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Abstract

We propose the first study of adversarial attacks on online learning to rank. The goal of
the attacker is to misguide the online learning to rank algorithm to place the target item
on top of the ranking list linear times to time horizon T with a sublinear attack cost. We
propose generalized list poisoning attacks that perturb the ranking list presented to the
user. This strategy can efficiently attack any no-regret ranker in general stochastic click
models. Furthermore, we propose a click poisoning-based strategy named attack-then-quit
that can efficiently attack two representative OLTR algorithms for stochastic click models.
We theoretically analyze the success and cost upper bound of the two proposed methods.
Experimental results based on synthetic and real-world data further validate the effectiveness
and cost-efficiency of the proposed attack strategies.

1 Introduction

Online learning to rank (OLTR) (Grotov and de Rijke, 2016) formulates learning to rank (Liu et al., 2009),
the core problem in information retrieval, as a sequential decision-making problem. OLTR is a family of online
learning solutions that exploit implicit feedback from users (e.g., clicks) to directly optimize parameterized
rankers on the fly. It has drawn increasing attention in recent years (Kveton et al., 2015a; Zoghi et al., 2017;
Lattimore et al., 2018; Oosterhuis and de Rijke, 2018; Wang et al., 2019; Jia et al., 2021; Wang et al., 2018; Ai
et al., 2021) due to its advantages over traditional offline learning-based solutions and numerous applications
in web search and recommender systems (Liu et al., 2009).

1

https://openreview.net/forum?id=BKwGowR0Bt


Published in Transactions on Machine Learning Research (09/2024)

To effectively utilize users’ click feedback to improve the quality of ranked lists, one line of OLTR studied
bandit-based algorithms under different click models. In each iteration, the algorithm presents a ranked list
of K items selected from L candidates based on its estimation of the user’s interests. The ranker observes
the user’s click feedback and updates these estimates accordingly. Different users may examine and click
on the ranking list differently, and how the user interacts with the item list is called the click model. Many
works have been dedicated to establishing OLTR algorithms in the cascade model (Kveton et al., 2015a;b;
Zong et al., 2016; Li et al., 2016; Vial et al., 2022), the position-based model (Lagrée and Vernade, 2016) and
the dependent click model (Katariya et al., 2016; Liu et al., 2018). However, these algorithms are ineffective
when employed under a different click model. To overcome this bottleneck, Zoghi et al. (2017); Lattimore
et al. (2018); Li et al. (2019) proposed OLTR algorithms with general stochastic click models that cover the
aforementioned click models.

There has been a huge interest in developing robust and trustworthy information retrieval systems (Golrezaei
et al., 2021; Ouni et al., 2022; Sun and Jafar, 2016), and understanding the vulnerability of OLTR algorithms
to adversarial attacks is an essential step towards the goal. Recently, several works explored adversarial
attacks on multi-armed bandits (Jun et al., 2018; Liu and Shroff, 2019) and linear bandits (Garcelon et al.,
2020; Wang et al., 2022) where the system recommends one item to the user in each round. The idea of
the poisoning attack is to lower the rewards of the non-target item to misguide the bandit algorithm to
recommend the target item using cost sublinear to time horizon T . In online ranking, we consider the goal of
the adversary as misguiding the algorithm to rank the target item on top of the ranking list linear times
(T − o(T )) with sublinear attack cost (o(T )). However, it is hard to directly extend the attack strategy on
multi-armed bandits to OLTR since the click model is a black box to the adversary.

In this paper, we propose the first study of adversarial attacks on OLTR to misguide the rankers to place
the target item on top of the ranking list. We study two threat models: click poisoning attacks where the
adversary manipulates the rewards the user sends back to the ranking algorithm, and list poisoning attacks
where the adversary perturbs the ranking list that are presented to the user. We first propose a generalized list
poisoning attack strategy (GA) that can efficiently attack any no-regret ranker for stochastic click models. The
adversary perturbs the ranking list presented to the user and pretends the click feedback represents the user’s
interests in the original ranking list. This guarantees the feedback always follows the unknown click model,
making the attack stealthy. Furthermore, we propose a click poisoning-based strategy named attack-then-quit
strategy (ATQ) that can efficiently attack two representative OLTR algorithms for stochastic click models, i.e.,
BatchRank (Zoghi et al., 2017) and TopRank (Lattimore et al., 2018). Our theoretical analysis guarantees
that the proposed methods succeed with sublinear attack cost. We empirically evaluate the proposed methods
against several OLTR algorithms on synthetic data and a real-world dataset under different click models.
Our experimental results validated the theoretical analysis of the effectiveness and cost-efficiency of the two
proposed attack algorithms. Our code and data can be accessed publicly for reproducibility.1.

2 Related Works

Online learning to rank. OLTR is first studied as ranked bandits (Radlinski et al., 2008; Slivkins et al.,
2013), where each position in the list is modeled as an individual multi-armed bandits problem (Auer et al.,
2002). Such a problem can be settled down by bandit algorithms which can maximize the expected click
number in each round. Recently studied of OLTR focused on different click models (Craswell et al., 2008;
Chuklin et al., 2015), including the cascade model (Kveton et al., 2015a;b; Zong et al., 2016; Li et al., 2016;
Vial et al., 2022), the position-based model (Lagrée and Vernade, 2016) and the dependent click model
(Katariya et al., 2016; Liu et al., 2018). OLTR with general stochastic click models is studied in (Zoghi et al.,
2017; Lattimore et al., 2018; Li et al., 2018; 2019; Gauthier et al., 2022).

Adversarial attack against bandits. Adversarial reward poisoning attacks against multi-armed bandits
have been recently studied in stochastic bandits (Jun et al., 2018; Liu and Shroff, 2019; Zuo, 2020; Xu et al.,
2021; Lu et al., 2021), linear bandits (Wang et al., 2022; Garcelon et al., 2020), Gaussian process bandits (Han
and Scarlett, 2021), adversarial bandits (Ma and Zhou, 2023), and combinatorial bandits (Balasubramanian

1https://github.com/rishabbala/Online-Learning-to-Rank-for-Stochastic-Click-Models
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et al., 2023). These works share a similar attack idea, where the attacker holds the reward of the target arm,
meanwhile lowers the reward of the non-target arm. Besides reward poisoning attacks, other threat models
such as action poisoning attacks (Liu and Lai, 2020a; 2021) were also being studied.

Recently, Zuo et al. (2023) studied adversarial attacks on OLTR. The paper considered an easier attack goal:
ensuring that the target item appears on the displayed length-K ranking list Rt for T − o(T ) times, without
regard for the specific position of the target item. They introduced two click poisoning attack algorithms
specifically designed for CascadeUCB and PBMUCB. These algorithms rely on the knowledge of the target
rankers and the underlying click model (i.e., Cascade model and position-based model). Additionally, they
proposed a general attack algorithm based on click poisoning, operating under the assumption that the
attacker is aware of the feasible feedback space of the victim’s click model (refer to the last paragraph of page
8 of Zuo et al. (2023) for details). The authors acknowledged that "without this knowledge, ensuring valid
post-attack feedback becomes impossible." Moreover, we illustrate through Example 2 that click poisoning
attacks are poorly adapted to different click models. This discussion highlights the ineffectiveness of their
attack algorithms (two single-target attack algorithms and a general attack algorithm) when information
about the underlying click model is absent.

In this paper, we focus on fooling the victim ranker into placing the target item at the top of the list Rt for
T − o(T ) times. To overcome the strong assumption that the attacker knows the underlying click model,
we propose the list poisoning-based GA algorithm, which achieves our attack objective without relying on
any knowledge of the underlying click model. We also introduce a new click poisoning-based attack strategy
named ATQ to boost the target item to the top of the list. This strategy leverages the phase elimination
property of general rankers like TopRank and BatchRank. We observe that these algorithms tend to "assume"
the most attractive item is the best during certain exploratory phases, consistently placing it at the top.
Consequently, our ATQ aims to fool TopRank and BatchRank into believing that the target item possesses
the highest attractiveness within a short period.

3 Preliminaries

3.1 Online Learning to Rank

We denote the total item set with L items as D = {a1, ..., aL}. Let ΠK(D) ⊂ DK stands for all K-
tuples with different elements from D. At each round t, the ranker would present a length-K ordered list
Rt = (at

1, ..., at
K) ∈ ΠK(D) to the user, where at

k is the item placed at the k-th position of Rt. Generally, K
is a constant much smaller than L. When the user observes the provided list, he/she returns click feedback
Ct = (Ct

1, ..., Ct
L) to the ranker where Ct

k = 1 stands for user click on item ak. Note that ak ̸∈ Rt can not be
observed by the user, thus its click feedback in round t is Ct

k = 0. The attractiveness score represents the
probability that the user is interested in item ak, and it is defined as α(ak) ∈ [0, 1], which is unknown to the
ranker. Without loss of generality, we suppose α(a1) >, ..., > α(aL) where a1 is the most attractive item and
aL is the least attractive item.

3.2 Stochastic Click Models

In this paper, we consider the general stochastic click models studied by Zoghi et al. (2017); Lattimore et al.
(2018), where the conditional probability that the user clicks on position k in round t is only related to Rt.
This implies there exists an unknown function that satisfies

P (Ct
s = 1 | Rt = R, at

k = as) = v(R, at
k, k), (1)

where R = Rt denote the list presented in round t, and as = αt
k denote that the s-th most attractive item

(where as can be any arbitrary item in D) is placed in the k-th position of Rt (also the k-th position of R).
The key problem of OLTR is to present the optimal list R∗ = (a1, ..., aK) to the user for per-round click
number maximization. The optimal list is unique due to the attractiveness of items is unique.

3



Published in Transactions on Machine Learning Research (09/2024)

Assumption 1. Since the user does not observe items in position ̸∈ Rt, we assume that the ranker can
achieve maximum expected number of clicks in round t if and only if Rt = R∗, i.e.

max
R∈ΠK(D)

K∑
k=1

v(R, at
k, k) =

K∑
k=1

v(R∗, at
k, k). (2)

Definition 1 (Cumulative regret). The performance of a ranker can be evaluated by the cumulative regret,
defined as

R(T ) = E

[
T

K∑
k=1

v(R∗, at
k, k) −

T∑
t=1

K∑
k=1

v(Rt, at
k, k)

]
.

