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Abstract

In this paper, we aim to generate text classifica-001
tion data given arbitrary class definitions (i.e.,002
user instruction), so one can train a text classi-003
fier without any human annotation or raw cor-004
pus. Recent advances in large language models005
(LLMs) lead to pioneer attempts to individu-006
ally generate texts for each class via prompting.007
In this paper, we propose Incubator, the first008
framework that can handle complicated and009
even mutually dependent classes (e.g., “TED010
Talk given by Educator” and “Other”). Specif-011
ically, our Incubator is a fine-tuned LLM that012
takes the instruction of all class definitions as013
input, and in each inference, it can jointly gen-014
erate one sample for every class. First, we tune015
Incubator on the instruction-to-data mappings016
that we obtained from classification datasets017
and descriptions on Hugging Face together with018
in-context augmentation by GPT-4. To empha-019
size the uniformity and diversity in generations,020
we refine Incubator by fine-tuning with the clus-021
ter centers of semantic textual embeddings of022
the generated samples. We compare Incuba-023
tor on various classification tasks with strong024
baselines such as direct LLM-based inference025
and training data generation by prompt engi-026
neering. Experiments show Incubator is able to027
(1) outperform previous methods on traditional028
benchmarks, (2) take label interdependency and029
user preference into consideration, and (3) en-030
able logical text mining by incubating multiple031
classifiers.032

1 Introduction033

Text classification is one of the most fundamen-034

tal natural language processing (NLP) tasks and035

plays a vital role in many NLP systems (Han and036

Kamber, 2000). Traditional supervised text clas-037

sification fine-tunes models on expensive human038

annotation (Zhang et al., 2015), limiting its usage039

for lower-source domains. Zero-shot text classifi-040

cation reduces manual effort by building classifiers041

with minimal inputs, such as label names (Wang042
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Figure 1: A comparison of Incubator with different
methods for zero-shot text classification.

et al., 2021; Zhang et al., 2023b; Wang et al., 043

2023a). These zero-shot methods are typically 044

based on mining pseudo-training data from massive 045

raw texts with precise filtering algorithms, which 046

unfortunately limits their application to simple la- 047

bels. For more complex labels, their distributions 048

are extremely scarce in raw texts and filtering al- 049

gorithms struggle to recall these examples while 050

maintaining their precision. 051

Large language models (LLMs) (Touvron et al., 052

2023a,b; OpenAI, 2023), such as GPT-3 (Brown 053

et al., 2020), have been recently introduced to ad- 054

dress this problem with their proficient capability 055

to capture the nuance in complex labels. Specifi- 056

cally, people prompt LLMs to generate data based 057

on each label, and then fine-tune small classifiers 058

as the final production (Ye et al., 2022a,b). 059

Existing LLM-based zero-shot text classifica- 060

tion methods, while feasible, face two major chal- 061

lenges, (1) class definitions can go beyond a sim- 062

ple label name, such as “TED Talk given by Ed- 063

ucator” and (2) class definitions can depend on 064

each other. For example, the class “Other” is only 065

meaningful when seeing other classes; As shown 066
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Figure 2: An overview of our Incubator framework.

