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Abstract

There is a recent and growing interest on large-width asymptotic properties of Gaussian neural net-
works (NNs), namely NNs whose weights are initialized according to Gaussian distributions. A
well-established result is that, as the width goes to infinity, a Gaussian NN converges in distribution
to a Gaussian stochastic process, which provides an asymptotic or qualitative Gaussian approxima-
tion of the NN. In this paper, we introduce some non-asymptotic or quantitative Gaussian approx-
imations of Gaussian NNs, quantifying the approximation error with respect to some popular dis-
tances for (probability) distributions, e.g. the 1-Wasserstein distance, the total variation distance and
the Kolmogorov-Smirnov distance. Our results rely on the use of second-order Gaussian Poincaré
inequalities, which provide tight estimates of the approximation error, with optimal rates. This is
a novel application of second-order Gaussian Poincaré inequalities, which are well-known in the
probabilistic literature for being a powerful tool to obtain Gaussian approximations of general func-
tionals of Gaussian stochastic processes. A generalization of our results to deep Gaussian NNs is
discussed.

1 Introduction

There is a growing interest on large-width asymptotic properties of Gaussian neural networks (NNs), namely NNs
whose weights or parameters are initialized according to Gaussian distributions (Neal, 1996; Williams, 1997; Der &
Lee, 2005; Garriga-Alonso et al., 2018; Lee et al., 2018; Matthews et al., 2018; Novak et al., 2018; Antognini, 2019;
Hanin, 2019; Yang, 2019; Aitken & Gur-Ari, 2020; Andreassen & Dyer, 2020; Bracale et al., 2021; Eldan et al., 2021;
Basteri & Trevisan, 2022). Let N (µ, σ2) be a Gaussian distribution with mean µ and variance σ2, and consider: i) an

input x ∈ Rd, with d ≥ 1; ii) a collection of (random) weights θ = {w(0)
i , w, b

(0)
i , b}i≥1 such that w(0)

i,j
d= wj , with

the w(0)
i,j ’s being independent and identically distributed as N (0, σ2

w), and b(0)
i

d= b, with the b(0)
i ’s being independent

and identically distributed asN (0, σ2
b ) for σ2

w, σ
2
b > 0; iii) an activation function τ : R→ R. Then, a (fully connected

feed-forward) Gaussian NN is defined as follows:

fx(n)[τ, n−1/2] = b+ 1
n1/2

n∑
j=1

wjτ(〈w(0)
j ,x〉Rd + b

(0)
j ), (1)

with n−1/2 being a scaling factor. Neal (1996) characterized the infinitely wide limit of the NN equation 1, showing
that, as n → +∞, for any x ∈ Rd the NN fx(n)[τ, n−1/2] converges in distribution to a Gaussian random variable
(RV). That is, as a function of x, the infinitely wide limit of the NN is a Gaussian stochastic process. The proof is
an application of the classical Central Limit Theorem (CLT), thus relying on minimal assumptions on τ to ensure that
E[(gj(x))2] is finite, where gj(x) = wjτ(〈w(0)

j ,x〉Rd + b
(0)
j ). The result of Neal (1996) has been extended to more

general matrix input, i.e. p > 1 inputs of dimension d, and to deep Gaussian NNs, assuming a “sequential growth"
(Der & Lee, 2005) and a “joint growth" (Matthews et al., 2018) of the width over the NN’s layers. These results
provide asymptotic or qualitative Gaussian approximations of Gaussian NNs, as they do not provide the rate at which
the NN converges to the infinitely wide limit.
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1.1 Our contribution

In this paper, we consider non-asymptotic or quantitative Gaussian approximations of the NN equation 1, quantifying
the approximation error with respect to some popular distances for (probability) distributions. To introduce our results,
let dW1 be the 1-Wasserstein distance and consider a Gaussian NN with a 1-dimensional unitary input, i.e. d = 1 and
x = 1, unit variance’s weight, i.e. σ2

w = 1, and no biases, i.e. b(0)
i = b = 0 for any i ≥ 1. Under this setting, our result

states as follows: if τ ∈ C2(R) such τ and its first and second derivatives are bounded above by the linear envelope
a+ b|x|γ , for a, b, γ > 0, and N ∼ N (0, σ2) with σ2 being the variance of the NN, then for any n ≥ 1

dW1(f1(n)[τ, n−1/2], N) ≤ Kσ2

n1/2 , (2)

with Kσ2 being a constant that can be computed explicitly. The polynomial envelope assumption is not new in the
study of large-width properties of Gaussian NNs (Matthews et al., 2018; Yang, 2019), and it is critical to achieve the
optimal rate n−1/2 in the estimate equation 2 of the approximation error. In general, we show that an approximation
analogous to equation 2 holds true for the Gaussian NN equation 1, with the approximation being with respect to the
1-Wasserstein distance, the total variation distance and the Kolmogorov-Smirnov distance. Our results rely on the
use of second-order Gaussian Poincaré inequalities, or simply second-order Poincaré inequalities, first introduced in
Chatterjee (2009) and Nourdin et al. (2009) as a powerful tool to obtain Gaussian approximation of general functionals
of Gaussian stochastic processes. Here, we make use of some refinements of second-order Poincaré inequalities
developed in Vidotto (2020), which have the advantage of providing tight estimates of the approximation error, with
(presumably) optimal rates. An extension of equation 2 is presented for Gaussian NNs with p > 1 inputs, whereas a
generalization of our results to deep Gaussian NNs is discussed with respect to the “sequential growth" and the “joint
growth" of the width over the NN’s layers.

1.2 Related work

While there exists a vast literature on infinitely wide limits of Gaussian NNs, as well as their corresponding asymptotic
approximations, only a few recent works have investigated non-asymptotic approximations of Gaussian NNs. To the
best of our knowledge, the work of Eldan et al. (2021) is the first to consider the problem of non-asymptotic approx-
imations of Gaussian NNs, focusing on NNs with Gaussian distributed weights wi,j’s and Rademacher distributed
weights wi’s. For such a class of NNs, they established a quantitative CLT in an infinite-dimensional functional space,
metrized with the Wasserstein distance, providing rates of convergence to a Gaussian stochastic process. For deep
Gaussian NNs (Der & Lee, 2005; Matthews et al., 2018), the work of Basteri & Trevisan (2022) first established
a quantitative CLT in the 2-Wasserstein distance, providing the rate at which a deep Gaussian NN converges to its
infinitely wide limit. Such a result relies on basic properties of the Wasserstein distance, which allow for a quantita-
tively tracking the hidden layers and yield a proof by induction, with the triangular inequality being applied to obtain
independence from the previous layers. See Favaro et al. (2022) for an analogous result in the sup-norm distance.
Our work is close to that of Basteri & Trevisan (2022), in the sense that we deal with NNs for which all the weights
are initialized according to Gaussian distributions, and we consider their approximations through Gaussian RVs. The
novelty of our work lies on the use of second-order Poincaré inequalities, which allow reducing the problem to a direct
computation of the gradient and Hessian of the NN, and provide estimates of the approximation error with optimal
rate, and tight constants, with respect to other distances than sole Wasserstein distance. This is the first to make use of
second-order Poincaré inequalities as a tool to obtain non-asymptotic Gaussian approximations of Gaussian NNs.

