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ABSTRACT

This paper introduces a novel mobile phone control architecture, Lightweight
Multi-modal App Control (LiMAC), for efficient interactions and control across
various Android apps. LiMAC takes as input a textual goal and a sequence of
past mobile observations, such as screenshots and corresponding UI trees, to
generate precise actions. To address the computational constraints inherent to
smartphones, we introduce a small Action Transformer (AcT) integrated with
a fine-tuned vision-language model (VLM) for real-time decision-making and
task execution. We evaluate LiMAC on two open-source mobile control datasets,
demonstrating the superior performance of our small-form-factor approach against
fine-tuned versions of open-source VLMs, such as Florence2 and Qwen2-VL. It
also significantly outperforms prompt engineering baselines utilising closed-source
foundation models like GPT-4o. More specifically, LiMAC increases the overall
action accuracy by up to 19% compared to fine-tuned VLMs, and up to 42%
compared to prompt-engineering baselines.

1 INTRODUCTION

Smartphone application agents, commonly known as app agents, are expanding the potential applica-
tions of artificial intelligence to smartphones and other mobile devices. Such agents could allow users
to accomplish a range of tasks, from scheduling appointments and sending messages to purchasing
items and booking flights, with minimal effort. Fundamentally, app agents observe user instructions
and progressively interact with the smartphone’s user interface—by clicking, scrolling, inputting text,
etc.—to accomplish the task. However, due to the limited computational resources of smartphones,
these agents must be optimised for efficiency, employing lightweight models with minimal memory
usage and fast processing speeds.

Recent advancements have leveraged foundation models to develop app agents that understand
natural language instructions and execute complex user commands within the smartphone’s interface
(e.g., Rawles et al., 2024; Bai et al., 2024; Wang et al., 2024b;a). While foundation models enable
sophisticated capabilities, relying on them for every action introduces significant drawbacks. Their
substantial size and computational complexity make them resource-intensive and impractical for
constant use on mobile devices. Alternatively, querying server-hosted foundation models, such as
GPT-4o or Gemini, for each task can be prohibitively expensive due to the operational costs of
running large models, making this approach impractical for everyday applications. For example, a
state-of-the-art GPT-4o-based app agent (e.g., Rawles et al., 2024) may require one to two minutes
to run and cost approximately $1.00 per task on average, based on tasks from the evaluated datasets.

To address these limitations, we propose a gated architecture that combines a lightweight transformer
network with a small fine-tuned VLM. The task description and the smartphone state are first
processed by a compact model (∼500 million parameters) which effectively handles most actions.
For actions that require natural language understanding, such as composing a text message or querying
a search engine, a VLM is invoked to generate the necessary text. This hybrid approach reduces
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computational demands and improves responsiveness, resulting in significantly faster execution
times—30 times faster, down to 3 seconds per task on average —and improved accuracy.

In the proposed architecture (Lightweight Multi-modal App Control, or LiMAC), the initial processing
stage is managed by an Action Transformer (AcT), and is primarily responsible for determining
the type of action required to fulfil a user’s command. AcT first predicts the action type, such as
clicking, inputting text, or scrolling, based on the current state of the smartphone’s interface and the
task description. For most action types, such as clicks and scrolls, AcT autonomously executes the
task. For predicting the targets of the click action, we employ a contrastive objective between the
outputs of AcT and the embeddings of each user interface (UI) element. The specific approaches for
predicting action types and handling click actions are detailed in Sections 3.3 and 3.5, respectively.

However, when the action type predicted by AcT is input-text or open-app, which necessitate
a deeper prior knowledge and understanding of natural language nuances, LiMAC passes the selected
action type and user’s goal to a fine-tuned VLM to generate the appropriate textual content. This
division of labour allows AcT to handle straightforward interactions while leveraging the VLM’s
advanced capabilities for more complex text generation tasks, ensuring that the system remains both
resource-efficient and capable of sophisticated responses. The process of integrating and fine-tuning
the VLM in the app agent domain is detailed in Section 3.4.

In summary, the primary contributions of this work are as follows:

• We propose LiMAC, an architecture for app agents that balances efficiency and natural language
understanding by combining a lightweight transformer with a fine-tuned VLM.

• We also introduce AcT, a submodule of LiMAC, which is designed to efficiently predict action
types and UI element interactions, featuring a novel contrastive objective for click prediction.

• We fine-tune and evaluate two open-source vision-language models (VLMs) specifically for
handling text-based actions. Our fine-tuned VLMs achieve performance comparable to or
exceeding GPT-4o methods while only having 2B parameters or less.

• We present experimental results demonstrating that LiMAC improves both task execution time
and accuracy—up to 30 times faster and 40% higher accuracy—compared to GPT-4o-based
and fine-tuned VLM app agents.

2 TECHNICAL PRELIMINARIES

2.1 PROBLEM FORMULATION

We model phone interaction as a sequential decision-making process. Each task consists of a given
goal g that should be completed during an episode. At each timestep t of the episode, the phone’s
internal state is denoted by st, while ot represents an observation of this state, including screen
captures and UI element trees. The set of visible UI elements on the screen at timestep t is defined
as It, with ot,i representing the i-th UI element at timestep t where i ∈ It. Each UI element i is
represented by three different components: the image that corresponds to the UI element that we
denote as oimg

t,i , the text that corresponds to the UI element otxt
t,i, and the related attributes of the UI

element, such as whether it is clickable or not, that we denote as oattr
t,i . Therefore, the representation of

each UI element can be written as:

ot,i = [oimg
t,i , o

txt
t,i, o

attr
t,i ]. (1)

The agent interacts with the phone through actions, denoted as at at timestep t. Each action is char-
acterised by two components: its type atype

t ∈ Atype (e.g., click, scroll-down, input-text)
and its specifications aspec

t ∈ Aspec. The specifications vary based on the action type: for clicks, aspec
t

might represent the targeted UI element; for typing actions, it would contain the text to be input.
Thus, an action can be represented as the tuple at = (atype

t , aspec
t ). This formulation allows for a

flexible representation of diverse actions while maintaining a consistent structure.