in Figure 1, the class “Optimistic” shall not con-067

tain “Love” when “Love” itself presents as a class.068

Therefore, the scope of the class with the same069

textual definition can vary as other classes change.070

We argue that the LLMs need further instruction-071

tuning (Ouyang et al., 2022), particularly for classi-072

fication data generation. Specifically, we leverage073

public classification datasets with descriptions for074

this tuning. This allows the user to control the LLM075

to generate useful training data for small models076

based on (1) label interdependency and (2) user077

preferences described in the instructions. Conse-078

quently, the LLM-based zero-shot text classifica-079

tion can be formalized as model incubation that080

“User requires a model by an instruction, the LLM081

(Incubator) then generates useful training data to082

incubate such a classifier.”083

In this paper, we first collect pairs of dataset084

descriptions and training data samples on Hug-085

gingface (Wolf et al., 2019a), each formalized as086

a dictionary with each label as a key and a sample087

as the value. These data are beneficial for Incu-088

bator to learn label interdependency as the exam-089

ples from different classes are presented jointly.090

Then the data descriptions are manually converted091

to user instructions, which establishes a mapping092

from the user instruction to training data. These093

instructions are augmented by a relatively strong094

LLM (e.g., GPT-4) using in-context learning (ICL)095

(Dong et al., 2023b) and used to instruction-tune096

an open-source LLM (e.g., LLaMA-2-7b-hf) as our097

Incubator. Note that we can leverage GPT-4 with098

ICL as Incubator too. We recommend open-source099

LLMs as Incubator because of open parameters,100

inference efficiency, and further fine-tuning.101

To alleviate the known negative impact of data102

bias on text classification (Dixon et al., 2018; Li103

et al., 2021b; Jin et al., 2022) and bias in contents104

generated by LLMs (Gallegos et al., 2023; Fang105

et al., 2023), we propose a novel self-diversification 106

technique to increase the data uniformity and diver- 107

sity, utilizing the text representations from a text 108

embedder (Wang et al., 2022). Specifically, we 109

instruct the Incubator many times (e.g., 1024), and 110

then use a clustering algorithm (e.g., K-means) to 111

get the sample nearest to each cluster center which 112

are semantically different from one another. These 113

samples are incorporated in the same batch to fur- 114

ther instruct-tune Incubator to increase the data 115

uniformity and diversity. 116

We conduct experiments to test the classifier in- 117

cubation ability of our Incubator on various tasks 118

to test its basic incubation ability, label interdepen- 119

dency awareness, and user instruction following 120

ability. These tasks involve incubating classifiers 121

for (1) traditional benchmarks, (2) classification 122

tasks with “Other” as a label, and (3) classification 123

tasks with user customization for personal prefer- 124

ence. We include strong baselines such as directly 125

instructing the LLM to classify texts and prompting 126

LLMs to generate data for each label separately. 127

Experiment results verify our Incubator to be 128

able to (1) incubate strong text classifiers that out- 129

perform the baselines, (2) consider the label inter- 130

dependency and follow the user preference in the 131

instruction, (3) incubate multiple text classifiers 132

and use logical conjunctions to realize advanced 133

text mining systems. 134

Our contributions in this paper are three-fold. 135

• We propose an instruction-tuning framework for 136

LLMs, which incubates text classifiers following 137

user instructions for complicated and mutually 138

dependent classes. 139

• We propose a novel self-diversification technique, 140

which utilizes the cluster centers of generated 141

samples to increase the uniformity and diversity 142

in Incubator generation. 143

• We conduct extensive experiments on benchmark 144

datasets to demonstrate the superior accuracy of 145

the incubated text classifiers. 146

• We showcase how to apply Incubator to realize 147

advanced text mining systems by incubating mul- 148

tiple text classifiers with logical conjunctions1. 149

2 Related Works 150

2.1 Zero-shot Text Classification 151

Traditional zero-shot text classification methods 152

are based on text mining in massive raw texts with 153

1The datasets and models used in the experiments will be
released for reproducibility.
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label names for surface form matching (Wang et al.,154