1.3 Organization of the paper

The paper is structured as follows. In Section 2 we present an overview on second-order Poincaré inequalities, recalling
some of the main results of Vidotto (2020) that are critical to prove our non-asymptotic Gaussian approximations of
Gaussian NNs. Section 3 contains the non-asymptotic Gaussian approximation of the NN equation 1, as well as its
extension for the NN equation 1 with p > 1 inputs, where Section 4 contains some numerical illustrations of our
approximations. In Section 5 we discuss the extension of our results to deep Gaussian NNs, and we present some
directions for future research.
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2 Preliminaries on second-order Poincaré inequalities

Let (Ω,F ,P) be a generic probability space on which all the RVs are assumed to be defined. We denote by ⊥⊥ the
independence between RVs, and we make use of the acronym "iid" to refer to RVs that are independent and identically
distributed and by ‖X‖Lq := (E[Xq])1/q the Lq norm of the RV X . In this work, we consider some popular distances
between (probability) distributions of real-valued RVs. Let X and Y be two RVs in Rd, for some d ≥ 1. We denote
by dW1 the 1-Wasserstein distance, that is,

dW1(X,Y ) = sup
h∈H

|E[h(X)]− E[h(Y )]|,

where H is the class of all functions h : Rd → R such that it holds true that ‖h‖Lip ≤ 1, with ‖h‖Lip =
supx,y∈Rd,x 6=y |h(x)− h(y)|/‖x− y‖Rd . We denote by dTV the total variation distance, that is,

dTV (X,Y ) = sup
B∈B(Rm)

|P(X ∈ B)− P(Y ∈ B)|,

where B
(
Rd
)

is the Borel σ-field of Rd. Finally, we denote by dKS the Kolmogorov-Smirnov distance, i.e.

dKS(X,Y ) = sup
z1,...,zd∈R

|P
(
X ∈ ×di=1 (−∞, zi]

)
− P

(
Y ∈ ×di=1 (−∞, zi]

)
|.

We recall the following interplays between some of the above distances: i) dKS(·, ·) ≤ dTV (·, ·); ii) if X is a real-
valued RV and N ∼ N (0, 1) is the standard Gaussian RV then dKS(X,N) ≤ 2

√
dW1(X,N).

Second-order Poincaré inequalities provide a useful tool for Gaussian approximation of general functionals of Gaus-
sian fields (Chatterjee, 2009; Nourdin et al., 2009). See also Nourdin & Peccati (2012) and references therein for a
detailed account. For our work, it is useful to recall some results developed in Vidotto (2020), which provide improved
versions of the second-order Poincaré inequality first introduced in Chatterjee (2009) for random variables and then
extended in Nourdin et al. (2009) to general infinite-dimensional Gaussian fields. Let N ∼ N (0, 1). Second-order
Poincaré inequalities can be seen as an iteration of the so-called Gaussian Poincaré inequality, which states that

Var[f(N)] ≤ E[f ′(N)2] (3)

for every differentiable function f : R → R, a result that was first discovered in a work by Nash (1956) and then
reproved by Chernoff (1981). The inequality equation 3 implies that if the L2 norm of the RV f ′(N) is small, then so
are the fluctuations of the RV f(N). The first version of a second-order Poincaré inequality was obtained in Chatterjee
(2009), where it is proved that one can iterate equation 3 in order to assess the total variation distance between the
distribution of f(N) and the distribution of a Gaussian RV with matching mean and variance. The precise result is
stated in the following theorem.

Theorem 2.1 (Chatterjee (2009) - second-order Poincaré inequality). Let X ∼ N (0, Id×d). Take any f ∈ C2(Rd),
and ∇f and ∇2f denote the gradient of f and Hessian of f , respectively. Suppose that f(X) has a finite fourth
moment, and let µ = E[f(X)] and σ2 = Var[f(X)]. Let N ∼ N (µ, σ2) then

dTV (f(X), N) ≤ 2
√

5
σ2

{
E
[
‖∇f(X)‖4

Rd
]}1/4 {E [‖∇2f(X)‖4

op

]}1/4
, (4)

where ‖·‖op stands for the operator norm of the Hessian∇2f(X) regarded as a random d× d matrix.

Nourdin et al. (2009) pointed out that the Stein-type inequalities that lead to equation 4 are special instances of a more
general class of inequalities, which can be obtained by combining Stein’s method and Malliavin calculus on an infinite-
dimensional Gaussian space. In particular, Nourdin et al. (2009) obtained a general version of equation 4, involving
functionals of arbitrary infinite-dimensional Gaussian fields. Both equation 4 and its generalization in Nourdin et al.
(2009) are known to give suboptimal rates of convergence. This is because, in general, it is not possible to obtain
an explicit computation of the expectation of the operator norm involved in the estimate of total variation distance,
which leads to move further away from the distance in distribution and use bounds on the operator norm instead
of computing it directly. To overcome this drawback, Vidotto (2020) adapted to the Gaussian setting an approach
recently developed in Last et al. (2016) to obtain second-order Poincaré inequalities for Gaussian approximation of
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Poisson functionals, yielding estimates of the approximation error that are (presumably) optimal. The next theorem
states Vidotto (2020, Theorem 2.1) for the special case of a function f(X), with f ∈ C2 (Rd) such that its partial
derivatives have sub-exponential growth, and X ∼ N (0, Id×d). See Appendix A for an overview of Vidotto (2020,
Theorem 2.1).

Theorem 2.2 (Vidotto (2020) - 1-dimensional second-order Poincaré inequality). Let F = f(X), for some f ∈
C2 (Rd), and X ∼ N (0, Id×d) such that E[F ] = 0 and E

[
F 2] = σ2. Let N ∼ N

(
0, σ2), then

dM (F,N) ≤ cM

√√√√ d∑
l,m=1

{
E
[(
〈∇2

l,·F,∇2
m,·F 〉

)2
]}1/2 {

E
[
(∇lF∇mF )2

]}1/2
, (5)

where 〈·, ·〉 is the scalar product, M ∈ {TV,KS,W1}, cTV = 4
σ2 , cKS = 2

σ2 , cW1 =
√

8
σ2π and ∇2

i,·F is the i-th
row of the Hessian matrix of F = f(X) while ∇iF is the i-th element of the gradient of F .

The next theorem generalizes Theorem 2.2 to multidimensional functionals. In particular, for any p > 1, the next
theorem states Vidotto (2020, Theorem 2.3) for the special case of a function (f1(X), . . . , fp(X)), with f1, . . . , fp ∈
C2 (Rd) such that its partial derivatives have sub-exponential growth, and X ∼ N (0, Id×d). See Appendix A for a
brief overview of Vidotto (2020, Theorem 2.3).

