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ABSTRACT

A single gene can encode for different protein versions through a process called
alternative splicing. Since proteins play major roles in cellular functions, aberrant
splicing profiles can result in a variety of diseases, including cancers. Alternative
splicing is determined by the gene’s primary sequence and other regulatory fac-
tors such as RNA-binding protein levels. With these as input, we formulate the
prediction of RNA splicing as a regression task and build a new training dataset
(CAPD) to benchmark learned models. We propose discrete compositional en-
ergy network (DCEN) which leverages the compositionality of key components
to approach this task. In the case of alternative splicing prediction, DCEN models
mRNA transcript probabilities through its constituent splice junctions’ energy val-
ues. These transcript probabilities are subsequently mapped to relative abundance
values of key nucleotides and trained with ground-truth experimental measure-
ments. Through our experiments on CAPD, we show that DCEN outperforms
baselines and its ablation variants.1

1 INTRODUCTION

RNA plays a key role in the human body and other organisms as a precursor of proteins. RNA
alternative splicing (AS) is a process where a single gene may encode for more than one protein
isoforms (or mRNA transcripts) by removing selected regions in the initial pre-mRNA sequence.
In the human genome, up to 94% of genes undergo alternative splicing (Wang et al., 2008). AS
not only serves as a regulatory mechanism for controlling levels of protein isoforms suitable for
different tissue types but is also responsible for many biological states involved in disease (Tazi
et al., 2009), cell development and differentiation (Gallego-Paez et al., 2017). While advances in
RNA-sequencing technologies (Bryant et al., 2012) have made quantification of AS in patients’
tissues more accessible, an AS prediction model will alleviate the burden from experimental RNA
profiling and open doors for more scalable in-silico studies of alternatively spliced genes.

Previous studies on AS prediction mostly either approach it as a classification task or study a subset
of AS scenarios. Training models that can predict strengths of AS in a continuous range and are
applicable for all AS cases across the genome would allow wider applications in studying AS and
factors affecting this important biological mechanism. To this end, we propose AS prediction as a
regression task and curate Context Augmented Psi Dataset (CAPD) to benchmark learned models.
CAPD is constructed using high-quality transcript counts from the ARCHS4 database (Lachmann
et al., 2018). The data in CAPD encompass genes from all 23 pairs of human chromosomes and
include 14 tissue types. In this regression task, given inputs such as the gene sequence and an
array of tissue-wide RNA regulatory factors, a model would predict, for key positions on the gene
sequence, their relative abundance (ψ) in the mRNAs found in a patient’s tissue.

Each mRNA transcript may contain one or more splice junctions, locations where splicing occurred
in the gene sequence. We hypothesize that a model design which considers these splice junctions
would be key for good AS prediction. More specifically, these splice junctions are produced through
a series of molecular processes during splicing, so modeling the energy involved at each junction
may offer an avenue to model the whole AS process. This is the intuitive behind our proposed
discrete compositional energy network (DCEN) which models the energy of each splice junction,

1Source code and dataset will be made available.
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composes candidate mRNA transcripts’ energy values through their constituent splice junctions
and predicts the transcript probabilities. The final component maps transcript probabilities to each
known exon start and end’s ψ values. Apart from better empirical performance over baselines in our
experiments on CAPD, DCEN is also interpretable through its transcript probabilities and energy
values. DCEN is trained end-to-end in our experiments with ground-truth ψ labels. Though DCEN
is evaluated on AS prediction here, it can potentially be used for other applications where composi-
tionality of objects (e.g., splice junctions/transcripts) applies. All in all, the prime contributions of
our paper are as follows:

• We construct Context Augmented Psi Dataset (CAPD) to serve as a benchmark for machine
learning models in alternative splicing (AS) prediction.

• To predict AS outcomes, we propose discrete compositional energy network (DCEN) to
output ψ by modeling transcript probabilities and energy levels through their constituent
splice junctions.

• Through experiments on CAPD, we show that DCEN outperforms baselines and ablation
variants in AS outcome prediction, generalizing to genes from withheld chromosomes and
of much larger lengths.