2021; Wang and Shang, 2022; Zhang et al., 2023b;155

Wang et al., 2023a) or semantic matching (Han-156

jie et al., 2022; Aggarwal et al., 2023; Zhao et al.,157

2023). A related setup allows incorporating some158

seed words for each class to strengthen the text159

mining precision (Wang et al., 2023b; Dong et al.,160

2023a). With the emergence of LLMs, many pio-161

neer studies on LLM-based zero-shot text classifi-162

cation propose to prompt LLMs with label names163

to synthesize texts falling in target classes. These164

texts are used to fine-tune small classifiers on those165

generated results (Ye et al., 2022a,b). However,166

these methods are substantially label-wise text gen-167

eration, which fails to consider the whole classifi-168

cation task, involving label interdependency and169

user preference. Our work aims to fill in this blank170

by proposing a framework that builds customized171

classifiers according to user instructions.172

2.2 Instruction-tuning173

Following instructions (Zhang et al., 2023a) is a174

fundamental capability for Large Language Mod-175

els (LLMs), crucial for understanding and acting176

upon user commands, thus enhancing their appeal177

to user-specific applications. InstructGPT (Ouyang178

et al., 2022) represents an initial exploration into179

LLMs tailored to follow instructions, revealing180

their capacity to perform tasks as directed by users.181

ChatGPT (OpenAI, 2023), with its superior ca-182

pability to follow instructions, bolstered by rein-183

forcement learning with human feedback (RLHF),184

has enjoyed considerable acclaim both within and185

beyond the language research community. Fur-186

thermore, publicly available LLMs designed for187

instruction-following, such as LLaMA (Touvron188

et al., 2023a,b; Meta, 2024), offer a rich foundation189

for investigating the ability of LLMs to execute in-190

structions. Instruction-tuning not only contributes191

to the success of LLMs in text-to-text tasks (Zhang192

et al., 2023a), but is also able to customize image193

generation (Chae et al., 2023) and text embeddings194

(Peng et al., 2024). Our work follows this trend195

to instruction-tune LLMs as Incubator, which cus-196

tomize classifiers according to user instructions.197

2.3 Model Incubation198

The area closest to model incubation is symbolic199

distillation (West et al., 2022; Li et al., 2023),200

which distills a teacher model into a different201

type of student model. Those student models can202

function very differently from the initial language203

modeling teacher, such as commonsense reason- 204

ing (West et al., 2022) and information extraction 205

(Zhou et al., 2023). Another relevant domain is 206

training data generation including augmentation. 207

Besides classification data generation (Ye et al., 208

2022a,b; Peng et al., 2023), there also exists gen- 209

eration pipelines for question answering (Do et al., 210

2023; Gou et al., 2023) and natural language gen- 211

eration (Xu et al., 2021). Model incubation differs 212

from previous works as it takes user instruction as 213

the input, which allows a more user-oriented model 214

customization for personal usage. 215

3 Our Incubator Framework 216

Figure 2 offers an overview of our Incubator frame- 217

work, including two stages, (1) Instruction-tuning 218

and (2) Self-diversification. The instruction- 219

tuning stage utilizes the existing resources on the 220

Huggingface platform to learn an LLM as Incu- 221

bator to generate training data based on user in- 222

structions. The self-diversification stage further 223

improves the uniformity and diversity in Incuba- 224

tor generation with an auxiliary text embedder and 225

clustering. We now elaborate on the details of these 226

two stages. 227

3.1 Instruction-tuning for Incubator 228

Instruction-to-data Dataset We select 25 text 229

classification datasets on the Huggingface plat- 230

form2 to build the initial instruction-to-data dataset 231

for instruction-tuning, such as financial news, coun- 232

terfactual reviews, and toxic conversations. For 233

each dataset, we extract its description and sam- 234

ple a few (we select 10) samples per class from it, 235

which are formalized as Python dictionaries. The 236

keys in the dictionary are labels and each label 237

corresponds to one text data as the value. Conse- 238

quently, we get 250 instruction-to-data samples as 239

the initial dataset. We present a specific case inside 240

the dataset in the Appendix B. 241

ICL-based Augmentation Directly instruction- 242

tuning the LLM on the initial dataset will likely 243

introduce overfitting and bias to the Incubator due 244

to the limited number of instructions (Song et al., 245

2023). Thus, we address these issues by data aug- 246

mentation (Ye et al., 2024) and use ICL (Dong 247

et al., 2023b) by GPT-4 (OpenAI, 2023) as the 248

implementation (Ho et al., 2023). We show the 249

specific prompt for in-context learning in Table 7 250

2The source datasets are shown in Appendix E.
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of Appendix C. We have two in-context examples251

that map instructions to training data as Python252

dictionaries, which are randomly sampled in each253

query. Finally, we augment the instruction-to-data254

dataset to 12K samples. This dataset is then used255

to fine-tune the LLM as the Incubator.256

3.2 Self-diversification for Incubator257

Dataset uniformity and diversity are essential to258

text classification (Dixon et al., 2018) while the259

contents from LLMs are generally biased, espe-260

cially when sampling from a single instruction261

(Gallegos et al., 2023; Fang et al., 2023). Thus,262

we propose a novel self-diversification technique to263

improve the generation quality from our Incubator.264

The main idea is to instruction-tune the LLM on265

the same instruction with several semantically dif-266

ferent data samples. We refer to a pre-trained text267

embedder, specifically E5 (Wang et al., 2022), to268

calculate the semantic similarity (Chandrasekaran269

and Mago, 2022). In our implementation, we reuse270

the instructions in the instruction-tuning dataset.271

For each instruction, we generate many (We select272

1024) training data3 and encode the data into the273

latent embedding space. As the data are formalized274

as Python dictionaries, we concatenate the embed-275

dings of the values (texts) corresponding to a fixed276

order of keys.277

E(d) =

n⊕
i=1

E(d[li])

where E(·), d, li refer to the encoder, the data278

(dictionary) and the i-th label. ⊕ represents the279

concatenation operation and n represents the total280

label number. After all data are encoded, we run a281

K-means (We select K = 8) clustering algorithm282

on the embeddings and find the K samples with283

embeddings that are closest to the cluster centers.284

These samples, together with the instruction, estab-285

lish a one-to-many mapping that maps instruction286

to very semantically diverse data samples. We in-287

corporate these data in a batch of K and further288

instruction-tune the LLM on it. Intuitively, this pro-289

cedure will increase the appearance probability of290

data with unique semantics to benefit the incubated291

classifier.292

4 Experiments293

We conduct several experiments to evaluate the per-294

formance of our Incubator. We include experiments295

on traditional datasets, and revised datasets with296

3Generally, the data share the same label set.

