
Statistically Robust Sparse High-order Interaction Model

Abstract

Deep learning models often achieve high accu-
racy but lack interpretability, making them unsuit-
able for critical applications such as medical di-
agnosis, biomolecule design, criminal justice, etc.
The Sparse High-Order Interaction Model (SHIM)
addresses this limitation by providing both trans-
parency and predictive reliability. However, real-
world data often contain outliers, which can dis-
tort model performance. To overcome this, we pro-
pose Huberized-SHIM, an extension of SHIM that
integrates Huber loss-based robust regression to
mitigate the impact of outliers. We introduce a
homotopy-based regularization path algorithm and
a novel tree-pruning criterion to efficiently man-
age interaction complexity. Additionally, we incor-
porate the conformal prediction framework to en-
hance statistical reliability. Empirical evaluations
on synthetic and real-world datasets demonstrate
the superior robustness and accuracy of Huberized-
SHIM in high-stakes decision-making contexts.

1 INTRODUCTION

While deep neural networks and other black-box mod-
els often achieve high predictive accuracy, their lack of
interpretability makes them less reliable [Rudin, 2019].
Consequently, in critical applications like medical diag-
nosis, biomolecule design, criminal justice, etc. where
transparency is essential for decision-making, models with
greater interpretability and high accuracy are preferred. The
sparse high-order interaction model (SHIM) [Suzumura
et al., 2017, Das et al., 2019, 2022, 2024] offers both in-
terpretability and strong predictive performance, making it
a suitable choice for such tasks. Considering a regression
problem of m original covariates z1, . . . , zm and response
y, an example SHIM up to 4th order interactions can be

written as

y = β1z2 + β2z3 + β3z2z5 + β4z1z3z4z6,

where β’s are the regression coefficients. A SHIM has signif-
icant practical applications. For example, identifying com-
plex genotypic traits related to HIV-1 drug resistance [Saigo
et al., 2007, Das et al., 2022, 2024] where a combination of
multiple mutations, along with certain key single mutations
provides the most accurate representation of the intricate
biological mechanisms underlying drug resistance [Vivet-
Boudou et al., 2006, Iversen et al., 1996, Rhee et al., 2006] or
recognizing patterns of epistasis where the interdependence
of mutations is crucial for understanding the relationship
between genotype and phenotype [Poelwijk et al., 2019, Fan-
njiang et al., 2022]. Key protein characteristics, such as fold-
ing, biochemical function, and evolvability, emerge from a
network of cooperative energetic interactions among amino
acid residues. Identifying epistasis plays a significant role
in reconstructing phylogenetic trees and assessing the evolu-
tionary potential of antibiotic resistance genes and viruses.
Additionally, in protein engineering and directed evolution,
insights into epistatic structures can aid in selecting optimal
templates, targeting mutations in highly epistatic regions,
and identifying cooperative units for DNA shuffling experi-
ments. Another example is criminal recidivism prediction
that aims to determine the likelihood of an individual being
arrested within a specific period after their release from jail
or prison [Larson et al., 2016, Angelino et al., 2018]. In
such cases, where predictions directly impact human lives,
a model that is both highly accurate and interpretable is
essential for ensuring fairness and transparency in decision-
making [Rudin, 2019].

However, real-world data are often contaminated with out-
liers and the presence of outliers can highly influence the
data-driven modeling. For example, Reichel [2025] recently
studied that how the presence of a single outlier can cause
an otherwise insignificant coefficient to appear statistically
significant in finite-sample inference. To counter this gener-
ally robust regression model [Wilcox, 1996] is used which
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instead of of automatically removing outliers, helps mitigate
their impact [Tsukurimichi et al., 2022]. Robust regression
modifies the loss function to downweight the effect of ex-
treme residuals and a common choice is Huber loss, which
combines squared loss for small residuals and absolute loss
for large residuals [Huber, 1964, Owen, 2007, Huber and
Ronchetti, 2011]. Huber loss-based regression models have
been successfully used in biology [Deng et al., 2021, Deutel-
moser et al., 2021], medicine [Normolle, 1993], medical
diagnosis [Karim et al., 2023], finance [He et al., 2021, Per-
vez and Ali, 2024], and others [Das, 2023, Korgialas and
Kotropoulos, 2023].

In this paper we extend SHIM and proposed Huberized-
SHIM to counter the effect of outliers so that it can be used
reliably even in the presence of outliers. We provided a
homotopy-based exact regularization path following algo-
rithm to compute the entire regularization path of Huberized-
SHIM. We derived a novel tree-pruning criteria essential for
fitting a SHIM which is otherwise intractable due the combi-
natorial explosion of the interaction terms. Furthermore, we
integrated conformal prediction framework to demonstrate
the statistical efficiency of proposed Huberized-SHIM over
SHIM. We demonstrated the computational and statistical
efficiency of the proposed framework using synthetic and
real world data.