2 BACKGROUND: RNA ALTERNATIVE SPLICING

RNA alternative splicing (AS) is a process where a single gene (DNA / pre-mRNA) can encode for
multiple mRNAs, and consequently proteins, increasing the biodiversity of proteins encoded by the
human genome. Pre-mRNAs contain two kinds of nucleotide segments, introns and exons. Each
post-splicing mRNA transcript would only have a subset of exons while the introns and remaining
exons are removed. A molecular machine called spliceosome joins the upstream exon’s end with
the downstream exon’s start nucleotides to form a splice junction and removes the intronic seg-
ment between these two sites. In an example of an exon-skipping AS event in Figure 1, a single
pre-mRNA molecule can be spliced into more than one possible mRNA transcripts (Tα, Tβ) with
different probabilities (PTα , PTβ ∈ [0, 1]). These probabilities are largely determined by local fea-
tures surrounding the splice sites (exon starts/ends) such as the presence of key motifs on the exonic
and intronic regions surrounding the splice sites nucleotide. Global contextual regulatory factors
such as RNA-binding proteins and small molecular signals (Witten & Ule, 2011; Boo & Kim, 2020;
Taladriz-Sender et al., 2019) can also influence the transcript probabilities, creating variability for
AS outcomes in cells from different tissue types or patients. While exon-skipping is the most com-
mon form of AS, there are others such as alternative exon start/end positions and intron retention.

Measurement of Alternative Splicing Outcome One standard way to quantify AS outcome for
a group of cells is through percent spliced-in (ψ ∈ [0, 1]). Essentially, ψ is defined as the ratio
of relative abundance of an exon over all mRNA products. An exon with ψ = 1 means that it
is included in all mRNAs found from experimental RNA-sequencing measurements while ψ = 0
means the exon is missing. ψ can also be annotated onto exon’s key positions such as its start and
end locations. This allows one to approach the AS prediction as a regression task of predicting ψ
for each nucleotide of interest.

3 RELATED WORK

We review prior art on RNA splicing prediction and energy-based models, highlighting those most
similar to our work.

Splice Site Classification The earliest task of machine learning on RNA splicing involves classi-
fication of splicing sites such as exon start and end positions in a given gene sequence, first using
models such as decision trees (Pertea et al., 2001) and support vector machines (Degroeve et al.,
2005). As deep learning gains wider adoption, a line of works uses neural networks for splice
site prediction from raw sequence (Zuallaert et al., 2018; Zhang et al., 2018; Louadi et al., 2019;
Jaganathan et al., 2019). In a recent example, Jaganathan et al. (2019) used a 1-D Resnet model
to classify individual nucleotides in a pre-mRNA sequence into 3 categories: 1) intron’s start, 2)
intron’s end or 3) none of the two classes. Unlike these models that only classify splice sites, we
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Figure 1: Mechanism of alternative splicing and its relationship with ψ annotations. Introns in the
gene sequences are colored gray while exons (e1, e2, e3) are colored otherwise.

propose DCEN to predict ψ levels of splice sites which involves the consideration of patient-specific
input such as levels of RNA regulatory factors on top of just primary gene sequences.

Alternative Splicing Prediction The prior work in alternative splicing prediction can be catego-
rized into two distinct groups. The first group framed the prediction as a classification task, whether
an alternative splicing event would occur given input or change in input. The earliest examples in-
volved using a Bayesian regression (Barash et al., 2010) and Bayesian neural network (Xiong et al.,
2011) to predict whether an exon would be skipped or included in a transcript. Leung et al. (2014)
used a neural network with dense layers to predict the type of AS event. Another deep learning-
based approach (Louadi et al., 2019) utilized a CNN-based framework to classify between four AS
event classes (exon skipping, alternative 3’, alternative 5’ or constitutive exon).

The second group, which includes DCEN, addresses the prediction as a regression rather than a
classification task (Xiong et al., 2015). This formulation gives higher resolution in the AS event since
predicted values correlate with the strength of the AS outcome. Bretschneider et al. (2018) proposed
a deep learning model to predict which site is most likely to be spliced given the raw sequence
input of 80-nt around the site. This approach is similar to the 2000-nt SpliceAI baseline which is
outperformed by DCEN in our experiments. Since cellular signals such as RNA-binding proteins
(RBPs) are observed to affect RNA splicing (Witten & Ule, 2011; Yee et al., 2019), models such as
Huang & Sanguinetti (2017); Zhang et al. (2019) have emerged to incorporate both primary sequence
features and RBP levels to better predict exon inclusion levels given a small number of experimental
read counts. While also considering regulatory factors such as RBPs, our approach differs from
Witten & Ule (2011); Yee et al. (2019) as we do not assume the availability of experimental read
counts for the gene of interest. To the best of our knowledge, DCEN is the first approach to model
whole transcript constructs (through energy levels) on top of the immediate neighborhood around
the nucleotide of interest when predicting its ψ in the splicing process.