In this work, the main goal is to learn a model that will maximise action prediction accuracy, which
corresponds to correctly predicting both the action type as well as the action specifications. To achieve
this, we train AcT, which predicts atype

t . If the predicted action type is click, AcT also predicts
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the aspec
t in the form of UI element targets. We focus on click targets because they are among the

most difficult and common actions to predict, and AcT’s architecture easily accommodates predicting
them with a contrastive learning approach (see Section 3.5). For actions that require natural language
specifications (e.g., input-text), we use a VLM fine-tuned on the same dataset.

2.2 SEQUENCE MODELLING WITH TRANSFORMERS

Transformers (Vaswani et al., 2017) have demonstrated exceptional effectiveness in modelling and
generating sequential data across a wide range of domains. They excel in various sequence modelling
tasks, including those related to language, video processing, and decision-making (Chen et al., 2021).
Regardless of the specific application, transformers begin by converting the input into a sequence of
vectors. For text, this involves tokenising the input, with each token represented by an embedding
vector. In the case of images, the input is typically divided into patches, where each patch is similarly
represented by a vector, analogous to the tokenisation process in text. These embeddings, which
map tokens or patches to vectors, can either be learned during the model’s training or sourced
from pre-trained models (e.g., Devlin et al., 2018). The embeddings are fed through several multi-
head self-attention layers, which are designed to capture dependencies and contextual relationships
between different embeddings in the input sequence. These self-attention mechanisms allow the
model to focus on relevant parts of the sequence when processing each embedding, enabling it
to handle long-range dependencies more effectively. After passing through multiple layers, each
consisting of self-attention and feed-forward components, the final activations from the transformer’s
last hidden layer are passed through a linear (fully connected) layer. This layer is typically tasked
with mapping the learned representations to the output space, whether for classification, prediction,
or another specific task. The entire model is trained end-to-end, with backpropagation adjusting both
the self-attention layers and the final linear layer to optimise performance on the desired task.

3 THE LIGHTWEIGHT MULTI-MODAL APP CONTROL FRAMEWORK

Our methodology processes the user’s goal g and the phone’s state at time t, utilising AcT, to
determine the action type atype

t . If the predicted action type is either input-text or open-app,
then g, ot, and atype

t are passed to a fine-tuned VLM, which is responsible for determining the specific
action aspec

t . For actions involving clicks, AcT handles the prediction directly but employs a different
training objective that contrasts UI element embeddings to determine the most likely interaction
target. Accordingly, this section is divided into three parts: predicting the action type, predicting
specific actions for text input and app launching, and predicting clicks using our novel approach for
interaction with UI elements. The full architecture of LiMAC is presented below.

We refer to our method as lightweight because it uses fewer parameters on average during inference
than baselines and, as we will show in Section 4.3, has faster inference speeds. The AcT module only
has 520M parameters and the additional VLM component is called for less than 15% of actions in our
datasets. LiMAC also selects actions more efficiently than a single VLM, as AcT does not require
auto-regressive generation. While our approach has a higher memory footprint than solely using
VLMs, due to loading both the AcT module and a VLM, its low parameter count remains within the
capacity of modern devices (Li et al., 2024b; Laskaridis et al., 2024).

3.1 MODEL INPUTS

AcT, the model responsible for predicting the action type (and later the click target, as seen in Sec-
tion 3.5), is built on top of a typical transformer architecture. However, unlike standard transformers,
where tokens represent words or characters, our “tokens” are pretrained embeddings that are mapped
to the hidden dimension of the transformer. These tokens represent three key components: the
user’s goal g, the UI elements on the phone’s screen ot,i, and the possible actions. By using these
pretrained embeddings as input, we allow the model to effectively capture the relationships between
the user’s intent, the current state of the interface, and the set of available actions. We encode each key
component (UI elements, actions, and goal) into embeddings that can be processed by the transformer.
Below, we describe the encoding process for each type of input.

Goal: We encode the user’s textual goal g using a sentence encoder, resulting in the embedding
eg = ftxt(g). This embedding captures the user’s intent and serves as the first token to the transformer.
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Figure 1: Illustration of AcT. A separate encoding of each UI element into a vector et,i by using
pretrained embedding models. The embeddings are then fed into the sequence of a transformer xt

along with the previous timesteps in that episode. The prediction of the transformer is decoded to
produce the next action which consists of atype

t and aspec
t .

UI Elements: The observed representation of each UI element ot,i at time t is transformed into
a vector eui

t,i through several embedding functions. First, the text component is encoded using a
sentence encoder (e.g., BERT) etxt

t,i = ftxt(o
txt
t,i), and the image is encoded using a fine-tuned CLIP

visual encoder (Radford et al., 2021) eimg
t,i = fimg(o

img
t,i ). Additionally, any other attributes (e.g.,

clickable, editable, nested) are encoded into eattr
t,i = fattr(o

attr
t,i ). The final embedding for each UI

element is the concatenation of these vectors, eui
t,i = [eattr

t,i ; e
txt
t,i; e

img
t,i ]. We fine-tune CLIP using the

standard contrastive learning objective (Radford et al., 2021) using the screenshot of the observations
and the related UI trees to allow adapting to app control datasets. We also add a positional encoding
pi ∈ Rd to represent the order or nesting of UI elements: eui

t,i = eui
t,i+pi. This process is illustrated in

Figure 1. To adapt the visual encoder fimg to our task, we fine-tune it using our dataset by minimising
the InfoNCE loss (Oord et al., 2018), aligning image and text representations of UI elements. Similar
methods of representing each UI element as an embedding for the transformer have been suggested
by Li et al. (2020); Rawles et al. (2023), with the key distinction that our approach additionally
fine-tunes the vision encoder to better adapt it for app control tasks.