2 PROBLEM STATEMENT

Consider a regression problem with a response vector y ∈
Rn andm original covariate vectors z1, . . . , zm,where zj ∈
Rn and j ∈ [m]. A high-order interaction model up to the
dth order is then written as follows:

y =
∑

j1∈[m]

θj1zj1 +
∑

(j1,j2)∈[m]×[m]
j1 ̸=j2

θj1,j2zj1zj2 + · · ·

+
∑

(j1,...,jd)∈[m]d

j1 ̸=...̸=jd

θj1,...,jdzj1 · · · zjd + ϵ,
(1)

where zj1 · · · zjd is the element-wise product, scalar θ rep-
resents the coefficient and ϵ is the noise with E(ϵ|X) = 0.
In this study, we mainly consider each element of the orig-
inal covariate vector zj ∈ {0, 1}n. However, our model is
equally applicable to covariate vectors defined in the domain
[0, 1]n. To simplify the notation, it is convenient to write
the high-order interaction model in (1) using the following
matrix of concatenated vectors of all high-order interactions:

X = [z1, . . . , zm︸ ︷︷ ︸
1st order

, · · · , z1 . . . zd, . . . , zm−d+1 . . . zm︸ ︷︷ ︸
dth order

] ∈ Rn×p,

where p :=
∑d

κ=1

(
m
κ

)
, considering up to dth order inter-

actions. Similarly, the coefficient vector associated with
all possible high-order interaction terms can be written as

follows:

β := [θ1, . . . , θm︸ ︷︷ ︸
1st order

, · · · , θ1,...,d, . . . , θm−d+1,...,m︸ ︷︷ ︸
dth order

]⊤ ∈ Rp.

The high-order interaction model (1) is then simply written
as a linear model y = Xβ + ϵ. Unfortunately, p can be
prohibitively large unless both m and d are fairly small. In
the SHIM, we consider a sparse estimation of a high-order
interaction model. An example of a SHIM is as follows:

y = θ2z2 + θ3z3 + θ2,6z2z6 + θ1,2,4,6z1z2z4z6 + ϵ.

3 PROPOSED METHOD

We propose a homotopy-mining method to compute the ex-
act path of Huberized-SHIM. The homotopy method refers
to an optimization framework for solving a sequence of pa-
rameterized optimization problems. In robust (Huberized)
SHIM we solve the following optimization problem:

β(λ) ∈ argmin
β∈Rp

n∑
i=1

L(ri(λ)) + λ||β||1 +
1

2
α||β||22, (2)

where ri(λ) = yi−X⊤
i β(λ) is the residual, λ and α are the

regularization parameters of ℓ1 and ℓ2 penalty terms. The
loss L(·) is the Huber loss:

L(ri(λ)) =

{
1
2r

2
i (λ), if|ri(λ)| ≤ δ,

δ|ri(λ)| − δ2

2 , otherwise.

where δ ≥ 0 is a hyperparameter. We further define two
new parameters a and s as stated in (3) to redefine the
optimization problem (2):

ai(λ) =

{
1, if|ri(λ)| ≤ δ,
0, otherwise.

, and

s(ri(λ)) =

{
±1, if ri(λ) ̸= 0,

0, otherwise.
(3)

Now, we can rewrite the loss in (2):

n∑
i=1

L(ri(λ)) =

n∑
i=1

1

2
ai(λ)r

2
i (λ)+δ

n∑
i=1

(1−ai(λ))|ri(λ)|.

Optimality conditions. At optima we can write

X⊤h(λ)− αβ(λ) = λs(β(λ)), (4)

where h(λ) = a(λ) ⊙ r(λ) + δ(1 − a(λ)) ⊙ s(r(λ)) and
∀ℓ ∈ [p],

sℓ(β(λ)) =

{
{−1,+1}, if βℓ(λ) ̸= 0,

[−1,+1], if βℓ(λ) = 0,
(5)
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and ⊙ represents element-wise vector product. Let’s define
the active set

Aλ = {ℓ ∈ [p] : |x⊤ℓ h(λ)− αβℓ| = λ}, (6)

where [p] = {1, 2, . . . , p} is the set of indices of all possible
interaction terms of a SHIM, and the non-active set can be
defined as the complement of the active set:

Ac
λ = {[p] \ Aλ}.

The solutions β(λ) of (2) at different values of λ is called
the regularization path and the exact regularization path
(λ 7→ β(λ)) of the Huberized-SHIM can be shown to be
piecewise linear as stated in Proposition 1.

Proposition 1. If β(λ)’s have the same
sign between two points λ1 and λ2, that is
sign(β(λ1))=sign(β(λ2))=sign(β(λ)),∀λ ∈ [λ1, λ2),
then Aλ = Aλ1

. Furthermore, assuming that X⊤
Aλ
XAλ

is
invertible and there is no “knot-crossing” for any instance
i ∈ [n] such that the values of a(λ) and

(
1− a(λ)

)
s
(
r(λ)

)
remain the same for all λ ∈ [λ1, λ2), we have the linear
relations

βAλ
(λ2) = βAλ

(λ1) + (λ1 − λ2)ψAλ
(λ),

λ2s
(
βAc

λ
(λ2)

)
= λ1s

(
βAc

λ
(λ1)

)
+ (λ1 − λ2)γAc

λ
(λ),

where the direction vectors ψ and γ are defined as

ψAλ
(λ) =

(
αI|Aλ| +X⊤

Aλ
(a(λ)⊙XAλ

)
)−1

s
(
βAλ

(λ)
)
,

γAc
λ
(λ) = −X⊤

Ac
λ
(a(λ)⊙XAλ

)ψAλ
(λ). (7)

All the proofs have been deferred to the appendix unless
specified. For simplicity, we will define the step size
∆ = (λ1 − λ2) > 0. Therefore, according to Proposition 1
it is possible to design an algorithm to compute the exact
λ-path of Huberized SHIM using a homotopy algorithm
that exploits the linearity of the path between each two
consecutive transition points of direction (ψ, γ) changes.
A homotopy algorithm of robust-SHIM sequentially tracks
and updates the sign and the active set of the optimal
solutions, and the parameter vectors s(r) and a depending
on the signs and values of each component of the residual
vector r. At any two consecutive steps represented by λt
and λt+1, where t is an index of the transition points (kinks)
of the λ-path, either of the following three events occurs:

• (Addition): a zero variable becomes non-zero, that is,

∃ℓ ∈ Ac
λt
, s.t. |x⊤ℓ h(λt+1)| = λt+1, or,

• (Deletion): a non-zero variable becomes zero, that is,

∃ℓ ∈ Aλt
, s.t. βℓ(λt) ̸= 0, but βℓ(λt+1) = 0 or,

• (Knot-crossing): a residual ri hits a Huberized knot
point and the value of ai changes, that is,

∃i ∈ [n], s.t. |yi −Xi,A(λt)βAλt
(λt+1)| = δ

Overall, the next change in the direction vectors occur at
λt+1 = λt +∆, such that

∆ = min
(
∆1(ℓ

∗
1),∆2(ℓ

∗
2),∆3(i

∗)
)

(8)

where

ℓ∗1 = argmin
ℓ∈Ac

λt

∆1(ℓ),

ℓ∗2 = argmin
ℓ∈Aλt

∆2(ℓ),

i∗ = argmin
i∈[n]

∆3(i), and

∆1(ℓ) =

(
(xℓ ∓ xk)⊤h(λt)± αβk(λt)

(xℓ ∓ xk)⊤
(
a(λt)⊙ v(λt)

)
∓ αψk(λt)

)
++

,

∆2(ℓ) =

(
− βℓ(λt)

ψℓ(λt)

)
++

,

∆3(i) =

{
min

((ri(λt)− δ
vi(λt)

)
++
,
(ri(λt) + δ

vi(λt)

)
++

)}
,

for any k ∈ Aλt
, and we defined v(λ) = XAλ

ψAλ
(λ).

Here, we use the convention that for any g ∈ R, (g)++ = g,
if g > 0 and ∞ otherwise. However, naively (by simply
minimizing over all possible interaction terms) determining
the step size of inclusion (∆1(ℓ

∗
1)) will be intractable

for the SHIM type problem. In SHIM, the search space
grows exponentially due to the combinatorial effect of
high-order interaction terms. Therefore, fitting of a SHIM
is non-trivial and a SHIM model will have a significantly
large number of parameters to be considered unless both
number of features (m) and the order of interactions (d)
are very small. Several algorithms for fitting a sparse
high-order interaction model have been proposed in the
literature [Tsuda, 2007, Saigo et al., 2009, Nakagawa
et al., 2016, Das et al., 2022, 2024]. A common approach
adopted in these existing works is to exploit the hierarchical
structure of high-order interaction features. In other words,
a tree structure of interaction terms (patterns) is considered
and a branch-and-bound strategy is employed in order to
avoid handling all the exponentially increasing number of
high-order interaction features. Hence, we need an efficient
computational method to make the computation practically
feasible. In the following section, we present an efficient
tree pruning strategy where each node of the tree represents
an interaction term. The basic idea of tree pruning is that
we construct a tree of interaction terms in a ‘progressive
manner’. That is, we keep track of the current minimum
step size of inclusion up to the construction of ℓth pattern
as we construct the tree progressively, and prune a large
part of the tree if some bound condition fails (Lemma 1).
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Lemma 1. For any given node ℓ, if ∆1(ℓ
†
1) is the current

minimum step size, that is,

ℓ†1 = argmin
j∈{1,2,...,ℓ}∩Aλc

t

∆1(j),

then ∀ℓ′ ⊃ ℓ,∆1(ℓ
′) ≥ ∆1(ℓ

†
1) if

bℓ(w(λt)) + ∆1(ℓ
†
1)bℓ(u(λt)) + bℓ(κ(λt)) (9)

< |ρ̄k(λt)| −∆1(ℓ
†
1)|η̄k(λt)| − |θk(λt)|,

where w(λt) = a(λt) ⊙ r(λt), u(λt) = a(λt) ⊙ v(λt),
κ(λt) = δ(1 − a(λt)) ⊙ s

(
r(λt)

)
, ρ̄k(λt) =

ρk(λt) − αβk(λt), η̄k(λt) = ηk(λt) + αψk(λt),
ρk(λt) = x⊤k w(λt), ηk(λt) = x⊤k u(λt),
θk(λt) = x⊤k κ(λt), and for a vector g ∈ Rn we defined

bℓ(g) := max

{∑
gi>0

|gi|xiℓ,
∑
gi<0

|gi|xiℓ

}
.

The Lemma 1 essentially states that if for any node ℓ the
condition in (9) is satisfied, then one can safely ignore
the subtree with ℓ as the root node, thereby dramatically
improving the computational efficiency. The complete
algorithm to compute the entire exact regularization path
of Huberized-SHIM has been provided in the appendix.