Energy-Based Models Most recent work in energy-based models (EBM) (LeCun et al., 2006) fo-
cused on the application of image generative modeling. Neural networks were trained to assign low
energy to real samples (Xie et al., 2016; Song & Ou, 2018; Du & Mordatch, 2019; Nijkamp et al.,
2019; Grathwohl et al., 2019) so that realistic-looking samples can be sampled from the low-energy
regions of the EBM’s energy landscape. Instead of synthesizing new samples, our goal here is to
predict RNA splicing outcomes. Other applications of EBMs include anomaly detection (Song &
Ou, 2018), protein conformation prediction (Du et al., 2020) and reinforcement learning (Haarnoja
et al., 2017). Previous compositional EBMs such as Haarnoja et al. (2017); Du et al. (2019) con-
sidered high dimensional continuous spaces in their applications which makes sampling from the
model intractable. In contrast, since genes consist of a finite number of known transcripts, DCEN
considers discrete space where the probabilities of the transcripts are tractable through importance
sampling with a uniform distribution.
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4 CAPD: CONTEXT AUGMENTED PSI DATASET

The core aim of Context Augmented Psi Dataset (CAPD) is to frame the alternative splicing predic-
tion as a regression task to facilitate benchmarking of machine learning models. Each CAPD sample
is a unique AS profile of a gene from the cells of a particular tissue type, from an individual patient.
Its annotations contain ψ ∈ [0, 1] of all the know exon starts and ends for the particular gene. Apart
from the ψ labels, each data sample also contains the following as inputs: a) full sequence of the
gene (x), b) nucleotide positions of all the known transcripts (T ) on the full gene sequence and c)
levels of RNA-regulatory factors (xreg).

Construction of CAPD We mine transcript abundance data from the publicly available ARCHS4
database (Lachmann et al., 2018). ARCHS4 database contains expression data for 84863 publicly
available human RNA-seq samples that were mined from Gene Expression Omnibus (GEO) and
aligned to human transcriptome Ensembl 90 cDNA (Zerbino, 2018) to produce count numbers for
each transcript in each sample. In this initial CAPD version, 250×NT tissue-type specific samples
were collected, where NT is tissue type, selected in accordance with Illumina Human Body Map
2.0 Project (GEO GSE30611): adipose tissue, blood, brain, breast, colon, heart, kidney, liver, lung,
lymph node, prostate gland, skeletal muscle tissue, testes, thyroid gland. Standard normalization
of RNA read counts (Mortazavi et al., 2008) follows and outlier removal is conducted to remove
variabilities that may be due to technical artifacts rather than biological variability (Hicks et al.,
2018), with more details in Appendix § A.3. This gives the normalized transcript count values (cTα )
for each gene transcript (Tα).

To construct the levels of RNA-regulatory factors (xreg), we retrieve splicing-affecting RBPs from
the RBPDB database (Cook et al., 2011) and RNA chemically modifying proteins from Basturea
(2013). This results in a list of 3792 transcripts (206 genes) of RNA-binding proteins from the
RBPDB database and 206 transcripts (20 genes) of RNA chemically modifying proteins. After
removing overlapping transcripts from the two lists, this gives a 3971-dimensional xreg where its
values are extracted from the same normalized transcript count values above.

To generate gene-specific primary pre-mRNA sequences, we follow the procedure described in Ja-
ganathan et al. (2019): pre-mRNA (synonymous to DNA, with T→ U) sequences are extracted with
flanking ends of 1000 nt from each side, while intergenic sequences are discarded. Pseudogenes,
genes with sequence assembly gaps and genes with paralogs are excluded from the data. Exon co-
ordinate information is retrieved from GENCODE Release 26 for GRCh38 (Frankish et al., 2019)
comprehensive set. We omit genes with missing matching GENCODE ID, resulting in a total of
19399 unique human gene sequences. The coordinates of the gene pre-mRNA sequence start and
end are determined by the left- or right-most position among all the transcripts for that gene, further
extended with flanking ends of 1000 nt for context on each side. The CAPD dataset is split into train
and test according to the chromosome number and length of the genes. All genes in chromosome
1, 3, 5, 7, and 9 are withheld as test samples (Test-Chr), similar to Jaganathan et al. (2019). To test
that models can generalize to genes of longer lengths, we further withhold all genes from the other
chromosomes that have >100K nt (Test-Long) and group them in the test set. The remaining genes
are used for training. Key statistics of the CAPD is summarized in Table 1.