Note that if Assumption 1 holds, R∗ can uniquely maximize
∑K

k=1 v(Rt, at
k, k), and every Rt ̸= R∗ leads to

non-zero regret.

We present two classic click models (Chuklin et al., 2015; Richardson et al., 2007; Craswell et al., 2008) that
are special instances of the stochastic click models.

Position-based model. The position-based model (Richardson et al., 2007) assumes the examination
probability of the k-th position in list Rt is a constant χ(k) ∈ [0, 1]. In each round, the user receives the
ordered list Rt. He/she would examine position k with probability χ(k). If position k is examined then the
user would click item at

k with probability α(at
k). Hence, the probability of item at

k is clicked by the user is

v(Rt, at
k, k) = χ(k)α(at

k). (3)

Note that the examination probability of items not in Rt is 0. Hence, the expected number of clicks in round
t is

K∑
k=1

v(Rt, at
k, k) =

K∑
k=1

χ(k)α(at
k). (4)

The examination probabilities of the first K positions are assumed to follow χ(1) > ... > χ(K) (Chuklin
et al., 2015). The maximum number of clicks in each round is K.

Cascade model. In the cascade model (Craswell et al., 2008), the user examines the items in Rt sequentially
from at

1. The user continues examining items until they find an item at
k attractive or they reach the end of

the list. If the user finds at
k attractive, they would click on it and stop examining further.

According to the above description, the examination probability of position k equals the probability of none
of the items in the first k − 1 positions in Rt can attract the user, and can be represented as

χ(Rt, k) =
k−1∏
s=1

(1 − α(at
s)). (5)

The maximum number of clicks is at most 1, and the expected number of clicks in each round can be written
as

K∑
k=1

v(Rt, at
k, k) =

K∑
k=1

χ(Rt, k)α(at
k) = 1 −

K∏
k=1

(1 − α(at
k)). (6)

Similar to the position-based model, χ(Rt, 1) > ... > χ(Rt, K) is hold in the cascade model.
Definition 2 (No-regret ranker). We define the no-regret ranker as a ranker that achieves a sublinear (o(T ))
regret in its click model under Assumption 1. By Definition 1, we can see that a ranker is no-regret if and
only if it presents R∗ to the user for T − o(T ) times.
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(a) Click poisoning attack. (b) List poisoning attack.

Figure 1: Threat models on online learning to rank.
Remark 1. We now briefly discuss relationship between click models and no-regret rankers. Recall the
definition of the position-based model, the optimal list R∗ can uniquely maximize (4). Thus, every ranker
that achieves regret R(T ) = o(T ) in the position-based model falls into the category of no-regret ranker
(such as PBM-UCB (Lagrée and Vernade, 2016)). Besides, algorithms (i.e., BatchRank and TopRank) for
general click models (Zoghi et al., 2017; Lattimore et al., 2018) present the optimal list R∗ for T − o(T )
times owing to their elimination and divide-and-conquer nature. Therefore, they can achieve a sublinear
regret under Assumption 1 and state-of-the-art online ranking methods BatchRank (Zoghi et al., 2017) and
TopRank (Lattimore et al., 2018) fall into the category of no-regret rankers. However, every permutation of
the first K-most attractive items can maximize Eq equation 6 in the cascade model. The item with the highest
attractiveness may not be placed at the first position for T − o(T ) times by an online stochastic ranker with
R(T ) = o(T ). Thus not all rankers that achieve R(T ) = o(T ) in the cascade model are no-regret rankers.

3.3 Threat Models

Let NT (ak) =
∑T

t=1 1{αt
1 = ak} denote the total rounds item ak placed at the first position of Rt until time

T . The adversary aims to fool the ranker to place a target item ã at the first position of Rt for T − o(T )
rounds. We consider two poisoning attack models.

Click poisoning attacks. We illustrate click poisoning attacks in Figure 1(a). This is similar to the reward
poisoning attacks studied on multi-armed bandits (Jun et al., 2018; Liu and Shroff, 2019). In each round, the
attacker obtains the user’s feedback Ct, and modifies it to perturbed clicks C̃t = (C̃t

1, ..., C̃t
L). Naturally, the

attacker needs to attain its attack goal with minimum attack cost defined as C(T ) =
∑T

t=1
∑L

k=1 |C̃t
k − Ct

k|.

List poisoning attack. Instead of directly manipulating the click feedback, the list poisoning attacks
manipulate the presented ranking list from Rt to R̃t as illustrated in Figure 1(b). This is similar to
the action poisoning attack proposed by Liu and Lai (2020a; 2021) against multi-armed bandits. We
assume the attacker can access items with low attractiveness denoted as {ηk}2K−1

k=1 ̸∈ D and for convenience,
α(η1) >, ..., > α(η2K−1). The low attractiveness items satisfy α(η1) < α(aL). We suppose the attacker does
not know the actual attractiveness of these items, but only their relative utilities, i.e., the attractiveness of
items in {ηk}K−1

k=1 is larger than items in {ηk}2K−1
k=K . The attacker uploads these items to the candidate action

set before exploration and we denote D̃ = D ∪ {ηk}2K−1
k=1 . In each round, the attacker can replace items in

original ranking Rt with items in {ηk}2K−1
k=1 . This modified list R̃t = (ãt

1, ..., ãt
K) is then sent to the user.

The cost of the attack is C(T ) =
∑T

t=1
∑K

k=1 1{ãt
k ≠ at

k}. Note that the click feedback Ct in list poisoning
attacks is generated by R̃t instead of Rt, but the ranker assumes that the feedback is for Rt.

The click poisoning attack has been studied in WSJ (2018); BuzzFeed (2019); Golrezaei et al. (2021). In
practice, the click feedback manipulation can be executed through malware installed as a browser extension,
which manipulates the click feedback signal locally before uploading it to the server (e.g., the OLTR algorithm).
We also provide an example to explain the practicability of the list poisoning attack.
Example 1 (Motivated example of list poisoning attack). Consider the OLTR of an e-commerce search
engine (e.g., Amazon) where the attacker is a seller who wants to promote its target item (e.g., good) to
the top (WSJ, 2018; BuzzFeed, 2019). The item set of the e-commerce consists of items uploaded by sellers.
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Algorithm 1 Generalized List Poisoning Attack (GA)
1: Inputs: List T = (ã, η1, ..., ηK−1) and {ηk}2K−1

k=1
2: Upload {ηk}2K−1

k=1 to the candidate action set
3: for t = 1 : T do
4: Observe Rt = (at

1, ..., at
K)

5: if Rt\T ≠ ∅ then
6: for k = 1 : K do
7: if at

k ̸∈ T then
8: Set ãt

k = ηK+k−1.
9: else

10: Set ãt
k = at

k

11: Return R̃t = (ãt
1, ..., ãt

K) to the user
12: else
13: Do not attack

The attacker can find 2K − 1 items with low attractiveness (e.g., unpopular advertisements or low-quality
products) and derive their relative utilities (the relative utilities of ηi between i ∈ [1, K −1] and i ∈ [K, 2K −1]
) based on offline learning to rank techniques. Due to low-attractiveness items being much more common
in real-world applications compared to attractive ones and being much smaller than the total item number
L, we believe finding 2K − 1 low-attractiveness items is applicable. As a seller, the attacker could upload
both low-attractive items and the target item to the item set (e.g., a seller listing products on the Amazon
platform). Additionally, list manipulation can be executed through malware installed as a browser extension,
which locally alters the ranking list on the web page. When the e-commerce platform interacts with the user,
the attacker can implement a list poisoning attack strategy using the uploaded items and the malware.

We define the efficient attack strategies as follows.
Definition 3 (Efficient attack). We say an attack strategy is efficient if

1. It misguides an online stochastic ranker to place the target item ã at the first position of Rt for
T − o(T ) times in expectation with cost C(T ) = o(T ).

2. To keep the click poisoning attack stealthy, the returned total clicks
∑L

k=1 C̃t
k in the cascade model is

at most 1 and in the position-based model is at most K.

We conclude the preliminary with the difference between poisoning attacks on stochastic bandits (Jun et al.,
2018; Liu and Shroff, 2019; Xu et al., 2021) and online learning rankers. Data poisoning attack on stochastic
bandits aims to fool the bandit algorithm to pull the target arm T − o(T ) times with o(T ) cost. The main
idea of this class of attack strategies is to hold the expected reward of the target item and reduce the expected
reward of the non-target items. However, in the OLTR setting, 1) the ranker would interact with a length K
list Rt instead of a single arm; 2) the user would generate click feedback under different click models that
depend on examination probability. Recall from the definition of click models, that in the position-based
model the user would return at most K clicks in one round, while in the cascade model, the user would
return at most 1 click. Thus, if the attacker returns more than one click in the cascade model, its attack is
unstealthy and inefficient.

4 Generalized List Poisoning Attack Strategy

In this section, we would propose a generalized list poisoning attack (GA) that misguides any no-regret ranker
to place the target item at the first position of Rt for T − o(T ) times in expectation with o(T ) cost.