4 RESULTS AND DISCUSSION

We evaluated our proposed method using both synthetic and
real-world data. For details about the data please see the
appendix. To demonstrate the statistical efficiency we used
inductive conformal prediction [Papadopoulos et al., 2002,
Angelopoulos and Bates, 2021] and reported the mean and
standard deviation of the prediction set lengths (‘length’)
and coverage (‘cov’) along with coefficient of determination
(R2) in Table 1, 2, 3. For all experiments, we considered a
coverage guarantee of 90%, that is, significance level = 0.1.
Please see the appendix for a brief introduction to confor-
mal prediction. We consider ‘clean’ data and then gradually
added ‘outliers’ to demonstrate the difference. The results
show the ‘mean (standard deviation)’ of 10 independent
runs in the order of Huberized-SHIM / SHIM. We consider
interaction terms up to 3rd−order in both cases. To demon-
strate the efficacy of tree pruning we have shown the mean
fraction of node counts averaged over 10 independent runs
in Figure 1. The ‘fraction of nodes’ for a specific ‘maximum
depth’ represents the number of nodes traversed divided
by the total number of possible combinations of interaction
terms using that maximum depth. The results are shown for
three different sparsity levels (0.2, 0.4, 0.8). Tree pruning
is more effective at high data sparsity level which is obvi-
ous considering the tree antimonotonicity property (see tree
definition in appendix for details).

Table 1: Results using synthetic SHIM data.

Clean One outlier Five outliers Ten outliers

length
5.53 (1.77) /
7.72 (1.28)

5.72 (1.81) /
35.84 (11.41)

6.09 (2.17)
94.38 (21.18)

6.49 (2.17) /
137.26 (23.57)

cov
0.89 (0.05) /
0.90 (0.04)

0.91 (0.03) /
0.92 (0.03)

0.91 (0.03)
0.89 (0.04)

0.89 (0.06)
0.89 (0.03)

R2 0.94 (0.02) /
0.95 (0.02)

0.94 (0.04) /
0.01 (0.54)

0.93 (0.04)
-5.78 (2.29)

0.93 (0.04) /
-12.11 (3.63)

Table 2: Results using Fluorescence data (fitness=‘red’).

Clean One outlier Five outliers Ten outliers

length
0.58 (0.08) /
0.58 (0.08)

0.62 (0.07) /
0.85 (0.15)

1.17 (0.48)
1.68 (0.34)

1.85 (0.39) /
2.30 (0.42)

cov
0.91 (0.03) /
0.91 (0.03)

0.91 (0.02) /
0.90 (0.04)

0.91 (0.06)
0.92 (0.05)

0.92 (0.04)
0.91 (0.06)

R2 0.65 (0.10) /
0.65 (0.10)

0.58 (0.10) /
0.26 (0.30)

-0.24 (0.88)
-1.37 (0.94)

-2.35 (1.85) /
-4.39 (2.70)

Table 3: Results using Compas data.

Clean One outlier Five outliers Ten outliers

length
9.15 (0.63) /
9.48 (0.77)

9.14 (0.64) /
9.50 (0.72)

9.14 (0.68)
12.13 (1.68)

9.33 (0.67) /
16.11 (2.84)

cov
0.93 (0.03) /
0.93(0.02)

0.93 (0.03) /
0.91 (0.03)

0.93 (0.03)
0.93(0.02)

0.93 (0.03)
0.94 (0.03)

R2 0.19 (0.14) /
0.12 (0.06)

0.17 (0.15) /
0.03 (0.18)

0.19 (0.14)
-0.46 (0.46)

0.18 (0.15) /
-1.41 (0.48)

2 3 4 5 6 7 8 9 10
maximum depth ( = 1.0)

0.0
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Figure 1: Efficacy of tree pruning using synthetic data.

5 CONCLUSION

This paper introduces Huberized-SHIM, an extension of the
Sparse High-Order Interaction Model (SHIM) that enhances
robustness against outliers while maintaining interpretabil-
ity in high-stakes applications. The proposed homotopy-
based regularization path algorithm and tree-pruning crite-
rion efficiently manage computational complexity, making
SHIM scalable for real-world datasets. Additionally, the
incorporation of conformal prediction provides statistical
coverage guarantees, reinforcing model reliability. Our ex-
periments demonstrate that Huberized-SHIM surpasses stan-
dard SHIM in robustness and predictive accuracy, offering a
powerful tool for transparent, data-driven decision-making.
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A EXPERIMENTAL SET UP

We considered the following settings in all experiments.
We set the ℓ1 regularization hyperparameter λ = 1.0, ℓ2
regularization hyperparameter α = 0.001, and huber hyper-
parameter δ = 1.0. We have chosen a random sample of
size n = 300 which is first (randomly) split into a training
set and test test using standard scikit-learn’ train_test_split
method considering a split-ratio of = 0.25. The training
set is further split into a proper training set and a calibra-
tion using the same train_test_split method considering a
split-ratio of = 0.5. All experiments are repeated for 10
independent runs and the mean and standard deviations of
all 10 independent runs have been reported. We set fixed
values of hyper parameters in all our experiments just for
the demonstration purpose. However, we recommend tuning
the hyper parameters for each data separately using cross
validation methods for best model performance. To simulate
the effect of outliers we used the following strategy.

outlier_indices = np.random.choice(range(
y_train.shape[0]), n_out, replace=True)

y_train[outlier_indices] += 2*(y_train.max
() - y_train.min(),)

where n_out represents the number of outliers.