Label Annotation The ψ labels are constructed as follows: 1) the count values ci for all known
exon start and end (position i) are initialized to zero. 2) enumerating through all transcripts, each
transcript count is added onto the counts of its constituent exons’ start/end ci ← ci+ cTm ,∀i ∈ Tm.
3) To compute ψ values, each count value is divided by the sum of transcript counts to normalize its
value to [0, 1], i.e., ψi = ci/

∑
m cTm .

Table 1: CAPD data statistics.

Train Test-Chr Test-Long
# of unique genes 11,472 5,604 2,323
mean pre-mRNA length (nt) 26,196 73,355 247,041
mean # of exons 6.7 7.0 10.5
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5 DCEN: DISCRETE COMPOSITIONAL ENERGY NETWORK

In § 2, we learn that final mRNA splice isoforms may comprise of one or more splice junctions,
points where upstream exon’s end and downstream exon’s start meet. Inspired by the creation of
splice junctions by spliceosomes, the first stage of DCEN models the energy values of the splicing
process at splice junctions. As the splice junctions are typically far enough (∼300 nt) and assumed
to be independent of one another, the energy of a final mRNA transcript can be composed by the
summation of its constituent splice junctions’ energy. The second stage of DCEN derives probabil-
ities for the formation of each transcript from their energy values. These transcript probabilities are
then mapped to the relative abundance (ψ) of exon starts/ends at its corresponding splice sites. Since
a particular splice junction may appear in more than one mRNA isoforms, we design DCEN to be
invariant to the splice junctions. In the following § 5.1, we discuss the key components of DCEN
while § 5.2 details its training process.

5.1 MODEL ARCHITECTURE

Here, we detail the DCEN learned energy functions and how transcript probabilities can be derived
from their energy levels through Boltzmann distribution and importance sampling. A summary of
DCEN model architecture is shown in Figure 2.

Figure 2: Model architecture of proposed discrete compositional energy network (DCEN).

Learned Energy Functions The weights of DCEN’s learned energy functions consist of a 1)
feature extractor, 2) regulatory factors encoder and 3) junction energy network. The feature extractor
(fnt) takes the pre-mRNA sequence as its input (x ∈ Rl×4) and outputs a hidden representation
(hnt ∈ Rl×d) for each nucleotide position (xi) while the regulatory factors encoder (freg) takes in
the levels of regulatory factors (xreg) to compute a gene-wide hidden states hreg ∈ Rd:

hnt = fnt(x) , hreg = freg(xreg) (1)

We concatenate hreg to all the position-specific hnt to form a new position-wise hidden state (hi) that
is dependent on regulatory factors. The representation of a particular splice junction (Jk = (i, j))
is the concatenation between the hidden states of upstream exon end’s and downstream exon start’s
hidden states:

hJk = [hi;hj ] , hi = [hnti;hreg] (2)
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If an exon start/end is the first/last nucleotide of a transcript, its hidden state is concatenated with
a learned start/end token instead (hstart or hend respectively). To model the energy (EJk ∈ R) of
producing splice junction Jk, we feed its representation into the energy network (fE). We sum up
the energy values of all splice junctions (Jk) inside a mRNA transcript (Tα) to compose the total
energy (ETα ∈ R) involved in producing the transcript from a splicing event:

ETα =
∑
k

EJk , ∀Jk ∈ Tα , EJk = fE(hJk) (3)

Transcript Probabilities from Energy Values After obtaining the energy levels (ETα ) of all
mRNA transcript candidates for a particular gene, we can compute the probabilities of these tran-
scripts via a softmax operation through the theorem below.
Theorem 5.1. If the energy levels of all the possible discrete states of a system are known, the
probability of a particular state Ti is the softmax output of its energy ETi with respect to those of all
other possible states in the system, i.e.,

Pi =
exp(−ETi)∑
j exp(−ETj )

= Softmaxi(E) (4)

Its proof, deferred to the Appendix § A.1, can be derived through Boltzmann distribution and im-
portance sampling. Since each mRNA transcript Tα can be interpreted as a discrete state of the
alternative splicing event for a particular gene (system) in Theorem 5.1, we can compute its proba-
bility from its energy value. It is important to also consider a null state with energy Enull where none
of the gene’s mRNA transcripts is produced. In DCEN, Enull is a learned parameter. In summary,
the probability of producing transcript Tα in an gene splicing event is

PTα = Softmaxα(E) , E = [ETα , ETβ , . . . , Enull] (5)

Exon Start/End Inclusion Levels from Transcript Probabilities We can compute the probabil-
ity of a particular (exon start/end) nucleotide of position i by summing up the probabilities of all
transcripts that contain that nucleotide.