Theorem 2.3 (Vidotto (2020) - p-dimensional second-order Poincaré inequality). For any p > 1 let (F1, . . . , Fp) =
(f1(X), . . . , fp(X)), for some f1, . . . , fp ∈ C2(Rd), and X ∼ N (0, Id×d) such that E [Fi] = 0 for i = 1, . . . , p
and E [FiFj ] = cij for i, j = 1, . . . , p, with C = {cij}i,j=1,...,p being a symmetric and positive definite matrix, i.e. a
variance-covariance matrix. Let N ∼ N (0, C), then

dW1(F,N) (6)

≤ 2√p
∥∥C−1∥∥

2 ‖C‖2

√√√√ p∑
i,k=1

d∑
l,m=1

{
E
[(
〈∇2

l,·Fi,∇2
m,·Fi〉

)2
]}1/2 {

E
[
(∇lFk∇mFk)2

]}1/2

where ‖·‖2 is the spectral norm of a matrix.

3 Main results

In this section, we present the main result of the paper, namely a non-asymptotic Gaussian approximation of the
NN equation 1, quantifying the approximation error with respect to the 1-Wasserstein distance, the total variation
distance and the Kolmogorov-Smirnov distance. It is useful to start with the simple setting of a Gaussian NN with a
1-dimensional unitary input, i.e. d = 1 and x = 1, unit variance’s weight, i.e. σ2

w = 1, and no biases, i.e. b(0)
i = b = 0

for any i ≥ 1. That is, we consider the NN

F := f1(n)[τ, n−1/2] = 1
n1/2

n∑
j=1

wjτ(w(0)
j ). (7)

By means of a straightforward calculation, one has E[F ] = 0 and Var[F ] = EZ∼N (0,1)[τ2(Z)]. As F in equation 7 is
a function of independent standard Gaussian RVs, Theorem 2.2 can be applied to approximate F with a Gaussian RV
with the same mean and variance as F , quantifying the approximation error.

Theorem 3.1. Let F be the NN equation 7 with τ ∈ C2(R) such that |τ(x)| ≤ a+ b|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ a+ b|x|γ

for l = 1, 2 and some a, b, γ ≥ 0. If N ∼ N (0, σ2) with σ2 = EZ∼N (0,1)[τ2(Z)], then for any n ≥ 1

dM (F,N) ≤ cM√
n

√
3(1 +

√
2) · ‖a+ b|Z|γ‖2

L4
, (8)

where Z ∼ N (0, 1), M ∈ {TV,KS,W1}, with corresponding constants cTV = 4/σ2, cKS = 2/σ2, and cW1 =√
8/σ2π.
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Proof. To apply Theorem 2.2, we start by computing some first and second order partial derivatives. That is,

∂F
∂wj

= n−1/2τ(w(0)
j )

∂F

∂w
(0)
j

= n−1/2wjτ
′(w(0)

j )

∇2
wj ,wiF = 0

∇2
wj ,w

(0)
i

F = n−1/2τ ′(w(0)
j )δij

∇2
w

(0)
j
,w

(0)
i

F = n−1/2wjτ
′′(w(0)

j )δij

with i, j = 1 . . . n. Then, by a direct application of Theorem 2.2, we obtain the following preliminary estimate

dM (F,N) ≤ cM

{
n∑
j=1

2

E

[(
〈∇2

wj ,·F,∇
2
w

(0)
j
,·
F 〉
)2
]
E

( ∂F

∂wj

∂F

∂w
(0)
j

)2


1/2

+
{
E
[(
〈∇2

wj ,·F,∇
2
wj ,·F 〉

)2
]
E

[(
∂F

∂wj

∂F

∂wj

)2
]}1/2

+

E

[(
〈∇2

w
(0)
j
,·
F,∇2

w
(0)
j
,·
F 〉
)2
]
E

( ∂F

∂w
(0)
j

∂F

∂w
(0)
j

)2


1/2}1/2

,

which can be further developed. In particular, we can write the right-hand side of the previous estimate as

cM

{ n∑
j=1

2
{
E

[(
1
n
wjτ

′
(
w

(0)
j

)
τ ′′
(
w

(0)
j

))2
]
E

[(
1
n
wjτ

(
w

(0)
j

)
τ ′
(
w

(0)
j

))2
]}1/2

+
{
E

[(
1√
n
τ ′
(
w

(0)
j

))4
]
E

[(
1√
n
τ
(
w

(0)
j

))4
]}1/2

+
{
E

[(
1
n

{
τ ′
(
w

(0)
j

)}2
+ 1
n
w2
j

{
τ ′′
(
w

(0)
j

)}2
)2
]
E

[(
1√
n
wjτ

′
(
w

(0)
j

))4
]}1/2}1/2

(E[w2
j ]=1)
= cM

n

{ n∑
j=1

2
{
E
[(
τ ′
(
w

(0)
j

)
τ ′′
(
w

(0)
j

))2
]
E
[(
τ
(
w

(0)
j

)
τ ′
(
w

(0)
j

))2
]}1/2

+
{
E
[(
τ ′
(
w

(0)
j

))4
]
E
[(
τ
(
w

(0)
j

))4
]}1/2

+
{
E

[({
τ ′
(
w

(0)
j

)}2
+ w2

j

{
τ ′′
(
w

(0)
j

)}2
)2
]
E
[(
wjτ

′
(
w

(0)
j

))4
]}1/2}1/2

(iid)= cM√
n

{
2
{
E
[
(τ ′ (Z) τ ′′ (Z))2

]
E
[
(τ (Z) τ ′ (Z))2

]}1/2

+
{
E
[
(τ ′ (Z))4

]
E
[
(τ (Z))4

]}1/2

+
{
E
[(
{τ ′ (Z)}2 + w2

j {τ ′′ (Z)}2
)2
]
E
[
(wjτ ′ (Z))4

]}1/2}1/2

(iid)= cM√
n

{
2
{
E
[
(τ ′ (Z) τ ′′ (Z))2

]
E
[
(τ (Z) τ ′ (Z))2

]}1/2
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+
{
E
[
(τ ′ (Z))4

]
E
[
(τ (Z))4

]}1/2

+
{
E
[(
{τ ′ (Z)}2 + w2

j {τ ′′ (Z)}2
)2
]
E
[
(wjτ ′ (Z))4

]}1/2}1/2

= cM√
n

{
2
{
E
[
(τ ′ (Z) τ ′′ (Z))2

]
E
[
(τ (Z) τ ′ (Z))2

]}1/2

+
{
E
[
(τ ′ (Z))4

]
E
[
(τ (Z))4

]}1/2

+
{(

E
[
{τ ′ (Z)}4

]
+ 2E

[
{τ ′ (Z)}2 {τ ′′ (Z)}2

]
+ 3E

[
{τ ′′ (Z)}4

])
3E
[
{τ ′ (Z)}4

]}1/2}1/2

= cM√
n

{
2
{
E
[
|τ ′ (Z) |2|τ ′′ (Z) |2

]
E
[
|τ (Z) |2|τ ′ (Z) |2

]}1/2

+
{
E
[
|τ ′ (Z) |4

]
E
[
|τ (Z) |4

]}1/2

+
{ (

E
[
|τ ′ (Z) |4

]
+ 2E

[
|τ ′ (Z) |2|τ ′′ (Z) |2

]
+ 3E

[
|τ ′′ (Z) |4

])
3E
[
|τ ′ (Z) |4

] }1/2
}1/2

,

where Z ∼ N (0, 1). Now, since τ is polynomially bounded and the square root is an increasing function,

dM (F,N) ≤ cM√
n

{
2
{
E
[
(a+ b|Z|γ)4]E [(a+ b|Z|γ)4]}1/2

+
{
E
[
(a+ b|Z|γ)4]E [(a+ b|Z|γ)4]}1/2

+
{

18E
[
(a+ b|Z|γ)4]E [(a+ b|Z|γ)4]}1/2

}1/2

= cM√
n

√
3
√

2 + 3
{
E
[
(a+ b|Z|γ)4]}1/2

= cM√
n

√
3(1 +

√
2)‖a+ b|Z|γ‖2

L4
,

where Z ∼ N (0, 1).