Synthetic data. We randomly generated i.i.d. samples
(Zi, yi) ∈ {0, 1}m × R, where i ∈ [n], ensuring that,
on average, 100m(1 − ζ)% of the features in Zi ∈ Rm

take a value of 1. The parameter ζ ∈ [0, 1] controls the
sparsity of the design matrix, while the regularization pa-
rameter λ governs the sparsity of the model coefficients.
The effectiveness of the tree pruning condition relies on
the sparsity of the design matrix, leveraging the tree’s
anti-monotonicity property. Since high-dimensional real-
world data tend to be sparse, the choice of ζ in our experi-
ments serves purely a demonstration purpose. The response
variable yi ∈ R is sampled from the normal distribution
N (µ(Zi), σ

2). For demonstration, we adopt a true model
incorporating up to fourth-order interactions, defined as:
µ(Zi) = −zi2+ zi3+20zi5− 7zi2zi3zi4− 20zi1zi2zi3zi4,
where σ = 1. We set ζ = 0.2,m = 10 for the statistical
results in Table 1. To demonstrate the efficacy of tree prun-
ing we used the same true model and m = 10, but varied
the sparsity level ζ ∈ {0.2, 0.4, 0.8}. This model is used
solely for illustrative purposes, and the proposed method is
applicable to any chosen model.

Real data. For the real data we considered En-
tacmaea quadricolor fluorescent protein eqFP611,
two variant of which namely one bright deep-red
(mKate2, λex = 590nm, λem = 635nm) and one bright
blue (mTagBFP2, λex = 405nm, λem = 460nm) are
separated by thirteen mutations [Poelwijk et al., 2019].
Form biological perspective it is important to identify the
crucial mutations and their pattern of epistasis (high-order
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Figure 2: Benchmark results comparing different regression methods using synthetic SHIM data.
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Figure 4: Efficacy of tree pruning using fluorescence data.

interactions among mutations) that relate to the phenotypes
(e.g., brightness). We also evaluated our approach using
ProPublica’s COMPAS recidivism dataset, which includes
seven categorical and integer-valued features along with
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Figure 5: Efficacy of tree pruning using compas data.

continuous recidivism scores. An equivalent set of 14
binary features and continuous response was obtained
from the CORELS GitHub repository [Angelino et al.,
2017]. Model interpretabilty is crucial for the analysis
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Table 4: Results using Fluorescence data (fitness=‘blue’).

Clean One outlier Five outliers Ten outliers

length
1.17 (0.20) /
1.15 (0.19)

1.14 (0.18) /
1.24 (0.27)

1.68 (0.45)
1.99 (0.33)

2.26 (0.51) /
2.61 (0.45)

cov
0.90 (0.05) /
0.90 (0.05)

0.90 (0.06) /
0.88 (0.08)

0.91 (0.05)
0.91 (0.03)

0.91 (0.03)
0.90 (0.05)

R2 0.18 (0.13) /
0.18 (0.13)

0.15 (0.14) /
0.00 (0.17)

-0.53 (0.80)
-1.19 (0.70)

-2.02 (1.43) /
-3.21 (1.78)

of such high-stake decision making problems where an
algorithm derived predictions are associated with the life of
a human being or critical biological analysis. We provide
additional results here in addition to the results provided
in the main paper. Figure 2 shows benchmark results
comparing different regression methods using synthetic
SHIM data. For this benchmark results we used the default
parameter settings of Scikit-learn implementation of the
standard methods. Figure 3 shows the computation time
of running Huberized-SHIM with or without the pruning
condition using the synthetic SHIM data at different data
sparsity levels. Figure 4 and Figure 5 show the efficacy
of the proposed tree pruning condition when applied on
real-world fluorescence [Poelwijk et al., 2019] and compas
data respectively [Angelino et al., 2017]. Table 4 shows the
results using blue brightness as the fitness score (response
variable).

B TECHNICAL APPENDIX

B.1 PROOF OF PROPOSITION 1

Before proving Proposition 1, we state the following propo-
sition.

Proposition 2. For any λ ∈ [λ1, λ2), if there is no “knot-
crossing” from either side (left or right) for any instance
i ∈ [n], then the values of a(λ) and

(
1 − a(λ)

)
s
(
r(λ)

)
remain the same for all λ ∈ [λ1, λ2).

Proof of Proposition 2. If for any λ ∈ [λ1, λ2) there is
no “knot-crossing” from either side (left or right), then,
∀i′ ∈ [n] : |ri′(λ1)| > δ =⇒ ai′(λ1) = ai′(λ) = 0
and

(
1 − ai′(λ1)

)
s
(
ri′(λ1)

)
= s
(
ri′(λ1)

)
= s
(
ri′(λ)

)
∈

{−1,+1}, and ∀i ∈ [n] : |ri(λ1)| ≤ δ =⇒ ai(λ1) =
ai(λ) = 1, and

(
1 − ai(λ)

)
s
(
ri(λ)

)
= 0. Therefore, if

there is no “knot-crossing” from either side (left or right)
for any instance i ∈ [n], then the values of a(λ) and

(
1 −

a(λ)
)
s
(
r(λ)

)
remain the same for all λ ∈ [λ1, λ2).