Actions: Each action is represented using two embeddings: the action type embedding which is
mapped to its corresponding learnable embedding etype, and, for actions requiring a specification
(e.g., the target of a click action), the specification embedding espec. Depending on the action type,
the action specification embedding is computed differently (e.g., sentence embedding for the textual
action, learnable embeddings mapped to the UI element’s id for click targets, or a special token for
empty specifications). Each action contributes two tokens to the transformer’s input sequence, clearly
separating action types from their parameters.

Positional Embeddings: To represent temporal information, we also add a learnable positional
encoding pt for all the embeddings in a timestep.

3.2 CONSTRUCTING THE INPUT SEQUENCE

After generating the goal, UI elements, and action embeddings, we organise them into a sequence
representing the entire episode. Each episode in the dataset is encoded as a sequence of embeddings
x, which is fed into the transformer. The sequence starts with the goal embedding eg, followed by
the UI element embeddings eui

0,i at timestep 0. Once all UI elements are encoded, a special end
marker eend is added. The action type etype

0 and specification espec
0 embeddings for timestep 0 are then

appended. This process repeats for each subsequent timestep: encoding UI elements, appending eend,
and adding the action embeddings. For an episode with H timesteps, the final sequence is:

x =
[
eg; e

ui
0,0; . . . ; e

ui
0,n; e

end; etype
0 ; espec

0 ; . . . ; eui
H−1,0; . . . ; e

ui
H−1,n; e

end; etype
H−1; e

spec
H−1

]
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Figure 2: The architecture of LiMAC. The history of observations-actions {ot, at−1, ot−1..} and goal
g are processed to vector x and passed to AcT. The image observation oimg

t with the bounding boxes
and the goal g are passed as inputs to the VLM. The VLM is only called if an action that requires text
completion is selected, based on the action type output of AcT. The action is finally selected based
on the protocol described in Sections 3.3 to 3.5.

During training, the full sequence is fed into the transformer. For inference at timestep t, the sequence
up to the t-th observation is processed, with the hidden state ht (up to eend) used to predict the action.

3.3 ACTION TYPE PREDICTION

In our pipeline, the prediction of the next action begins with determining the action type. Predicting
the action type atype

t can be framed as a classification problem, where we identify a combined eleven
distinct action types (see Appendix A), of which a subset are seen in individual datasets used in
this work. These action types represent various possible interactions, such as click, open-app,
scroll-down, input-text, or other essential commands. We implement the action type
prediction with a specialised head. The action type head, denoted as ftype, transforms the final hidden
state ht of the transformer (after the eend token) into a probability distribution over the possible action
types, p(atype

t |ht) = ftype(ht). The learning objective for this task is to minimise the cross-entropy
loss between the predicted and actual action types. Given a dataset D, the cross-entropy loss for
action type prediction is defined as:

Ltype = −Eatype,x∈D
[
log(p(atype|h))

]
(2)

Here, h represents the transformer’s output corresponding to the final hidden state before action
prediction, averaged over all observations in the dataset. This loss function ensures that the model is
trained to correctly classify the action type based on the sequence of embeddings from previous steps.

3.4 LEVERAGING FINE-TUNED VLMS FOR TEXT GENERATION IN ACTION EXECUTION

As described in the previous section, our agent first predicts the action type. Among the eleven
action types, two specifically require textual specifications: i) the input-text action, where
the specification is the text to be entered into a text box, and ii) the open-app action, where the
specification is the name of the application to be opened. For these actions, we rely on fine-tuning a
VLM using an app control dataset. The dataset provides action data in a dictionary-like format, such as:
{"action-type":"open-app","app-name":"Chrome"}, with one key corresponding to
the action type and another to the action specification. The VLM is trained to generate the correct
sequence of tokens that corresponds to the successful completion of each action, optimising for the
likelihood of generating the proper tokens based on the observation at each timestep.

During inference, after predicting the action type, AcT guides the VLM to start its response with this
action type. For instance, if AcT predicts input-text as the action type, the VLM is forced to
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begin its response with the token pattern: {"action-type":"input-text","text":. The
model then completes the specification, producing aspec

t , the textual content needed for the action.
The full action selection pipeline is presented in Figure 2.

3.5 EFFICIENT CLICK TARGETING USING CONTRASTIVE OBJECTIVES WITH ACT

Having covered how action specifications are generated for textual actions, we now turn to the case
of click actions, where the specification is the UI element to interact with. To predict the correct
UI element for a click action, we employ a contrastive learning approach that operates over the
entire episode, using cosine similarity and a learnable temperature parameter. Since the number of UI
elements varies across timesteps and episodes, a contrastive method is better suited than classification,
which can suffer from class imbalance and limitations when handling more UI elements in test
episodes than seen during training. Let htype

t be the transformer’s last hidden state up to embedding
etype
t , and ftarget be an affine transformation that projects the hidden states to an embedding space.

Simultaneously, the hidden states of the transformer corresponding to the UI element embeddings,
denoted as hui, are also projected into the same embedding space:

qtype = ftarget(h
type
t ) and pui = ftarget(h

ui) (3)

Assuming the embedding space lies in Rd, the query embedding qtype
t has dimensions 1×D, while

the matrix pui, representing all UI elements, has dimensions K ×D, where K is the total number
of UI elements in the episode. The goal is to train the model such that qtype

t aligns closely with the
correct UI element’s embedding at timestep t, using cosine similarity as the alignment measure. To
achieve this, we adopt contrastive training techniques with the InfoNCE loss (Oord et al., 2018). We
first compute the similarity matrix between the query embedding qtype

t and all UI element embeddings,
scaling the similarity by a learnable parameter τ (e.g., Radford et al., 2021). The scaled cosine
similarity matrix is defined as:

S =
qpT

∥q∥ · ∥p∥r
τ (4)

where ∥p∥r is the L2 norm of each row of p. For simplicity, we drop the superscripts in this equation.
The InfoNCE loss for UI element selection across the episode is computed as:

Lelem = −E

[
log

exp(S+)∑K
i=1 exp(Si)

]
(5)

Here, S+ is the scaled similarity between the transformer’s output and the correct UI element for the
click action, and Si represents the similarity between the output and all other UI elements. During
inference, for each action requiring a target element, the UI element with the highest similarity is
selected. This contrastive approach enables AcT to effectively learn which UI elements to interact
with during a click action by treating all other UI elements in the episode as negative examples. The
use of cosine similarity focuses on the directional alignment of the embeddings, while the learnable
temperature τ adjusts the sharpness of the similarity distribution during training, allowing for more
flexible and precise UI element selection.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: Our experiments focus on two open-source mobile phone control datasets, AndroidCon-
trol (Li et al., 2024a) and Android-in-the-Wild (AitW) (Rawles et al., 2023). Both contain extensive
human demonstrations of mobile phone navigation across a wide variety of tasks. In AndroidControl,
every episode is defined by a specific goal, accompanied by a sequence of observations and actions.
Each observation includes a screenshot from the phone and its corresponding UI tree. Conversely,
observations in AitW lack the UI tree. As a result, it is necessary to extract the UI tree using an OCR
system that identifies all the UI elements and provides a brief description of each. More details on
the goal format, observation space, and action space for each dataset can be found in Appendix A.

GPT-4o Baselines: We compare our approach against four prompt-engineering baselines that use
GPT-4 to generate actions in the evaluation dataset. First, we evaluate two baselines proposed by
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Table 1: Comparison of models in terms of average inference time and overall accuracy on the AitW
and AndroidControl datasets. The table presents the size of each model, the average inference time
(in seconds, lower is better), and the overall accuracy (higher is better) for both datasets.

Model Size ↓ Avg Inf.
Time (s)↓

Overall ↑
AitW AndCtrl

SeeActchoice unk 9.81 37.7 29.9
SeeActann unk 9.76 42.5 35.5
T3A unk 4.87 26.9 53.1
M3A unk 10.64 35.6 57.5

Florence2 820M 0.50 70.8 57.0
LiMAC with Florence2 (ours) +520M 0.34 72.2 63.1
Qwen2-VL 2B 3.03 51.0 52.2
LiMAC with Qwen2-VL (ours) +520M 0.63 70.9 62.5

Rawles et al. (2024): the text-based T3A and the multi-modal M3A. In T3A, the observation is
represented as a list of UI elements, while M3A includes screenshots of the observation. Additionally,
we evaluate two variants of the SeeAct agent (Zheng et al., 2024), adapted for mobile app control
tasks (Rawles et al., 2024). Specifically, we assess two SeeAct variants: SeeActchoice and SeeActann,
which use the UI tree text and screenshots of the observations, respectively, to determine the correct
action. More details about the prompt engineering baselines are presented in Appendix B.

Vision Language Models (VLMs): We fine-tune two VLMs for our experiments. The first, Flo-
rence2 (Xiao et al., 2024), is an 820M-parameter VLM that takes as input an annotated screenshot
with numbered bounding boxes, along with the task goal in natural language. Florence2 is trained to
maximise the log-likelihood of the correct action tokens from the dataset. Similarly, we fine-tune
Qwen2-VL (Bai et al., 2023), a 2B-parameter VLM, using LoRA adapters (Hu et al., 2021). Qwen2-
VL follows the same pipeline as Florence2, taking the annotated screenshot and goal as inputs, with
supervision provided by the correct action. In most of our experiments, these fine-tuned VLMs are
tested in conjunction with AcT (forming LiMAC).

4.2 EVALUATION PIPELINE

We evaluate on the test set of two datasets, using the same process for all models, with only the
observation format and model calling differing. For each timestep, we call the model with the relevant
observation format to generate an action. VLMs are trained to return actions in a specific format,
while pre-trained models use a detailed prompt with the observation, as in Rawles et al. (2024). One
can calculate strict accuracy by directly comparing returned actions to the ground truth. However, in
this work we relax this metric for a more practical assessment, where a UI element is deemed correct
if its bounding box is within the target element, as described by Li et al. (2024a). For input-text
actions, correctness is determined by a Jaccard index score of at least 0.5, reflecting the functional
equivalence of similar inputs in search bars. We report the relaxed accuracy metrics in Tables 1 and 2.

In Section 4.5 we also evaluate models’ action-type and click-target accuracy. Action-type accuracy
reflects how well the model predicts the correct type for an action, regardless of the specifications
such as the text content or target element. Click-target accuracy measures how accurately the model
predicts the correct target for click actions when the action type is known. Computing the click-
target accuracy requires rerunning a full evaluation over the dataset, where the output of the model
is constrained to predict the click action and specify the target element. It should be noted that
higher overall accuracy can still be achieved with lower action-type and/or click-target accuracy. This
is because click-target accuracy is calculated separately, and because not all action types are equally
advantageous for overall accuracy. Indeed, as defined in Section 2.1, an action is represented as
at = (atype

t , aspec
t ), where both atype

t and aspec
t must be predicted correctly for a successful timestep.

Actions which always have a null aspec
t , like wait, are easier to predict correctly than those which

have a complicated aspec
t that may be incorrectly predicted, like input-text.
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Table 2: Performance comparison of various model configurations using different combinations of
modules across the AitW and AndroidControl datasets. Using LiMAC but integrating AcT with
baseline methods improves accuracy and reduces inference time (and cost). Not all pairings are
shown here for conciseness, the full list can be found in Table 6.