The proof of Theorem 3.1 shows how a non-asymptotic approximation of F can be obtained by a direct application
of Theorem 2.2. In particular, the estimate equation 8 of the approximation error dM (F,N) has the optimal rate
n−1/2 with respect to the 1-Wasserstein distance, the total variation distance and the Kolmogorov-Smirnov distance.
As for the constant, it depends on the variance EZ∼N (0,1)[τ2(Z)] of F . Once the activation function τ is specified,
EZ∼N (0,1)[τ2(Z)] can be evaluated by means of an exact or approximate calculation, or a suitable lower bound for it
can be provided.

Now, we extend Theorem 3.1 to the more general case of the Gaussian NN equation 1, showing that the problem still
reduces to an application of Theorem 2.2. In particular, it is convenient to write equation 1 as follows:

F := 1
n1/2σw

n∑
j=1

wjτ(σw〈w(0)
j ,x〉+ σbb

(0)
j ) + σbb, (9)

with w(0)
j = [w(0)

j,1 , . . . , w
(0)
j,d ]T and wj

d= w
(0)
j,i

iid∼ N (0, 1). We set Γ2 = σ2
w‖x‖

2 + σ2
b , and for n ≥ 1 we consider a

collection (Y1, . . . , Yn) of independent standard Gaussian RVs. Then, from equation 9 we can write

F
d= 1
n1/2σw

n∑
j=1

wjτ (ΓYj) + σbb.

As before, straightforward calculations leads to E[F ] = 0 and Var[F ] = σ2
wEZ∼N (0,1)

[
τ2 (ΓZ)

]
+ σ2

b . As F in
equation 9 is a function of independent standard Gaussian RVs, Theorem 2.2 can be applied to approximate F with
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a Gaussian RV with the same mean and variance as F , quantifying the approximation error. This approximation is
stated in the next theorem, whose proof is in Appendix B.

Theorem 3.2. Let F be the NN equation 9 with τ ∈ C2(R) such that |τ(x)| ≤ a+b|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ a+b|x|γ for

l = 1, 2 and some a, b, γ ≥ 0. IfN ∼ N (0, σ2) with σ2 = σ2
wEZ∼N (0,1)

[
τ2 (ΓZ)

]
+σ2

b and Γ = (σ2
w‖x‖

2 +σ2
b )1/2,

then for any n ≥ 1

dM (F,N) ≤
cM

√
Γ2 + Γ4(2 +

√
3(1 + 2Γ2 + 3Γ4))‖a+ b|ΓZ|γ‖2

L4
√
n

, (10)

where Z ∼ N (0, 1), M ∈ {TV,KS,W1}, with corresponding constants cTV = 4/σ2, cKS = 2/σ2, cW1 =√
8/σ2π.

We observe that Theorem 3.1 can be recovered from Theorem 3.2. In particular, the estimate equation 8 of the
approximation dM (F,N) can be recovered from the estimate equation 10 by setting σb = 0, σw = 1 and x = 1.
As for Theorem 3.1, the constant depends on the variance σ2

wEZ∼N (0,1)
[
τ2 (ΓZ)

]
+ σ2

b of F . Therefore, to apply
Theorem 3.2 one needs to evaluate the variance of F , by means of an exact or approximate calculation, or to provide
a suitable lower bound for it, as we have discussed previously.

We conclude by presenting an extension of Theorem 3.2 to a Gaussian NN with p > 1 inputs [x1, . . . ,xp]T , where
xi ∈ Rd for i = 1, . . . , p. In particular, we consider the NN F := [F1, . . . , Fp]T where

Fi := 1
n1/2σw

n∑
j=1

wjτ(σw〈w(0)
j ,xi〉+ σbb

(0)
j ) + σbb, (11)

with w(0)
j = [w(0)

j,1 , . . . , w
(0)
j,d ]T and wj

d= w
(0)
j,i

d= b
(0)
j

d= b
iid∼ N (0, 1). Since the parameter are jointly distributed

according to multivariate standard Gaussian distribution, Theorem 2.3 can be applied to approximate F with a Gaus-
sian random vector whose mean and covariance are the same as F . The resulting estimate of the approximation error
depends on the maximum and the minimum eigenvalues, i.e. λ1(C) and λp(C) respectively, of the covariance matrix
C, whose (i, k)-th entry is given by

E[FiFk] = σ2
wE[τ(Yi)τ(Yk)] + σ2

b , (12)

where Y ∼ N (0, σ2
wX

TX + σ2
b11T ), with 1 being the all-one vector of dimension p and X being the n × p matrix

of the inputs {xi}i∈[p]. This approximation is stated in the next theorem.

Theorem 3.3. Let F = [F1 . . . , Fp]T with Fi being the NN equation 11, for i = 1, . . . , p, with τ ∈ C2(R) such that

|τ(x)| ≤ a+ b|x|γ and
∣∣∣ dl

dxl τ(x)
∣∣∣ ≤ a+ b|x|γ for l = 1, 2 and some a, b, γ ≥ 0. Furthermore, let C be the covariance

matrix of F , whose entries are given in equation 12, and define Γ2
i = σ2

w||xi||2+σ2
b and Γik = σ2

w

∑d
j=1 |xijxkj |+σ2

b .
If N = [N1, · · ·Np]T ∼ N (0, C), then for any n ≥ 1

dW1 (F,N) ≤ 2σ2
wK̃

λ1(C)
λp(C)

√
p

n
, (13)

where λ1(C) and λp(C) are the maximum and the minimum eigenvalues of C, respectively, and where

K̃ =
{ p∑
i,k=1

(Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖a+ b|ΓiZ|γ‖2
L4‖a+ b|ΓkZ|γ‖2

L4

}1/2
,

with Z ∼ N (0, 1).

Proof. The proof is based on Theorem 2.3. Recall that

Fi := 1
n1/2σw

n∑
j=1

wjτ(σw〈w(0)
j ,xi〉+ σbb

(0)
j ) + σbb.