the label “Other”. We also evaluate the ability of 297

Incubator to handle complex personal labels and 298

even ones with conjunctive relationships. 299

4.1 Evaluations and Datasets 300

Towards a comprehensive evaluation of our Incuba- 301

tor, we organize the evaluation into three scenarios. 302

(1) Traditional Benchmarks We include 8 tradi- 303

tional text classification benchmarks, such as sen- 304

timent analysis classification (1) SST-2 (Socher 305

et al., 2013), (2) SST-5 (Socher et al., 2013), and (3) 306

Emotion (Saravia et al., 2018), topic classification 307

(4) AG News (Zhang et al., 2015), news location 308

classification (5) NYT-LOC (Mozzherina, 2013), 309

question type classification (6) TREC (Li and Roth, 310

2002), intent classification (7) SNIPS (Coucke 311

et al., 2018), and (8) sentiment classification to- 312

wards a particular public figure Hillary (Barbieri 313

et al., 2020). 314

(2) Label “Other” We also test the ability of In- 315

cubator to handle stronger label interdependency by 316

datasets with “Other”. We convert several datasets 317

by grouping minor categories based on the propor- 318

tion as a single “Other” label, with details men- 319

tioned in the Appendix D. These datasets include 320

unbalanced datasets: Emotion, NYT-LOC, and 321

Massive (FitzGerald et al., 2022). These revised 322

datasets will be also released for reproducibility 323

(3) Complicated Class Definitions To further 324

showcase the usefulness of Incubator, we come 325

with several complicated instructions for Incubator 326

to incubate text classifiers that will be later used 327

to mine the desired texts from massive raw doc- 328

uments, such as TED Talk Summary4, Steam 329

Game Description5, and Text Message6. 330

Note that all the datasets in our evaluations are 331

excluded from the instruction-tuning data of Incu- 332

bator. 333

4.2 Implementation Details 334

We implement Incubator by fine-tuning the pa- 335

rameters of LLaMA-2 (LLaMA-2-7b-hf) (Touvron 336

et al., 2023b) on our constructed instruction-tuning 337

dataset with AdamW optimizer (Loshchilov and 338

Hutter, 2019) and cosine annealing learning rate 339

scheduler (Loshchilov and Hutter, 2017). The 340

4Huggingface: chirunder/gigant/ted_descriptions
5Huggingface: FronkonGames/steam-games-dataset
6Huggingface: chirunder/text_messages

4

https://huggingface.co/datasets/gigant/ted_descriptions
https://huggingface.co/datasets/FronkonGames/steam-games-dataset
https://huggingface.co/datasets/chirunder/text_messages


Method SST-2 SST-5 Emotion AG News NYT-LOC TREC SNIPS Hillary Average

Prompting 91.43 39.95 46.65 77.65 71.07 60.80 42.29 63.46 61.66

Debiased Seed† 84.38 25.48 18.67 81.31 76.79 34.86 87.96 48.29 57.22
SemSup-XC++† 85.67 37.87 39.45 72.26 81.46 19.80 66.86 45.32 56.09
ZeroGen++ 82.04 39.37 45.40 65.57 78.62 59.10 89.78 57.97 64.73
ProGen++ 84.07 41.49 46.00 67.72 79.64 59.80 90.21 57.42 65.79
Incubator (Ours) 90.01 46.06 46.55 69.46 81.86 71.40 93.57 67.31 70.78

-Diversification 85.45 45.29 46.80 69.91 83.58 63.60 91.07 64.01 68.71

Incubator w/ GPT-4 86.99 44.43 47.80 80.79 86.87 77.80 94.14 64.01 72.85

Table 1: Text Classification Benchmark Results. All methods are based on LLaMA except for Incubator w/ GPT-4.
†: Methods require more than label names. Debiased Seed requires a raw corpus for text mining. SemSup-XC++
requires a pre-trained text embedded for semantic similarity calculation