Framework Modules Used Avg Inf.
Time (s)↓

Overall↑
Type Click Text AitW AndCtrl

T3A only T3A T3A T3A 4.87 26.9 53.1
LiMAC (ours) AcT T3A T3A 4.03 42.7 65.4
LiMAC (ours) AcT AcT T3A 1.04 69.8 63.2

M3A only M3A M3A M3A 10.64 35.6 57.5
LiMAC (ours) AcT M3A M3A 8.40 52.6 66.8
LiMAC (ours) AcT AcT M3A 1.87 70.0 62.5

Florence only Florence2 Florence2 Florence2 0.50 70.8 57.0
LiMAC (ours) AcT Florence2 Florence2 0.72 71.6 61.1
LiMAC (ours) AcT AcT Florence2 0.34 72.2 63.1
Qwen only Qwen2-VL Qwen2-VL Qwen2-VL 3.03 51.0 52.2
LiMAC (ours) AcT Qwen2-VL Qwen2-VL 2.64 55.7 59.1
LiMAC (ours) AcT AcT Qwen2-VL 0.63 70.9 62.5
LiMAC (ours) AcT M3A T3A 7.57 52.4 67.4

4.3 MEASURING END-TO-END ACCURACY

In this section, we present the total action accuracy of our method, as well as the baselines. Table 1
present the accuracy for action prediction in AndroidControl and AitW, respectively. In both AitW
and AndroidControl, we observe that LiMAC consistently outperforms Florence2, Qwen2-VL,
and GPT-4o-based baselines with respect to the action prediction accuracy, demonstrating superior
generalisation to the held-out test set. The overall improvement of LiMAC in the accuracy compared
to AndroidControl can be attributed to the closer alignment between the training and test sets, as the
test set includes the same set of instructions but applied to mobile devices with varying characteristics,
such as screen size and Android version. Additionally, we observe a significant performance drop in
text-based baselines like T3A and image-text-based models like M3A and SeeAct. The absence of
original UI trees in the AitW dataset can explain this decline. Since UI trees must be extracted from
images using an annotation tool, inaccuracies are often introduced, which diminishes the performance
of models that rely on text-based output conditioning. This underscores a key advantage of LiMAC,
which remains robust even when UI trees are imprecise or completely missing (as seen in Table 4),
with minimal impact on overall performance.

4.4 COMBINING DIFFERENT MODULES

LiMAC is a modular architecture that enables the integration of different modules for tasks such as
predicting the action type, identifying the target element in click actions, and generating text for
open-app and input-text. In this architecture, we primarily use AcT to predict both the action
type and the target element for click actions. However, alternative modules can be employed for
these predictions as well. In Table 2, we present combinations of different models, excluding SeeAct
due to its low overall accuracy, and compare their performance across two datasets.

In the AndroidControl dataset, we observe that using M3A for predicting the target elements in
click actions improves performance over using AcT alone. This demonstrates that GPT-4o is highly
effective at identifying the correct target element when the prompt specifies that the action is click.
This of courses comes at the cost of calling GPT-4o, which significantly increases the inference
time. The highest overall accuracy is achieved when LiMAC is used to predict the action type, M3A
is applied for target element prediction, and T3A is used for text generation. In the AitW dataset,
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Table 3: Action-type, click-target, and text accuracies across module combinations on the AitW and
AndroidControl datasets. LiMAC achieves the best action-type accuracy in both datasets and the best
click-target accuracy in AitW, while our fine-tuned Florence2 excels at text prediction.

Framework Modules Used Action Type Click Target Text

Type Click Text AitW AndCtrl AitW AndCtrl AitW AndCtrl

SeeAct only SeeActchoice SeeActchoice SeeActchoice 67.1 66.8 36.9 48.5 69.4 67.1
SeeAct only SeeActann SeeActann SeeActann 68.2 66.8 44.7 55.7 66.0 61.8
T3A only T3A T3A T3A 56.2 67.7 33.5 71.1 66.5 78.4
M3A only M3A M3A M3A 63.8 69.8 48.3 77.1 67.3 74.3

Qwen only Qwen2-VL Qwen2-VL Qwen2-VL 81.7 70.7 53.2 55.2 70.5 75.7
LiMAC (ours) AcT Qwen2-VL Qwen2-VL 86.9 82.3 53.2 55.2 70.5 75.7
LiMAC (ours) AcT AcT Qwen2-VL 86.9 82.3 77.4 65.4 70.5 75.7

Florence only Florence2 Florence2 Florence2 86.4 79.6 76.2 62.0 84.2 77.5
LiMAC (ours) AcT Florence2 Florence2 86.9 82.3 76.2 62.0 84.2 77.5
LiMAC (ours) AcT AcT Florence2 86.9 82.3 77.4 65.4 84.2 77.5

Table 4: Evaluation of three ablated versions of LiMAC using different types of input, on Android-
Control. For actions that require text completion, we use the fine-tuned Florence2.

Size Action Type Click Target Overall

LiMAC 520M 82.3 65.4 63.1
LiMAC (no CLIP FT) 520M 81.9 62.3 60.0
LiMAC (no img) 433M 82.4 54.9 56.0
LiMAC (no txt) 410M 83.2 65.7 63.0

LiMAC combined with Florence for text generation yields the highest accuracy. This outcome is
expected, as both M3A and T3A show significantly lower accuracy in this dataset (see Table 1).

4.5 ABLATION STUDIES

Table 3 presents the action-type, click-target, and text accuracies for various module combinations
across the two datasets. The results show that LiMAC, particularly the AcT, achieves the best
performance in action-type prediction. In the AndroidControl dataset, M3A and T3A perform well
in click-target and text prediction but struggle with action-type accuracy, and they underperform
in the automatically annotated AitW dataset. Overall, AcT within LiMAC excels at click-target
predictions while being significantly smaller. Finally, our Florence fine-tune excels at text prediction,
significantly outperforming GPT-4o baselines in AitW and remaining competitive in AndroidControl.