GA against no-regret rankers. We briefly illustrate the process of GA. The strategy is summarized in
Algorithm 1. The attacker first needs to design list T , where T = {ã, η1, ..., ηK−1}. Intuitively, items
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η1, ..., ηK−1 are utilized to fill in the rest of the positions when ã is in Rt. The attacker would not manipulate
item at

k ∈ T . If items at
k ∈ D̃/T are placed in the position k, the attacker would replace it with ηK+k−1

(lines 5-9 in Algorithm 1). This manipulation strategy can mislead the ranker to believe the attractiveness of
items in D̃/T are smaller equal than α(ηK). Hence, list T would be deemed as the optimal list and ã is the
item with the highest attractiveness. According to the definition of the no-regret, no-regret algorithms will
present T for T − o(T ) times and the attacker can achieve its attack goal. Theorem 1 demonstrates that GA
can efficiently attack any no-regret ranker.
Theorem 1. GA can efficiently attack any no-regret ranker, i.e., E[NT (ã)] ≥ T − R̃(T )/∆min and
C(T ) ≤ KR̃(T )/∆min, where R̃(T ) = E

[
T
∑K

k=1 v(T , at
k, k) −

∑T
t=1

(
1
{

attack,
∑K

k=1 v(R̃t, at
k, k)

}
+

1
{

do not attack,
∑K

k=1 v(Rt, at
k, k)

})]
is the regret upper bound of the victim algorithm, ∆min =

minR∈ΠK (Λ)(
∑K

k=1 v(T , at
k, k) −

∑K
k=1 v(R, at

k, k)) > 0 and Λ consists of T and L + K − 1 items with
attractiveness smaller equals then α(ηK).
Remark 2. According to the Algorithm 1, R̃(T ) can represent the regret of the victim algorithm when it
explores an environment that consists of an optimal list T and L + K − 1 items with attractiveness smaller
equal than α(ηK). According to the definition of the no-regret, the victim algorithm will present T for T −o(T )
times and achieve a sublinear regret, which implies R̃(T ) = o(T ). Accordingly, we have E[NT (ã)] = T − o(T )
and C(T ) = o(T ), which satisfies the definition of the efficient attack.
Remark 3 (Gap dependency). If the regret upper bound of the victim ranker satisfies R̃(T ) =
O(L log(T )/∆min) for example Kveton et al. (2015a), then GA has E[NT (ã)] = T − O(L2 log(T )/∆2

min)
and C(T ) = O(L2 log(T )/∆2

min). This is similar to the target arm triggered rate and attack cost of the action
poisoning attack on MAB in Liu and Lai (2020b).
Remark 4. We note that Zoghi et al. (2017); Lattimore et al. (2018) suppose the position-based model
satisfies χ(1) ≥ χ(2) ≥, ..., χ(K). This is because they are primarily concerned with achieving sublinear regrets
rather than the specific position of an item in list Rt. Similarly, Zuo et al. (2023) also disregard the position
of the target item in Rt, as their setting assumes the ã ∈ Rt is an efficient attack. We make this assumption
on the fact that if χ(1) = χ(2), both (a1, a2, a3, ..., aK) and (a2, a1, a3, ..., aK) can achieve zero regret in the
position-based model. This contradicts the assumption of our stochastic click model, which states that only
R∗ = (a1, a2, a3, ..., aK) can achieve zero regret. More specifically, if χ(1) = χ(2), then an algorithm can
present (a2, a1, a3, ..., aK) for T − o(T ) to achieve a o(T ) regret, and GA can not achieve its attack goal due to
ã has the highest attractiveness and it will be placed on the second position. Besides, it’s important to note
that we can alleviate the assumption to χ(1) > χ(2) ≥ · · · ≥ χ(K) and our GA can also achieve its attack goal
in the position-based model. This is because we only focus on the position of the target item and disregard the
positions of non-attractive items {ηk}K−1

k=1 . Furthermore, suppose χ(k) > χ(k′) is highly plausible because in
real-world scenarios, it is impossible for this phenomenon to occur, as users inherently exhibit biases towards
distinct positions.

Although we do not include all rankers with o(T ) regret in the cascade model as no-regret rankers from
Remark 1, we can still show that cascade ranking algorithms such as CascadeUCB1 (Kveton et al., 2015a)
can be efficiently attacked by Algorithm 1.
Theorem 2. Consider the ranker applies CascadeUCB1 and is attacked by Algorithm 1. The expected number
of ã be placed at the first position till round T satisfies E[NT (ã)] = T − o(T ) and the cost is C(T ) = o(T ).
Remark 5. We notice that most existing cascade rankers for OLTR problems are UCB-based algorithms
(CascadeUCB1, CascadeKLUCB (Kveton et al., 2015a), and CascadeUCBV (Vial et al., 2022)). Hence, we
believe GA can efficiently attack these algorithms and we can analyze the theoretical results similar to Theorem
2. We have also provided empirical results in our experiment section and Appendix that GA can efficiently
attack CascadeUCB1, CascadeKLUCB, and the SOTA algorithm CascadeUCB-V.

After the above observation, one may wonder why we don’t utilize click poisoning strategy to achieve the
same goal of GA, we here propose a motivated example.
Example 2 (Limitation of click poisoning attack). Suppose the environment includes an item set A =
{a1, a2, a3} with attractiveness α(a1) > α(a2) > α(a3) and a2 is the target item. Besides, we suppose the

7



Published in Transactions on Machine Learning Research (09/2024)

length of ranking list K = 2 and the attacker knows the preference between the items. The attacker reduces
the click feedback of a1 to 0 when a1 ∈ Rt, otherwise, does not attack. When attacking position-based OLTR
algorithm, the effectiveness of the attack can be deemed as the attacker reducing the attractiveness of a1 to
0 and holding the attractiveness of a2 and a3. Note that keeping the true attractiveness of target item a2
unchanged is the key idea to achieve sublinear attack cost.

However, the above analysis for the position-based model cannot be applied to the Cascade model. Different
from the PBM, the click probability of an item in the Cascade model is not only related to this item’s
attractiveness but also related to other items’ attractiveness. Suppose item a1 is placed at the first position of
Rt and item a2 is placed at the second position. If the user clicks a1 and returns the click feedback (the click
feedback of a1 is 1 and the click feedback of a2 is 0), this implies a2 has not been examined by the user and the
ranker does not update a2’s attractiveness estimate. When the attacker reduces the click feedback of a1 from 1
to 0, we can not simply deem the attacker reducing the attractiveness of a1 to 0 and holding the attractiveness
of a2. This is because the clicks of two items in the Cascade model are 0s means the user examines all
items and does not click either of them. Hence, the clicks will be interpreted by the victim algorithm as the
attractiveness of a1 and a2 is 0, violating the idea that the attacker should keep true attractiveness of target
item for sublinear cost.

The above example shows that the simple click poisoning strategy cannot adapt to different click models, and
its theoretical results need to be analyzed differently based on the click model’s characteristics. However, GA
perturbs the ranking list presented to the user and pretends the click feedback represents the user’s interests
in the original ranking list. The effectiveness of this strategy can be viewed as the attractiveness of items in
the original list is replaced by the attractiveness of items in the perturbed list. This guarantees the click
feedback always follows the unknown click model, making the attack easy to analyze and stealthy.

5 Attack-Then-Quit Strategy

In this section, we provide a click poisoning attack strategy that applied to rankers on general click models.
We will demonstrate our strategy can efficiently attack some rankers under any click models. Previous reward
poisoning attack strategies on multi-armed bandits only manipulate the reward of the non-target item and
never perturb the reward of the target item (Jun et al., 2018; Liu and Shroff, 2019; Garcelon et al., 2020;
Wang et al., 2022). However, the attack strategy proposed in this section perturbs the click feedback of every
item. The attacker would spend a linear cost in a short period T1 = o(T ) and then stop the attack and
quit. Thus, we call our attack strategy the attack-then-quit (ATQ) strategy. As mentioned in the previous
section, the BatchRank and TopRank can work in general stochastic click models, while other UCB-type
algorithms can only work in specific click models (e.g., CascadeUCB1 or PBM-UCB). Hence, the BatchRank
and TopRank can be deemed as the superior ranker to those UCB-type algorithms, which are worth more
significant consideration.

5.1 Click Poisoning-Based ATQ

Algorithm 2 can efficiently attack elimination-based rankers (e.g., BatchRank) and divide-and-conquer-based
rankers (e.g., TopRank). At the initialization stage, the attacker would receive target item ã and threshold T1.
In each round, if click feedback Ct

k is returned from ã and ã ∈ Rt, the attacker would set C̃t
k = 1, otherwise,

C̃t
k = 0. Besides, as we mention in Assumption 1 and Definition 1, the item ak ̸∈ Rt would not be observed

by the user in round t, and would not be clicked either. This implies their click feedback would be 0. In
ATQ, the attacker does not (cannot) modify the click feedback of items ak ̸∈ Rt (line 9∼10 in Algorithm 2).
After scanning Ct, the attacker would return C̃t = (C̃t

1, ..., C̃t
L) to the ranker. Note that

∑L
k=1 C̃t

k ≤ 1 (line
4-10 in Algorithm 2), hence Algorithm 2 can work stealthily and efficiently in different click models. Note
that the divide-and-conquer and elimination nature ensures BatchRank and TopRank to quickly estimate the
attractiveness of items and rank them accordingly. Our attack Algorithm 2 aims to mislead these rankers to
’believe’ the target item is the best item with the smallest rounds. Once these rankers make this judgment,
they would place the target item at the first position until T . In the following sections, we will demonstrate
Algorithm 2 can efficiently attack BatchRank and TopRank with suitable T1.
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Algorithm 2 Attack-Then-Quit (ATQ) Algorithm
1: Inputs: The target item ã, threshold T1
2: for t = 1 : T1 do
3: Observe Ct = (Ct

1, ..., Ct
L) and Rt = (at

1, ..., at
K)

4: for k = 1 : L do
5: if ak = ã and ak ∈ Rt then
6: Set C̃t

k = 1
7: else if ak ̸= ã and ak ∈ Rt then
8: Set C̃t

k = 0
9: else

10: Set C̃t
k = Ct

k

11: Return C̃t = (C̃t
1, ..., C̃t

L) to the ranker

Figure 2: Process of the Algorithm 2 attacks BatchRank.

5.2 Attack on BatchRank

Brief Explanation of BatchRank. The BatchRank falls into the category of elimination-based algorithms
(Zoghi et al., 2017). The BatchRank would begin with stage ℓ1 = 0 and the first batch B1,ℓ1 = D. In stage
ℓ1, every item would be explored for nℓ1 = 16∆̃−1

ℓ1
log(T ) times and ∆̃−1

ℓ1
= 2−ℓ1 . Afterward, if BatchRank

collects enough information to confirm the attractiveness of every item in a group is larger than the others,
BatchRank then splits the initial batch into two sub-batches B2,ℓ2 and B3,ℓ3 . Items that are considered with
higher attractiveness (i.e., in sub-batch B2,ℓ2) would be always placed before items with lower attractiveness
(i.e., in sub-batch B3,ℓ3). The BatchRank would restart with stage ℓ2 = 0 and ℓ3 = 0 and sub-batches B2,ℓ2

and B3,ℓ3 . Batches would recursively split until round T . Intuitively, the action ‘split’ of BatchRank is similar
to the elimination action in the elimination-based bandit algorithms (Even-Dar et al., 2006; Lykouris et al.,
2018; Bogunovic et al., 2021). The details of BatchRank are provided in the Appendix.