7
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Since F1, . . . , Fp are functions of the iid standard normal random variables {wj , w(0)
jl , b

(0)
j , b : j = 1, . . . , n, l =

1, . . . , d}, then we can apply Theorem 2.3 to the random vector F = [F1, · · · , Fp]T . The upper bound in equation 6
depends on the first and second derivatives of the Fi’s with respect to all their arguments. However, the derivatives
with respect to b give no contributions, since, for every i = 1, . . . , p, ∇2

b,·Fi is the zero vector. Moreover, the terms

wjτ(σw〈w(0)
j ,xi〉+ σbb

(0)
j ) are iid, across j, and give the same contribution to the upper bound. Hence, we can write

that

dW1(F,N) ≤ 2σ2
w

√
p

n

∥∥C−1∥∥
2‖C‖2

√√√√ p∑
i,k=1

Dik,

where

Dik =
∑
l,m

{
E
[(
〈∇2

l,·F̃i,∇2
m,·F̃i〉

)2]}1/2 {
E
[(
∇lF̃k∇mF̃k

)2]}1/2
,

where
[F̃1, . . . , F̃p]

d= [wjτ(σw〈w(0)
j ,x1〉+ σbb

(0)
j ), . . . , wjτ(σw〈w(0)

j ,xp〉+ σbb
(0)
j )],

and ∇l,∇m,∇2
l,· and ∇2

m,· denote the derivatives with respect to all the arguments. We can represent F̃i as

F̃i = w · τ(Yi),

where Yi := 〈w̃(0), x̃i〉 =
∑d
s=1 w̃

(0)
s x̃is, with x̃i := [σwxTi , σb]T , w̃(0) := [w(0)T , b(0)]T , and

w, w̃
(0)
1 , . . . , w̃

(0)
d , b(0) iid standard normal random variables. The gradient and the Hessian of F̃ with respect to

the parameters w and w̃(0)
s are 

∂F̃i
∂w = τ(Yi)

∂F̃i
∂w

(0)
s

= wτ ′(Yi)x̃is

∇2
w,wF̃i = 0

∇2
w,w̃

(0)
s

F̃i = τ ′(Yi)x̃is

∇2
w̃

(0)
s ,w̃

(0)
t

F̃i = wτ
′′(Yi)x̃isx̃it.

This implies that

Dik =
{
E
[( d∑

s=1
∇2
w,w̃

(0)
s
F̃i · ∇2

w,w̃
(0)
s
F̃i

)2 ]}1/2{
E

[(
∂F̃k
∂w
· ∂F̃k
∂w

)2]}1/2

+
d∑

j,j′=1

{
E
[(
∇2
w,w̃

(0)
j

F̃i · ∇2
w,w̃

(0)
j′
F̃i +

d∑
s=1
∇2
w̃

(0)
j
,w̃

(0)
s
F̃i · ∇2

w̃
(0)
j′
,w̃

(0)
s
F̃i

)2 ]}1/2

×

{
E

( ∂F̃k

∂w̃
(0)
j

· ∂F̃k
∂w̃

(0)
j′

)2
}1/2

+ 2
d∑
j=1

{
E
[( d∑

s=1
∇2
w,w̃

(0)
s
F̃i · ∇2

w̃
(0)
j
,w̃

(0)
s
F̃i

)2 ]}1/2{
E

(∂F̃k
∂w
· ∂F̃k
∂w̃

(0)
j

)2
}1/2

=
{
E
[( d∑

s=1
τ ′(Yi)2x̃2

is

)2 ]}1/2{
E
[
(τ(Yk))4

]}1/2

8
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+
d∑

j,j′=1

{
E
[(

τ ′(Yi)2x̃ij x̃ij′ +
d∑
s=1

w2τ
′′
(Yi)2x̃ij x̃ij′ x̃

2
is

)2 ]}1/2{
E
[(
w2τ ′(Yk)2x̃kj x̃kj′

)2
]}1/2

+ 2
d∑
j=1

{
E
[( d∑

s=1
τ ′(Yi)x̃iswτ

′′
(Yi)x̃ij x̃is

)2 ]}1/2{
E
[
(τ(Yk)wτ ′(Yk)x̃kj)

2
]}1/2

= ||x̃i||2‖τ ′(Yi)‖
2
L4
‖τ(Yk)‖2

L4

+
d∑

j,j′=1
|x̃ij x̃ij′ |

{
E
[(
τ ′(Yi)2 + w2τ

′′
(Yi)2||x̃i||2

)2
]}1/2√

3|x̃kj x̃kj′ |‖τ ′(Yk)‖2
L4

+ 2
d∑
j=1
|x̃ij ||x̃kj |‖x̃i‖2

{
E
[(
τ ′(Yi)τ

′′
(Yi)

)2
]}1/2{

E
[(
τ(Yk)τ

′
(Yk)

)2
]}1/2

= ||x̃i||2‖τ ′(Yi)‖
2
L4
‖τ(Yk)‖2

L4
+

d∑
j,j′=1

√
3|x̃kj x̃kj′ ||x̃ij x̃ij′ |‖τ ′(Yk)‖2

L4

×

{
‖τ ′(Yi)‖

4
L4

+ 3‖x̃i‖4
∥∥∥τ ′′(Yi)∥∥∥4

L4
+ 2‖x̃i‖2

∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥2

L2

}1/2

+ 2
d∑
j=1
|x̃ij ||x̃kj |‖x̃i‖2

∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥
L2

∥∥∥τ(Yk)τ
′
(Yk)

∥∥∥
L2

= ||x̃i||2‖τ ′(Yi)‖
2
L4
‖τ(Yk)‖2

L4
+
√

3‖τ ′(Yk)‖2
L4

 d∑
j=1
|x̃ij x̃kj |

2

×

{
‖τ ′(Yi)‖

4
L4

+ 3‖x̃i‖4
∥∥∥τ ′′(Yi)∥∥∥4

L4
+ 2‖x̃i‖2

∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥2

L2

}1/2

+ 2‖x̃i‖2
∥∥∥τ ′(Yi)τ ′′(Yi)∥∥∥

L2

∥∥∥τ(Yk)τ
′
(Yk)

∥∥∥
L2

 d∑
j=1
|x̃ij ||x̃kj |


Holder ineq.
≤ ||x̃i||2‖τ ′(Yi)‖

2
L4
‖τ(Yk)‖2

L4
+
√

3‖τ ′(Yk)‖2
L4

 d∑
j=1
|x̃ij x̃kj |

2

×

{
‖τ ′(Yi)‖

4
L4

+ 3‖x̃i‖4
∥∥∥τ ′′(Yi)∥∥∥4

L4
+ 2‖x̃i‖2

∥∥∥τ ′(Yi)∥∥∥2

L4

∥∥∥τ ′′(Yi)∥∥∥2

L4

}1/2

+ 2‖x̃i‖2
∥∥∥τ ′(Yi)∥∥∥

L4

∥∥∥τ ′′(Yi)∥∥∥
L4
‖τ(Yk)‖L4

∥∥∥τ ′(Yk)
∥∥∥
L4

 d∑
j=1
|x̃ij ||x̃kj |


polynom. bounded

≤ ||x̃i||2‖a+ b|Yi|γ‖2
L4
‖a+ b|Yk|γ‖2

L4

+
√

3
{

(1 + 2‖x̃i‖2 + 3‖x̃i‖4)‖a+ b|Yi|γ‖4
L4

}1/2

‖a+ b|Yk|γ‖2
L4

 d∑
j=1
|x̃ij x̃kj |

2

+ 2‖x̃i‖2‖a+ b|Yi|γ‖2
L4
‖a+ b|Yk|γ‖2

L4

 d∑
j=1
|x̃ij x̃kj |



9
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=
{
||x̃i||2 +

√
3(1 + 2‖x̃i‖2 + 3‖x̃i‖4)

 d∑
j=1
|x̃ij x̃kj |

2

+ 2‖x̃i‖2

 d∑
j=1
|x̃ij x̃kj |

}
× ‖a+ b|Yi|γ‖2

L4
‖a+ b|Yk|γ‖2

L4
.