Lastly, we present three ablation studies to further explore AcT design choices. A core feature of AcT
is its ability to process each UI element as a distinct embedding within the transformer, created by
concatenating the image, text, and attribute embeddings of the corresponding UI element. To assess
the impact of the image and text modalities, as well as the CLIP fine-tuning on LiMAC’s performance,
we compare it to three ablated versions: one that excludes the image component, another that omits
the UI text in the embedding process, and one that uses the original CLIP for encoding the image
embeddings instead of the fine-tuned version. The evaluation metrics for these comparisons in the
AndroidControl dataset and using Florence2 for text completion are shown in Table 4. The results
demonstrate that removing image embeddings significantly reduces accuracy across all metrics,
highlighting the crucial role of visual information in AcT. In contrast, omitting the text embeddings
has only a slight effect on performance, suggesting that AcT can function effectively using only
screenshots of observations without accessing the UI tree. Additionally, we observe that fine-tuning
CLIP (see Section 3.1) is an important factor in improving the overall accuracy of LiMAC.

These findings underscore the importance of visual features and the benefits of fine-tuning pre-trained
models like CLIP in our context. The minimal impact of removing text embeddings indicates that
LiMAC is robust even when textual information is limited or unavailable, which is advantageous in
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scenarios where UI trees are inaccessible or incomplete. Future work could explore integrating other
modalities or further optimising the embedding process to enhance performance.

5 RELATED WORK ON APP CONTROL

Though graphical user interface (GUI) control mainly started with web-based datasets and foundation
model agents (Shi et al., 2017; Liu et al., 2018; Yao et al., 2022a; Deng et al., 2023; Furuta et al.,
2023; Gur et al., 2023; Zheng et al., 2024), there has recently been a significant focus on mobile phone
control. This can be seen both by the rapid development of Android navigation datasets, environments,
and benchmarks (Rawles et al., 2023; 2024; Li et al., 2024a; Chen et al., 2024), and of mobile control
agents (Yang et al., 2023; Wang et al., 2024b;a; Wen et al., 2023; Hong et al., 2024; Rawles et al.,
2024; Li et al., 2024a; Bai et al., 2024; Wang et al., 2024c). Though many agents are published with
their own specific evaluation data, popular datasets such as Android-in-the-Wild (Rawles et al., 2023)
or AndroidControl (Li et al., 2024a) are often used as benchmarks. Agents developed for this task
can be divided into two clear input types: text-based, using UI accessibility tree or XML information
to describe the screen, or image-based. Image-based agents require vision models, which are capable
of directly processing image inputs, and are usually backed by VLMs. On the other hand, text-based
agents are backed by classical LLMs. Image-based agents also often take a combination of text and
image as input to the model. Many mobile control agents propose intricate prompting methods backed
by off-the-shelf, often proprietary, LLMs such as GPT-4 (Rawles et al., 2024; Yang et al., 2023; Wang
et al., 2024b;a; Wen et al., 2023; Zheng et al., 2024). Although this requires little to no training,
it can be both slow and expensive. Moreover, these models cannot be further tailored and trained
for specific tasks. As such, another approach is to build mobile control agents around fine-tuned
of foundation models on Android control datasets such as AitW or AndroidControl. Firstly, both
AitW and AndroidControl present results for a fine-tuned LLM on their dataset, alongside the dataset
itself. For example, Li et al. (2024a) train various PaLM 2 (Anil et al., 2023) models on their dataset.
However, these models are proprietary and supposedly quite large, with the base PaLM 2 model
reported to have over 300B parameters. CogAgent (Hong et al., 2024) also performs fine-tuning on
an 18B-large VLM. Bai et al. (2024) propose a different approach, called DigiRL, using RL to train
their 1.3B VLM. This achieves strong performance but has limitations such as gathering cost and
simulation difficulty, leading to the model only being adept on a small subset of AitW.

6 CONCLUSION

In summary, we propose LiMAC, a lightweight framework designed to address app control tasks.
LiMAC extracts UI elements from each phone screenshot and encodes them using specialised vision
and text modules. These UI element encodings are then passed as embeddings to AcT, which predicts
the type and specifications of the next action. AcT focuses on two key aspects of actions: the action
type and the target element when the predicted action is click. For actions requiring text generation,
LiMAC uses a fine-tuned VLM to ensure successful completion. We compare LiMAC against six
baselines supported by state-of-the-art foundation models and evaluate them on two open-source
datasets. Our results show that LiMAC can outperform the baselines while requiring significantly
fewer computational time for both training and inference. This demonstrates that LiMAC is capable
of handling task completion on devices with limited computational capabilities.

One of the main limitations of the proposed method is the limited training data. LiMAC is trained
on just 13K and 18K episodes for AndroidControl and AitW, respectively. The absence of any
pretraining further hinders the model’s ability to improve performance on more complex tasks. In
the future, we aim to enhance the model’s performance by incorporating online learning techniques,
such as reinforcement learning. After the initial training stage presented in this work, LiMAC could
interact with an Android emulator to generate additional data. By using a suitable reward function, or
even leveraging GPT-4 to evaluate the generated trajectories and assign rewards (Bai et al., 2024),
we could fine-tune LiMAC to improve the completion rate of tasks. An important focus for future
work will be to develop error handling and recovery mechanisms to enable high success rates and
robustness in online interactions. Another area of future research could address the safety of such
models when handling sensitive data, such as credit card information and personal identifiers. It is
essential to design foundation models with robust security protocols to protect against data breaches,
especially when interacting with mobile phones containing sensitive information.
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A DATASET FORMAT

We use AndroidControl and AitW dataset. While we use the full AndroidControl dataset, for AitW
we only select a few episodes for each unique instruction, due to the sheer size of the dataset and the
repetitive nature of its instructions. The dataset is divided into five categories of tasks, of which we
use the ‘GoogleApps’, ‘Install’, and ‘WebShopping’ splits, since the other two contain single-step and
Q&A tasks. We process the episodic data present in these datasets into refined, step-wise, datapoints
which can be used for training and evaluation. Each datapoint is composed of the high-level goal for
the task, an observation of the current screen, and the correct action. Details are given below.