Algorithm 2 can successfully attack BatchRank owing to BatchRank’s elimination property. Algorithm 2
maximizes the returned clicks of the target item and minimizes the returned click of the non-target item in a
short period o(T ). After this period, BatchRank regards the target item owning the highest attractiveness
(i.e., split). Then the target item would be always placed at the first position of the list Rt and the attacker
achieves the attack goal. We also provide Example 3 to further illustrate the process of Algorithm 2 attack
BatchRank.
Example 3. Consider the item set D = {a1, a2, ..., a10} contains 10 items. The target item is ã = a1 with
arbitrary attractiveness and item list Rt contains 3 positions. The BatchRank begins with B1,ℓ1 = D and
recursively explores items. The attacker begins the attack at round 1 and ends at T1. During T1 rounds,
the attacker returns C̃t

k = 1 if ã = ak and ã ∈ Rt, otherwise C̃t
k = 0. This fraudulent strategy misleads

BatchRank to believe the attractiveness of the non-target items ak ̸= ã is 0 and the attractiveness of ã is 1.
After BatchRank finishes the split section, the batch B1,ℓ1 split into B2,ℓ2 = {a1} and B3,ℓ3 = {a2, ..., a10}.

9
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Figure 3: Process of the Algorithm 2 attacks TopRank.

Sub-batch B2,ℓ2 contains position 1 (i.e., at
1) and B3,ℓ3 contains position 2 and 3 (i.e., at

2 and at
3). The

process is illustrated in Figure 2. The target item ã would always be placed at the first position of the Rt in
the next T − T1 rounds due to B2,ℓ2 only contains ã. The attack cost would be o(T ) because the attacker only
manipulates the click feedback for o(T ) rounds.
Theorem 3 (Attack against BatchRank). Consider the attacker aims to attack BatchRank with stochastic click
models (Zoghi et al., 2017). If the attacker runs Algorithm 2 with T1 = 16L log(T ), we have NT (ã) ≥ T − T1
and the cost can be bounded by C(T ) ≤ KT1.

Besides BatchRank, this attack idea can also be utilized to attack some rankers that do not belong to the
elimination-based category, such as TopRank.

5.3 Attack on TopRank

Brief Explanation of TopRank. TopRank is a divide-and-conquer-based ranker (Lattimore et al., 2018).
It begins with a blank graph G1 = ∅. In round t, TopRank would establish blocks Pt1, ..., Ptd via graph
Gt. The items in block Pt1 would be placed at the first |Pt1| positions and the items in block Pt2 would be
placed at the next |Pt2| positions, and so on. During rounds 1 to T , TopRank would explore items with
blocks, collect click information and compare attractiveness between items in the same block. If the collected
evidence is enough to let TopRank regards the attractiveness of item ai as larger than the attractiveness
of item aj , a directional edge (aj , ai) would be established. This behavior is similar to the ‘split’ action in
BatchRank. Besides, graph Gt would not contain cycles with high probability. If the graph contains at least
one cycle, we consider TopRank would be out of control. Details of TopRank are provided in the appendix.

Note that if there exist edges from every non-target item to the target item and Gt contains no cycle, then
the target item would be isolated from the non-target items and would always be placed at the first position
of Rt. This is because the first block only contains the target item. We also provide Example 4 to specifically
explain how Algorithm 2 attacks TopRank.
Example 4. The process of the attack is shown in Figure 3. Consider the total item set D = {a1, a2, a3} with
3 items. The length of the list Rt is K = 2 and the target item is ã = a1. The TopRank would start with block
P11 = D and d = 1 because the graph contains no edges at the beginning. In the first T1 rounds, the attacker
receives click feedback Ct and modifies click feedback C̃t

k = 1 if ak = ã and ak ∈ Rt, otherwise C̃t
k = 0. After

T1, the edges (ak, ã), k = 2, 3 are established simultaneously. In the last T − T1 rounds, the block Pt1 would
only contain ã and ã would always be placed at the first position of Rt. Due to TopRank would only compare
items’ attractiveness in the same block, the edges from ã to ak ̸= ã would never be established and cycle would
appear in Gt with very low probability (will be explained in the proof of Theorem 4 in the appendix).

Theorem 4 (Attack against TopRank). Consider the attacker aims to attack TopRank and TopRank runs in
the click model in (Lattimore et al., 2018). If the attacker sets T1 = 4 log(c/δ)

K
L +(1−

√
1+8K/L)/4

and runs Algorithm 2.
The attacker can achieve NT (ã) ≥ T − T1 with probability at least 1 − (1/c + L2)δ. The cost can be bounded
by C(T ) ≤ KT1.
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(a) Cost in CM. (b) Nt(ã) in CM. (c) Cost in PBM. (d) Nt(ã) in PBM.

Figure 4: Synthetic data experiment: (a) total cost spend in the cascade model, (b) Nt(ã) in the cascade
model, (c) the total cost spend in the cascade model and (d) Nt(ã) in the position-based model. We report
averaged result and variance of 10 runs.

By choosing δ = 1/T and c = 4
√

2/π/erf(
√

2) ≈ 3.43 which is same as in TopRank algorithm, we have
T1 = O((L/K) log T ). Besides, readers should note that 1 − δL2 is the intrinsic probability of TopRank’s Gt,
∀t ∈ [T ] contains cycles.
Remark 6 (Why Theorem 3 and Theorem 4 is gap-independent?). The reason the cost upper bound of
the ATQ isn’t gap-dependent is due to 1) the approach taken during the attack, and 2) the structure of
the BatchRank and TopRank. The TopRank and BatchRank algorithms are classified as phase elimination
algorithms. In the proofs of Theorems 3 and 4, we demonstrate that we can achieve the attack objective by
maximize the click feedback of the target item and minimize the click feedback of the non-target items during
the first elimination phase (see ATQ pseudo code). Through analysis, we determine that the length of the
first elimination phase for BatchRank and TopRank is respectively bounded by O

(
L log(T )

)
and O

(
L
K log(T )

)
(this also implies that ATQ can compromise TopRank faster than BatchRank due to BatchRank’s inferior
performance compared to TopRank.), which is unrelated to the attractiveness gap. Besides, due to TopRank
and BatchRank will randomly explore the whole item set in the first phase, we suppose the attack cost per
round is K due to the attacker should modify at most K click feedback in each round. Accordingly, the finial
cost upper bound do not depends to the attractiveness gaps.
Remark 7 (Comparison of ATQ performance with that of attack algorithms in the bandit domain). Although
we haven’t provided an instance-dependent version of cost upper bound, we notice that when the victim algorithm
is BatchRank and TopRank, the ATQ can achieve E[NT (ã)] = T − O(L log(T )) with C(T ) = O(L log(T )).
This can match the performance of click poisoning attack on MAB (Theorem 1 and Theorem 2 of Jun et al.
(2018)), i.e., E[NT (ã)] = T − O(L log(T )) and C(T ) = O(L log(T )).
Remark 8 (Why UCB-based algorithms can not be attacked by ATQ?). The effect of ATQ relies on algorithms’
phased elimination property. However, CascadeUCB and PBM-UCB belong to UCB-based algorithms. When
the attacker stops, the true click feedback of other items will be revealed to the algorithms over time, leading
UCB-based algorithms to realize the targeted item isn’t the item with the highest attractiveness.

6 Experiments

In the experiment section, we apply the proposed attack methods against the OLTR algorithms listed in
Table 1 with their corresponding click models. We compare the effectiveness of our attack on synthetic data
and real-world MovieLens dataset. For all our experiments, we use L = 50, K = 5 (the set up of Zoghi et al.
(2017); Lattimore et al. (2018) is L = 10 and K = 5) and T = 105. For ATQ, we set the T1 in Algorithm 2
by Theorem 3 and Theorem 4.

6.1 Synthetic Data

First, we verify the effectiveness of our proposed attack strategies on synthetic data. We generate a size-L
item set D, in which each item ak is related to a unique attractiveness score α(ak). Each attractiveness score
α(ak) is drawn from a uniform distribution U(0, 1). We randomly select a suboptimal target item ã. Figure 4
shows the results and variances of 10 runs.
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(a) Cost in CM. (b) Nt(ã) in CM. (c) Cost in PBM. (d) Nt(ã) in PBM.

Figure 5: MovieLens experiment: (a) the total cost spend in the cascade model, (b) Nt(ã) in the cascade
model, (c) the total cost spend in the cascade model and (d) Nt(ã) in the position-based model. We report
averaged result and variance of 10 runs.

Table 1: Target ranking algorithms and their applied click models
Algorithm Click model
BatchRank (Zoghi et al., 2017) Stochastic click model
TopRank (Lattimore et al., 2018) Stochastic click model
PBM-UCB (Lagrée and Vernade, 2016) Position-based model
CascadeUCB1 (Kveton et al., 2015a) Cascade model
CascadeKLUCB (Kveton et al., 2015a) Cascade model

In Figures 4(a) and 4(b), we plot the results of the GA against CascadeUCB1, CascadeKLUCB, BatchRank,
and TopRank, and the ATQ against BatchRank and TopRank in the cascade model. Both attack strategies
can efficiently misguide the rankers to place the target item at the first position for T − o(T ) times as shown
in Figure 4(b), and the cost of the attack is sublinear as shown in Figure 4(a). The GA is cost-efficient when
attacking all four algorithms. We can observe that when it attacks TopRank and BatchRank, the cost would
not increase after some periods (similar to the ATQ’s results). This is when the TopRank and BatchRank
believe the target item and the auxiliary items have a relatively higher attractiveness than the other items,
they would only put the target item and the auxiliary items in Rt. Besides, when attacking TopRank and
BatchRank, the growth rate of GA’s target arm pulls Nt(ã) slowly increased from 0.2 per iteration to 1 per
iteration. This is because the GA does not manipulate the items in T and the TopRank and BatchRank
need time to confirm the target item has a higher attractiveness than {ηk}K−1

k=1 . Hence, the smaller the gap
between ã and η1, the larger the confirmed time. Compare with the GA, the ATQ can also efficiently attack
BatchRank and TopRank with a sublinear cost. However, its NT (ã) is almost T , which is relatively larger
than GA’s NT (ã). This is because the ATQ is specifically designed for divide-and-conquer-based algorithms
like TopRank and BatchRank. The ATQ can maximize the target item’s click number and misguide these
algorithms to believe the target item is the best in the shortest period.

