classes and
include corresponding businesses into the temporal graphs
from then on. We extract word embeddings on the reviews
of each business with GloVe-200d, and average these 200-
dimension embeddings to get the initial node features.

Reddit Reddit is a online forum dataset that contains
a large amount of posts and comments on different top-
ics. When buiding Reddit data set, we regard the posts as
the nodes to construct the temporal graph, following the
paradigm of (Hamilton et al., 2017). The post topics are
used as the class labels. We take January 1st 2017 as the
start date and construct the temporal graphs of 20 days a
period. The comments from the same user within 5 days
create events among the posts they are commenting one.
There are three periods of temporal graphs created. For
each period, we select the 5 topics that have generally even
number of posts as the new classes. We extract word embed-
dings on the comments of each post with GloVe-200d, and
average these 200-dimension embeddings to get the initial
node features.

Amazon Amazon is a product review dataset that contains
a large amount of reviews on different products. When buid-
ing Amazon data set, we regard the products as the nodes
to construct the temporal graph. The product categories are
used as the class labels. Starting from January 1st 2016, we
take every 24 days as one period of temporal graph. The re-
views from the same user within 5 days create events among
the products they are reviewing. There are three periods
of temporal graphs created. For each period, we select the
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Table 9: The performance of different methods on the TGAT backbone. The reported values are the mean and standard
deviation of AP, AF and Time.

Method
TGAT

Yelp Reddit Amazon
AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓

Joint 0.0810±0.0033 — 58.37±0.60 0.1378±0.0031 — 50.50±0.50 0.1477±0.0014 — 128.71±1.40
Finetune 0.0141±0.0045 0.0843±0.0000 9.11±0.10 0.0312±0.0051 0.1550±0.0000 14.93±0.14 0.0340±0.0213 0.1408±0.0000 65.81±2.60
LwF 0.0209±0.0050 0.0620±0.0028 13.90±0.22 0.0439±0.0057 0.1091±0.0046 23.67±0.44 0.0303±0.0097 0.1024±0.0105 102.92±3.92
EWC 0.0443±0.0142 0.0408±0.0178 9.19±0.15 0.0467±0.0063 0.1384±0.0136 14.95±0.14 0.0524±0.0292 0.1152±0.0363 68.37±3.69
iCaRL 0.0607±0.0035 0.0198±0.0066 11.57±0.14 0.0602±0.0076 0.0860±0.0274 19.22±0.21 0.0699±0.0127 0.0794±0.0145 70.03±0.48
ER 0.0521±0.0098 0.0332±0.0108 11.63±0.15 0.0622±0.0146 0.0783±0.0157 19.07±0.13 0.0799±0.0148 0.0617±0.0293 69.06±3.11
SSM 0.0552±0.0070 0.0232±0.0110 11.82±0.21 0.0308±0.0068 0.1203±0.0143 82.99±2.23 0.0723±0.0164 0.0912±0.0076 145.27±3.78
OTGNet* 0.0648±0.0120 0.0236±0.0139 316.15±17.13 0.0868±0.0071 0.0518±0.0013 49.42±5.55 0.1031±0.0259 0.0459±0.0232 709.49±42.81
URCL 0.0562±0.0091 0.0303±0.0085 11.57±0.13 0.0726±0.0140 0.0649±0.0170 20.13±0.55 0.0915±0.0065 0.0431±0.0130 70.32±2.19
LTF 0.0682±0.0108 0.0195±0.0130 25.05±0.37 0.0871±0.0052 0.0474±0.0097 39.16±0.62 0.1110±0.0018 0.0165±0.0041 72.94±2.17

Table 10: The performance of different methods on the DyGFormer backbone. The reported values are the mean and
standard deviation of AP, AF and Time.