Goal: The goal is always a raw text string describing the high-level instruction for the episode to
which the datapoint belongs.

Observation: The exact form of the observation depends on the type of model it is used for. Text-
based approaches such as T3A need a textual observation. For AndroidControl, we use the provided
accessibility UI trees, which we further process into a list of UI elements containing information
such as the element type, description, and attributes (clickable, editable, selected, etc...). Like in Li
et al. (2024a), we filter these to retain only important elements, namely those that contain text or
have critical attributes. For AitW, OCR representations of text and icons are given in the dataset, but
no comprehensive UI trees are provided. Therefore, to obtain the final representation, each element
must be identified and converted using a similar procedure to that for AndroidControl. Vision models
such as Qwen2-VL and Florence2 will expect an image-based observation. This observation will
consist of the current phone screenshot along with an overlay of the UI element bounding boxes and
their index. Finally, some models, such as M3A and ours, use a mixture of observations, both text
and image-based. In particular, our model expects a text-based list of UI elements similar to the one
described above, as well as a list of cropped images. The list of cropped images corresponds to each
of the UI elements in the text-based observation and is used by our model as described in Section 3.1.

Action: Action grounding is a crucial part of mobile phone control, so as in previous works (Zheng
et al., 2024; Yang et al., 2023; Wang et al., 2024b;a) and both the datasets we use, we define a fixed
action space, seen in Table 5. Of this action space, open-app, wait, and long-press do not
feature in AitW, while navigate-home does not feature in AndroidControl. Information for most
actions is sourced directly from the datasets, with only the action name at times varying. The only
exceptions to this are the click and long-press actions, which require a target element, rather
than x-y coordinates. For these, we select the best matching candidate from the observation list of
UI elements. The action takes a specific JSON format we expect the models to match to facilitate
parsing, which is simply a dictionary with the action type and an action specification (see Table 5).
An example would be: {"action-type":"open-app","app-name":"Chrome"}.

Table 5: Agent action space, along with the relevant datasets.

Action type Action specification AitW AndCtrl

open-app <app-name> ✗ ✓
click <target-element> ✓ ✓
long-press <target-element> ✗ ✓
input-text <text> ✓ ✓
scroll-{up/down/left/right} - ✓ ✓
navigate-home - ✓ ✗
navigate-back - ✓ ✓
wait - ✗ ✓

B PROMPT ENGINEERING BASELINES

We evaluate four prompt engineering methods leveraging GPT-4o to generate actions. First, we
assess two baselines proposed by Rawles et al. (2024): a text-based method (T3A) and a multi-
modal approach (M3A). In both methods, GPT-4o generates a summary of the previous timestep by
reflecting on prior actions, the current observation, and previous observations and actions. GPT-4o
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then generates a proposed action in a ReAct-like (Yao et al., 2022b) fashion using a detailed prompt
that includes task guidelines, action space descriptions, previously generated summaries, and the
current observation. In T3A, the observation is represented as a list of UI elements, while in M3A,
it also includes two screenshots: one of the original image and another with UI element bounding
boxes.

The final two prompt-engineering baselines are SeeActchoice and SeeActann (Zheng et al., 2024). In
both methods, GPT-4o is prompted with the current task and a screenshot from the observation to
generate a high-level description of the proposed action. This proposal is then passed to GPT-4o for
determining the final action, including both the action type and its specifications in the appropriate
format. In SeeActchoice, a multiple-choice list of textual UI element choices is appended to the prompt
to allow GPT-4o to predict the action specifications, such as the target element in click actions.
In SeeActann, the observation’s screenshot is annotated with bounding boxes and labels for each UI
element. We base our implementation off the SeeAct agent in Rawles et al. (2024), which is adapted
to app control tasks.

C IMPLEMENTATION DETAILS

AcT is a compact transformer based on GPT-2 architecture. The transformer consists of 24 layers and
16 heads per layer. The hidden dimension of the transformer is 1024. We apply a dropout rate of 0.3
(Srivastava et al., 2014) during training across all layers. The AdamW optimiser (Loshchilov et al.,
2017) is used in all experiments, with a learning rate of 3× 10−4 specifically for AcT. The functions
ftype and ftarget are implemented as two-layer fully connected networks, each with a hidden size of
4096 and a dropout rate of 0.3. We use a batch size of 1 with gradient accumulation being set to 32.

We fine-tune Florence2 for 10 epochs, starting with an initial learning rate of 10−6, which is gradually
reduced to zero during training. The batch size is set to 2, with gradient accumulation configured to 8.
For Qwen2-VL, we employ LoRA with a dimensionality of 64, beginning with an initial learning
rate of 10−4, also gradually decreasing to zero throughout training. The batch size for Qwen2-VL is
1, with gradient accumulation similarly set to 8. We fine-tuned Qwen2-VL for 3 epochs.

D ADDITIONAL STUDIES

This section presents additional evaluation results for LiMAC.

D.1 EXTENDED SUCCESS RATE TABLE

In Table 6, we provide a full set of evaluation metrics for the baseline models, as well as for
various combinations of LiMAC with other methods. These combinations are used to predict the
target element in click actions or generate text for specific actions, such as open-app and
input-text. In all the experiments involving LiMAC, AcT is employed to predict the action type,
while different combinations of methods are used to predict the action specifications, such as the
target element or text generation. This approach allows us to isolate the impact of each combination
on performance while maintaining a consistent action type prediction. This table extends the results
already presented in Tables 1 to 3 providing a more in-depth understanding of the performance across
a range of metrics. This additional breakdown offers a clearer understanding of how LiMAC performs
when integrated with other methods, offering insights into the strengths and potential trade-offs of
each combination in different scenarios.