specific hyperparameters for the optimization are341

shown in Table 6 in Appendix A.342

For all experiments, our Incubator is queried to343

generate 1024 data dictionaries, each with one sam-344

ple per class, to incubate a small classifier, which is345

selected as RoBERTa-Large (Liu et al., 2019). The346

RoBERTa is fine-tuned with the same optimizer347

and scheduler as for instruction-tuning and the hy-348

perparameters for the incubation are also presented349

in Table 6.350

4.3 Compared Methods351

One can directly prompt the LLM, LLaMA-2352

(LLaMA-2-7b-hf), which is the same as the LLM353

used in Incubator, with all the labels and the input354

text in the prompt and ask it to categorize the text355

into one of the labels (Sun et al., 2023). We name356

this method as Prompting.357

We first include some traditional zero-shot text358

classifications for reference:359

• Debiased Seed (Dong et al., 2023a): This is a360

state-of-the-art text mining method for zero-shot361

text classification. The method precisely assigns362

pseudo-labels to texts by seed word (the same363

as label name (Wang et al., 2023c)) matching364

with label cleaning (Mekala et al., 2022). These365

mined texts are then used to fine-tune a classifier.366

• SemSup-XC++ (Aggarwal et al., 2023):367

This method uses semantic similarity (Chan-368

drasekaran and Mago, 2022) between texts and369

label descriptions to assign labels with the high-370

est description similarity to texts. The original371

SemSup-XC mines class descriptions and trains372

a text embedding by contrastive learning (Gao373

et al., 2021). We upgrade SemSup-XC to a374

stronger SemSup-XC++ for LLMs and the375

advancement in text embedding. We generate376

the class descriptions by a state-of-the-art377

LLM, GPT-4 (OpenAI, 2023), and produce the378

embeddings by a strong text embedder (Wang 379

et al., 2022). 380

For the main comparison, we include strong 381

baselines that generate training data without re- 382

quiring massive raw texts as follows. 383

• ZeroGen++ (Ye et al., 2022a): This method 384

prompts LLMs (LLaMA-2-7b-hf) to generate 385

texts based on label descriptions in generation 386

instructions. Different from our Incubator, Zero- 387

Gen handles each label separately, such as “Gen- 388

erate a negative movie review”. Towards a fair 389

comparison with our method, we formalize our 390

instruction-tuning dataset as the template used in 391

ZeroGen to further fine-tune the model. The base- 392

line upgraded by further fine-tuning is named 393

ZeroGen++. 394

• ProGen++ (Ye et al., 2022b): This method fur- 395

ther develops ZeroGen++ by an iterative ICL- 396

based augmentation. With the classifier obtained 397

from ZeroGen++, ProGen++ selects the most 398

helpful data with an influence function (Koh and 399

Liang, 2017) that measures the change in the 400

model’s loss on the test data point. The most 401

influential data points are selected as in-context 402

examples to prompt the LLM to generate more 403

helpful data to strengthen the classifier. 404

Incubator w/ GPT-4: This is a variant of our 405

Incubator that prompts GPT-4 with in-context ex- 406

amples from the Huggingface platform and the 407

instruction to sample the training data. We present 408

this not as a baseline but to showcase that the Incu- 409

bator idea also applies to propriety LLMs. 410

All data generation baselines generate the same 411

amount of data (1024 per class) towards a fair com- 412

parison. The reported results are the average of 5 413

runs, except for SemSup-XC++, which does not 414

have randomness in the method. 415
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4.4 Traditional Benchmark Results416

The experiment results on traditional benchmarks417

are shown in Table 1. The comparison between418

ZeroGen and ProGen baselines verifies our Incu-419

bator has a significant advantage over those la-420

bel interdependency-agnostic methods, which in-421

dicates the advantage of Incubator to consider the422

full label set in the instruction.423

Moreover, the self-diversification procedure is424

shown to highly contribute to the performance of In-425

cubator, which boosts the performances on 5 out of426

8 datasets and achieves comparable performances427

on others. Thus, self-diversification is verified to428

be a reliable and beneficial technique to strengthen429

the Incubator.430

In comparison with data generation methods, the431

text mining and semantic similarity-based baselines432

show significant limitations on some datasets. For433

instance, Debiased Seed shows a significantly weak434

performance on Emotion and TREC (question clas-435

sification) as the seed words are hard to propose for436

these classes. SemSup-XC++ also shows a limita-437

tion when texts are in a special domain for semantic438

similarity calculation (e.g., questions in TREC).439

We also present the performances of direct in-440

ference based on LLaMA-2-7b-hf, which is gener-441

ally outperformed by the small LMs fine-tuned on442

datasets generated by LLMs. This result is con-443

sistent with the discovery that LLMs are better444

generators than discriminators (Dai et al., 2023).445

However, this requires the LLM generator to be446

aware of all labels to avoid the ignorance of label447

interdependency. Otherwise, the generator might448

underperform direct prompting LLM as shown in449

the comparison between ZeroGen++ (ProGen++)450

with direct prompting.451

Finally, we evaluate the ICL-based Incubator452

with GPT-4 as the backbone model. With a signifi-453

cantly larger amount of parameters, Incubator with454

GPT-4 outperforms the one based on LLaMA-2.455

This indicates larger backbone models can further456

scale up the performance of our Incubator. Also,457

tunable models can benefit from self-diversification458

to narrow the gap between the close-source GPT-459

4, which can also be improved once it becomes460

open-source for fine-tuning.461

4.5 Label “Other” Results462

We present the experiment results on datasets with463

miscellaneous (label “Other”) in Table 2. The464

awareness of the miscellaneous category is im-465

Method Emotion NYT-LOC Massive

Prompting 43.15 62.11 57.67

ZeroGen++ 52.65 69.27 56.46
ProGen++ 52.80 69.64 57.16
Incubator (Ours) 56.00 84.19 68.36