Method
DyGFormer

Yelp Reddit Amazon
AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓

Joint 0.0813±0.0038 — 95.11±2.04 0.1256±0.0140 — 70.64±1.22 0.1500±0.0054 — 177.38±4.27
Finetune 0.0172±0.0008 0.0800±0.0000 14.43±0.40 0.0360±0.0008 0.1433±0.0000 20.58±0.39 0.0551±0.0154 0.1517±0.0258 88.34±0.85
LwF 0.0399±0.0079 0.0386±0.0087 26.03±0.37 0.0469±0.0107 0.0944±0.0112 37.53±0.90 0.0763±0.0207 0.0856±0.0189 155.03±2.31
EWC 0.0601±0.0074 0.0295±0.0112 14.24±0.17 0.0521±0.0190 0.1046±0.0198 20.20±0.14 0.1005±0.0105 0.0832±0.0135 89.32±1.15
iCaRL 0.0558±0.0095 0.0214±0.0156 18.31±0.29 0.0917±0.0095 0.0248±0.0125 26.34±0.24 0.0945±0.0255 0.0775±0.0396 92.36±1.03
ER 0.0546±0.0066 0.0276±0.0094 18.49±0.85 0.0771±0.0172 0.0386±0.0170 26.65±0.30 0.1026±0.0029 0.0650±0.0057 92.11±0.97
SSM 0.0560±0.0009 0.0235±0.0044 18.27±0.29 0.0723±0.0246 0.0641±0.0310 26.09±0.59 0.1063±0.0197 0.0568±0.0170 92.15±1.48
OTGNet* — — — — — — — — —
URCL 0.0584±0.0064 0.0216±0.0083 20.13±0.87 0.0902±0.0112 0.0284±0.0182 27.58±1.33 0.1089±0.0110 0.0566±0.0112 93.43±2.45
LTF 0.0681±0.0064 0.0096±0.0073 51.80±0.75 0.1134±0.0089 0.0081±0.0120 58.56±1.17 0.1253±0.0139 0.0383±0.0121 101.06±3.50
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Figure 7: The average precision (AP) of LTF and the base-
lines at each period, based on DyGFormer.
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Figure 8: The average forgetting (AF) of LTF and the base-
lines at each period, based on DyGFormer.

3 products that have generally even number of reviews as
the new classes. We extract word embeddings on the re-
views of each product with GloVe-200d, and average these
200-dimension embeddings to get the initial node features.

H. Selection on the Hyper-parameters
The hyperparameters related to the backbone models are
selected within the reported range of DyGFormer (Yu et al.,
2023) based on the experience. We do not conduct further
tuning on the backbone performance. The hyperparameters
of our method are selected by grid search. The searching
ranges and results of important hyper-parameters are re-
ported in Sec. 4.4, with standard deviation reported as well.
The hyperparameters of the baselines are selected by grid

search as well, whose names and values are: Weight of
regularization loss (LwF, EWC): [0.1, 0.5, 1, 2]; Size of
exemplar set (iCaRL, ER, SSM, OTGNet): 1000 for Red-
dit and Amazon and 500 for Yelp, which are the same as
ours for fair comparison; Number of maintained neighbors
(SSM): [5, 10, 20]; The other hyperparameters of OTGNet
(Feng et al., 2023) are searched in the same range as re-
ported in the original paper. The searching is performed on
hyperopt package with 10 iterations.

I. Full results on Main Experimetns
In this section, we present the results, including standard
deviations, for Tab. 2 in Sec. 4.2. The detailed results for
TGAT are shown in Tab. 9, and those for DyGFormer are
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provided in Tab. 10. The results demonstrate that LTF not
only performs well across all three datasets but also has a
relatively low standard deviation, indicating the stability of
the method. The standard deviation for Finetune goes to
smaller than 4 digits for most datasets because its forgetting
issue is sever and at the end of increments the model stably
forgets most of the knowledge.

Besides, the per period performances of all methods based
on DyGFormer are shown in Fig. 7 and Fig. 8. Because
OTGNet is not compatible to DyGFormer, we exclude it
from the presentation. The results show that LTF consis-
tently outperforms the other methods in terms of AP and
AF across all periods.

J. Full Results on Ablation Study
The results of the ablation study in Tab. 3 with the standard
deviation are shown in Tab. 12 and Tab. 13. The results
demonstrate that the proposed LTF consistently outperforms
the baselines across all datasets and metrics. The standard
deviation of LTF is relatively low, indicating the stability of
the method.