Figures 4(c) and 4(d) report the results in the position-based model. We can observe that the spending cost of
the GA on the PBM-UCB is slightly larger than the spending cost on the CascadeKLUCB and CascadeUCB1.
Besides, although the GA can let the TopRank believe the target item is the best item in almost 500 iterations,
it still needs a large number of iterations (around 6 × 104 iterations) to make the BatchRank make such a
decision. From the results of the two models, the ATQ is obviously more effective than the GA when the target
algorithms are TopRank and BatchRank.

6.2 Experiments on Real-World Data

We also evaluate the proposed attacks on MovieLens dataset (Harper and Konstan, 2016). We first split the
dataset into train and test data subsets. Using the training data, we compute a d-rank SVD approximation,
which is used to compute a mapping from movie rating to the probability that a user selected at random
would rate the movie with 3 stars or above. We use the learned probability to simulate user’s clicks given the
ranking list. We refer the reader to the Appendix C of (Vial et al., 2022) for further details. Figure 5 shows
the attack results of our attack strategy averaged over 10 rounds.

12



Published in Transactions on Machine Learning Research (09/2024)

We can observe that the trends in Figure 5 are similar to those in Figure 4, and the two attack algorithms are
again able to efficiently fool the OLTR algorithms. In the cascade model, we see that successfully attacking
CascadeKLUCB, TopRank, and BatchRank with GA only needs a relatively low cost, and the cost is higher
when the target is CascadeUCB1. Besides, the ATQ strategy can still outperform the GA in NT (ã) when the
target algorithms are TopRank and BatchRank. In the position-based model, the results are similar to the
results in the cascade model, and the cost spent in the PBM-UCB is larger than the cost spent in the other
algorithms.

7 Conclusion

In this paper, we study adversarial attacks on online learning to rank. Different from the poisoning attacks
studied in the multi-armed bandits setting where reward or action is manipulated, the attacker manipulates
binary click feedback instead of reward and item list instead of a single action in our model. In addition,
due to the interference of the click models, it is difficult for the attacker to precisely control the ranker
behavior under different unknown click models with simple click manipulation. Based on this insight, we
developed the GA that can efficiently attack any no-regret ranking algorithm. Moreover, we also proposed the
ATQ that follows the click poisoning idea, which can efficiently attack BatchRank and TopRank. Finally, we
presented experimental results based on synthetic data and real-world data that validated the cost-efficient
and effectiveness of our attack strategies.
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A Notations

For clarity, we collect the frequently used notations in this paper.

D Total item set
Rt K-length item list be shown to the user in round t
R∗ Optimal list
R̃t Manipulated list in round t
Ct Click feedback list in round t
C̃t Manipulated click feedback list in round t
T Ordered list (ã, ā1, ..., āK)
ã Target item
ak k-th most attractive item in D
āk k-th most attractive auxiliary item
ηk Particular item in the list poisoning attack
α(ak) Attractiveness of item ak

at
k Item on the k-th position in Rt

ãt
k Manipulated item on the k-th position in R̃t

Ct
k Click feedback of item ak in round t

C̃t
k Manipulated click feedback of the item ak in round t

v(Rt, at
k, k) Click probability of item at the k-th position in round t

R(T ) Cumulative regret in T rounds
C(T ) Total cost in T rounds
Nt(ak) Number of item ak be placed at the first position in t rounds
Nt(ak) Number of item ak be examined in t rounds
T Total number of interaction
T1 Input threshold value of the attack-then-quit algorithm
BatchRank
b Batch index
ℓ Stage index
Bb,ℓ b-th batch explored in stage ℓ
nℓ Exploration number of item in batch Bb,ℓ in stage ℓ
Cb,ℓ(ak) Total received click number of item ak during stage ℓ

Ĉb,ℓ(ak) Attractiveness estimator of item ak in stage ℓ
Ub,ℓ(ak) Upper confidence bound of item ak in stage ℓ
Lb,ℓ(ak) Lower confidence bound of item ak in stage ℓ
TopRank
Gt Auxiliary graph in round t
(aj , ai) Directional edge from item aj to item ai

Ptc c-th block in round t
Stij Sum of the Utij from round 1 to t
Ntij Sum of the absolute value of Utij from round 1 to t
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(a) CascadeUCBV, Cost (b) CascadeUCBV, Triggered number

Figure 6: Experimental results of GA attacks CascadeUCBV. We report the average results and variance of
10 rounds.

B Additional Experiments

In the main text, we have shown that GA can efficiently attack CascadeUCB1 and CascadeKLUCB. In this
subsection, we show that GA can also efficiently attack the SOTA cascade ranker CascadeUCBV (Vial et al.,
2022). The attack results are provided in Figure 6. Apparently, the GA can successfully reach the attack goal.
Based on these results, we believe GA can efficiently attack almost every existing UCB-type cascade ranker.

C Proof of Theorem 1

Recall that when the attacker implements Algorithm 1, the optimal list becomes R∗ = T = (ã, η1, ..., ηK−1)
due to the attractiveness of items belong to D̃\T is smaller than α(ηK−1) (i.e., α(ηK) < α(ηK−1) ≤ α(ã)).
We should also notice that the target item ã has the highest attractiveness. Now recall

E[NT (ã)] = E

[ T∑
t=1

1{at
1 = ã}

]
= T − E

[ T∑
t=1

1{at
1 ̸= ã}

]
, (7)

then based on Definition 1 and Assumption 1, we know that if at
1 ≠ ã, the ranker would suffer from regret in

round t. Due to the per step regret is at least ∆min = minR∈ΠK(Λ)(
∑K

k=1 v(T , at
k, k) −

∑K
k=1 v(R, at

k, k)) > 0,
where Λ consists of T and L + K − 1 items with attractiveness smaller equals then α(ηK). Then based on
the definition of regret, we can finally derive

E[NT (ã)] ≤ T − R̃(T )
∆min

, (8)

where R̃(T ) = E
[
T
∑K

k=1 v(T , at
k, k) −

∑T
t=1

(
1
{

attack,
∑K

k=1 v(R̃t, at
k, k)

}
+

1
{

do not attack,
∑K

k=1 v(Rt, at
k, k)

})]
is the regret upper bound of the victim ranker.

Besides, according to the line 4 of the Algorithm 1, the cost of Algorithm 1 can be bounded by

C(T ) ≤ E

[ T∑
t=1

K∑
k=1

1{at
k ∈ D̃\T }

]
≤ KE

[ T∑
t=1

1{Rt\T ≠ ∅}
]
. (9)

Due to the optimal list becomes T during the attack, if Rt\T ̸= ∅, the per step regret is at least ∆min. Thus,
the cost can be bounded by

C(T ) ≤ KE

[ T∑
t=1

1{Rt\T ≠ ∅}
]

≤ KR̃(T )
∆min

. (10)
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Therefore, if the target ranker can present the best list T for T − o(T ) times in its click model under
Assumption 1 (the definition of the no-regret ranker), then R̃(T ) = o(T ) (GA would not attack the victim
ranker when it presents T ), E[NT (ã)] = T − o(T ) and the cost of Algorithm 1 would be sublinear. According
to Definition 3 and our deduction, we can conclude that if a ranker belongs to no-regret rankers, it can be
efficiently attacked by Algorithm 1. Here finish the proof of Theorem 1.

D Proof of Theorem 2

D.1 Introduction of CascadeUCB1

The pseudo-code of the CascadeUCB1 is provided as follows.

Algorithm 3 CascadeUCB1 (Kveton et al., 2015a)
1: Input: Item set D
2: for k = 1 : L do
3: Explore item ak and derive C0

k

4: Set N0(ak) = 1 and α̂1(ak) = C0
k

5: for t = 1 : T do
6: for k = 1 : L do
7: Compute UCBt(ak)
8: Let at

1, ..., at
K be K items with largest UCBs and set Rt = (at

1, ..., at
K)

9: Observe click feedback Ct

10: for k = 1 : K do
11: if at

k is clicked then
12: Set s = k
13: for k = 1 : L do
14: Set Nt(ak) = Nt−1(ak)
15: for k = 1 : s do
16: Set Nt(at

k) = Nt(at
k) + 1

17: α̂Nt(at
k

)(at
k) =

Nt−1(at
k)α̂Nt−1(at

k
)(at

k)+1{s=k}

Nt(at
k

)

We let Nt(ak) denotes the number of item ak be examined till round t. The upper confidence bound is defined
as UCBt(ak) = α̂Nt−1(ak)(ak) + 3

√
(log(t − 1))/Nt−1(ak).

D.2 Proof of Theorem 2

The proof of Theorem 2 relies on the following lemmas.