- Diversification 55.00 76.39 61.53

Incubator w/ GPT-4 53.40 78.36 73.84

Table 2: Results on datasets with the “Other” class.

portant for classification (Li et al., 2021a), espe- 466

cially when limited labels are known in a large 467

corpus. For ZeroGen or ProGen, we use the label 468

name “Other than ... (other labels)” to prompt 469

for generation. We can observe a significantly 470

larger gap between the Incubator and the label 471

interdependency-agnostic methods, which shows 472

the advantage of Incubator on datasets with mis- 473

cellaneous. Furthermore, the self-diversification 474

shows a more prominent improvement in perfor- 475

mance. This phenomenon can be attributed to the 476

requirement for a more diverse generation by the 477

miscellaneous category. 478

4.6 Complicated Class Definition Results 479

We further showcase how Incubator can be applied 480

to satisfy personal demands, such as mining items 481

preferred by an individual. For each raw corpus, 482

we propose four attributes a user might be inter- 483

ested in, such as “About AI” for TED Talks. For 484

each attribute, we create an instruction to build a 485

text classifier with two labels: the target attribute 486

and the miscellaneous label “Other”. We use the 487

incubated classifier to score each raw text and se- 488

lect the texts with the top scores. For evaluation, 489

we ask GPT-4 and humans whether the mined texts 490

satisfy the demand with Precision@100 as the met- 491

ric. The human evaluation for each result is done 492

by 3 professional human annotators and keeps the 493

majority decision. 494

The text mining performance is presented in Ta- 495

ble 3. Incubator incubates strong text miners with 496

generally high precision on all setups. Remark- 497

ably, we achieve nearly or exactly 100% precision 498

on several targets. Moreover, our miners are vali- 499

dated to be able to handle different text domains, 500

enabling a broad application of our Incubator. 501

4.7 Incubation with Logical Conjunction 502

We further showcase how to utilize Incubator to 503

satisfy more complicated user demands. We in- 504

crease the label complexity by adding logical con- 505

junctions into labels, that are “and” (∧), “or” (∨), 506
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Target TED Summary Target Steam Game Target Text Message

“About AI” 100%/100% “Action” 90%/90% “Positive” 98%/98%
“About Climate” 100%/100% “RTS” 74%/77% “Request” 97%/98%
“By Educator” 94%/94% “Card” 100%/100% “About Food” 98%/98%
“Funny” 75%/80% “Relaxing” 100%/100% “Work-related” 83%/86%

Table 3: Precision@100 (GPT-4 Evaluation/Human Evaluation) of incubated retrievers on unannotated corpora.

Logic Target Direct Incubation Conjuctive Incubation

L1 ∧ L2 “Positive and about food” 85%/85% 88%/88%
L1 ∨ L2 “Positive or negative” 99%/99% 100%/100%
L1 ∧ ¬L2 “Positive but not excited” 74%/72% 89%/86%
L1 ∧ L2 ∧ L3 “Positive, about food, and with dish name” 40%/43% 84%/85%

Table 4: The performance of incubated retrievers with logical conjunctions.

and “not” (¬). The logical conjunctions represent507

a finer-grained demand from the user. For instance,508

one may want to search for texts that are “Positive509

and about food”, as “Positive” ∧ “About food”.510

To realize such finer-grained text mining, we511

utilize the maneuverability of Incubator to incubate512

multiple text miners and combine their scores with513

logical probabilistic calculations as follows,514

• P (LA ∧ LB) = P (LA)P (LB)515
• P (LA ∨ LB) = P (LA) + P (LB)− P (LA ∧ LB)516
• P (¬LA) = 1− P (LA)517

where LA, LB are two labels used as the targets for518

the incubation. Here we view the labels as indepen-519

dent for simplification. We use the Text Message520

corpus for text mining. For evaluation, we keep521

the previous scenario unchanged. We compare two522

types of incubation scenarios,523

• Direct Incubation Incubator only incubates one524

text miner with the full label name, such as “Pos-525

itive and about food”.526

• Conjunctive Incubation first decomposes the527

label name into multiple ones with correspond-528

ing conjunctions, like decomposing “Positive529

and about food” into “Positive” ∧ “About food”.530

Then the score is calculated based on logical531

probabilistic calculations.532

The experiment results are presented in Table 4.533

Conjunctive incubation generally outperforms di-534

rect incubation, which shows the benefit of this535

strategy. As conjunctive incubation also shows536

strong capability on three logical variables, this537

shows how Incubator can be customized to more538

complex settings.539

4.8 Case Studies on Generated Training Data540

To more concretely demonstrate the intermediate541

processes in the incubation, we launch a study on542

the generated texts from the Incubator for classifier543

incubation. We demonstrate the generated training544

data for data mining in the text message corpus in545

4 8 16 32 64 128 256 512 1024
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Figure 3: Incubation dataset size analysis.