Proof of Proposition 1. For any λ ∈ [λ1, λ2), if the
sign(β(λ)) remains the same, then the active set also re-
mains the same, that is Aλ = Aλ1

. Furthermore, we as-
sume that there is no “knot-crossing” for any λ ∈ [λ1, λ2).
Then, using Proposition 2 the values of a(λ) and

(
1 −

a(λ)
)
s
(
r(λ)

)
remain the same for all λ ∈ [λ1, λ2). Now,

using optimality condition (4) at λ1 and λ2, we can write
the following:

X⊤
(
a(λ1)⊙ r(λ1) + δ(1− a(λ1))⊙ s(r(λ1)

)
= λ1s(β(λ1)) + αβ(λ1), (10)

X⊤
(
a(λ2)⊙ r(λ2) + δ(1− a(λ2))⊙ s(r(λ2)

)
= λ2s(β(λ2)) + αβ(λ2). (11)

Therefore, subtracting (10) from (11), expanding r(λ) =
y −XAλ

βAλ
(λ) and using Proposition 2 we can write for

the active components of the optimum solutions (βAλ
(λ)):

−X⊤
Aλ

(a(λ)⊙XAλ
)
(
βAλ

(λ2)− βAλ
(λ1)

)
= α

(
βAλ

(λ2)− βAλ
(λ1)

)
+ (λ2 − λ1)s

(
βAλ

(λ)
)
,
(12)(

αI|Aλ| +X⊤
Aλ

(a(λ)⊙XAλ
)
)(
βAλ

(λ2)− βAλ
(λ1)

)
= (λ1 − λ2)s

(
βAλ

(λ)
)
,

=⇒
(
βAλ

(λ2)− βAλ
(λ1)

)
λ1 − λ2

=
(
αI|Aλ| +X⊤

Aλ
(a(λ)⊙XAλ

)
)−1

s
(
βAλ

(λ)
)
,

= ψAλ
(λ).

Similarly, for the non-active components of the optimum
solutions (βAc

λ
(λ)), we can write the following:

−X⊤
Ac

λ
(a(λ)⊙XAλ

)
(
βAλ

(λ2)− βAλ
(λ1)

)
(13)

= λ2s
(
βAc

λ
(λ2)

)
− λ1s

(
βAc

λ
(λ1)

)
,

−X⊤
Ac

λ
(a(λ)⊙XAλ

)ψAλ
(λ)(λ1 − λ2)

= λ2s
(
βAc

λ
(λ2)

)
− λ1s

(
βAc

λ
(λ1)

)
,

=⇒
λ2s
(
βAc

λ
(λ2)

)
− λ1s

(
βAc

λ
(λ1)

)
λ1 − λ2

= −X⊤
Ac

λ
(a(λ)⊙XAλ

)ψAλ
(λ),

= γAc
λ
(λ).

B.2 DERIVATION OF STEP-SIZE OF INCLUSION.

At any λt+1 : λt > λt+1 > 0, any j ∈ Ac
λt

becomes active
if for any k ∈ Aλt the following condition is satisfied:

|x⊤j h(λt+1)− αβj(λt+1)| = |x⊤k h(λt+1)− αβk(λt+1)|.
(14)
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Now, considering βk(λt+1) = βk(λt) + ∆1(j) · ψk(λt),
v(λt) = XAλt

ψAλt
and expanding h(λt+1), where

r(λt+1) = r(λt)−∆1(j)·v(λt) and and assuming that there
is no “knot-crossing” (Proposition 2) for any λ ∈ [λt, λt+1]
such that a(λt+1) = a(λt) and (1−a(λt+1))s(r(λt+1)) =
(1− a(λt))s(r(λt)), we can write for the positive terms of
equicorrelation condition (14):

x⊤j (a(λt)⊙
(
r(λt)−∆+

1 (j) · v(λt)
)

+ δ(1− a(λt))⊙ s(r(λt)))
= x⊤k (a(λt)⊙

(
r(λt)−∆+

1 (j) · v(λt)
)

+ δ(1− a(λt))⊙ s(r(λt)))
− α

(
βk(λt) + ∆+

1 (j) · ψk(λt)
)
,

=⇒ (xj − xk)⊤h(λt) + αβk(λt)

= ∆+
1 (j)((xj − xk)⊤(a(λt)⊙ v(λt))− αψk(λt)),

=⇒ ∆+
1 (j) =

(xj − xk)⊤h(λt) + αβk(λt)

(xj − xk)⊤
(
a(λt)⊙ v(λt)

)
− αψk(λt)

.

(15)

Similarly for the negative terms of equicorrelation (19), we
can write

∆−
1 (j) =

(xj + xk)
⊤h(λt)− αβk(λt)

(xj + xk)⊤(a(λt)⊙ v(λt)) + αψk(λt)
. (16)

Now, combining (15) and (16), we can write the step-size
of inclusion

∆1(j) =
(xj ∓ xk)⊤h(λt)± αβk(λt)

(xj ∓ xk)⊤(a(λt)⊙ v(λt))∓ αψk(λt)
. (17)

B.3 PROOF OF TREE PRUNING CONDITION

Before proving Lemma 1, we define few definitions and two
propositions as stated below.

Definition 1. A tree is constructed in such a way that for
any pair of nodes (ℓ, ℓ′), where ℓ is the ancestor of ℓ′, that
is ℓ ⊂ ℓ′, the following conditions are satisfied ∀i ∈ [n] :

xiℓ′ = 1 =⇒ xiℓ = 1 and xiℓ = 0 =⇒ xiℓ′ = 0.

Let’s define ∀ℓ ∈ [p],

ρℓ(λ) = x⊤ℓ w(λ),

ηℓ(λ) = x⊤ℓ u(λ),

θℓ(λ) = x⊤ℓ κ(λ), (18)

where w(λ) = a(λ)⊙ r(λ), u(λ) = a(λ)⊙ v(λ), v(λ) =
Xψ(λ), and κ(λ) = δ(1− a(λ))⊙ s

(
r(λ)

)
.