Lemma 1 (The Hoeffding inequality). Let X1, X2, ..., Xn i.i.d drawn from a Bernoulli distribution, X̄ =
1
n

∑n
i=1 Xi and E[X] be the mean, then

P (X̄ − E[X] ≤ −a) ≤ e−na2/2. (11)

Lemma 2. Consider item a1 is the item with the highest attractiveness and ak ̸= a1. When the principal
runs the CascadeUCB1, the expected number of ak be placed at the first position till round T can be bounded
by E[NT (ak)] ≤ 3 + 81 log(T )/∆2

k, where ∆k = α(a1) − α(ak).
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Proof of Lemma 2. We first decompose E[NT (ak)] as follows

E[NT (ak)] ≤ 1 + E

[ T∑
t=1

1

{
at

1 = ak, Nt−1(ak) <
81 log(T )

∆2
k

}]
+ E

[ T∑
t=1

1

{
at

1 = ak, Nt−1(ak) ≥ 81 log(T )
∆2

k

}]

≤ 1 + 81 log(T )
∆2

k

+ E

[ T∑
t=1

1

{
at

1 = ak, Nt−1(ak) ≥ 81 log(T )
∆2

k

}]

≤ 1 + 81 log(T )
∆2

k

+
T∑

t=1
P

(
UCBt(ak) ≥ UCBt(a1), Nt−1(ak) ≥ 81 log(T )

∆2
k

)
.

(12)

By union bound, we then decompose and bound probability P
(

UCBt(ak) ≥ UCBt(a1), Nt−1(ak) ≥

81 log(T )/∆2
k

)

P

(
UCBt(ak) ≥ UCBt(a1), Nt−1(ak) ≥ 81 log(T )

∆2
k

)
≤

t−1∑
λ=1

t−1∑
σ≥ 81 log(T )

∆2
k

P

(
UCBt(ak) ≥ UCBt(a1)

∣∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)
.

(13)

The inequality holds due to Nt−1(ak) ≥ Nt−1(ak). We further upper bound P
(

UCBt(ak) ≥

UCBt(a1)
∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)
. Consider for 1 ≤ λ ≤ t − 1 and 81 log(T )/∆2

k ≤ σ ≤ t − 1,
we have

P

(
UCBt(ak) ≥ UCBt(a1)

∣∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)
≤P

(
α̂Nt−1(ak)(ak) + 3

√
log(T )

Nt−1(ak) + ∆k

3 ≥ α̂Nt−1(a1)(a1) + 3

√
log(T )

Nt−1(a1)

∣∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)

≤P

(
α̂Nt−1(ak)(ak) + 2∆k

3 ≥ α̂Nt−1(a1)(a1) + 3

√
log(T )

Nt−1(a1)

∣∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)

≤P

(
α̂Nt−1(ak)(ak) + α(a1) − α(ak) ≥ ∆k

3 + α̂Nt−1(a1)(a1) + 3

√
log(T )

Nt−1(a1)

∣∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)
.

(14)

The first inequality relies on the definition of the UCBt(ak). The second inequality holds because σ ≥
81 log(T )/∆2

k. The third inequality holds because ∆k = α(a1) − α(ak).

Based on the Hoeffding inequality, we have for any λ ≥ 1 and σ ≥ 81 log(T )/∆2
k

P

(
α(a1) − α̂Nt−1(a1)(a1) ≥ 3

√
log(T )

Nt−1(a1)

∣∣∣∣Nt−1(a1) = λ

)
≤ 1

T 9/2

P

(
α̂Nt−1(ak)(ak) − α(ak) ≥ ∆k

3

∣∣∣∣Nt−1(ak) = σ

)
≤ 1

T 9/2 .

(15)
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The last term of (14) can be further bounded by

P

(
α̂Nt−1(ak)(ak) + α(a1) − α(ak) ≥ ∆k

3 + α̂Nt−1(a1)(a1) + 3

√
log(T )

Nt−1(a1)

∣∣∣∣Nt−1(ak) = σ, Nt−1(a1) = λ

)

≤P

(
α̂Nt−1(ak)(ak) − α(ak) ≥ ∆k

3

∣∣∣∣Nt−1(ak) = σ

)
+ P

(
α(a1) − α̂Nt−1(a1)(a1) ≥ 3

√
log(T )

Nt−1(a1)

∣∣∣∣Nt−1(a1) = λ

)
≤ 1

T 9/2 + 1
T 9/2 ≤ 2

T 9/2 .

(16)

The first inequality holds due to the union bound and the last inequality holds due to (15).

With the fact that
T∑

t=1

t−1∑
λ=1

t−1∑
σ≥ 81 log(T )

∆2
k

2
T 9/2 ≤ 2

T 3/2 ≤ 2. (17)

In the light of (17), the total expected number of ak been placed at the first position can be bounded by

E[NT (ak)] ≤ 3 + 81 log(T )
∆2

k

. (18)

Here finish the proof of Lemma 2.

Proof of Theorem 2. With Lemma 2, we can bound the total expected number of ak ̸= a1 being placed at
the first position till round T . Thus, from round 1 to round T , the expected number of CascadeUCB1 place
item a1 at the first position satisfies

NT (a1) ≥ T −
L∑

k=2

(
3 + 81 log(T )

∆2
k

)
. (19)

Remember when the attacker implements attack Algorithm 1, the target item would become the item with
the highest attractiveness. The rest of the items consist of {ηk}K−1

k=1 and L + K − 1 items with attractiveness
at most α(ηK). Therefore, when Algorithm 1 attacks the CascadeUCB1, NT (ã) can be lower bounded by

E[NT (ã)] ≥ T −
K−1∑
k=1

(
3 + 81 log(T )

(α(ã) − α(ηk))2

)
−

L+K−1∑
s=1

(
3 + 81 log(T )

(α(ã) − α(ηK))2

)
. (20)

Besides, according to the line 4 of Algorithm 1, the cost of Algorithm 1 attack CascadeUCB1 can be bounded
by

C(T ) ≤ KE

[ T∑
t=1

1{Rt\T ≠ ∅}
]
. (21)

It is worth noting that Algorithm 1 only manipulates items in list Rt, hence the cost generates in one round
is at most K. Recall the definition of regret in the cascade model

R(T ) = E

[
T

K∑
k=1

v(T , at
k, k) −

T∑
t=1

K∑
k=1

v(Rt, at
k, k)

]

= E

[
T

(
1 − (1 − α(ã))

K−1∏
k=1

(1 − α(āk))
)

−
T∑

t=1

(
1 −

K∏
k=1

(1 − α(at
k))
)]

.

(22)
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The total regret is generated by K positions. Algorithm 1 only attacks when Rt\T ≠ ∅. And situation
Rt\T ̸= ∅ implies there is at least one item ̸∈ T be placed in the Rt and its attractiveness is reduced to at
most α(ηK). Due to when Rt\T ̸= ∅, the number of items is placed in Rt and belongs to D̃\T is at least 1.
Then for the cascade model, the regret generates in round t is at least

K∑
k=1

(
v(T , at

k, k) − v(Rt, at
k, k)

)

≥1 − (1 − α(ã))
K−1∏
k=1

(1 − α(ηk)) − 1 + (1 − α(ã))(1 − α(ηK))
K−2∏
k=1

(1 − α(ηk))

=(α(η1) − α(ηK))(1 − α(ã))
K−2∏
k=1

(1 − α(ηk)).

(23)

The first inequality holds due to α(ηK−1) has the lowest attractiveness in T . With the above derivation, we can
derive when Rt\T ≠ ∅, the regret generates in each round is at least (α(η1)−α(ηK))(1−α(ã))

∏K−2
k=1 (1−α(ηk)).

With this in mind, we can further bound the total cost by

C(T ) ≤ KE

[ T∑
t=1

1{Rt\T ≠ ∅}
]

≤ KR(T )
(α(η1) − α(ηK))(1 − α(ã))

∏K−2
k=1 (1 − α(ηk))

(24)

Due to the regret of the CascadeUCB1 satisfies R(T ) = o(T ), the cost of Algorithm 1 would be sublinear. We
conclude that the CascadeUCB1 can be efficiently attacked by Algorithm 1. Here finish the proof of Theorem
2.

E Proof of Theorem 3

E.1 Introduction of BatchRank

We here specifically illustrate details of BatchRank. The pseudo-code of the BatchRank is provided as follows.

Algorithm 4 BatchRank (Zoghi et al., 2017)
1: Initialize: bmax = 1, I1 = (I1(1) = 1, I1(2) = K), ℓ1 = 0, B1,0 = D, B = {1}
2: for b = 1 : K do
3: for ℓ = 0 : T − 1 do
4: for all ak ∈ D do
5: Cb,ℓ(ak) = 0, nb,ℓ(ak) = 0
6: for t = 1 : T do
7: for all b ∈ B do
8: DisplayBatch(t,b)
9: for all b ∈ B do

10: CollectClicks(t,b)
11: for all b ∈ B do
12: UpdateBatch(t,b)

The BatchRank explores items with batches, which are indexed by b. The BatchRank would begin with stage
ℓ1 = 0, batch index b = 1, and the first batch Bb,ℓ1 = D. The first position in batch b is indexed by Ib(1) and
the last position is indexed by Ib(2), and the number of positions in batch b is len(b) = Ib(1) − Ib(2) + 1.
The first batch Bb,ℓ1 contains all the positions in Rt. In stage ℓ1, every item in Bb,ℓ1 would be explored for
nℓ1 = 16∆̃−2

ℓ1
log(T ) times (DisplayBatch) and ∆̃−1

ℓ1
= 2−ℓ1 . Afterward, the BatchRank would estimate the

attractiveness of item ak as

Ĉb,ℓ(ak) = Cb,ℓ(ak)/nℓ. (25)
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Algorithm 5 DisplayBatch
1: Input: batch index b, time t
2: Set ℓ = ℓb

3: Let a1, ..., a|Bb,ℓ| be a random permutation of items in Bb,ℓ such that nb,ℓ(a1) ≤ ... ≤ nb,ℓ(a|Bb,ℓ|)
4: Let π ∈

∏
len(b)([len(b)]) be a random permutation of position assignments

5: for k = Ib(1) : Ib(2) do
6: at

k = aπ(k−Ib(1)+1)

Algorithm 6 CollectClicks
1: Input: batch index b, time t
2: Set ℓ = ℓb and nmin = min

ak∈Bb,ℓ

nb,ℓ(ak)