K. Additional Study on Partition Number
In order for random partitioning to preserve the original
embedding distribution, the size of each partition should be
larger than a threshold. Statistically, based on the Dvoret-
zky–Kiefer–Wolfowitz (DKW) inequality, each partition
should have 1152 samples to guarantee that the randomly
sampled subset can approximate the population distribution
with a 95% confidence and 0.04 approximation error. Com-
pared with the size of our dataset (60k samples for each old
class within a period in Amazon), this threshold is signifi-
cantly smaller and can be easily satisfied. In our experiment,
we randomly partition the dataset into parts containing 6k
samples each, which is sufficient to represent the original
embedding distribution.

We further study the impact of different partition sizes based
on DyGFormer backbone and Amazon datasets, whose AP
results are presented in Tab. 11. Performance decreases
as the number of partitions increases, primarily because
fewer samples in each partition result in higher selection
errors. On the other hand, random constantly outperforms
other clustering methods, which is consistent with our anal-
ysis that keeping the original distribution is important for
effective selection.

L. Sensitivity Analysis on DyGFormer
The additional sensitivity analysis results on DyGFormer
is shown in Fig. 9. The same conclusion as in Sec. 4.4 can
be drown from this set of results. This further validates the

Table 11: Comparison of Different Partition Sizes.

Size 10000 5000 2500

k-Means 0.1104 0.1055 0.0994
Hierarchical 0.1091 0.1063 0.1002

Random 0.1253 0.1147 0.1027

robustness of LTF on addressing TGCL.

M. Future Directions
While this work focuses on node classification, similar
challenges in integrating newly introduced, differently-
distributed data are prevalent in other temporal graph tasks,
such as link prediction (Di et al., 2021; Wang et al., 2021b;
Di & Chen, 2023; Di et al., 2025) with new user profiles
or content categories in social networks. By establishing
a robust approach for handling open-class dynamics, our
framework lays essential groundwork for future research.
Additionally, selecting data under various scenarios (Liu
et al., 2024) has also been trending recently, it is worth
exploring how to extend our method to these scenarios.
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Table 12: Ablation study on the selecting and learning components of LTF based on TGAT with standard deviations. The
applied components are noted with Y. The best and second best results are noted in Bold and Underline.

Component TGAT
Select Learn Yelp Reddit Amazon

Err. Dist. ldst(·) AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓
Y 0.0438±0.0117 0.0439±0.0136

11.79±1.08
0.0579±0.0060 0.0736±0.0064

19.28±0.77
0.1063±0.0016 0.0185±0.0033

67.77±2.05Y 0.0565±0.0093 0.0322±0.0101 0.0640±0.0054 0.0695±0.0073 0.0592±0.0019 0.0684±0.0041
Y Y 0.0654±0.0104 0.0215±0.0110 0.0866±0.0048 0.0447±0.0067 0.1004±0.0023 0.0078±0.0032
Y Y Y 0.0682±0.0108 0.0195±0.0130 25.05±0.37 0.0871±0.0052 0.0474±0.0097 39.16±0.62 0.1110±0.0018 0.0165±0.0041 72.94±2.17

Table 13: Ablation study on the selecting and learning components of LTF based on DyGFormer with standard deviations.
The applied components are noted with Y. The best and second best results are noted in Bold and Underline.

Component DyGFormer
Select Learn Yelp Reddit Amazon

Err. Dist. ldst(·) AP↑ AF↓ Time↓ AP↑ AF↓ Time↓ AP↑ AF↓ Time↓
Y 0.0467±0.0073 0.0309±0.0079

18.51±1.13
0.0807±0.0084 0.0407±0.0220

27.12±2.02
0.1203±0.0172 0.0456±0.0131

90.18±2.52Y 0.0543±0.0056 0.0266±0.0076 0.0863±0.0080 0.0350±0.0221 0.1161±0.0167 0.0465±0.0126
Y Y 0.0618±0.0060 0.0155±0.0082 0.0939±0.0083 0.0272±0.0119 0.1231±0.0108 0.0366±0.0117
Y Y Y 0.0681±0.0064 0.0096±0.0073 51.80±0.75 0.1134±0.0089 0.0081±0.0120 58.56±1.17 0.1253±0.0139 0.0383±0.0121 101.06±3.50
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Figure 9: Sensitivity on the key hyper-parameters based on DyGFormer.
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