Now, traducing everything back to the original variables {xi}i∈[d], we have that
∑d
j=1 |x̃ij ||x̃kj | = σ2

w

∑d
j=1 |xij ||xkj |+ σ2

b =: Γik

||x̃i||2 = σ2
w||xi||2 + σ2

b =: Γ2
i .

Hence,

Dik ≤ (Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖a+ b|Yi|γ‖2
L4
‖a+ b|Yk|γ‖2

L4
,

with Y ∼ N (0, σ2
bX

TX + σ2
b11T ). Summing over all possible i, k = 1, . . . , p and taking the square root leads to

dW1 (F,N) ≤ 2σ2
w

λ1(C)
λp(C)

√
p

n
K̃,

with

K̃ =
{ p∑
i,k=1

(Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖a+ b|Yi|γ‖2
L4‖a+ b|Yk|γ‖2

L4

}1/2

=
{ p∑
i,k=1

(Γ2
i +

√
3(1 + 2Γ2

i + 3Γ4
i )Γ

2
ik + 2Γ2

iΓik)‖a+ b|ΓiZ|γ‖2
L4‖a+ b|ΓkZ|γ‖2

L4

}1/2
,

with Z ∼ N (0, 1), which concludes the proof.

The estimate equation 13 of the approximation error dW1 (F,N) depends on the spectral norms of the covariance
matrix C and the precision matrix C−1. Such spectral norms must be computed explicitly for the specific activation
τ in use, or at least bounded from above, in order to apply Theorem 3.3. This boils down to finding the greatest
eigenvalue λ1 and the smallest eigenvalue λp of the matrix C, which can be done for a broad class of activations with
classical optimization techniques, or at least bounding λ1 from above and λp from below (Diaconis & Stroock, 1991;
Guattery et al., 1999).

4 Numerical illustrations

In this section, we present a brief simulation study for two specific choices of the activation function: i) τ(x) = tanh x,
which is polynomially bounded with parameters a = 1 and b = 0; ii) τ(x) = x3, which is polynomially bounded
with parameters a = 6, b = 1 and γ = 3. Each of the plots below is obtained as follows: for a fixed width of
n = k3, with k ∈ {1, · · · , 16}, we simulate 5000 points from a SLNN as in Theorem 3.1 to produce an estimate of
the distance between the NN and a Gaussian RV with mean 0 and variance σ2, which is estimated by means of a
Monte-Carlo approach. Estimates of the KS and TV distance are produced by means of the functions KolmogorovDist
and TotVarDist from the package distrEx by Ruckdeschel et al. (2006) while those of the 1-Wasserstein distance
using the function wasserstein1d from the package transport by Schuhmacher et al. (2022). We repeat this procedure
500 times for every fixed n = k3 with k ∈ {1, · · · , 16}, compute the sample mean (black dots) and the 2.5-th and
the 97.5-th sample percentiles (red dashed lines), and compare these estimates with the theoretical bound given by
Theorem 3.1 (blue line).
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Figure 1: Estimates of the Kolmogorov-Smirnov distance for a Shallow NN of varying width n = k3, k ∈ {1, · · · , 16},
with τ(x) = tanh x (left) and τ(x) = x3 (right). The blue line is the theoretical bound of Theorem 3.1, the black dots
are sample means of the Monte-Carlo sample, while the red-dashed lines represent a 95% sample confidence interval.

Figure 2: Estimates of the Total Variation distance for a Shallow NN of varying width n = k3, k ∈ {1, · · · , 16}, with
τ(x) = tanh x (left) and τ(x) = x3 (right).

Figure 3: Estimates of the 1-Wasserstein distance for a Shallow NN of varying width n = k3, k ∈ {1, · · · , 16}, with
τ(x) = tanh x (left) and τ(x) = x3 (right).

The plots confirm that the distance between a shallow NN and an arbitrary Gaussian RV, with the same mean and
variance, is asymptotically bounded from above by n−1/2 and that the approximation gets better and better as n→∞.
This is evident in the case τ(x) = x3, where there is a clear decay between n = 1 and n = 1000. This behaviour does
not show up for τ(x) = tanh x, since tanh x ∼ x, for x→ 0, and Gaussian RVs are more likely to attain values in a
neighbourhood of zero.
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5 Discussion

We introduced some non-asymptotic Gaussian approximations of Gaussian NNs, quantifying the approximation error
with respect to the 1-Wasserstein distance, the total variation distance and the Kolmogorov-Smirnov distance. As a
novelty, our work relies on the use of second-order Poincaré inequalities, which lead to estimates of the approximation
error with optimal rate and tight constants. This is the first work to make use of second-order Poincaré inequalities for
non-asymptotic Gaussian approximations of Gaussian NNs. For a Gaussian NN with a single input, the estimate in
Theorem 3.2 requires to evaluate or estimate σ2

wEZ∼N (0,1)
[
τ2 (ΓZ)

]
+ σ2

b , whereas for a Gaussian NN with p > 1
inputs, the estimate in Theorem 3.3 requires to evaluate or estimate

∥∥C−1
∥∥

2 ‖C‖2. Our approach based on second-
order Poincaré inequalities remains valid in the more general setting of deep Gaussian NNs. Both Theorem 3.2 and
Theorem 3.3 can be extended to deep Gaussian NNs, at the cost of more involved algebraic calculations, as well as
more involved estimates of the approximation errors. For instance, for an input x one may consider a deep Gaussian
NN with L ≥ 1 layers, i.e.

g
(1)
j (x) = σw〈w(0)

j ,x〉Rd + σbb
(0)
j

g
(l)
j (x) = σbb

(l−1)
j + σwn

−1/2∑n
i=1 w

(l−1)
j,i τ(g(l−1)

i (x)), ∀l = 2, ..., L

fx(n)[τ, α] = g
(L+1)
1 (x) = σbb+ σwn

−1/2∑n
j=1 wjτ(g(L)

j (x))

(14)

with 

w
(0)
i = [w(0)

i,1 , w
(0)
i,2 , . . . w

(0)
i,d ] ∈ Rd

w
(l)
i := [w(l)

i,1, w
(l)
i,2, . . . w

(l)
i,n] ∈ Rn

w = [w1, w2, . . . wn] ∈ Rn

w
(0)
i,j , w

(l)
i,j , wi, b

(l)
i , b ∈ R

w
(0)
i,j

d= w
(l)
i,j

d= wj
d= b

(l)
i

d= b
iid∼ N (0, 1)

(15)

and apply Theorem 2.2 to F := g
(L+1)
1 (x) as defined in equation 14 and equation 15. Such an application implies to

deals with complicated expressions of the gradient and the Hessian that, however, is a purely algebraic problem.