3: Receive the click feedback Ct = (Ct
1, ..., Ct

L)
4: for k = Ib(1) : Ib(2) do
5: if nb,ℓ(at

k) = nmin then
6: Set Cb,ℓ(at

k) = Cb,ℓ(at
k) +

∑L
s=1 Ct

s1{as = at
k} and nb,ℓ(at

k) = nb,ℓ(at
k) + 1

Algorithm 7 UpdateBatch
1: Input: batch index b, time t
2: Set ℓ = ℓb

3: if minak∈Bb,ℓ
nb,ℓ(ak) = nℓ

4: for all ak ∈ Bb,ℓ do
5: Compute Ub,ℓ(ak) and Lb,ℓ(ak)
6: Let a1, ..., a|Bb,ℓ| be any permutation of Bb,ℓ such that Lb,ℓ(a1) ≥ ... ≥ Lb,ℓ(a|Bb,ℓ|)
7: for k = 1 : len(b) do
8: Set B+

k = {a1, ..., ak} and B−
k = Bb,ℓ\B+

k

9: for k = 1 : len(b) − 1 do
10: if Lb,ℓ(ak) > maxak∈B−

k
Ub,ℓ(ak) then

11: Set s = k
12: if s = 0 and |Bb,ℓ| > len(b) then
13: Set Bb,ℓ+1 = {ak ∈ Bb,ℓ : Ub,ℓ(ak) ≥ Lb,ℓ(alen(b))} and ℓ = ℓ + 1
14: else if s > 0 then
15: Set B = B

⋃
{bmax + 1, bmax + 2}\{b}, Bbmax+1,0 = B+

s , Bbmax+2,0 = B−
s , ℓbmax+1 = 0

16: ℓbmax+2 = 0, Ibmax+1 = (Ib(1), Ib(1) + s − 1), Ibmax+2 = (Ib(1) + s, Ib(2)), bmax = bmax + 2
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After the CollectClicks section, the ranker would compute the KL-upper confidence bound and lower confidence
bound (Garivier and Cappé, 2011; Zoghi et al., 2017) for every item in the batch, denote as Ub,ℓ(ak) and
Lb,ℓ(ak)

Ub,ℓ(ak) = arg max
q∈[Ĉb,ℓ(ak),1]

{nℓDKL(Ĉb,ℓ(ak)∥q) ≤ log(T ) + 3 log log(T )}

Lb,ℓ(ak) = arg min
q∈[0,Ĉb,ℓ(ak)]

{nℓDKL(Ĉb,ℓ(ak)∥q) ≤ log(T ) + 3 log log(T )}
(26)

where DKL represents the Kullback-Leibler divergence between Bernoulli random variables with means p and
q. In the UpdateBatch section, all the items in batch Bb,ℓ1 would be placed by order a1, ..., a|Bb,ℓ1 |, where
Lb,ℓ1(a1) ≥, ..., ≥ Lb,ℓ1(a|Bb,ℓ1 |). The BatchRank would compare the first len(b) − 1 item’s lower confidence
bound to the maximal upper confidence bound in B−

k . If Lb,ℓ1(ak) > maxak∈B−
k

Ub,ℓ1(ak), the BatchRank
would set s = k. Ones s > 0, the batch would spilt from position s and the ranker derives sub-batches
Bb+1,ℓ2 and Bb+2,ℓ3 . Sub-batch Bb+1,ℓ2 contains s items and the first s positions in Rt and sub-batch Bb+2,ℓ3

contains L − s items and positions from s to K. The BatchRank would restart with stages ℓ2 = 0 and ℓ3 = 0
and sub-batches Bb+1,ℓ2 and Bb+2,ℓ3 . The batches would recursively run and split until round T .

E.2 Proof of Theorem 3

The proof of Theorem 3 relies on the following Lemma 3.
Lemma 3. The attacker utilizes Algorithm 2 to manipulate the returned click feedback of the BatchRank.
After 16L log(T ) rounds attack and the BatchRank begins its first split. The upper confidence bound and lower
confidence bound of every non-target item satisfies Lb,ℓ1(ak) = 0 and Ub,ℓ1(ak) = 1 − (T log(T )3)−1/nℓ1 . The
lower confidence bound and the upper confidence bound of the target item are Lb,ℓ1(ã) = 1 and Ub,ℓ1(ã) = 1.

Proof of Lemma 3. According to the introduction of BatchRank, the estimated click probability of an arbitrary
item is written as (25) and Cb,ℓ1(ak) is at most 16 log(T ) in the first stage (ℓ1 = 0 and ∆̃−2

ℓ1
= 22ℓ1 = 1).

Recall our attack Algorithm 2 returns C̃t
k = 0 when ak ̸= ã and ak ∈ Rt. Thus, the total collected click

number of the non-target item is Cb,ℓ1(ak) = 0, and the estimated click probability is Ĉb,ℓ1(ak) = 0.

We first introduce the definition of the KL-divergence

DKL(p∥q) = p log(p

q
) + (1 − p) log(1 − p

1 − q
). (27)

By convenience, we define 0 log(0) = 0 log(0/0) = 0 and x log(x/0) = +∞ for x > 0 (Garivier and Cappé,
2011). With this knowledge, we can derive the upper confidence bound of the non-target item in stage ℓ1

Ub,ℓ1(ak) = arg max
q∈[Ĉb,ℓ1 (ak),1]

{nℓ1DKL(Ĉb,ℓ1(ak)∥q) ≤ log(T ) + 3 log log(T )}

= arg max
q∈[0,1]

{nℓ1(0 log 0
q

+ 1 log 1
1 − q

) ≤ log(T ) + 3 log log(T )}

= arg max
q∈[0,1]

{nℓ1 log 1
1 − q

≤ log(T ) + 3 log log(T )}.

(28)

Apparently, when q = 1, log(T ) + 3 log log(T ) ≤ nℓ1 log(1/1 − q) = +∞, hence q should smaller than 1. When
nℓ1 log(1/(1 − q)) = log(T ) + 3 log log(T ), we have

nℓ1 log( 1
1 − q

) = log(T log(T )3)

log( 1
1 − q

) = log
(

(T log(T )3)1/nℓ1

)
1

1 − q
= (T log(T )3)1/nℓ1

q = 1 − (T log(T )3)−1/nℓ1 .

(29)
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Due to T log(T )3 > 1 and nℓ1 > 0, we can derive 0 < (T log(T )3)−1/nℓ1 < 1 and 0 < Ub,ℓ1(ak) < 1.

The lower confidence bound of the non-target item has

Lb,ℓ1(ak) = arg min
q∈[0,0]

{nℓ1DKL(Ĉb,ℓ1(ak)∥q) ≤ log(T ) + 3 log log(T )} = 0. (30)

Remember the attacker returns C̃t
k = 1 if ak = ã and ak ∈ Rt. Thus, the total collected click number of

target item is Cb,ℓ1(ã) = 16 log(T ) and Ĉb,ℓ1(ã) = 1. We can further deduce the upper confidence bound of
the target item as

Ub,ℓ1(ã) = arg max
q∈[1,1]

{nℓ1DKL(Ĉb,ℓ1(ã)∥q) ≤ log(T ) + 3 log log(T )} = 1. (31)

The lower confidence bound of the target item has

Lb,ℓ1(ã) = arg min
q∈[0,1]

{nℓ1DKL(Ĉb,ℓ1(ã)∥q) ≤ log(T ) + 3 log log(T )} = 1

= arg min
q∈[0,1]

{nℓ1(1 log 1
q

+ (1 − 1) log 1 − 1
1 − q

) ≤ log(T ) + 3 log log(T )}

= arg min
q∈[0,1]

{nℓ1 log 1
q

≤ log(T ) + 3 log log(T )}

= 1.

(32)

Here finish the proof of Lemma 3.

Proof of Theorem 3. Consider the attacker implements attack Algorithm 2 with T1 = 16L log(T ). With the
knowledge of Lemma 3, we can obtain when the BatchRank begins to split the first batch B1,ℓ1 = D, the
lower confidence bound of every non-target item satisfies Lb,ℓ1(ak) = 0, and the lower confidence bound of
the target item satisfies Lb,ℓ1(ã) = 1. Therefore ã would be ranked at the first position because it has the
highest lower confidence bound (line 6 in UpdateBatch). The BatchRank starts comparing Lb,ℓ1(ak) and
maxak∈B−

k
Ub,ℓ1(ak) for k = 1 to K − 1 (line 10 in UpdateBatch). Owing to Lb,ℓ1(ã) = 1 > Ub,ℓ1(ak) and

Lb,ℓ1(ak) < Ub,ℓ1(ak), the split point is s = 1 (line 11 in Updatebatch). After the split action, the BatchRank
would derive two sub-batches B2,ℓ2 = {ã} and B3,ℓ3 = D\ã. Sub-batch B2,ℓ2 contains the first position of Rt

(i.e., at
1) and B3,ℓ3 contains the rest of the positions of Rt (i.e., at

2, ..., at
K). Sub-batch B2,ℓ2 would not split

until round T because it only contains a position and an item. This implies after round 16L log(T ), the target
item would always be placed at the first position of Rt until round T is over, i.e., NT (ã) ≥ T − 16L log(T ).
Due to the click number in each round being at most K, the cost in one round is at most K. Hence, the cost
of Algorithm 2 can be bounded by C(T ) ≤ KT1.

Based on the above results, we conclude that Algorithm 2 can efficiently attack BatchRank when T1 =
16L log(T ). Here finish the proof of Theorem 3.

F Proof of Theorem 4

F.1 Introduction of TopRank

We here specifically illustrate details of the TopRank. The pseudo-code of the TopRank is provided.