Table 5. For each column, there is a piece of text 546

generated with the target value and the other one in 547

the same Python dictionary with the miscellaneous 548

label “Other”. 549

The most straightforward observation is the gen- 550

erated data correctly follows the label, which guar- 551

antees the foundational precision of the incubated 552

classifiers. Also, the generated texts incorporate 553

a wide range of syntactic structures and semantic 554

contents for the training data diversity. For the 555

miscellaneous label, we can observe the Incubator 556

to cover various potential negative labels. For in- 557

stance, the miscellaneous category for “About food” 558

includes labels such as “About meeting”, “About 559

sports”, “About movie”, which broadens the nega- 560

tive set understood by the incubated classifier. 561

Finally, we can view some attribute correlations 562

between the data in the same generated Python 563

dictionary. In the “Positive” example, the three 564

samples have the same topic “Project”, “Travel”, 565

and “App”. With these data different in the target 566

attribute but same in other attributes, the incubated 567

classifier can better focus on the target attribute and 568

eliminate spurious correlations. 569

5 Analyses of Incubator 570

5.1 Incubation Dataset Size 571

We first adjust the number of data generated from 572

Incubator to investigate how the incubated classifier 573

will be affected. We conduct experiments on TREC 574
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Target Generated data with target label Generated data with misc label

Hey! I love the new update. It’s awesome! Just checking in on the progress of the project.
“Positive” Wow, you got the tickets for our dream holiday! I’ve booked the flights for next week.

I absolutely love the new design of the app. I’m having trouble logging into my account.

Can you send me the report by end of today? What did you do during the weekend?
“Request” Could you please bring me a coffee? How was your day?

Can you pass me the salt? Hey, did you catch the game last night?

The pizza at Mario’s is the best in town! I have an important meeting at 10am tomorrow.
“About food” I’m craving for a burger and fries! I might go for a run later.

I just tried that new sushi place. Totally worth it! Hey, what time does the movie start?

We need to finalize the report by tomorrow. Hey, do you want to catch a movie tonight?
“Work-related” The meeting is scheduled at 3 PM tomorrow. Do you want to catch up for dinner tonight?

The project deadline has been extended. Hey! What are you up to this weekend?

Table 5: The performance of incubated retrievers with logical conjunctions.

TREC SNIPS
60

70

80

90

100

A
cc

ur
ac

y

Figure 4: Analysis of Incubator instruction robustness.

and SNIPS datasets with incubation data size from575

4 to 1024. The results are illustrated in Figure 3.576

From the shown scaling-up trend, there is a clear577

threshold (64) on the dataset size, after which the578

performance gained from generating more training579

data becomes limited. Thus, we recommend Incu-580

bator users generate at least 64 data samples for the581

classifier incubation.582

5.2 Instruction Robustness583

We then check the robustness of Incubator to in-584

structions by testing with different but semantically585

equal instructions. We rephrase each instruction586

for TREC and SNIPS into 10 different versions and587

then run the incubation pipeline for evaluation. The588

robustness evaluation is presented in Figure 4. We589

can observe the lexical and syntactical attributes,590

which are changed in the rephrasing, have limited591

impact on the incubated result. Thus, we conclude592

our Incubator is robust against the variations of the593

same instruction.594

5.3 Efficiency Analysis595

We analyze the time efficiency of the Incubator to596

explore its efficiency in deployment. For dataset597

generation, we run the LLaMA model with the ac-598

celeration by the vllm package (Kwon et al., 2023).599

For the small classifier incubation, we fine-tune the600

model with the trainer in the transformers pack-601

age (Wolf et al., 2019b). We evaluate the time for602
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Figure 5: Efficiency Analysis of Incubator instruction.

dataset generation and classifier incubation (fine- 603

tuning). The time is obtained by averaging the 604

results in experiments on the 8 traditional bench- 605

marks, which is illustrated in Figure 5. All experi- 606

ments are run on a single A100 device. 607

For dataset generation, the average time is 608

67.53s. The generation times for all benchmarks 609

are distributed around this average since vllm has 610

a fixed max length limitation for decoding. For 611

classifier incubation, the time is almost linearly de- 612

pendent on the number of labels, which shows an 613

average of 15.16s time cost per class. 614

Thus, the time efficiency of our Incubator is fea- 615

sible to incubate personal classifiers. Also, the 616

main time cost happens in classifier incubation 617

rather than calling the LLM for dataset generation, 618

especially when the label number is large. 619

6 Conclusion and Future Work 620

In summary, this paper proposes a new framework 621

for model incubation by querying an instruction- 622

tuned LLM. Our model, Incubator, is pre-trained 623

on Huggingface resources and ICL-based augmen- 624

tation. The Incubator is further strengthened by 625

a novel self-diversification technique. We show 626

that Incubator can incubate strong classifiers for 627

traditional benchmarks and customized text min- 628

ing, following instructions. We also include com- 629

prehensive analysis to explore the properties of the 630

Incubator for deeper insight and better application. 631
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Limitation and Future Work632