D.2 CONFUSION MATRIX

Figure 3 shows the confusion matrix for action type prediction using LiMAC on the AndroidControl
dataset. The results indicate that actions like open-app and input-text are generally easier
to predict compared to other actions. One of the most frequently mispredicted actions is wait,
which is unsurprising given that it can be challenging, even for humans, to determine when this
action is required. Additionally, actions such as long-press and swipe in any direction are often
misclassified, likely due to their relatively low occurrence in the training dataset compared to other
actions.
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Table 6: Comprehensive table of accuracy results for different modules. All rows which have AcT for
the action type module fall under our LiMAC framework.

Modules Used Action Type Click Target Text Total

Type Click Text AiTW AndCtr AiTW AndCtr AiTW AndCtr AiTW AndCtr

AcT AcT Florence2 86.9 82.3 77.4 65.4 84.2 77.5 72.2 63.1
AcT Florence2 Florence2 86.9 82.3 76.2 62.0 84.2 77.5 71.6 61.1
AcT AcT Qwen2-VL 86.9 82.3 77.4 65.4 70.5 75.7 70.9 62.5
AcT Qwen2-VL Qwen2-VL 86.9 82.3 53.2 55.2 70.5 75.7 55.7 59.1
AcT AcT T3A 85.3 81.7 77.6 65.4 66.5 78.4 69.8 63.2
AcT T3A T3A 85.3 81.7 33.5 71.1 66.5 78.4 42.7 65.4
AcT M3A T3A 85.3 81.7 48.3 77.1 66.5 78.4 52.4 67.4
AcT AcT M3A 85.3 81.7 77.6 65.4 67.3 74.3 70.0 62.5
AcT T3A M3A 85.3 81.7 33.5 71.1 67.3 74.3 43.0 64.7
AcT M3A M3A 85.3 81.7 48.3 77.1 67.3 74.3 52.6 66.8
AcT AcT SeeActchoice 85.3 81.7 77.6 65.4 69.4 67.1 70.5 62.0
AcT SeeActchoice SeeActchoice 85.3 81.7 36.9 48.5 69.4 67.1 45.7 53.7
AcT AcT SeeActann 85.3 81.7 77.6 65.4 66.0 61.8 70.0 61.1
AcT SeeActann SeeActann 85.3 81.7 44.7 55.7 66.0 61.8 49.2 61.6
Florence2 Florence2 Florence2 86.4 79.6 76.2 62.0 84.2 77.5 70.8 57.0
Qwen2-VL Qwen2-VL Qwen2-VL 81.7 70.7 53.2 55.2 70.5 75.7 51.0 52.2
T3A T3A T3A 56.2 67.7 33.5 71.1 66.5 78.4 26.9 53.1
T3A M3A T3A 56.2 67.7 48.3 77.1 66.5 78.4 30.9 55.2
M3A T3A T3A 63.8 69.8 33.5 71.1 66.5 78.4 27.0 53.5
M3A M3A T3A 63.8 69.8 48.3 77.1 66.5 78.4 35.8 57.7
SeeActchoice SeeActchoice SeeActchoice 67.1 66.8 36.9 48.5 69.4 67.1 29.5 38.9
SeeActann SeeActann SeeActann 68.2 66.8 44.7 55.7 66.0 61.8 34.3 45.7
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Figure 3: Confusion matrix for action type selection for LiMAC in AndroidControl.

D.3 FAILURE ANALYSIS

We also examine the failure patterns of LiMAC, using Florence2 as the VLM, across the two datasets
studied. Figure 4 displays the frequency of these failures, categorised by the type of failure in predict-
ing either the action type or the action specifications. Specifically, within the action specifications,
failures occur in two areas: incorrect prediction of the click target and inaccurate generation of input
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text by the VLM. In both datasets, the most common type of failure is misclassification of the action
type, closely followed by failures in predicting the click target. These findings underscore the key
challenges that research on app control should address.
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Figure 4: Relative frequency of different types of action prediction errors in the two datasets

D.4 UI ELEMENTS SCALABILITY

In this section, we assess how the number of UI elements in an observation impacts the success and
failure rates of action prediction. Figure 5 displays the number of successful and unsuccessful action
predictions made by LiMAC, categorised by the number of UI elements. The results are grouped into
bins of ten on the x-axis. The number of UI elements extends up to 150 in AitW and up to 290 in
AndroidControl. However, for clarity, only bins containing more than five samples are included in
the figures. Overall, the data suggests that the rate of failed action predictions increases slightly as
the number of UI elements grows. This trend is expected since accurately predicting the target of
click actions becomes more challenging with more UI elements present.
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Figure 5: Number of successful and failed prediction of actions with respect to the number of UI
elements in the observation, for the two datasets.
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E CASE STUDIES

Some sample episodes from AndroidControl, including agent predictions, are provided in Figures 6
and 7. These are provided for illustration purposes, as well as to further explain ‘relaxed’ accuracies
and an example failure. Figure 6 presents both an instance of a relaxed target element in the
third timestep and a failed input-text action in the final timestep. Figure 7 shows a relaxed
input-text action in the fourth timestep and an otherwise successful episode. Further details are
provided in the figure captions.

Figure 6: Relaxed target element in yellow (timestep 3) and failed action in red (final timestep). The
target element of the click in timestep 3 is considered correct under our relaxed accuracy because
its bounding box is almost identical to the correct element, and clicking either would have the same
effect (opening the text bar). In the final timestep, the agent inputs text ‘Detroit’ rather than ‘Las
Vegas’, a clear confusion between the origin and destination of the trip stated in the goal, leading to
an incorrect prediction.

Figure 7: Relaxed input-text in yellow (timestep 4) and overall successful episode. Timestep 4
is considered correct under our relaxed input-text textual component because it is simply the
singular form of the correct text, leading to a Jaccard index greater than 0.5 and presumably the same
search results. The episode terminates successfully, with all timesteps being considered correct under
our evaluation metrics.
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