Proposition 3. Let’s define for a vector g ∈ Rn

bℓ(g) = max

{∑
gi<0

|gi|xiℓ,
∑
gi>0

|gi|xiℓ

}
,

then if we expand ρℓ(λ), ηℓ(λ) and θℓ(λ) separately for posi-
tive and negative values ofwi(λ), ui(λ) and κi(λ),∀i ∈ [n]
respectively, we can write

|ρℓ(λ)| ≤ bℓ(w(λ)),
|ηℓ(λ)| ≤ bℓ(u(λ)),
|θℓ(λ)| ≤ bℓ(κ(λ))

Proof of Proposition 3. We have

|x⊤ℓ g| =

∣∣∣∣∣
n∑

i=1

gixiℓ

∣∣∣∣∣
=

∣∣∣∣∣∑
gi>0

|gi|xiℓ −
∑
gi<0

|gi|xiℓ

∣∣∣∣∣
≤ max

{∑
gi>0

|gi|xiℓ,
∑
gi<0

|gi|xiℓ

}
=: bℓ(g).

Here, we used a generic vector g in place of w(λ), u(λ) and
κ(λ) to keep the proof simple.

Proposition 4. By using the tree anti-monotonicity property
i.e., xiℓ ≥ xiℓ′ ,∀ℓ′ ⊃ ℓ,∀i ∈ [n] as defined in the definition
of tree (Definition 1), we have

bℓ(g) ≥ bℓ′(g).

Proof of Proposition 4. From the definition of tree we have
xiℓ ≥ xiℓ′ ,∀ℓ′ ⊃ ℓ,∀i ∈ [n]. Hence, we can write

bℓ(g) = max

{∑
gi<0

|gi|xiℓ,
∑
gi>0

|gi|xiℓ

}

≥ max

{∑
gi<0

|gi|xiℓ′ ,
∑
gi>0

|gi|xiℓ′
}

=: bℓ′(g).

Feature inclusion condition. At any λ2 : λ1 > λ2 >
0, any j ∈ Ac

λ1
becomes active if for any k ∈ Aλ1

the
following equicorrelation condition is satisfied:

|x⊤j
(
a(λ2)⊙ r(λ2) + δ(1− a(λ2))⊙ s(r(λ2))

)
− αβj(λ2)|

= |x⊤k
(
a(λ2)⊙ r(λ2) + δ(1− a(λ2))⊙ s(r(λ2))

)
− αβk(λ2)|. (19)
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The above equicorrelation condition (19) can be used to
derive the tree-pruning condition. If the active set Aλ and
the sign of the model coefficients s(βj(λ)), ∀j ∈ [p] remain
the same and also there exists no “knot-crossing” (Proposi-
tion 2) such that ai(λ), (1−ai(λ))s(ri(λ)),∀i ∈ [n] remain
constant for ∀λ ∈ [λ1, λ2], then (19) can be rewritten as
follows:

|x⊤j
(
a(λ1)⊙ r(λ2) + δ(1− a(λ1))⊙ s(r(λ1))

)
− αβj(λ2)|

= |x⊤k
(
a(λ1)⊙ r(λ2) + δ(1− a(λ1))⊙ s(r(λ1))

)
− αβk(λ2)|, (20)

Then, expanding r(λ2) = r(λ1) −∆1(j)v(λ1) and using
the definitions in (18), we can rewrite (20):

|ρj(λ1)−∆1(j)ηj(λ1) + θj(λ1)− α
(
βj(λ1)

+ ∆1(j) · ψj(λ1)
)
|

= |ρk(λ1)−∆1(j)ηk(λ1) + θk(λ1)− α
(
βk(λ1)

+ ∆1(j) · ψk(λ1)
)
|, (21)

=⇒ |ρj(λ1)−∆1(j)ηj(λ1) + θj(λ1)|
= |ρk(λ1)− αβk(λ1) + θk(λ1)−∆1(j)

(
ηk(λ1)

+ αψk(λ1)
)
|. (22)

We derived (22) from (21), by considering the fact that
βj(λ) = 0 and ψj(λ) = 0,∀j ∈ Ac

λ.

Tree pruning (Branch & Bound). To have a solution of
(22), the following conditions must be satisfied:

|ρj(λ1)−∆1(j)ηj(λ1) + θj(λ1)|
≤ |ρj(λ1)|+∆1(j)|ηj(λ1)|+ |θj(λ1)|, (23)

and

|ρk(λ1)−αβk(λ1) + θk(λ1)−∆1(j)
(
ηk(λ1) + αψk(λ1)

)
|

≥ |ρk(λ1)− αβk(λ1)| −∆1(j)|ηk(λ1) (24)
+ αψk(λ1)| − |θk(λ1)|.

Therefore, (23) and (24) implies

|ρj(λ1)|+∆1(j)|ηj(λ1)|+ |θj(λ1)|
≥ |ρk(λ1)− αβk(λ1)| −∆1(j)|ηk(λ1)

+ αψk(λ1)| − |θk(λ1)|. (25)

Therefore, if the condition stated in (26) is satisfied, then
there will be no solution of (22), and hence, (26) can be
used to derive a tree pruning condition.

|ρj(λ1)|+∆1(j)|ηj(λ1)|+ |θj(λ1)|
< |ρk(λ1)− αβk(λ1)| −∆1(j)|ηk(λ1)

+ αψk(λ1)| − |θk(λ1)|. (26)

By using Proposition 3, we can write (27) which im-
plies (26).

bj(w(λ1)) + ∆1(j)bj(u(λ1)) + bj(κ(λ1))

< |ρ̄k(λ1)| −∆1(j)|η̄k(λ1)| − |θk(λ1)|. (27)

where ρ̄k(λ) = ρk(λ)−αβk(λ), η̄k(λ) = ηk(λ)+αψk(λ).