While Incubator shows strong performance in pro-633

ducing reliable and customized classifiers, it has634

some limitations that can be further improved in635

future works.636

Instruction Effort: Current Incubator requires637

the user to include all label names in the instruction,638

which adds effort for the user to create instructions,639

especially when the label number is large or the640

user is unclear about the label names. A combina-641

tion with existing work (Wang et al., 2023a) might642

be a direction to reduce user efforts further.643

LLM Knowledge Dependence: As an LLM-644

only methods, the Incubator is only able to generate645

text within its knowledge scope. For emerging la-646

bels, the647

Future work will concentrate on two tracks. 1)648

Improve the incubation quality: We can incor-649

porate existing or new methods to improve data650

generation quality like higher diversity and harder651

negative samples. 2) Broaden the scope of incu-652

bated models: The incubated model can be more653

than classifiers, such as question responder and654

text summarizer. These models might require more655

complicated instruction understanding and other656

techniques for model enhancement. Incubator still657

has to rely on delicate explanations or in-context658

examples to handle them.659
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A Hyperparameter1062

Hyperparameter Instruction-tuning Incubation

Initial LR 2× 10−5 1× 10−5

Batch Size 16 32
Epoch 3 8

Table 6: The hyperparameter setups in our experiments.

B Instruction-tuning Dataset Processing1063

Dataset: app_reviews

Description: It is a large dataset of Android applications belonging to 

23 different apps categories, which provides an overview of the types 

of feedback users report on the apps and documents the evolution of 

the related code metrics. The dataset contains about 395 applications of 

the F-Droid repository, including around 600 versions, 280,000 user 

reviews (extracted with specific text mining approaches)

Instruction: Please create a model to anticipate the star rating to 

Android application reviews.

Data: {“1 star”: …, “2 star”: …, “3 star”: …, “4 star”: …, “5 star”: …, }

Figure 6: A case in our instruction-tuning dataset for
Incubator.

C Dataset Generation Prompt1064

Role Message

User Generate an imaginative instruction to
build a text classifier and its correspond-
ing samples.

GPT-4 “Input”: “Instruction 1”
“Output”: {“Label 1,1”: “Data 1,1”,
“Label 1,2”: “Data 1,2”, ...}

User Generate an imaginative instruction to
build a text classifier and its correspond-
ing samples.

GPT-4 “Input”: “Instruction 2”
“Output”: {“Label 2,1”: “Data 2,1”,
“Label 2,2”: “Data 2,2”, ...}

User Generate an imaginative instruction to
build a text classifier and its correspond-
ing samples.

Table 7: The prompt used in ICL-based augmentation.

D Revised Dataset with Miscellaneous 1065

Dataset Label Other

Emotion Joy, Sadness Love, Anger, Fear, Surprise

NYT-LOC America, Iraq, Britain, German, Canada,
Japan, China France, Russia, Italy

Massive
Calendar, Play, Lists, News, Recommendation,
QA, Email, IoT, Datetime, Social, Alarm, Music,
Weather, Transport Audio, Takeaway, Cooking

Table 8: The revision on datasets for the label “Other”.

As shown in Table 8, the minor categories with 1066

low proportion are merged together to an “Other” 1067

class. 1068

E Source of Metadata 1069

The datasets used to create instruction-tuning meta- 1070

data are listed in Table 9. 1071

Dataset Label

YELP (P) Review Sentiment
YELP (S) Review Star
IMDB Review Sentiment
Rotten Tomatoes Review Sentiment
Twitter Financial News (S) News Sentiment
Twitter Financial News (T) News Topic
Yahoo Question Category
Subj Subjectiveness
Student Question Question Category
Financial Benchmark News Sentiment
Amazon (C) Counterfactual
Amazon (S) Review Sentiment
APP Review Review Sentiment
Toxic Conversation Toxicity
ETHOS Toxicity
HATE Toxicity
MASSIVE (T) Request Topic
MASSIVE (I) Request Intent
SNLI Natural Language Inference
MNLI Natural Language Inference
QNLI Natural Language Inference
WNLI Natural Language Inference
RTE Natural Language Inference
QQP Semantic Similarity
MRPC Semantic Similarity

Table 9: The revision on datasets for the label “Other”.
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