Related to the choice of the activation, one can also try to relax the hypothesis of polynomially boundedness and
use a whatever τ ∈ C2(R). There is nothing wrong in doing it, as Corollary 2.2 and 2.3 still apply, with the only
difference that the bound would be less explicit than the one we found here. Furthermore, one could also think about
relaxing the C2(R) hypothesis to include C1(R) or just continuous activations, like the famous ReLU function (i.e.
ReLU(x) = max{0, x}) which is excluded from our analysis. Some results in this direction can be found in Eldan
et al. (2021), though using Rademacher weights for the hidden layer. In this regard, we try to derive a specific bound
for the ReLU function applying Corollary 2.2 to a sequence of smooth approximating functions and then passing to the
limit. In particular, we approximated the ReLU function with G(m,x) := m−1 log(1 + emx) for m ≥ 1 and applied
Theorem 2.2 to a generic G(m,x) using the 1-Wasserstein distance and obtained a bound dependent on m. Then, the
idea would have been to take the limit of this bound for m → ∞ and hopefully obtain a non-trivial bound, but that
was not the case as the limit exploded. The same outcome was found using the SAU approximating sequence, i.e.

H(m,x) := 1
m
√

2π
exp
{
−1

2m
2x2
}

+ x

2 + x

2 erf
{
mx√

2

}
,

where erf (·) denotes the error function. This fact probably indicates the impossibility to apply the results of Vidotto
(2020) in the context of continuous activation functions as the ReLU function, and the necessity to come up with
new results on second-order Poincaré inequalities to fill this gap. These results would not be trivial aft all, since
Theorem A.2 needs each F1, . . . , Fd to be in D2,4, and so two degrees of smoothness are required. This is not "the
fault" of Vidotto (2020), but it is due to the intrinsic character of the equation f ′′(x)− xf ′(x) = h(x)−Eh(Z) with
Z ∼ N (0, 1) in dimension p ≥ 2.
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A Second-order Poincaré inequality for functionals of Gaussian fields

We present a brief overview of the main results of Vidotto (2020), of which Theorem 2.2 and Theorem 2.3 are special
cases for RVs in Rd. The main results of Vidotto (2020) improve on previous results of Nourdin et al. (2009), and
such an improvement is obtained by using the Mehler representation of the Ornstein–Uhlenbeck semigroup, which
was exploited in Last et al. (2016) to obtain second-order Poincaré inequalities for Poisson functionals. According to
the Mehler formula, if F ∈ L1, X ′ is an independent copy of a RV X , with X and X ′ being defined on the product
probability space (Ω× Ω′,F ⊗F ′,P× P′), and Pt is the infinitesimal generator of the Ornstein–Uhlenbeck process
then

PtF = E
[
f
(
e−tX +

√
1− e−2tX ′

)
| X
]
, t ≥ 0.

Before stating Vidotto (2020, Theorem 2.1), it is useful to introduce some notation and definitions from Gaussian
analysis and Malliavin calculus. We recall that an isonormal Gaussian process X = {X(h) : h ∈ H} over H =
L2(A,B(A), µ), where (A,B(A)) is a Polish space endowed with its Borel σ-field and µ is a positive, σ-finite and
non-atomic measure, is a centered Gaussian family defined on (Ω,F ,P) such that E[X(h)X(g)] = 〈g, h〉H for every
h, g ∈ H . We denote by L2(Ω;H) the set of H-valued random variables Y satisfying E[||Y ||2H ] < ∞. Furthermore,
if S denotes the set of RVs of the form

F = f (X (φ1) , . . . , X (φm)) ,

where f : Rm → R is a C∞-function such that f and its partial derivatives have at most polynomial growth at infinity,
and φi ∈ H , for i = 1, . . . ,m, the Malliavin derivative of F is the element of L2(Ω;H) defined by

DF =
m∑
i=1

∂f

∂xi
(X (φ1) , . . . , X (φm))φi.

Moreover, in analogy with DF , the second Malliavin derivative of F is the element of L2 (Ω;H�) defined by

D2F =
m∑

i,j=1

∂2f

∂xi∂xj
(X (φ1) , . . . , X (φm))φiφj ,

where H�2 is the second symmetric tensor power of H , so that H�2 = L2
s

(
A2,B

(
A2) , µ2) is the subspace of

L2 (A2,B
(
A2) , µ2)whose elements are a.e. symmetric. Let us also define the Sobolev spaces Dα,p, p ≥ 1, α = 1, 2,

which are defined as the closure of S with respect to the norms

‖F‖Dα,p =
(
E [|F |p] + E

[
‖DF‖pH + E

[∥∥D2F
∥∥p
H⊗2

]
1{α=2}

)1/p
.
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In particular, the Sobolev space Dα,p is typically referred to as the domain of Dα in Lp(Ω). Finally, for every
1 ≤ m ≤ n, every r = 1, . . . ,m, every f ∈ L2 (Am,B (Am) , µm) and every g ∈ L2 (An,B (An) , µn), the r-th
contraction f ⊗r g : An+m−2r → R is defined to be the following function:

f ⊗r g (y1, . . . , yn+m−2r) =
∫
Ar
f (x1, . . . , xr, y1, . . . , ym−r)

× g (x1, . . . , xr, ym−r+1, . . . , ym+n−2r) dµ (x1) · · · dµ (xr) .

Now, we can state Vidotto (2020, Theorem 2.1), which provides a second-order Poincaré inequality for a suitable class
of functionals of Gaussian fields. For RVs in Rd, the next theorem reduces to Theorem 2.2.

Theorem A.1 (Vidotto (2020), Theorem 2.1). Let F ∈ D2,4 be such that E[F ] = 0 and E
[
F 2] = σ2, and let N ∼

N
(
0, σ2); then,

dM (F,N) ≤cM
(∫

A×A

{
E
[((

D2F ⊗1 D
2F
)

(x, y)
)2
]}1/2

×
{
E
[
(DF (x)DF (y))2]}1/2 dµ(x)dµ(y)

)1/2

where M ∈ {TV,KS,W1} and cTV = 4
σ2 , cKS = 2

σ2 , cW1 =
√

8
σ2π .

The novelty of Theorem A.1 lies in the fact that the upper bound is directly computable, making the approach of
Vidotto (2020) very appealing for concrete applications of the Gaussian approximation. In particular, Theorem A.1
improves over previous results of Chatterjee (2009) and Nourdin et al. (2009). Now, we can state Vidotto (2020,
Theorem 2.3), which provides a generalization of Theorem A.1 to multidimensional functionals. For RVs in Rd, the
next theorem reduces to Theorem 2.3.

Theorem A.2 (Vidotto (2020), Theorem 2.3). Let F = (F1, . . . , Fp), where, for each i = 1, . . . , p, Fi ∈ D2,4 is
such that E [Fi] = 0 and E [FiFj ] = cij , with C = {cij}i,j=1,...,p a symmetric and positive definite matrix. Let
N ∼ N (0, C), then we have that dW1(F,N) ≤ 2√p

∥∥C−1
∥∥
op
‖C‖op×

√√√√ p∑
i,k=1

∫
A×A

{
E
[
((D2Fi ⊗1 D2Fi) (x, y))2

]}1/2 {
E
[
(DFk(x)DFk(y))2

]}1/2
dµ(x)dµ(y).