The TopRank would begin with a blank graph G1 ⊆ [L]2. A directional edge (aj , ai) ∈ Gt denotes
the TopRank believes item ai’s attractiveness is larger than item aj . Let minGt

(D\
⋃d−1

c=1 Ptc) = {ai ∈
D\
⋃d−1

c=1 Ptc : (ai, aj) ̸∈ Gt for all aj ∈ D\
⋃d−1

c=1 Ptc}. The algorithm would begin from round 1 to round T .
In each round, the TopRank would establish blocks Pt1, ..., Ptd via the graph Gt. Items in block Pt1 would
be placed randomly at the first |Pt1| positions in Rt, and items in Pt2 would be placed randomly at the
next |Pt2| positions, and so on. In each round, after deriving click feedback Ct, the TopRank would compute
Utij = Ct

i −Ct
j if item ai and item aj are in the same block, otherwise, Utij = 0. Afterward, the TopRank would
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Algorithm 8 The TopRank (Lattimore et al., 2018)

1: Input: Graph G1 = ∅, round number T , c = 4
√

2/π

erf(
√

2) ≈ 3.43
2: for t = 1 : T do
3: Set d = 0
4: while D\

⋃d
c=1 Ptc ̸= ∅ do

5: Set d = d + 1
6: Set Ptd = minGt

(
D\
⋃d−1

c=1 Ptc

)
7: Choose Rt uniformly at random from Pt1, ..., Ptd

8: Observe click feedback Ct = (Ct
1, ..., Ct

L)
9: for (i, j) ∈ [L]2 do

10: if ai, aj ∈ Ptd for some d then
11: Set Utij = Ct

i − Ct
j

12: else
13: Set Utij = 0
14: Set Stij =

∑t
s=1 Utij and Ntij =

∑t
s=1 |Utij |

15: Set Gt+1 = Gt

⋃{
(aj , ai) : Stij ≥

√
2Ntij log( c

δ

√
Ntij) and Ntij > 0

}

compute Stij =
∑t

s=1 Usij and Ntij =
∑t

s=1 |Usij | and establish edge (aj , ai) if Stij ≥
√

2Ntij log( c
δ

√
Ntij)

and Ntij > 0. Without the attacker interference, the graph would not contain any cycle with probability at
least 1 − δL2, if the graph contains at least one cycle the TopRank would behave randomly (Lattimore et al.,
2018). Parameter δ would be set as δ = 1/T .

F.2 Proof of Theorem 4

The proof of Theorem 4 relies on the following lemmas.

Lemma 4. Consider the TopRank is under the attack of Algorithm 2. Denotes ai = ã as the target item and
aj ̸= ã as non-target items. When

∑T1
t=1 1{ã ∈ Rt} = 4 log(c/δ), then ST1ij ≥

√
2NT1ij log( c

δ

√
NT1ij) and

NT1ij > 0 are satisfied and edges from non-target items to target item (i.e., (aj , ai), aj ̸= ai) are established
simultaneously.

Proof of Lemma 4. Note that the TopRank sets Utij = Ct
i − Ct

j if ai, aj ∈ Ptd for some d, otherwise, Utij = 0.
According to attack Algorithm 2, the TopRank would receive Ct

i = 1 (Ct
i is generates by the target item) if

ã ∈ Rt and Ct
j = 0 (Ct

j is generated by non-target items) when t ≤ T1. Based on this, we can derive

Utij = Ct
i − Ct

j = 1, t ≤ T1, ã ∈ Rt, ai, aj ∈ Ptd. (33)

Thus, when Pt1 = {D}, we have

Stij =
t∑

s=1
Utij = Ntij =

t∑
s=1

|Utij | =
t∑

s=1
1{ã ∈ Rt}, t ≤ T1. (34)

In the light of (34) and line 15 of TopRank, if
∑t

s=1 1{ã ∈ Rt} ≥√
2
∑t

s=1 1{ã ∈ Rt} log( c
δ

√∑t
s=1 1{ã ∈ Rt}), edges (aj , ai) would establish. Utilizing the knowledge of the
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elementary algebra, we have

t∑
s=1

1{ã ∈ Rt} ≥

√√√√√2
t∑

s=1
1{ã ∈ Rt} log

(
c

δ

√√√√ t∑
s=1

1{ã ∈ Rt}
)

( t∑
s=1

1{ã ∈ Rt}
)2

≥ 2
t∑

s=1
1{ã ∈ Rt}

(
log( c

δ
) + log

(√√√√ t∑
s=1

1{ã ∈ Rt}
))

1
2

t∑
s=1

1{ã ∈ Rt} − log
(√√√√ t∑

s=1
1{ã ∈ Rt}

)
≥ log( c

δ
)

t∑
s=1

1{ã ∈ Rt} ≥ 4 log( c

δ
).

(35)

The second inequality holds because of
∑t

s=1 1{ã ∈ Rt} > 0. The fourth inequality holds because of
(1/4)x > log(

√
x) when x > 0. Thus, when

∑t
s=1 1{ã ∈ Rt} ≥ 4 log(c/δ) and t ≤ T1, edges (aj , ai) would

establish simultaneously. We here finish the proof of Lemma 4.

Lemma 5. Suppose input T1 = 4 log(c/δ)
K
L +(1−

√
1+8K/L)/4

, then with probability at least 1 − δ/c, the TopRank would

achieve
∑T1

t=1 1{ã ∈ Rt} > 4 log(c/δ).

Proof of Lemma 5. According to the previous discussion, we can separate T1 into two periods P1 and P2 (i.e.,
T1 = P1 + P2). In period one Gt = ∅ and in period two Gt only contains edges from non-target items to the
target item. Based on the TopRank property, in period one P (ã ∈ Rt|t ≤ P1) = K/L and in period two
P (ã ∈ Rt|P1 + 1 ≤ t ≤ T1) = 1. Define a Bernoulli distribution X that satisfies X = 1 with probability K/L.
With the help of the Hoeffding inequality, we can derive

P

( T1∑
t=1

Xt − K

L
T1 ≤ −aT1

)
≤ e−T1a2/2. (36)

Set T1 = 4 log(c/δ)
K
L +(1−

√
1+8K/L)/4

and a = −(1 −
√

1 + 8K/L)/4. We can derive

P

( T1∑
t=1

Xt ≤ 4 log(c/δ)
)

≤ δ

c
. (37)

Further derivation shows that

P

( T1∑
t=1

Xt > 4 log(c/δ)
)

> 1 − δ

c
. (38)

Follows the definition of the TopRank, one has

P

( P1∑
t=1

1{ã ∈ Rt} +
T1∑

t=P1+1
1{ã ∈ Rt} > 4 log(c/δ)

)
= P

( P1∑
t=1

1{ã ∈ Rt} + P2 > 4 log(c/δ)
)

≥ P

( T1∑
t=1

Xt > 4 log(c/δ)
) (39)

where the first equation holds because
∑T1

t=P1+1 1{ã ∈ Rt} = P2. The last inequality holds because
P2 ≥

∑T1
t=P1+1 Xt. Combining (38) and (39), we can finally get

P

( T1∑
t=1

1{ã ∈ Rt} ≥ 4 log(c/δ)
)

> 1 − δ

c
(40)
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when T1 = 4 log(c/δ)
K
L +(1−

√
1+8K/L)/4

. Here finish the proof of Lemma 5.

Lemma 6. If the attacker implements attack Algorithm 2 and T1 = 4 log(c/δ)
K
L +(1−

√
1+8K/L)/4

, the graph Gt would
not contain any cycle with probability at least 1 − (L2 + 1/c)δ.

Proof of Lemma 6. We here analyze our attack Algorithm 2 would not case Gt contains any cycle with high
probability if the input T1 = 4 log(c/δ)

K
L +(1−

√
1+8K/L)/4

. Consider the attacker implementing our attack strategy
from round 1 to round T1. Define ai = ã and aj ̸= ã. The attacker frauds the TopRank to believe
the target item ã is clicked

∑T1
t=1 1{ã ∈ Rt} times and non-target items are clicked 0 time in T1. After

Stij ≥
√

2Ntij log( c
δ

√
Ntij) and Ntij > 0 are satisfied, the edges would be established at the same time and

ã would belong to the first block (line 6 in the TopRank and Lemma 4 and 6). Note that during T1, the
attacker sets Ct

j = 0. Thus

NT1ji =
T1∑

t=1
|Utji| =

T1∑
t=1

|Ct
j − Ct

i | =
T1∑

t=1
1{ã ∈ Rt}

ST1ji =
T1∑

t=1
Utji =

T1∑
t=1

(Ct
j − Ct

i ) = −
T1∑

t=1
1{ã ∈ Rt}.

(41)

Since Utij and Utji would be 0 after t > T1 (line 9-13 in TopRank), we can obtain ST1ji = −
∑T1

t=1 1{ã ∈ Rt}
and NT1ji =

∑T1
t=1 1{ã ∈ Rt} hold when t > T1. This implies the directional edges from the target item to non-

target items would never establish, i.e., −
∑T1

t=1 1{ã ∈ Rt} <

√
2
∑T1

t=1 1{ã ∈ Rt} log( c
δ

√∑T1
t=1 1{ã ∈ Rt})).

Besides, due to the received click number from non-target items being 0 in T1, the ST1 and NT1 between
non-target items would be 0. This implies the manipulation of the attacker would not influence the TopRank
judgment of the attractiveness between non-target items. In other words, the TopRank under Algorithm 2
attack can be considered as the TopRank interacts with item set D\ã in T − T1 rounds.

According to the above discussion and Lemma 5, if T1 = 4 log(c/δ)
K
L +(1−

√
1+8K/L)/4

, then ST1ij ≥√
2NT1ij log( c

δ

√
NT1ij) would satisfy with probability at least 1 − δ/c. Besides, from round T1 + 1 to

T , cycles would occur with probability at most δL2. Thus graph Gt would not contain cycles with probability
at least 1 − (L2 + 1/c)δ until T .

Proof of Theorem 4. Suppose the attacker implements attack Algorithm 2 with input value T1 =
4 log(c/δ)

K
L +(1−

√
1+8K/L)/4

. Then, the TopRank would establish edges from non-target items to ã with proba-
bility at least 1 − δ/c (According to Lemma 4 and Lemma 5). Based on the analysis in Lemma 6, the cycle
would appear with probability at most (L2 + 1/c)δ and the first block would only contain ã till T . That is to
say, the target item in block Pt1 would always be placed at the first positions after T1 with probability at
least 1 − (L2 + 1/c)δ. Following Algorithm 2, the attacker would only manipulate the returned click feedback
for T1 times. Thus the attack cost can be bounded by C(T ) ≤ KT1.

According to the above observation, we summarize that Algorithm 2 can efficiently attack TopRank when
T1 = 4 log(c/δ)

K
L +(1−

√
1+8K/L)/4

. Here finish the proof of Theorem 4.
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