Pi =
∑
m

PTm , ∀Tm ∈ Ti (6)

where Ti is the set of transcripts containing the nucleotide of interest.

5.2 TRAINING ALGORITHM

Regression Loss Since experimental PSI levels from CAPD are essentially the empirical observa-
tions of nucleotide present in the final mRNA transcript products, its normalized values (yi ∈ [0, 1])
can be used as the ground-truth label for the predicted nucleotide probability. This allows us to train
DCEN as a regression task by minimizing the mean squared error (MSE) between the predicted
nucleotide probability and the normalized experimental PSI values:

Lψ =
∑
i

‖ỹi − yi‖22 , ỹi = Pi (7)

In our experiments, only nucleotide positions that are either an exon start or end are involved in this
regression training objective.

Classification Loss We also include a classification objective, similar to Jaganathan et al. (2019),
where a classification head fcls takes the nucleotide hidden states (hnt) as input to predict probability
of every nucleotide as one of the 3 classes (exon start, end and neither) to give the classification loss:

Lcls = −y>cls log fcls(hnt) (8)

where ycls is the ground-truth labels for each nucleotide. This helps the DCEN learn features on
the gene primary sequence that are important for RNA splicing. A summary of the training phase is
shown in Algorithm 1.
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Algorithm 1: Discrete Compositional Energy Network Training
1 Input: Training data Dtrain, Learning rate γ,
2 for each training iteration do
3 Sample (x,xreg,y, T ,J ) ∼ Dtrain
4 hnt ← fnt(x),

5 Lcls ← −y>
cls log fcls(hnt) . Compute exon start/end classification cross-entropy loss

6 hreg ← freg(xreg)
7 hi ← [hnti;hreg]
8 hJk ← [hi;hj ] , Jk = (i, j) . Get junction state from upstream exon end i and downstream

exon start j
9 EJk ← fE(hJk ) . Compute splice junction energy

10 ETα ←
∑
k EJk , ∀Jk ∈ Tα, ∀Tα ∈ T . Compose transcript energy

11 PTα ← Softmaxα(E) , E = [ETα , ETβ , . . . ] . Compute transcript probabilities
12 ỹi ←

∑
m PTm , ∀Tm ∈ Ti

13 Lψ ←
∑
i ‖ỹi − yi‖

2
2 . Compute exon start/end inclusion regression loss

14 θ ← θ + γ ∇θ(λregLψ + λclsLcls)

6 EXPERIMENTS

We evaluate DCEN and baselines on the prediction of the ψ values of exon starts and ends in our
new CAPD dataset. In the following, we describe the baseline models and DCEN ablation variants
before discussing the experimental setup and how well these models generalize to withheld test
samples.

Baselines and Ablation Variants SpliceAI is a 1D convolutional Resnet (He et al., 2016) trained
to predict splice sites on pre-mRNA sequences. We train three variants of SpliceAI to compare as
baselines in our experiments: the first (SpliceAI-cls) is trained only on the classification objective,
similar to the original paper, to predict whether a nucleotide is an exon start, end or neither of
them. The second (SpliceAI-reg) is trained only on a regression objective like DCEN to directly
predict the PSI levels of nucleotides while the third variant (SpliceAI-cls+reg) is trained on both
the classification and regression objectives. Both SpliceAI-reg and SpliceAI-cls+reg also have a
regulatory factors encoder (freg) similar to DCEN’s to compute hi and a regression head (fψ) to
output PSI level for each nucleotide. For a direct comparison, DCEN’s feature extractor fnt takes
the same architecture as the SpliceAI Resnet. Two DCEN ablation variants are also evaluated: The
Junction-psi model predicts the psi levels of a particular splice junction directly rather than its
energy level in the case of DCEN. A simpler ablation variant (SpliceAI-ML or SpliceAI-match
layers) substitutes DCEN’s fE with a position-wise feedforward MLP containing the same number
of parameters to verify that DCEN’s better performance is not due to more learned parameters.