B Proof of Theorem 3.2

As stated in the main body, we will make use of the fact that

F
d= F̃ := n−1/2σw

n∑
j=1

wjτ (Γ · Yj) + σb · b,

where Γ = σ2
w‖x‖

2 + σ2
b . First, it is easy to see that E[F ] = 0 and that

σ2 = Var[F ] = Var[F̃ ] = σ2
wEZ∼N (0,1)

[
τ2 (ΓZ)

]
+ σ2

b .

Then we have that dM (F,N) = dM (F̃ , N), where N ∼ N (0, σ2), hence it is enough to apply Theorem 2.2 to F̃ . To
this aim, we compute again the gradient and the Hessian of F̃ , noticing that the only difference with the Shallow case
lies in the presence of an extra factor σw in front of the sum, an extra factor of Γ inside the activation and the bias term
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σ2
b b: 

∂F̃
∂b = σb

∂F̃
∂wj

= n−1/2σw · τ (ΓYj)

∂F̃
∂Yj

= n−1/2σwΓ · wj · τ ′ (ΓYj)

∇2
b,·F̃ = 0

∇2
wj ,wi F̃ = 0

∇2
wj ,Yi

F̃ = n−1/2σwΓ · τ ′ (ΓYj) δij

∇2
Yj ,Yi

F̃ = n−1/2σwΓ2 · wj · τ ′′ (ΓYj) δij
It is interesting to notice that since the row of the Hessian corresponding to the bias term b contains all zeros, then the
bound given by Corollary 2.2 is exactly the same as the one at the beginning of the proof of Theorem 3.1, with the
only difference that now the expectations depend also on Γ and σw. More precisely, we have that

dM (F,N) = dM
(
F̃ , N

)
≤

≤ cM

{
n∑
j=1

2
{
E
[(
〈∇2

wj ,·F̃ ,∇
2
Yj ,·F̃ 〉

)2
]
· E

[(
∂F̃

∂wj
· ∂F̃
∂Yj

)2]}1/2

+
{
E
[(
〈∇2

wj ,·F̃ ,∇
2
wj ,·F̃ 〉

)2
]
· E

[(
∂F̃

∂wj
· ∂F̃
∂wj

)2]}1/2

+
{
E
[(
〈∇2

Yj ,·F̃ ,∇
2
Yj ,·F̃ 〉

)2
]
· E

[(
∂F̃

∂Yj
· ∂F̃
∂Yj

)2]}1/2}1/2

= cM

{ n∑
j=1

2
{
E

[(
1
n
σ2
wΓ3wjτ

′ (ΓYj) τ ′′ (ΓYj)
)2
]
· E

[(
1
n
σ2
wΓwjτ (ΓYj) τ ′ (ΓYj)

)2
]}1/2

+
{
E

[(
1√
n
σwΓτ ′ (ΓYj)

)4
]
· E

[(
1√
n
σwτ (ΓYj)

)4
]}1/2

+
{
E

[(
1
n
σ2
wΓ2 {τ ′ (ΓYj)}

2 + 1
n
σ2
wΓ4w2

j {τ ′′ (ΓYj)}
2
)2
]

× E

[(
1√
n
σwΓwjτ ′ (ΓYj)

)4
]}1/2}1/2

Ew2
j=1
= cM

n
σ2
w

{ n∑
j=1

2Γ4
{
E
[
(τ ′ (ΓYj) τ ′′ (ΓYj))

2
]
· E
[
(τ (ΓYj) τ ′ (ΓYj))

2
]}1/2

+Γ2
{
E
[
(τ ′ (ΓYj))

4
]
· E
[
(τ (ΓYj))4

]}1/2

+
{
E
[(

Γ2 {τ ′ (ΓYj)}
2 + Γ4w2

j {τ ′′ (ΓYj)}
2
)2
]
· E
[
(Γwjτ ′ (ΓYj))

4
]}1/2}1/2
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iid= cM√
n
σ2
w

{
2Γ4

{
E
[
(τ ′ (ΓZ) τ ′′ (ΓZ))2

]
· E
[
(τ (ΓZ) τ ′ (ΓZ))2

]}1/2

+Γ2
{
E
[
(τ ′ (ΓZ))4

]
· E
[
(τ (ΓZ))4

]}1/2

+
{
E
[(

Γ2 {τ ′ (ΓZ)}2 + Γ4w2
j {τ ′′ (ΓZ)}2

)2
]
· E
[
(Γwjτ ′ (ΓZ))4

]}1/2}1/2

= cM√
n
σ2
w

{
2Γ4

{
E
[
(τ ′ (ΓZ) τ ′′ (ΓZ))2

]
· E
[
(τ (ΓZ) τ ′ (ΓZ))2

]}1/2

+Γ2
{
E
[
(τ ′ (ΓZ))4

]
· E
[
(τ (ΓZ))4

]}1/2

+
{(

Γ4E
[
{τ ′ (ΓZ)}4

]
+ 2Γ6E

[
{τ ′ (ΓZ)}2 {τ ′′ (ΓZ)}2

]
+ 3Γ8E

[
{τ ′′ (ΓZ)}4

])
×3Γ4 · E

[
{τ ′ (ΓZ)}4

]}1/2}1/2

= cM√
n
σ2
w

{
2Γ4 {E [|τ ′ (ΓZ) |2|τ ′′ (ΓZ) |2

]
· E
[
|τ (ΓZ) |2|τ ′ (ΓZ) |2

]}1/2

+Γ2 {E [|τ ′ (ΓZ) |4
]
· E
[
|τ (ΓZ) |4

]}1/2

+
{ (

Γ4E
[
|τ ′ (ΓZ) |4

]
+ 2Γ6 · E

[
|τ ′ (ΓZ) |2|τ ′′ (ΓZ) |2

]
+ 3Γ8 · E

[
|τ ′′ (ΓZ) |4

])
× 3Γ4 · E

[
|τ ′ (ΓZ) |4

] }1/2
}1/2

where Z ∼ N (0, 1). But since τ is polynomially bounded and the square root is an increasing function, we can bound
this expression by

cM√
n
σ2
w

{
2Γ4 {E [(a+ b|ΓZ|γ)4] · E [(a+ b|ΓZ|γ)4]}1/2

+Γ2 {E [(a+ b|ΓZ|γ)4] · E [(a+ b|ΓZ|γ)4]}1/2

+Γ4
{√

3(1 + 2Γ2 + 3Γ4) · E
[
(a+ b|ΓZ|γ)4] · E [(a+ b|ΓZ|γ)4]}1/2

}1/2

= cM√
n
σ2
w

√
Γ2 + Γ4(2 +

√
3(1 + 2Γ2 + 3Γ4)

{
E
[
(a+ b|ΓZ|γ)4]}1/2

= cM√
n
σ2
w

√
Γ2 + Γ4(2 +

√
3(1 + 2Γ2 + 3Γ4) · ‖a+ b|ΓZ|γ‖2

L4 ,

where Z ∼ N (0, 1).
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