Proof of Lemma 1. We now prove Lemma 1 by contradic-
tion, that is we assume that at any node ℓ, the condition
(9) stated in Lemma 1 holds, and there exists one ℓ′ ⊃ ℓ :
∆1(ℓ

′) < ∆1(ℓ
†
1); then show that this is a contradiction.

Therefore |ρ̄k(λ)| −∆1(ℓ
′)|η̄k(λ)| − |θk(λ)|

> |ρ̄k(λ)| −∆1(ℓ
†
1)|η̄k(λ)| − |θk(λ)|,

because ∆1(ℓ
′) < ∆1(ℓ

†
1)

> bℓ(w(λ)) + ∆1(ℓ
†
1)bℓ(u(λ)) + bℓ(κ(λ)),

using (9)

> bℓ′(w(λ)) + ∆1(ℓ
†
1)bℓ′(u(λ)) + bℓ′(κ(λ)),

(Proposition 4),
> bℓ′(w(λ)) + ∆1(ℓ

′)bℓ′(u(λ)) + bℓ′(κ(λ)),

because ∆1(ℓ
′) < ∆1(ℓ

†
2).

Therefore, we got

|ρ̄k(λ)|−∆1(ℓ
′)|η̄k(λ)| − |θk(λ)|

> bℓ′(w(λ)) + ∆1(ℓ
′)bℓ′(u(λ)) + bℓ′(κ(λ))

=⇒ ℓ′ is infeasible,
(using (27))

=⇒ ∆1(ℓ
′) ≥ ∆1(ℓ

†
1).

This completes the proof of Lemma 1. Hence, if the pruning
condition in Lemma 1 holds, then we do not need to search
the sub-tree with ℓ as the root node, and hence increasing
the efficiency of the search procedure.

B.4 ALGORITHM OF HUBERIZED-SHIM.

Derivation of first ℓ∗ and λmax : Let’s define

G(ℓ) = |X⊤
ℓ h(λ)|, then

ℓ∗ = argmax
ℓ∈[p]

G(ℓ),

λmax = G(ℓ∗), (28)

10



Algorithm 1 Exact λ-path of Huberized SHIM
1: Input: Dn = {(Xi, yi)}ni=1

2: Initialize t = 0, λ0 = λmax using (28), Aλ0 = {ℓ∗},
ai(λ0) and s(ri(λ0)) using (3)

3: while (λ > 0) do
4: Compute ∆ using (8)
5: Update: λt+1 ← λt + ∆, βAλt

(λt+1) ←
βAλt

(λt) + ∆ · ψAλt
(λt), βt+1 ← [βAλt

(λt+1),0]
6: if ∆ = ∆λ1 then
7: add ℓ into Aλt

8: else if ∆ = ∆λ2
then

9: remove ℓ from Aλt

10: else if ∆ = ∆λ3
then

11: update ai(λ),∀i ∈ [n] using (3)
12: end if
13: A = A ∪ A(λt+1),B = B ∪ {βt+1}
14: Update ψAλt

(λt) using (7)
15: t = t +1
16: end while
17: Output: A,B

C CONFORMAL PREDICTION

A single point estimate is inadequate for automated decision-
making in high-risk domains like medical diagnosis and
criminal justice [Angelino et al., 2018, Rudin, 2019, Das
et al., 2019]. In such critical scenarios, equipping estimators
with coverage information enhances decision-makers’ con-
fidence, enabling more informed and reliable choices when
stakes are high. Given a labelled datasetDn = {(xi, yi)}ni=1

and a new observation xn+1, the objective of the conformal
prediction (CP) framework is to generate a statistically valid
prediction set C(xn+1) for the unknown response yn+1, en-
suring coverage guarantees[Vovk et al., 2005, Shafer and
Vovk, 2008], i.e.,

P(yn+1 ∈ C(xn+1)) ≥ 1− α, (29)

where α ∈ [0, 1] determines the level of coverage. In in-
ductive conformal prediction [Papadopoulos et al., 2002,
Angelopoulos and Bates, 2021], also known as split-CP, the
dataset Dn is divided into two distinct subsets: the train-
ing set Dtr = {(x1, y1), . . . , (xn′ , yn′)} and the calibration
set Dcal = {(xn′+1, yn′+1), . . . , (xn, yn)}, where n′ < n.
A regression model µtr(·) is trained using the training set
Dtr only once, and the p-values, represented as πsplit(·), are
subsequently computed based on the calibration set Dcal :

πsplit(τ) = 1− 1

n− n′
n∑

i=n′+1

1Scal
i (τ)≤Sn+1(τ),

where Scal
i (τ) = |yi − µtr(xi)|,∀i ∈ [n′ + 1, n]. Therefore,

the split-CP set can be defined as follows:

Csplit(xn+1) = {τ : πsplit(τ) ≥ α}.

When the conformity score is defined as the absolute
residual, then the split-CP set can be conveniently writ-
ten as Csplit(xn+1) = [µtr(xn+1) ±Qcal

1−α], where Qcal
1−α is

the (1 − α) quantile of the calibration scores Scal
i ,∀i ∈

[n′ + 1, n]. For more details about conformal prediction
please see [Shafer and Vovk, 2008, Angelopoulos and Bates,
2021].
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