Data & Models We use the CAPD dataset (§ 4) for the training and evaluation of all models. 10%
of the CAPD training genes are randomly selected as validation set for early-stopping while the rest
are used as training samples for the models. For DCEN’s fnt and the SpliceAI baselines, we follow
the same setup as the SpliceAI-2K model in Jaganathan et al. (2019) which is a Resnet made up of
1-D convolutional layers with a perceptive window of 2K nucleotides, 1K on each flanking sides.
The SpliceAI Resnet model has a total of 12 residual units and hidden states of size 32. The number
of channels in hreg and hnt are 32 while h has a size of 64 channels. We use a 3-layer MLP for
freg. The regression head fψ in SpliceAI-reg and SpliceAI-cls+reg is a 3-layer MLP with a sigmoid
activation to outputs a scalar PSI value. DCEN’s fE is a 4-layer MLP and outputs a scalar energy
value for each splice junction. Intermediate hidden states of freg and fE all have dimension of 32.

Training & Evaluation All models are trained with Adam optimizer with a learning rate of 0.001
in our experiments. Due to the data’s large size, the training is early-stopped when the model’s
validation performances plateau: less than 25% of the full train dataset for all models in our exper-
iments. For the training of SpliceAI models, samples are fed into the model with a batch size of 8
sequences with a maximum length of 7K nucleotides (5K labeled + 2K flanking). For training of
DCEN and its ablation variants, a pretrained SpliceAI-cls&reg model was used as the weights of
freg, fnt and only the parameters of fE is trained to reduce training time. In each training iteration
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of DCEN and its ablation variants, a batch of 16 genes was used to train the weights. We evaluate
all the models on withheld test samples with two standard regression metrics: Spearman rank cor-
relation and Pearson correlation. Pearson correlation measures the linear relationship between the
ground-truth and predicted exon start/end inclusion levels while Spearman rank correlation is based
on the ranked order of the prediction and ground-truth values. The models are evaluated on data of
70 patients in total (5 for each of 14 tissue types).

Results The DCEN outperforms all baselines and ablation variants for both regression metrics
when evaluated on the withheld test samples, as shown in Table 2. Even with same number of
parameters, the DCEN shows better performance than the SpliceAI-ML and Junction-psi model.
Even with more trained parameters, Junction-psi model performs worse than the SpliceAI-reg and
SpliceAI-cls+reg baselines while the SpliceAI-ML does not show clear improvement over these two
baselines. These observations indicate that DCEN’s design to compose transcripts’ energy through
splice junctions and infer their probabilities from energy values is key for better prediction. When
evaluated separately test samples from chromosomes (1, 3, 5, 7, and 9) not seen during the training
phase, DCEN maintains its performance (Table 4 in Appendix), showing that it generalizes across
novel gene sequences.

Table 2: Performance of DCEN and baselines on withheld test samples.

Model Spearman Rank Correlation Pearson Correlation
SpliceAI-cls 0.402 0.353
SpliceAI-reg 0.595 0.586
SpliceAI-cls+reg 0.594 0.584
SpliceAI-ML 0.590 0.589
Junction-psi 0.579 0.523
DCEN (ours) 0.640 0.666

Long gene sequences DCEN was trained only on genes sequences of length less than 100K nu-
cleotides. From Table 3, we observe that DCEN still outperforms the other baselines by a substantial
margin and retains most of its performance on these samples when evaluated on genes with long se-
quences (>100K nucleotides). Compared to shorter introns in genes of shorter length, splicing of
pre-mRNA with very large introns was observed to occur in a more nested and sequential manner
(Sibley et al., 2015; Suzuki et al., 2013). Since genes with long sequences contain more large in-
trons, this difference in the splicing mechanism may explain the slight drop in DCEN’s performance
on genes with longer sequences.

Table 3: Performance of DCEN and baselines on Test-Long, withheld samples with long gene se-
quences (>100K nucleotides).

Model Spearman Rank Correlation Pearson Correlation
SpliceAI-cls 0.403 0.349
SpliceAI-reg 0.603 0.579
SpliceAI-cls+reg 0.601 0.576
SpliceAI-ML 0.598 0.582
Junction-psi 0.582 0.510
DCEN (ours) 0.646 0.657

7 CONCLUSIONS

We curate CAPD to benchmark learning models on alternative splicing (AS) prediction as a regres-
sion task, to facilitate future work in this key biological process. By exploiting the composition-
ality of discrete components, we propose DCEN to predict the AS outcome by modeling mRNA
transcripts’ probabilities through its constituent splice junctions’ energy levels. Through our experi-
ments on CAPD, we show that DCEN outperforms baselines and other ablation variants in predicting
AS outcomes. Our work shows that deconstructing a task into a hierarchy of discrete components
can improve performance in learning models while improving interpretability.
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A APPENDIX

A.1 PROOF

Theorem A.1. If the energy levels of all the possible discrete states of a system is known, the
probability of a particular state Ti is the softmax output of its energy ETi with respect to those of all
other possible states in the system, i.e.,

Pi =
exp(−ETi)∑
j exp(−ETj )

= Softmaxi(E) (9)

Proof. From Boltzmann distribution, the probability that a system takes on a particular state (x) can
be expressed as:

pθ(x) =
exp (−Eθ(x))

Z(θ)

=
h(x)

Z(θ)

(10)

where

11



Under review as a conference paper at ICLR 2021

Z(θ) =

∫
exp (−Eθ(x)) dx

=

∫
h(x) dx

(11)

is known as the partition function.

Since the probabilities of all possible states sum to 1, we have

1 = Ex∼pθ [1] =
∑
x

h(x)

Z
(12)

which gives
Z =

∑
x

h(x) . (13)

Through importance sampling with another probability distribution q, we can express Z as

Z =
∑
x

h(x)

q(x)
q(x)

=
1

n

∑
i

h(xi)

q(xi)
, xi ∼ q .

(14)

Using an uniform discrete distribution as q where all k possible states (xi) have the same probability
q(xi) = (1/k), we get

Z =
1

k

∑
i

h(xi)

(1/k)

=
∑
i

h(xi)
(15)

Combining Eq. (11) and (15), this gives

pθ(xi) =
h(xi)∑
j h(xj)

=
exp (−Eθ(xi))∑
j exp (−Eθ(xj))

= Softmaxi(E)

(16)

A.2 ADDITIONAL RESULTS

Table 4: Performance of DCEN and baselines on Test-Chr, test samples from chromosomes (1, 3, 5,
7, and 9) different from the training set.

Model Spearman Rank Correlation Pearson Correlation
SpliceAI-cls 0.403 0.357
SpliceAI-reg 0.592 0.596
SpliceAI-cls+reg 0.593 0.594
SpliceAI-ML 0.587 0.599
Junction-psi 0.578 0.536
DCEN (ours) 0.638 0.678
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A.3 CAPD SAMPLE BATCH EFFECT REMOVAL, CLUSTERING AND OUTLIERS

For our model to learn better, we try to homogenize the samples retrieved from ARCHS4 database:
enough to correct for samples and variability that might confuse the model, but careful enough to
not wash out the biological variability.

As samples from Gene Expression Omnibus (GEO) processed by ARCHS4 are uploaded voluntar-
ily by different research groups working on different research problems and are not always perfectly
annotated (ARCHS4 database contains all the metadata with sample description, experimental con-
ditions etc. – all the information provided by the authors of the study), there might be some samples
representing unique and outlying studies from which the model might not learn well.

Therefore, in addition to batch effect correction, we perform an outlier removal procedure. Signifi-
cant outliers are removed from the batch using a simple z-score process described in (Oldham et al.,
2008) for similar tasks. Pairwise correlation between RPM-normalised counts is calculated using
Pearson’s correlation and the mean of all these correlations is found (µall). Sample i with average
distance from µall larger than an arbitrarily set threshold is removed:

di =
µi − µall
σall

; h = −2; if di < h→ removed

Here we provide some illustrations on the homogeneity of the data with 100 kidney tissue samples
used as an example.

Figure 3: Outlier plot for 100 kidney tissue samples, randomly retrieved from ARCHS4 database.
x-axis is the sample index, y-axis is the z-score of the sample. Samples KDN17, KDN47, KDN68,
KDN72, KDN85 will be removed from the downstream analyses.

Samples with the smallest overall correlations with other samples in Fig. 4 are likely to be removed
by the outlier detection procedure. The homogeneity of samples belonging to one tissue type is
varying, but usually, only≈ 2−5% of the sample population is considered outlying by the algorithm.
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Figure 4: Correlation plot for 100 kidney tissue samples, randomly retrieved from ARCHS4
database. Correlation is calculated with the Pearson formula. Clustering for the plot is performed
using R hierarchical clustering.
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